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Abstract—Ranking on large-scale graphs plays a fundamental
role in many high-impact application domains, ranging from
information retrieval, recommender systems, sports team man-
agement, biology to neuroscience and many more. PageRank,
together with many of its random walk based variants, has
become one of the most well-known and widely used algorithms,
due to its mathematical elegance and the superior performance
across a variety of application domains. Important as it might
be, state-of-the-art lacks an intuitive way to explain the ranking
results by PageRank (or its variants), e.g., why it thinks the
returned top-k webpages are the most important ones in the
entire graph; why it gives a higher rank to actor John than actor
Smith in terms of their relevance w.r.t. a particular movie?

In order to answer these questions, this paper proposes a
paradigm shift for PageRank, from identifying which nodes are
most important to understanding why the ranking algorithm gives
a particular ranking result. We formally define the PageRank
auditing problem, whose central idea is to identify a set of key
graph elements (e.g., edges, nodes, subgraphs) with the highest
influence on the ranking results. We formulate it as an opti-
mization problem and propose a family of effective and scalable
algorithms (AURORA) to solve it. Our algorithms measure the
influence of graph elements and incrementally select influential
elements w.r.t. their gradients over the ranking results. We
perform extensive empirical evaluations on real-world datasets,
which demonstrate that the proposed methods (AURORA) provide
intuitive explanations with a linear scalability.

Index Terms—Graph mining, PageRank, explainability

I. INTRODUCTION

Ranking on graph data is a way to measure node importance
and plays a fundamental role in many real-world applica-
tions, ranging from information retrieval [1], recommender
systems [2], social networks [3], sports team management [4]
to biology [5] and neuroscience [6]. Among others, PageR-
ank [1], together with many of its random walk based variants,
is one of the most well-known and widely used ones. Its
mathematical elegance lies in that it only requires the topo-
logical structure and the associated edge weights as the input.
Such a generality makes it applicable to networks1 from many
different application domains.

PageRank has a strong ability answering questions like
what is the most important page in the World Wide Web;

1In this paper, we use ‘graph’ and ‘network’ interchangably.

(a) Potential influential edges. (b) Potential influential node.
Fig. 1: Example of potential influential edges and node.

who is the most influential person in a collaboration network.
Despite its superior performance on graph ranking, PageRank
lacks intuitive ways to give answers to questions like why the
top-k returned webpages are the most important ones; why
actor John ranks higher than actor Smith in terms of their
relevance w.r.t. a particular movie. How the ranking results
are derived from the underlying graph structure has largely
remained opaque to the end users, who are often not experts
in data mining and mathematics.

To address this challenge, we aim to explain PageRank
by finding the influential graph elements (e.g., edges, nodes
and subgraphs), which we formulate as PageRank auditing
problem. The key idea is to quantitatively understand how
the ranking results would change if we perturb a specific
graph element. To be specific, we measure the influence of
each graph element by the rate of change in a certain loss
function (e.g., Lp norm, etc.) defined over the ranking vector.
We believe that auditing graph ranking can benefit many real-
world applications. First, it can render the crucial explain-
ability of such ranking algorithms, by identifying valuable
information of influential graph elements. Thus, it can help
answer questions like why a given node ranks on the top of
the ranking list, which link leads to the ranking vector in a
certain way. Furthermore, users can use the auditing results
to optimize the network topology. In addition, it may help
identify the vulnerabilities in the network (e.g. links between
two clusters, cutpoints of clusters as shown in Figure 1a
and Figure 1b). With the auditing result, users may find
several links or nodes that have the greatest influence on
the ranking results. It can help users identify if there exist
suspicious individuals that manipulate the ranking results by
linking heavily with unrelated, off-query topics. Finally, with
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TABLE I: Table of Symbols

Symbols Definitions

G = (V, E) the input network
(i, j) edge from node i to node j
A adjacency matrix of the input network

A(i, j) the element at ith row and jth column
A(i, :) ith row of matrix A
A(:, j) jth column of matrix A
A′ transpose of the matrix A
A−1 inverse of the matrix A
e the teleportation vector in PageRank
r PageRank of the input network

r (i) ranking score of i
Tr (A) Trace of the matrix A

f (r) a loss function over ranking vector r
n number of nodes in the input network
m number of edges in the input network
c damping factor in PageRank

the knowledge of graph ranking auditing, we may design a
more robust ranking algorithm that is hard to be manipulated
by users with strategies like linking heavily [7].

The main contributions of the paper are summarized as
follows.
• Problem Definition. We formally define PageRank audit-

ing problem, and formulate it as an optimization problem,
whose key idea is to measure the influence of different
graph elements as the rate of change in the PageRank
results.

• Algorithms and Analysis. We propose fast approxima-
tion algorithms to solve the PageRank auditing problem.
The algorithms achieve a (1 − 1/e) approximation ratio
with a linear complexity.

• Empirical Evaluations. We perform extensive experi-
ments on diverse, real-world datasets. The experimental
results demonstrate that our proposed methods (a) provide
reasonable and intuitive information to find influential
graph elements, and (b) scale linearly w.r.t. the graph
size.

The rest of the paper is organized as follows. Section II
formally defines the PageRank auditing problem. Section III
introduces our proposed algorithms. Then we provide experi-
mental evaluations in Section IV. After reviewing related work
in Section V, we conclude the paper in Section VI.

II. PROBLEM DEFINITION

In this section, we first present a table of symbols (Table 1)
that contains the main notations used throughout the paper, and
then review PageRank for ranking nodes on graphs, and finally
give a formal definition of the PageRank auditing problem.

We use bold upper-case letters for matrices (e.g., A), bold
lower-case letters for vectors (e.g., a), calligraphic fonts for
sets (e.g., S), and lower-case letters for scalars (e.g., c).
For matrix indexing conventions, we use the rules similar to
Matlab that are shown as follows. We use A(i, j) to denote
the entry of matrix A at ith row and jth column, A(i, :) to
denote the ith row of matrix A, and A(:, j) to denote the jth

column of matrix A. We use prime to denote the transpose of
matrix (i.e., A′ is the transpose of matrix A).

Given a graph G with n nodes and m edges, PageRank
essentially solves the following linear system,

r = cAr + (1− c)e (1)
where e is the teleportation vector with length n and A
is the normalized adjacency matrix of the input graph. In
PageRank, e is chosen as the uniform distribution 1

n1; in
personalized PageRank, e is a biased vector which reflects
user’s preference (i.e., ‘personalization’) [8]; in random walk
with restart [9], all the probabilities are concentrated on a
single node. A default choice for the normalized adjacency
matrix A is the column-normalized matrix (i.e., the stochastic
matrix). A popular alternative choice is the normalized graph
Laplacian matrix. In fact, as long as the largest eigenvalue of
A is less than 1/c, a fix-point solution of the above linear
system will converge to r = (1− c)(I− cA)−1e [10]. In this
paper, we use this general form for the adjacency matrix A.
For the ease of description, we also define Q = (I− cA)−1,
and r = pg(A, e, c) as the resulting PageRank vector with A,
e, and c as the corresponding inputs.

Regarding explainable learning and mining techniques, Pang
et al. [11] propose a novel notation of influence functions to
quantify the impact of each training example on the underlying
learning system (e.g., a classifier). The key idea is to trace
the model’s prediction back to its training data, where the
model parameters were derived. In this way, it learns how a
perturbation of a single training data will affect the resulting
model parameters, and then identifies the training examples
that are most responsible for model’s predictions.

Our proposed method to explain the PageRank results is
built upon the principle outlined in [11]. To be specific, we aim
to find a set of graph elements (e.g., edges, nodes, a subgraph)
such that, when we perturb/remove them, the ranking vector
will have the greatest change. Formally, we define PageRank
auditing problem as follows:

Problem 1: PageRank Auditing Problem.
Given: a graph with adjacency matrix A, PageRank vector

r, a loss function f over its PageRank vector, user-specific
element type (e.g. edges vs. nodes vs. subgraphs), and an
integer budget k;

Find: a set of k influential graph elements that has the
largest impact on the loss function over its PageRank vector
f (r).

III. PROPOSED ALGORITHM

In this section, we propose a family of algorithms
(AURORA), to solve PageRank auditing problem (Problem 1),
together with some analysis in terms of effectiveness as well
as efficiency.

A. Formulation

The intuition behind the proposed methods is to find a set
of key graph elements (e.g., edges, nodes, subgraphs) whose
perturbation/removal from the graph would affect the PageR-
ank results most. To be specific, let r = pg(A, e, c) be the
PageRank vector of the input graph A, and rS = pg(AS , e, c)
be the new PageRank vector after removing the graph elements
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insetS.WeformulatethePageRankauditingproblemasthe
followingoptimizationproblem.

max
S

∆f=(f(r)−f(rS))
2

s.t. |S|=k
(2)

Inordertosolvetheaboveoptimizationproblem,weneedto
answertwokeyquestionsincluding(Q1)howtoquantitatively
measuretheinfluenceofanindividualgraphelementw.r.t.
theobjectivefunction;and(Q2)howtocollectivelyfinda
setofkgraphelementswiththemaximalinfluence. Wefirst
presentourproposedsolutionforQ1inSubsectionIII-B,and
thenproposethreedifferentalgorithmsforQ2inSubsections
III-C,III-DandIII-E,dependingonthespecifictypeofgraph
elements(i.e.,edgesvs.nodesvs.subgraphs).

B. MeasuringGraphElementInfluence

Tomeasurehowf(r)willchangeifweperturb/removea
specificgraphelement,wedefineitsinfluenceastherateof
changeinf(r).
Definition1: (GraphElementInfluence).Theinfluence

ofanedge(i,j)isdefinedasthederivativeoftheloss

functionf(r)withrespecttotheedge,i.e.,I(i,j)= df(r)
dA(i,j).

Theinfluenceofanodeisdefinedastheaggregationof
allinboundandoutboundedgesthatconnecttothenode.,

i.e.,I(i)=
n

j=1,j=i

[I(i,j)+I(j,i)]+
n

j=1,j=i

I(i,j).Andthe

influenceofasubgraphisdefinedastheaggregationofall
edgesinthesubgraphS,I(S)=

i,j∈S

I(i,j).

Wecanseethattheinfluenceforbothnodesandsubgraphs
canbenaturallycomputedbasedontheedgeinfluence.There-
fore,wewillfocusonhowtomeasuretheedgeinfluence.By
thepropertyofthederivativeofmatrices,wefirstrewritethe
influencedf(r)

dA(i,j)as

df(r)

dA
=

∂f(r)
∂A +(

∂f(r)
∂A )−diag(

∂f(r)
∂A ), ifundirected

∂f(r)
∂A , ifdirected

(3)
Directlycalculating ∂f(r)

∂A(i,j)ishard,andweresorttothechain
rule:

∂f(r)

∂A(i,j)
=
∂f(r)

∂r

∂r

∂A(i,j)
(4)

Next,wepresentthedetailsonhowtosolveeachpartial
derivativeinEq.(4)onebyone.
a)Computing∂f(r)

∂r :Herewediscussthechoicesof
f(·)function.Inthispaper,wechoosef(·)tobesquared
L2normforsimplicity.However,itisworthmentioningthat
theproposedmethodsareapplicabletoavarietyofotherloss
functionsaswell. Welistsomealternativechoicesandtheir
correspondingderivativesinTableII.Inthetable,Lpnorm
isthemostcommonly-usedvectornormthatmeasuresthe
overallsizesofthevector.Somecommonly-usedLpnorm
includesL1normandL2norm(alsoknownastheEuclidean
norm);softmaximumisusedtoapproximatethemaximum
valueofelementsinthevector;energynormisameasurement
oftenusedinsystemandcontroltheorytomeasuretheinternal
energyofvector.

TABLEII:Choicesoff(·)functionsandtheirderivatives

Descriptions Functions Derivatives

Lpnorm f(r)=||r||p
∂f
∂r
=
r◦|r|p 2

||r||
p 1
p

Softmaximum f(r)=log(
n

i=1
exp(r(i))) ∂f

∂r
=[

exp(r(i))
n

i=1
exp(r(i)

]

Energynorm f(r)=rMr ∂f
∂r
=(M +M )r

(M inEnergyNormisaHermitianpositivedefinitematrix.)

b)2.Computing ∂r
∂A(i,j):RecallthatAistheadjacency

matrixoftheinputgraph,andthePageRanksolutioncanbe
writtenassolvingthelinearsysteminEq.(1).Thenwehave
that

∂r

∂A(i,j)
=c

∂A

∂A(i,j)
r+cA

∂r

∂A(i,j)
(5)

MovethesecondterminEq.(5)totheleft,wehavethat

(I−cA)
∂r

∂A(i,j)
=c

∂A

∂A(i,j)
r (6)

∂r

∂A(i,j)
=c(I−cA)−1

∂A

∂A(i,j)
r (7)

Bythepropertyofthefirstorderderivativeofmatrix,wehave
that

∂A

∂A(i,j)
=
Sij+Sji, ifundirected

Sij, ifdirected
(8)

whereSijisthesingle-entrymatrixwith1atithrowandjth

columnand0elsewhere.RecallthatQ=(I−cA)−1,wecan
re-writeEq.(7)asthefollowingequation.

∂r

∂A(i,j)
=cr(j)Q(:,i) (9)

Combineeverythingtogether,wegettheclosed-formsolution
forcalculatingtheinfluenceofanedge(i,j)asfollows:

∂f(r)

∂A(i,j)
=2cr(j)Tr(rQ(:,i)) (10)

FollowingEq.(10),wegetthematrixofgradientsforalledges
as

∂f(r)

∂A
=2c(1−c)QreQ (11)

Twomajorcomputationalchallengesincalculating∂f(r)
∂A

liein(1)calculatingQwithO(n3)timecomplexityand(2)
O(n2)spacecomplexitytosavethematrixofgradients. We
addressbothchallengesbyexploringthelow-rankstructureof
∂f(r)
∂A .FromEq.(11),wecanshowthatitcanbere-written
asthefollowinglow-rankform

∂f(r)

∂A
=2c(1−c)QreQ =2c(Qr)r (12)

whereQrisann×1vectorandrisann×1PageRank
vector.Sincer=(1−c)Qe,wehavethatQrisaperson-
alizedPageRankonthereverseoftheinputgraphwithras
teleportationvectorwithaconstantscaling.Withthisinmind,
wedonotneedtocalculateQexplicitly,ortosavetheentire
matrixdirectly.Instead,wecanusepowermethodtocalculate
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r and Q′r, each with O(m) time and save these two vectors
with O(n) space. To extract the element of ∂f(r)

∂A at the ith

row and the jth column, we simply calculate the product of
the ith element in Q′r and the jth element in r, and scale it
by 2c, which takes O(1) time.

C. Auditing by Edges: AURORA-E

Due to its combinatorial nature, straight-forward methods
for solving the optimization problem in Eq. (2) are not feasible.
The key behind the proposed family of algorithms is due
to the diminishing returns property of Problem 1, which is
summarized in Theorem 1

Theorem 1: (Diminishing Returns Property of Problem 1).
For any loss function listed in Table 2, and for any set of
graph elements S, which could be either a set of edges, nodes
or subgraphs, in the given graph, its influence measure I(S)
defined in Definition 1 is (a) normalized; (b) monotonically
non-decreasing; (c) submodular, where S ⊆ E .

Proof: We only prove the diminishing returns property in
the edge case. The proofs for nodes and subgraphs are similar
and thus is omitted due to the space limitation.

Let I(S) =
∑

(i,j)∈S
I(i, j). It is trivial that if there is no edge

selected, the influence is 0. Thus it is normalized.
Let I,J ,K be three sets and I ⊆ J . We further define

three sets S, T ,K as follows: S = I ∪ K, T = J ∪ K and
R = J \ I, then we have

I(J )− I(I) =
∑

(i,j)∈J

I(i, j)−
∑

(i,j)∈I

I(i, j)

=
∑

(i,j)∈J\I

I(i, j)

=
∑

(i,j)∈R

I(i, j)

≥ 0

which proves that I(S) is monotonically non-decreasing.
Finally, we prove that it is submodular. Define P = T \ S.

We have that P = (J ∪K) \ (I ∪K) = R\ (R∩K) ⊆ R =
J \ I. Then we have

I(T )− I(S) =
∑

(i,j)∈P

I(i, j) ≤ I(J )− I(I)

which proves the submodularity of the edge influence.
The diminishing returns property naturally leads to a greedy

algorithm to obtain a near-optimal solution for solving Prob-
lem 1. We first present the algorithm for auditing by edges in
this subsection. The algorithms for auditing by nodes and by
subgraphs will be presented in Subsections III-D and III-E,
respectively.

With the diminishing returns property, we propose AU-
RORA-E (Algorithm 1) algorithm to find top-k influential
edges. The key idea of AURORA-E is to select one edge and
update the gradient matrix at each of the k iterations.

The effectiveness and efficiency of the proposed AURORA-
E are summarized in Lemma 1 and Lemma 2, respectively.

Algorithm 1: AURORA-E
Input : The adjacency matrix A, integer budget k
Output: A set of k edges S with the highest influence

1 initialize S = ∅;
2 initialize c (e.g., c = 1/2 max eigenvalue(A));
3 calculate PageRank r = pg(A, e, c);
4 calculate partial gradients ∂f(r)

∂A by Eq. (12);
5 calculate gradients df(r)

dA by Eq. (3);
6 while |S| 6= k do
7 find (i, j) = argmax

(i,j)

I(i, j) with Eq. (3);

8 add edge (i, j) to S;
9 remove (i, j), and remove (j, i) if undirected;

10 re-calculate r, ∂f(r)
∂A by Eq. (12), and df(r)

dA by
Eq. (3);

11 return S;

We can see that AURORA-E finds a (1 − 1/e) near-optimal
solution with a linear complexity.

Lemma 1: (Approximation Ratio of AURORA-E). Let Sk =
{s1, s2, ..., sk} represents the set formed by AURORA-E, O is
the optimal solution of Problem 1, I(S) is the influence defined
in Definition 1.

I(Sk) ≥ (1− 1/e)I(O)

Proof: Omitted for space.
Lemma 2: (Time and Space Complexities of AURORA-E).

Algorithm 1 is O(mk) in time and O(m+n) in space, where
m and n are the numbers of edges and nodes in the input
graph; and k is the budget.

Proof: It takes O(m) time complexity to calculate r and
∂f(r)
∂A by applying power iterations. In the while-loop, we find

the edge with the greatest influence by traversing all edges,
which takes O(m) time. Time spent to re-calculate r and ∂f(r)

∂A
remains the same as O(m). Since the body inside the loop
will run k times, the overall time complexity is O(mk). In
Algorithm 1, it takes O(m) space to save the sparse adjacency
matrix A and O(n) space to save the PageRank vector r and
column vector Q′r in Eq. (12). Therefore it has O(m + n)
space complexity.

D. Auditing by Nodes: AURORA-N

By Theorem 1, the influence of nodes also enjoys the
diminishing returns property. Following this, we propose a
greedy algorithm AURORA-N (Algorithm 2) to find a set of
k influential nodes with (1− 1/e) approximation ratio with a
linear complexity. The efficiency of the proposed AURORA-N
is summarized in Lemma 3.

Lemma 3: (Time and Space Complexities of AURORA-N).
Algorithm 2 is O(mk) in time and O(m+n) in space, where
m and n are the numbers of edges and nodes in the input
graph; and k is the budget.

Proof: Omitted for space.
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Algorithm 2: AURORA-N
Input : The adjacency matrix A, integer budget k
Output: A set of k nodes S with highest influence

1 initialize S = ∅;
2 initialize c (e.g., c = 1/2 max eigenvalue(A));
3 calculate PageRank r = pg(A, e, c);
4 calculate partial gradients ∂f(r)

∂A by Eq. (12);
5 calculate gradients df(r)

dA by Eq. (3);
6 while |S| 6= k do
7 find vi = argmax

i
I(i);

8 add vi to S;
9 remove all inbound and outbound edges of vi;

10 re-calculate r, ∂f(r)
∂A by Eq. (12), and df(r)

dA by
Eq. (3);

11 return S;

E. Auditing by Subgraphs: AURORA-S

Here, we discuss how to select an influential subgraph with
k nodes and we focus on the vertex-induced subgraph. With
the diminishing returns property (Theorem 1) in mind, we
propose AURORA-S (Algorithm 3) to greedily identify the
influential subgraph with (1−1/e) approximation ratio with a
linear complexity. The efficiency of the proposed AURORA-S
is summarized in Lemma 4.

Algorithm 3: AURORA-S
Input : The adjacency matrix A, output size k
Output: A vertex-induced subgraph of k nodes S

with highest influence
1 initialize S = ∅;
2 initialize c (e.g., c = 1/2 max eigenvalue(A));
3 calculate PageRank r = pg(A, e, c);
4 calculate partial gradients ∂f(r)

∂A by Eq. (12);
5 calculate gradients df(r)

dA by Eq. (3);
6 while |S| 6= k do
7 find (i, j) = argmax

(i,j)

I(i, j);

8 if |S|+ 2 ≤ k then
9 add vi and vj to S;

10 else
11 find the endpoint v with higher gradient;
12 if v 6∈ S then
13 add v to S;
14 else
15 add the other endpoint to S;

16 remove all edges in S;
17 re-calculate r, ∂f(r)

∂A by Eq. (12), and df(r)
dA by

Eq. (3);

18 return S;

Lemma 4: (Time and Space Complexities of AURORA-S).
Algorithm 3 is O(mk) in time and O(m+n) in space, where
m and n are the numbers of edges and nodes in the input
graph; and k is the budget.

Proof: Omitted for space.

F. Generalization and Variants

The proposed family of AURORA algorithms assume the
input graph is a plain network. However, it is worth pointing
out that AURORA algorithms also work on different types of
networks and other random walk-based techniques.

a) AURORA on Normalized PageRank: Recall that in
Section II, we remove the constraint of A being a normalized
adjacency matrix and use the general form instead. The effect
of removing that constraint will cause the L1 norm of PageR-
ank to be not equal to 1. We show that AURORA is also able
to work on L1 normalized PageRank. Let S(r) =

∑
i r(i), we

have
∂f(r)

∂A
= cQ′(−2f(r)

S(r)
1 +

2

S(r)
r)r′ (13)

Then we can apply AURORA algorithms by replacing Eq. (12)
with Eq. (13)

b) AURORA on Network of Networks: Network of Net-
works (NoN) is a type of networks first introduced in [12] with
the ability to leverage the within-network smoothness in the
domain-specific network and the cross-network consistency
through the main network. An NoN is usually defined as the
triplet R =< G,A, θ >, where G is the main network, A is
a set of domain-specific network and θ is a mapping function
to map the main node to the corresponding domain-specific
network. In [12], CROSSRANK and CROSSQUERY are two
ranking algorithms proposed to solve ranking on NoN. The
authors have proved that they are actually equivalent to the
well-known PageRank and random walk with restart on the
integrated graph. Thus, AURORA algorithms also have the
ability to audit CROSSRANK and CROSSQUERY on Network
of Networks.

c) AURORA on Attributed Networks: Given a large at-
tributed network, it is important to learn the most influen-
tial node-attribute or edge-attribute w.r.t. a query node. We
show that AURORA algorithms have the ability to find top-
k influential edge-attributes and node-attributes on attributed
networks. The central idea is to treat attributes as attribute
nodes and form an augmented graph with those attribute nodes.
To support node attributes, let A be the a × a node-to-node
adjacency matrix, and W be the w × a node-to-attribute
matrix, then we can form an augmented graph G =

(
A 0
W 0

)
.

To support edge attributes, similar to [13], we embed an
edge-node for each edge in the input graph and define a
mapping function ψ that maps each edge-node to edge attribute
in the original graph. We assume A is the a × a node-
to-node adjacency matrix, and b is the number of different
edge attribute values. By embedding edge-node, it creates a
(a+ b)× (a+ b) augmented graph Y. Then to find the top-k
influential node-attributes and edge-attributes, we can easily
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TABLE III: Statistics of the datasets

Category Network Type Nodes Edges

SOCIAL

Karate U 34 78
Dolphins U 62 159
WikiVote D 7,115 103,689

Pokec D 1,632,803 30,622,564

COLLABORATION

GrQc U 5,242 14,496
DBLP U 42,252 420,640
NBA U 3,923 127,034

cit-DBLP D 12,591 49,743
cit-HepTh D 27,770 352,807
cit-HepPh D 34,546 421,578

PHYSICAL Airport D 1,128 18,736

OTHERS
Lesmis U 77 254
Amazon D 262,111 1,234,877

(In Type, U means undirected graph; D means directed graph.)

run AURORA-N on the augmented attributed graphs G and
Y, respectively.

IV. EXPERIMENTAL EVALUATION

In this section, we evaluate the proposed AURORA algo-
rithms. All experiments are designed to answer the following
two questions:
• Effectiveness. How effective are the proposed AURORA

algorithms in identifying key graph elements w.r.t. the
PageRank results?

• Efficiency. How efficient and scalable are the proposed
AURORA algorithms?

A. Setup

Datasets. We test our algorithms on a diverse set of real-
world network datasets. All datasets are publicly available.
The statistics of these datasets are listed in Table III.
• SOCIAL NETWORKS. Here, nodes are users and edges

indicate social relationships. Among them, Karate [14]
is a well-known network dataset of a university karate
club collected by Wayne Zachary in 1977. Dolphins [15]
is an undirected social network of frequent associations
between dolphins in a community living off Doubtful
Sound, New Zealand. WikiVote [16] is generated by
Wikipedia voting data from the inception of Wikipedia
till January 2008. Pokec [17] is a popular online social
network in Slovakia.

• COLLABORATION NETWORKS. Here, nodes are individ-
uals and two people are connected if they have col-
laborated together. We use the collaboration network in
the field of General Relativity and Quantum Cosmology
(GrQc) in Physics from arXiv preprint archive2. DBLP3

is a co-authorship network from DBLP computer science
bibliography. And NBA [18] is a collaboration network
of NBA players from 1946 to 2009. cit-DBLP [19] is
the citation network of DBLP, a database of scientific
publications such as papers and books. Each node in
the network is a publication, and each edge represents

2https://arxiv.org/
3http://dblp.uni-trier.de/

a citation of a publication by another publication. cit-
HepTh [20] is an ArXiv HEP-TH (High Energy Physics
- Theory) citation network. The data covers papers from
January 1993 to April 2003. If a paper i cites paper j,
there is a directed edge from i to j. cit-HepPh [20] is an
ArXiv HEP-PH (High Energy Physics - Phenomenology)
citation network. The data covers papers from January
1993 to April 2003. If a paper i cites paper j, there is a
directed edge from i to j.

• PHYSICAL INFRASTRUCTURE NETWORKS. This cate-
gory refers to the networks of physical infrastructure enti-
ties. Nodes in them correspond to physical infrastructure,
and edges are connections. Airport4 is a dataset of airline
traffic. Each node represents an airport in the United
States, an edge (i, j) represents the airline from i to j
while the edge weight stands for the normalized number
of passengers.

• OTHERS. This category contains networks that do not
fit into the above categories. Lesmis [21] is a network of
co-appearances of characters in Victor Hugo’s novel ”Les
Miserables”. A node represents a character and an edge
connects a pair of characters if they both appear in the
same chapter of the book. Amazon [22] is a co-purchasing
network collected by crawling Amazon website. It is
based on the Customers Who Bought This Item Also
Bought feature.

Baseline Methods. We compare our proposed methods with
several baseline methods, which are summarized as follows.
• Brute force (brute force). Calculate the changes by iter-

ating all possible combinations of graph elements.
• Random Selection (random). Randomly select k elements

and calculate the change by removing them.
• Top-k Degrees (degree). We first define the degree of an

edge (u, v) as follows,

d(u, v) =

(d(u) + d(v))× max
i∈{u,v}

d(i), if undirected

(d(u) + d(v))× d(u), if directed

where d(u) represents the degree of node u.
To audit by graph elements, we select k elements with
the highest degrees. For edges, we select k edges with the
highest edge degrees defined above; for nodes, we select
k nodes with the highest node degrees; for subgraphs, we
form a vertex-induced subgraph from k nodes with the
highest degrees.

• PageRank. We first define the PageRank score of an edge
(u, v) as follows,

r(u, v) =

(r(u) + r(v))× max
i∈{u,v}

r(i), if undirected

(r(u) + r(v))× r(u), if directed

where r(u) is the PageRank score of node u.
To audit by graph elements, we select k elements with
the highest PageRank scores. That is, for edges, we select

4https://www.transtats.bts.gov/
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k edges with the highest PageRank scores defined above;
for nodes, we select k nodes with highest PageRank
scores; for subgraphs, we form a vertex-induced subgraph
from k nodes with the highest PageRank scores.

• HITS. We first define HITS score of an edge (u, v) and
node u as follows,
HITS(u, v) = hub(u)× hub(v) + auth(u)× auth(v)

HITS(u) = hub(u) + auth(u)

where hub(u) and auth(u) represent the hub score and
authority score of node u, respectively.
To audit by graph elements, we select k elements with
the highest HITS scores. That is, for edges, we select k
edges with the highest HITS scores defined above; for
nodes, we select k nodes with the highest HITS scores;
for subgraphs, we form a vertex-induced subgraph from
k nodes with the highest HITS scores.

Metrics. Here, we choose the loss function to be squared
L2 norm. We quantify the performance of auditing by the
goodness score ∆f (defined in Eq. (2)) of the graph elements
S found by the corresponding algorithms.

Repeatability and Machine Configuration. All datasets
are publicly available. We will release the code of our proposed
algorithms upon the publication of the paper. All experiments
are performed on a virtual machine with 4 Intel i7-8700 CPU
cores at 3.4GHz and 32GB RAM. The operating system is
Windows 10. All codes are written in Python 3.6.

B. Effectiveness Results

a) Quantitative Comparison: We perform effectiveness
experiments with the baseline methods. We set k from 1 to
10 and find k influential edges and nodes, respectively. We
set k only from 2 to 10 to find an influential subgraph of
size-k, respectively. This is because a vertex-induced subgraph
with only 1 node does not contain any edge and therefore
is meaningless for the purpose of PageRank auditing. We
conduct the experiments with brute force on relatively small
datasets to obtain the ground-truth of Eq. (2), including Karate,
Dolphins and Lesmis. On other larger datasets, searching a
ground-truth with k most influential elements is prohibitively
expensive due to its combinatorial nature. For example, even
if we use the small Lesmis dataset, it will take over a day to
find ground-truth with k = 5. Therefore, the results by brute
force are absent on the remaining larger datasets.

The results of quantitative comparison across 9 different
datasets are shown from Figure 2 to Figure 4. From those
figures, we have the following observations: (1) our family
of AURORA algorithms consistently outperform other baseline
methods (except for brute force) on all datasets; (2) on
the three small datasets with ground-truth brute force, the
performance of the proposed AURORA algorithms is very close
to the ground-truth. Figure 5 and Figure 6 shows the effect of
k on auditing results. We can observe the following findings
from those figures: (1) our family of AURORA algorithms in-
crementally find influential graph elements w.r.t. the budget k;
(2) the proposed AURORA algorithms consistently outperform
baseline methods on different budgets.

b) Case Studies on Airport Dataset: A natural use case
of our AURORA algorithms is to find influential edges and
nodes in a given graph. To demonstrate that our algorithms
are indeed able to provide intuitive information, we test our
algorithms on the Airport dataset. This dataset was manually
created from commercial airline traffic data in 2017, which is
provided by United States Department of Transportation. More
detailed description and statistics of this dataset can be found
in Subsection IV-A. We perform AURORA-E and AURORA-N
to find the most influential airlines (edges in the graph) and
airports (nodes in the graph) across United States with k = 7.

Edges selected by AURORA-E are ATL-LAX, LAX-ATL,
ATL-ORD, ORD-ATL, ATL-DEN, DEN-ATL and LAX-ORD.
In contrast, PageRank selects ATL-LAS instead of DEN-ATL
and ATL-DFW instead of LAX-ORD. DEN-ATL plays a more
important role in determining the centrality (e.g., PageRank)
of other airports. This is because DEN serves as one of the
busiest hub airports that connects West coast and East coast;
while ATL-LAS is less important in that regard, considering the
existence of ATL-LAX and ATL-PHX. Comparing LAX-ORD
and ATL-DFW, LAX-ORD directly connects Los Angeles and
Chicago, both of them are largest cities in the United States.

In the scenario of node-auditing, AURORA-N selects ATL,
LAX, ORD, DFW, DEN, LAS and CLT. In contrast, PageRank
selects SFO instead of CLT. CLT seems to be a more rea-
sonable choice because it serves as a major hub airport, the
6th busiest airport by FAA statistics, to connect many regional
airports around States like North Carolina, South Carolina,
Virginia, West Virginia, etc. Compared with CLT, SFO is less
influential in that regard, mainly due to the following two
reasons: (1) it ranks after CLT ( 7th vs. 6th) in the list of busiest
airports by FAA statistics; (2) due to the location proximity
of SFO to LAX and SJC, even if this node is perturbed
(i.e., absent), many surrounding airports (especially regional
airports in California) could still be connected via LAX and
SJC.

c) Case Studies on DBLP Dataset: Another interesting
use case of AURORA algorithms is sense-making in graph
proximity. We construct a co-authorship network from DBLP
computer science bibliography to test our algorithms. We
perform AURORA-N and PageRank with k = 6. Different
from the previous case study, here we use a personalized
PageRank with the query node is Christos Faloutsos.
In this case, the top-ranked scholars in the resulting rank-
ing vector r form the proximity (i.e., ‘neighborhood’) of
the query node (i.e., who are most relevant to Christos
Faloutsos). Consequently, the nodes selected by an audit-
ing algorithm indicate those important nodes in terms of mak-
ing/maintaining the neighborhood of the query node. Com-
paring the results by AURORA-N and PageRank, 6 of them
are the same while AURORA-N selects Jure Leskovec
instead of Yannis Ioannidis. This result is consistent with
the intuition, since Jure Leskovec, as the former stu-
dent of Christos Faloutsos with lots of joint publica-
tions, plays a more prominent role in the neighborhood of
Christos Faloutsos by sharing more common collabo-
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Fig. 2: Auditing results by edges. Budget k = 10. Higher is better. Best viewed in color.

Fig. 3: Auditing results by nodes. Budget k = 10. Higher is better. Best viewed in color.

Fig. 4: Auditing results by subgraphs. Budget k = 10. Higher is better. Best viewed in color.

(a) Auditing by Edges (b) Auditing by Nodes (c) Auditing by Subgraphs

Fig. 5: Effect of k on auditing results (cit-HepPh Dataset). Higher is better. Best viewed in color.

rators.

d) Case Studies on NBA Dataset: In a collaboration
network, a subgraph can be naturally viewed as a team
(e.g. sports team). From this perspective, AURORA-S has the
potential to find teammates of a player. We set the query
node as Allen Iverson. Since there are 5 players for each
team on the court, we set k = 5. The subgraph selected by
AURORA-S consists of Allen Iverson, Larry Hughes,
Theo Ratliff, Joe Smith and Tim Thomas. In con-
trast, in the resulting subgraph by PageRank, Tim Thomas is
replaced by Drew Gooden. Though Drew Gooden and Allen
Iverson shares many common neighbors in the network,
which might cause its ranking in PageRank to be higher, they
have never played in the same team together. Compared with
the subgraph by PageRank, all players in the subgraph by
AURORA-S have played with Iverson in Philadelphia Sixers
during the time period from 1997 to 1999.

C. Efficiency Results
We show the running time vs. number of edges m and

budget size k on Pokec dataset in Figure 7 and Figure 8. We
can see that the proposed AURORA algorithms scale linearly
with respect to m and k, respectively. This is consistent with
our complexity analysis that the family of AURORA algorithms
are linear with respect to the number of edges and the budget.

D. Visualization
To better understand the auditing results, we developed a

prototype system with D3.js to represent the influence of graph
elements visually. In the system, we use the strength of line
to represent the gradient of an edge and use the size and color
for the gradient of nodes. An example of visualizing hand-
crafted toy graph is shown in Figure 9. It is easy to see in
the figure that Node 5 is the most influential node, and edges
around Node 5 is more influential than other edges, both of
which are consistent with our intuition.
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(a) Auditing by Edges (b) Auditing by Nodes (c) Auditing by Subgraphs

Fig. 6: Effect of k on auditing results (cit-HepTh Dataset). Higher is better. Best viewed in color.

Fig. 7: running time vs. the
number of edges on Pokec
dataset

Fig. 8: running time vs.
number of k on Pokec
dataset

Fig. 9: Visualization of toy graph on the visualization system.
Best viewed in color.

V. RELATED WORK

In this section, we briefly review the related work, from the
following two perspectives, including (1) graph ranking and
(2) explainability.

Graph ranking. Regarding graph ranking, PageRank [1]
and HITS [23] are probably the most well-known and widely
used algorithms. PageRank measures the importance of nodes
as a stationary distribution of random walks. HITS assumes
that each node has two scores: hub and authority. A node has
a high hub score if it links to many nodes with high authority

scores, and a node has a high authority score if it links to
many nodes with high hub scores. Many variants of PageRank
and HITS have been developed in the literature. To name
a few, in [24], the author studies the stability of PageRank
and HITS, based on which they propose two new algorithms
(Randomized HITS and Subspace HITS). Ding et al. [25]
provide a unified ranking method for HITS and PageRank.
In [8], Haveliwala et al. propose the well known personalized
PageRank by replacing the uniform teleportation vector with a
biased personalized topic-specific vector; while random walk
with restart [9] concentrates all teleportation probabilities to a
single node. Other random walk based graph ranking methods
include [26] and many more.

Explainability. How to enhance interpretability of machine
learning and data mining models has been attracting a lot of
research interests in recent years. Two representative ways to
explain such black-box predictions consist of (a) using other
interpretable models to provide interpretable representation of
model’s predictions [27]–[29], and (b) quantifying the influ-
ence by perturbing either features or training data [11], [30]–
[33]. The proposed AURORA algorithms follow the generic
principle in [11] in the context of graph ranking, and has been
integrated into a prototype system [34]. Finding influential
nodes on graphs is a very active research area. The central
theme of these research is to find nodes to maximize the spread
of influence in social networks (i.e., influence maximiza-
tion) [35]–[37]. The seminal work in influence maximization
problem is attributed to Kempe et al. [38], [39], in which they
have discovered its diminishing returns property. The focus of
this paper is fundamentally different from the classic influence
maximization problem, in the sense that we want to find most
influential nodes, edges or subgraphs w.r.t. the graph ranking
results, as opposed to the size of ‘infected’ nodes during the
influence propagation process.

VI. CONCLUSION

In this paper, we study the problem of auditing PageRank,
where we aim to find the most influential graph elements
(e.g., edges, nodes, subgraphs) w.r.t. graph ranking results. We
formally define the PageRank auditing problem by measur-
ing influence of each graph element as the rate of change
in a certain loss function defined over the ranking vector,
and formulate it as an optimization problem. We further
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propose a family of fast approximation algorithms, named
AURORA, with (1 − 1/e) approximation ratio and a linear
complexity in both time and space. The extensive experimental
evaluations on more than 10 datasets demonstrate that the
proposed AURORA algorithms are able to identify influential
graph elements, consistently outperform baseline methods, and
scale linearly to large graphs. In the future, we would like
to generalize this auditing paradigm to other graph ranking
methods (e.g., HITS) as well as dynamic networks.
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