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Deep learning methodologies have revolutionized prediction in

many fields and show potential to do the same in molecular biology

and genetics. However, applying these methods in their current

forms ignores evolutionary dependencies within biological systems

and can result in false positives and spurious conclusions. We

developed two approaches that account for evolutionary related-

ness in machine learning models: (i) gene-family–guided splitting

and (ii) ortholog contrasts. The first approach accounts for evolution

by constraining model training and testing sets to include different

gene families. The second approach uses evolutionarily informed

comparisons between orthologous genes to both control for and

leverage evolutionary divergence during the training process. The

two approaches were explored and validated within the context of

mRNA expression level prediction and have the area under the ROC

curve (auROC) values ranging from 0.75 to 0.94. Model weight in-

spections showed biologically interpretable patterns, resulting in the

hypothesis that the 3′ UTR is more important for fine-tuning mRNA

abundance levels while the 5′ UTR is more important for large-

scale changes.
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Machine and deep learning approaches such as Convolu-
tional Neural Networks (CNNs) are largely responsible for

a recent paradigm shift in image and natural language process-
ing. These approaches are among the fundamental enablers of
modern artificial intelligence advances such as facial recognition,
speech recognition, and self-driving vehicles. The same deep
learning approaches are beginning to be applied to molecular
biology, genetics, agriculture, and medicine (1–7), but evolu-
tionary relationships make properly training and testing models
in biology much more challenging than the image or text clas-
sification problems mentioned above.
For example, if one wants to predict mRNA levels from DNA

promoter regions (as we do here), the standard approach from
image recognition problems would be to randomly split genes
into training and testing sets (8). However, such a split will likely
lead to dependencies between the sets because of shared evolu-
tionary histories between genes (i.e., gene family relatedness, gene
duplications, etc.) and may cause model overfitting and false-
positive spurious conclusions. Models trained without properly
accounting for the constraints imposed by evolutionary history
(and perhaps other biological and technical factors specific to the
modeling scenario) will likely memorize both the neutral and the
functional evolutionary history, rather than learning only the
functional elements, leading researchers to incorrect conclusions.
With these challenges in mind, we developed two CNN ar-

chitectures for predicting mRNA expression levels from DNA
promoter and/or terminator regions. These include models that
predict the following: (i) if a given gene is highly or lowly
expressed and (ii) which of two compared gene orthologs has
higher mRNA abundance. The architectures are built around

two methods developed here for properly structuring the model
training and testing process to avoid the issues of training-set
contamination by evolutionary relatedness. The first training
method, which we call “gene-family guided splitting,” uses
gene-family relationships to ensure that genes within the same
family are not split between the training and testing sets.
In this way, the model never sees a gene family in the testing
set that it has already seen during the training process (Fig.
1A). The second training method uses what we call “ortholog
contrasts” (comparisons between pairs of orthologs) to elim-
inate evolutionary dependencies (Fig. 1B). In addition to
controlling for evolutionary relatedness, this method actually
allows evolution to become an asset in the training process
by leveraging whole-genome duplication events and/or genetic
differences between species, two things that would normally
be a hindrance to such models. Using evolutionary relatedness
is powerful because it allows one to understand and train on
what has survived selection. Considering deeper evolution-
ary divergence, between species rather than just within spe-
cies, allows for sampling thousands of years of mutagenesis and
selective pressures.
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Results

Differentiating Between Expressed and Unexpressed Genes Based on

DNA Sequence. The first model was developed for the purpose of
classifying genes as being expressed or not expressed (zero or
near-zero expression level). This model has been named the
“pseudogene model” because of its ability to predict genes that are
potentially pseudogenized and therefore lack expression. The
pseudogene model also serves as a simple use case for the gene-
family–guided splitting approach. It requires as input the promoter
and/or terminator sequences (defined in Materials and Methods
and illustrated in Fig. 2A). To generate the output of the model
(i.e., a binary value representing whether a gene is expressed or
unexpressed), a comprehensive atlas of gene expression in maize
covering major tissues at various developmental stages was gen-
erated by applying a unified pipeline on 422 tissues from seven
RNA-Seq studies (9–15) (for full details, seeMaterials and Methods
and Datasets S1 and S2). The distribution of the maximum log-
transformed Transcripts Per Million (logTPM) revealed a peak at
the lower tail comprising unexpressed genes (4,562 genes with
maximum logTPM ≤ 1) along with normally distributed expressed
genes (34,907 genes with maximum logTPM > 1) (Fig. 1B).
As paralogous genes derived from more recent gene duplica-

tion events often share highly similar promoters or terminators,
overfitting may potentially occur when highly similar paralogs
are separated into training and testing sets. Moreover, as
paralogs are often similar in their expression levels, separation of
highly similar paralogs may force neural networks to learn gene-
family–specific sequence features, rather than sequence features
that determine expression levels per se. To solve these problems,
genes were divided into gene families. The pseudogene model

was trained on randomly selected families and tested on the
remaining families not present in the training set (Dataset S3).
The number of expressed genes (34,907) and unexpressed genes

(4,562) were highly imbalanced. Two approaches were used to
handle the imbalance. First, expressed genes were divided
into 4,562 highly expressed (maximum TPM ≥ 342.9) genes and
25,783 intermediately expressed genes (1 < maximum TPM <

342.9), and the model was trained to distinguish the 4,562 un-
expressed genes from the 4,562 highly expressed genes (Off/High
in Fig. 2C). The performance of the pseudogene model was
evaluated using a 10 times fivefold cross-validation procedure,
and the Off/High version achieved an average predictive accu-
racy of 86.6% (the area under the ROC curve, auROC = 0.94)
when both promoters and terminators were used as the pre-
dictor. The average accuracy of the model reached 81.6%
(auROC = 0.89) and 80.6% (auROC = 0.89) for promoters and
terminators, respectively (Fig. 2C). Second, all expressed genes
were randomly down-sampled to make them balanced with un-
expressed genes. Using this approach, the model achieved an
average predictive accuracy of 74.8% (auROC = 0.82), 70.1%
(auROC = 0.77), and 70.6% (auROC = 0.77) for both promoters
and terminators, promoters only, and terminators only, re-
spectively (Off/On in Fig. 2C). The models learned higher-level
features than single- or dinucleotide composition, since shuffling
test set sequences while maintaining single- or dinucleotide
composition abolished the predictive accuracy of these models
(Fig. 2C) (16).
Random allocation of genes to training/test sets without con-

sidering their evolutionary relatedness led to significantly higher
performance (in terms of auROC and accuracy) of our models
on test-set genes than those obtained by family-guided training/
test splitting (SI Appendix, Fig. S1). We further categorized the
test-set genes into two groups: genes with homologs in the
training set and genes without homologs in the training set, and
the performance of our models was evaluated on the two groups
separately. Interestingly, our models perform significantly more
poorly on the latter group than the former group (SI Appendix,
Fig. S1). Taken together, these results indicate that the evolu-
tionary relatedness between training and test sets, if left un-
controlled, leads to overfitting on gene families present in both
training and test sets.

Predicting Which of Two Genes Is More Highly Expressed Using

Ortholog Contrasts. The ortholog contrast model follows a simple
approach derived from phylogenetics, where the most recent
common ancestor of two closely related genes can be represented
as a contrast between the two (16, 17). Contrasting genes in this
manner directly accounts for statistical dependencies between the
genes that would otherwise hamper comparison with other genes
(18). Building on this idea, the ortholog contrast method com-
pares two genes from different genomes (or alleles from the same
species) to each other and predicts the difference between the
expression levels of the two (Fig. 3A). When each gene is com-
pared directly to its ortholog, one can then compare that contrast
value to the contrast values from other ortholog pairs without
evolutionary dependence between them, hence enabling training
and testing sets that are evolutionarily independent (Figs. 1B and
3A). To further simplify the contrast model, the values (the
difference between the transcript abundance levels of the two
compared genes) were converted to binary form: zero if the first
gene is more highly expressed than the second, and 1 in the
opposite case. Orthologs with no expression difference between
them were excluded. This simplification results in a model where
the CNN is asked to determine which of two orthologs is most
highly expressed. In reality, this question of deciding between
two genes or alleles is actually what is most needed in applica-
tions like plant breeding and medicine.
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Fig. 1. Evolutionarily informed strategies for deep learning. (A) For pre-

diction tasks involving a single species, genes are grouped into gene families

before being further divided into a training and a test set to prevent deep

learning models from learning family-specific sequence features that are

associated with target variables. (B) For prediction tasks involving two spe-

cies, orthologs are paired before being divided into a training and a test set

to eliminate evolutionary dependencies.
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However, there are a few challenges to applying this model to
prediction. First, orthologs have highly correlated expression
levels. Expression levels of the Sorghum bicolor by Zea mays
orthologs used here had a Pearson correlation coefficient of 0.78
(P value < 0.001). This means that many of the genes that the
model is predicting have very similar (perhaps functionally
identical) expression levels and are simply noise in the data.
Removing some of these similarly expressed orthologs from the
data before training results in higher prediction accuracies, but it
also lowers the number of ortholog pairs in the training set. This
results in the second problem: low sample size. The nature of
CNN models requires them to include many parameters (thou-
sands generally), making high sample sizes of great importance
to model training. In this case, the number of S. bicolor by Z.
mays single-copy syntenic orthologs for the model is ∼13,000,
leaving little room for filtering out ortholog pairs with similar
expression levels.
To overcome these two challenges, a multistep strategy was

adopted. To begin with, the S. bicolor by Z. mays ortholog training
set was filtered to include only ortholog pairs with expression-level
differences between them of 2,000 rank changes or more (∼0.54
logtwofold change; see Materials and Methods for explanation of
rank change methodology). Higher-rank change filters resulted in
untrainable models, presumably due to low sample size. Models
trained with the 2,000 rank-change filtered set were able to predict
never-before-seen pairs with an average auROC value of 0.75
across all fivefold 10-replicate testing sets (Fig. 3B). This moder-
ate improvement over random guessing may have important utility
in breeding, medical applications, and for hypothesis generation,

but it is still based on many genes that are similarly expressed
adding extra noise to the data.
To further investigate the model’s potential to predict ortho-

log pairs with greater expression differences between them, a
second filtering approach was applied. When the model is tested
on never-before-seen ortholog pairs (test set), it outputs not only
a binary prediction of which ortholog is most highly expressed,
but also a value indicating how much confidence one should
place in the model’s prediction of that ortholog pair. By setting a
threshold confidence value, one can discard predictions for
which the model is less confident and focus on only those pairs
the confidence values of which are within a range deemed ac-
ceptable by the user (19). The entire range of threshold confi-
dence values (0–1) was examined along with the average rank
changes in expression levels (Fig. 4) and average auROC scores
(SI Appendix, Fig. S2) that these threshold values produced.
There is a clear and statistically significant (r = 0.92 with
P value < 0.001) correlation between higher confidence thresh-
old values and higher differences in expression between the two
orthologs in the pair (rank-change expression values). The graph
(Fig. 4) also has an inflection point at a confidence threshold
value of ∼0.8. After this point, even small changes in the confi-
dence threshold result in gene sets with much larger expression
differences between the orthologs. This 0.8-threshold value was
taken as a reasonable cutoff at which the testing set is composed
of ortholog pairs that are different enough in expression level to
be predicted accurately. Applying this threshold to the model
resulted in an average auROC value of 0.97 across fivefold 10-
replicate cross-validation (Fig. 3B, “Both High Conf.”). Similar
approaches for focusing on values in which one is most confident
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Fig. 2. The architecture and performance of the pseudogene model. (A) A schematic representation of the architecture of the pseudogene model. The

model takes promoter and/or terminator sequences as the predictor to predict binary expression levels. (B) A unified RNA-Seq data analysis pipeline is applied

on 422 samples from seven references (9–15) representing a comprehensive collection of maize tissues at diverse developmental stages. The log-transformed

maximum TPM over all samples is calculated for each gene and used to represent the strength of the corresponding predictor sequence. Shown is the dis-

tribution of log-transformed maximum TPMs for all maize genes. Genes are categorized into unexpressed genes (blue), moderately expressed genes (green),

and highly expressed genes (red). (C) The accuracy and auROC of the pseudogene model trained on the Off/On gene set and the Off/High gene set, using

promoters, terminators, or both promoter and terminator sequences as predictors. Models evaluated on test sets are either not shuffled (None) or shuffled

while maintaining their di- or single-nucleotide composition (denoted as D_Shuffle and S_Shuffle, respectively). Error bars represent mean ± SD from gene-

family–guided 10 times fivefold cross-validation.
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have been commonly applied to other prediction problems (19,
20). Interestingly, while there is no indication that dinucleotide
content contributes to the pseudogene model’s accuracy, it does
appear to play a role in the contrast model’s predictions for at
least some of the high-confidence ortholog pairs (Fig. 3B).
The ortholog contrast model was also trained and tested to

predict between the two Z. mays subgenomes. From the outset,
this was assumed to be a more challenging task as the number of
usable single-copy syntenic pairs between the two subgenomes is
just above 4,000. This means that no training-set filtering could
be done to limit the number of similarly expressed pairs. Without
any filtering, this model performed with an average auROC
value of 0.63. Using the same 0.8 confidence threshold as de-
scribed above, the model achieved an average auROC score of
0.77. While these low prediction values are likely due in part to
the low sample size and the filtering limitation that it imposes,
neofunctionalization within the maize subgenomes is also prob-
ably an important factor. The Pearson correlation coefficient for
expression levels between the two Z. mays subgenomes was 0.59
(compared with 0.78 for between S. bicolor and Z. mays). This,
along with multiple studies, indicates that many of the genes
within the Z. mays subgenomes are neofunctionalized or are
undergoing neofunctionalization (21, 22). Many neofunctionalization-

related expression changes are likely tissue-specific and due to distant
enhancer elements or transacting factors that can be far outside
the 3-kb regions used here for prediction (23). Taken together,
the Z. mays subgenomes contrast model probably performs
poorly because many important regulatory elements are not
captured by the model. Because the S. bicolor by Z. mays model
uses only single-copy syntenic orthologs, most of its genes are
unlikely to have undergone neofunctionalization.

Interpretation of CNN Models Reveals Elements and Motifs Important

for Transcript Abundance. Transcript abundance is concertedly
determined by its synthesis and degradation. Our current models
cannot discriminate between these causes but could potentially
do so in the future by training on Global Run-On followed by
high-throughput sequencing of RNA (GRO-seq) (24), Precision
Run-On followed by sequencing (PRO-seq) (25), or transcriptome-
wide mRNA half-life data (26, 27).
It has long been established that genomic sequences flanking

coding sequences harbor important cis elements that determine
the transcription rate and/or the stability of transcripts (28, 29).
Many methods have been developed for interpreting and un-
derstanding CNNs (2, 30–32), but significant challenges and
the possibility of misinterpretation remain (33–35). To identify

A

B

Fig. 3. The architecture and performance of the ortholog contrast model. (A) A schematic representation of the architecture of the contrast model. The

model takes promoter and/or terminator sequences from two orthologous genes as the predictor and predicts the binary difference in expression level

between the two. (B) The accuracy and auROC of the ortholog contrast model trained using promoters, terminators, or both promoter and terminator

sequences as predictors. Sequences in the test sets are either not shuffled (None) or shuffled while maintaining their di- or single-nucleotide composition

(denoted as D_Shuffle and S_Shuffle, respectively). Error bars represent mean ± SD from 10 times fivefold cross-validation. The “Both High Conf.” bars

represent the performance of the models when genes for which the model has less than 0.8 confidence are dropped.
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motifs/putative cis elements, two gradient-based methods [Saliency
and DeepLIFT (Deep Learning Important Features)] and one
perturbation-based method (Occlusion) (31, 36) were applied to
each of the models (Figs. 5 and 6 and SI Appendix, Figs. S3 and
S4). The maps are based on the average values for all included
genes across all 10 times fivefold cross-validations. Interestingly,

the different training methods (gene-family–guided vs. orthologs
contrasts) resulted in very different but potentially complemen-
tary results as to which regions of the sequence were most im-
portant for the prediction task.
In all tested models, the 5′ and 3′ UTR regions of what we call

promoter and terminator sequences were much more important
than the regions just outside of the gene models (Figs. 5 and 6).
Pseudogene models trained on the off/on data set (Fig. 5A and
SI Appendix, Fig. S3) and off/high data set (Fig. 5B and SI Ap-
pendix, Fig. S3) resulted in similar saliency maps. In both cases,
nonpseudogenes showed stronger signals in the promoter re-
gions than in the terminator regions. This is in agreement with
the accuracy values for the models shown above (Fig. 2) where
predictions based on the promoter sequences alone outperform
those based on the terminator sequences alone. These results
make sense based on what is currently known about cis regions
that are important to gene expression (37).
For models trained using the ortholog contrast method, the

results are somewhat different. In this case, the most heavily
weighted areas of the input sequences were found in the termi-
nator region (Fig. 6A and SI Appendix, Fig. S4). This is consistent
whether the gene in the first position is more highly expressed
than the gene in the second position or vice versa. The greater
importance of terminator regions is further shown by the fact
that models run with only the terminator sequence perform
better than those with only promoter sequences (Fig. 3). The
differences between expression values of the compared genes in
the contrast model ranged from Log10-transformed TPM values
of 0.12–2.80 with an average of 0.66. Log10-transformed TPM
values for the off/high gene set in the pseudogene model ranged
from 0 to 0.301 (with an average of 0.101) for the “off” gene set

Fig. 4. Model confidence threshold by mean expression rank change be-

tween ortholog pairs. A range of model confidence thresholds (model con-

fidence value below which the ortholog pair is excluded from the test set)

plotted against the average rank change in expression within each filtered

test set across all 10-replicate fivefold validation sets. Pearson correlation

coefficient between the values is r = 0.92 with a P value < 0.001.

Fig. 5. Averaged saliency map from the pseudogene model. Saliency map was calculated for the pseudogene model trained on either the Off/On gene set

(A) or the Off/High gene set (B). Saliency was averaged over nonpseudogenes (Upper) and pseudogenes (Lower), respectively. Only genes with correctly

predicted expression levels were used for the calculation of saliency maps. This figure is based on the average values over 10 times fivefold cross-validation,

with solid lines representing the mean and shaded areas representing the SD.
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and ranged from 2.536 to 4.925 (with an average of 2.959) for the
“high” gene set.
While pseudogenes (not expressed) in the family-guided ap-

proach showed very little signal in the promoter and terminator
regions, the lower expressed genes in the contrast model actually
showed very strong signals in these regions (at least for the sa-
liency and occlusion methods). In the case of the terminator
region, lower expressed genes showed higher values than highly
expressed genes (Fig. 6B) for the saliency method, while the
promoter regions showed the opposite trend with higher saliency,
occlusion, and DeepLIFT values in the more highly expressed
gene. All three feature-importance methods indicate that the ter-
minator region is more important than the promoter region in the
contrast model, giving us high confidence in this conclusion. Con-
versely, one of the three methods (saliency) shows higher values for
the lower expressed gene, although these values are within one SD
of the mean. The other two methods show similar values for both
high and low (occlusion) or the opposite trend with higher expressed
genes having higher values and lower expressed genes having very
low values (DeepLIFT). This result is inconsistent across the three
methods, making it harder to interpret with confidence.

Discussion

3′ UTR Potentially More Important for Small-Scale Changes in RNA

Abundance. There are a number of factors that might explain the
differences in promoter and terminator importance between the
pseudogene and ortholog contrast models. First, the method of
controlling for evolutionary relatedness differs between the
models. The grouping of genes into families for the gene-family–
guided method relies on sequence similarity scores with sub-
jectively defined cutoffs. This method is therefore potentially
over- or under-controlling (or both in the case of different genes)
for evolutionary relationships. The ortholog contrast model, on
the other hand, fully controls for these relationships. Second, the
pseudogene model is restricted to a single species while the
contrast was applied both within species (although between
subgenomes) and across species. Finally, and perhaps most
likely, is that the two models are focused on different categories

of gene expression and genes that have experienced different
types of evolutionary constraint. The pseudogene model includes
a bimodal distribution of genes that are expressed (highly or
moderately) and genes that are not expressed, while the contrast
model mostly contains genes that are expressed at some level
(that likely does not include many pseudogenes). Given that
small mutations in the promoter region could conceivably inhibit
protein:DNA interactions and be responsible for drastic changes
in gene expression (such as turning expression on or off), perhaps
these types of mutations are responsible for the high predictive
importance of promoter regions in the pseudogene model. The
contrast model, on the other hand, was limited to genes with
matching single-copy syntenic orthologs between distinct ge-
nomes to ensure reliable normalization and a balanced dataset
for training and testing. These genes will be highly conserved (by
definition) and likely under strong purifying selection to have
remained conserved since the maize/sorghum split, meaning that
large-scale expression changes are unlikely to be tolerated.
Small-scale, fine-tuning adjustments of expression level, on the
other hand, are more likely to be present in these highly conserved
genes. We therefore hypothesize that the terminator region (par-
ticularly the 3′ UTR) plays a more important role in small-scale
fine-tuning of RNA abundance levels than does the promoter
(particularly the 5′ UTR) region. While the promoter and 5′ UTR
regions are often thought of as important to transcriptional regu-
lation, it has been known for some time that the 3′ UTR also plays
an important role (38, 39). The 3′ UTR has been shown to regulate
transcription via diverse mechanisms such as alternative poly-
adenylation, riboswitching, Nonsense-mediated decay, and alter-
native splicing (37). Which of these or other possible mechanisms
may be at play here is not obvious, but the results presented here
strongly implicate the 3′-UTR region in determining expression
differences between syntenic orthologs across genomes.

Strengths and Weaknesses of Different Models and Training

Approaches. We have demonstrated the utility of two different
approaches for mRNA expression prediction. Both approaches
incorporate methods for dealing with evolutionary relatedness
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Promoter Terminator
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Fig. 6. Averaged saliency maps from the ortholog contrast model. Saliency maps were calculated for the ortholog contrast model. (A) True positive with

ortholog 1 more highly expressed than ortholog 2. (B) True positive lower expressed orthologs minus true positive higher expressed orthologs. This figure is based

on the average values from all genes over 10 times fivefold cross-validation, with solid lines representing the mean and shaded areas representing the SD.
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between genes within a predictive framework. Each approach has
strengths and weaknesses, and which approach one choses
will depend on the datasets available and the types of predictions/
biological insights desired. For datasets or questions that are limited
to a single sample from a single diploid species, the gene-family–
guided approach is the most suitable option because ortholog
contrasts are not possible. This method may also be most appro-
priate in situations where one wants to specifically identify genes
that are unlikely to be expressed. The gene-family–guided method
also has the benefit of being somewhat simpler to understand and
interpret; however, one must define gene families, and that process
is subjective and sensitive to parameter choices. In situations where
multiple species or genotypes are involved, the contrast method is
likely to be the method of choice. The contrast method is also the
better choice when one wishes to compare orthologs/alleles that are
both expressed at a moderate to high level.

Conclusions and Future Applications. In the current study, CNN
models have been successfully applied to the prediction of
mRNA abundance under several distinct scenarios. The models
are able to predict a gene’s On/Off state as well as which of two
compared orthologs is more highly expressed. These models
feature two very different approaches for handling evolutionary
relationships between genes, gene-family–guided splitting, and
ortholog contrasts. While not demonstrated here, the contrast
model in theory should be extendable to determining which of
two alleles in a population is more highly expressed, an appli-
cation with clear utility in breeding and medicine.
In the future, it is hoped that gene-family–guided splitting,

ortholog contrasts, and other potential strategies will be applied
to deep learning models in various areas of biology. With larger
datasets, the current models could also be built upon and further
interpreted through partitioning genes by functional classes or
predicting temporal-spatial expression patterns. The contrast
model, in particular, could likely have increased performance if
more than two genomes (or subgenomes) could be included in
one model. Such a development would require novel strategies
to properly control for dataset imbalances. Fundamentally, these
models suffer from having more parameters than samples. Cur-
rent technologies are making it possible to generate data from
hundreds to thousands of individuals with many tissue types for
each. As these large-scale datasets become available, models
such as the ones developed here will become increasingly accu-
rate and useful. The potential of deep learning to increase our
understanding of and prediction within biological systems is
enormous. Further creative strategies for focusing these methods
on biologically relevant information and controlling for con-
founding biological factors will be critical to the success of deep
learning in biology.

Materials and Methods
DNA Sequence Encoding and RNA-Seq Data Collection and Processing. The Z.

mays B73 reference genome (40, 41) was downloaded from Ensembl Plant

Release 31 (plants.ensembl.org). The newest B73 reference genome, AGPv4

(42), was not used in this study due to known issues with the 3′-UTR anno-

tations. Version 3.1.1 of the S. bicolor genome (43) was downloaded from

Phytozome (https://phytozome.jgi.doe.gov). The transcription start site (TSS)

and transcription termination site (TTS) are not explicitly annotated in these

genomes, so the TSS was taken to be the start coordinate of the gene and

the TTS the end coordinate of the gene. DNA sequences were transformed

into one hot form using custom scripts (see Bitbucket repository, ref. 16).

To trainmodels predicting unexpressed genes, 422 samples (from a total of

452) from seven references (9–15) representing a comprehensive collection

of maize tissues at diverse developmental stages were used. The samples

were downloaded from the National Center for Biotechnology Information

(NCBI) Sequence Read Archive (SRA), quality-trimmed, and checked using

Sickle (version 1.33, https://github.com/najoshi/sickle) and FastQC (version

0.11.5, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/). The

cleaned reads were aligned to the maize genome with HISAT2 (version 2.1.0)

(44) and read counts were normalized to TPM by Stringtie (version 1.3.3)

(45). Among the 452 samples, 26 with fewer than 5 million reads and four

with a less than 50% alignment rate were excluded from downstream

analysis, leaving 422 samples. Samples are summarized in Dataset S1, and

gene expression levels are listed in Dataset S2.

Some gene models in the V3 annotation do not contain 5′ or 3′ UTRs,

leaving discernible start and stop codons at TSS and TTS. To circumvent the

model learning from these simple sequence features, the first three nucle-

otides downstream of the TSS and the last three nucleotides upstream of the

TTS were masked. In both off/high and off/on comparisons, using longer

promoters (from −2,500 to +500 bp with respect to the TSS) or terminators

(from −500 to +2,500 bp with respect to TTS) did not improve predictive

accuracy.

The Z. mays samples used for testing the ortholog contrast model come

from the B73 Shoot data published by Kremling et al. (46). The corre-

sponding S. bicolor data were generated and processed as described in that

paper and can be found on the NCBI SRA website under project number

PRJNA503076 (17). Both Z. mays and S. bicolor data were additionally pro-

cessed together using the DESeq2 fragments per million normalization. All

scripts associated with the analyses were deposited on BitBucket (https://

bitbucket.org/bucklerlab/p_strength_prediction/) (16).

Categorizing Maize Genes into Gene Families and Family-Guided Splitting of

Training and Testing Data Sets. Z. mays genes were divided into gene families

using a previously described pipeline (47) with modifications. An all-by-all

BLAST was conducted on maize proteome sequences to evaluate pairwise

similarity between maize proteins. As one gene may encode multiple pro-

tein isoforms, the result of the BLAST search was collapsed to gene-level

similarity by an in-house R script. Then, an in-house python script was used

to build a graph with nodes representing genes and edges connecting

paralogous genes. This graph was further divided into clusters (i.e., gene

families) by the Markov Clustering Algorithm implemented in the

markov_clustering package in Python with default parameters except that

inflation was set to 1.1. If a gene was not assigned to any gene family, it was

considered as a family that contains only a single member. Each gene family

was assigned an index (Dataset S3). For family-guided cross-validation, gene

families were randomly partitioned into five subsamples with equal num-

bers of families. In each iteration, one subsample was retained as the test

data, while the remaining four subsamples were used as training data

(Dataset S3).

Model Architecture. All models presented here use the same architecture. This

architecture was originally determined for the pseudogenemodel based on a

grid search. Multiple architectures were also tested for the ortholog contrast

model (including the final pseudogene architecture). As the pseudogene

architecture performed similarly to other tested architectures, it was de-

termined to use it for both models for the sake of simplicity. All models were

constructed in Python 2 using Keras 2 with a Tensorflow back end. The final

architecture consisted of three groups of two convolutional layers, with each

group of layers followed by a maximum pooling and a dropout layer, fol-

lowed by two fully connected layers, each followed by a dropout layer, and a

final prediction layer (see model code in Bitbucket repository for more de-

tails, ref. 16). A “relu” activation function was used for each layer in the

model (except for the final prediction layer, which used a softmax or sigmoid

activation function depending on the model).

To pick the final values of the 11 hyperparameters in the model, all

hyperparameter combinations (1,344 combinations in total) were evaluated

on the pseudogenes vs. expressed genes dataset using fivefold cross-

validation (results are summarized in Dataset S4). Among them, most com-

binations achieved accuracies around 75%. Tukey’s Honestly Significant

Difference test indicated that 1,294 of the 1,344 combinations are not sig-

nificantly different (adjusted P value > 0.05) from the best-performing

combination (with an accuracy of 77.7%). The Student’s t test indicated

that 600 of the 1,344 combinations are not significantly different from the

best-performing combination (false discovery rate adjusted P value > 0.05).

Therefore, a single combination was randomly chosen from these 600 com-

binations (with an accuracy of 76.4%).

Syntenic Ortholog Contrasts. Syntenic orthologs between the Z. mays and S.

bicolor reference genomes were obtained from a previous publication (14).

The training, validation, and testing sets were also divided by gene family in

the same way as described for the pseudogene model above. To feed two

genes at a time to the model, the gene sequences were first converted into

one hot form. Each base pair, and a missing base-pair character, were in-

cluded in the encoding. A column of all zeros was used as an additional class

specific to padding characters. The two ortholog sequences being compared
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were then concatenated together with a block of all zero columns equiva-

lent to 30 bp in between them. Different lengths of padding between the

two sequences were tried, but 30 bp worked well and was used for all

reported analyses. To control for the possibility of the network learning

gene order (i.e., the first gene is always more highly expressed than the

second), all gene pairs where fed to the model in both possible orders.

Transcript abundance data used in the contrast model included only one

tissue type (shoot tissue) based on at least two replicates (distinct libraries

created from pooled plants) for both maize and sorghum as described in ref.

46. Fragment Per Million values were log2-scaled and then normalized by

percentage rank based only on genes with single-copy syntenic orthologs in

both genomes. In cases where multiple transcripts had the same expression

values, the average rank value was assigned to all. Orthologs were then

paired and filtered to exclude pairs with a less than 2,000 rank expression

difference between them (∼0.12 log10 TPM) and down-sampled to ensure

an equal number of sorghum and maize winners. This resulted in 3,094

ortholog pairs for use in model training, validation, and testing.
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