
 

Systematic effects from black hole-neutron star waveform model
uncertainties on the neutron star equation of state

Kabir Chakravarti,1 Anuradha Gupta,2,1 Sukanta Bose,1,3,* Matthew D. Duez,3 Jesus Caro,3 Wyatt Brege,3

Francois Foucart,4,5 Shaon Ghosh,6 Koutarou Kyutoku,7,8,9,10 Benjamin D. Lackey,11 Masaru Shibata,11,10

Daniel A. Hemberger,12 Lawrence E. Kidder,13 Harald P. Pfeiffer,11,14 and Mark A. Scheel12
1Inter-University Centre for Astronomy and Astrophysics, Post Bag 4, Ganeshkhind, Pune 411 007, India
2Department of Physics, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

3Department of Physics & Astronomy, Washington State University,
1245 Webster, Pullman, Washington 99164-2814, USA
4Department of Physics, University of New Hampshire,
9 Library Way, Durham, New Hampshire 03824, USA

5Lawrence Berkeley National Laboratory, 1 Cyclotron Rd, Berkeley, California 94720, USA
6Department of Physics, University of Wisconsin-Milwaukee, Milwaukee, Wisconsin 53201, USA

7Theory Center, Institute of Particle and Nuclear Studies, KEK, Tsukuba 305-0801, Japan
8Department of Particle and Nuclear Physics, the Graduate University for Advanced Studies (Sokendai),

Tsukuba 305-0801, Japan
9Interdisciplinary Theoretical and Mathematical Sciences Program (iTHEMS),

RIKEN, Wako, Saitama 351-0198, Japan
10Center for Gravitational Physics, Yukawa Institute for Theoretical Physics,

Kyoto University, Kyoto 606-8502, Japan
11Max Planck Institute for Gravitational Physics (Albert Einstein Institute),

D-14476 Potsdam-Golm, Germany
12TAPIR, Walter Burke Institute for Theoretical Physics, California Institute of Technology,

MC 350-17, Pasadena, California 91125, USA
13Cornell Center for Astrophysics and Planetary Science, Cornell University,

Ithaca, New York, 14853, USA
14Canadian Institute for Theoretical Astrophysics, University of Toronto,

Toronto, Ontario M5S 3H8, Canada

(Received 19 September 2018; published 31 January 2019)

We identify various contributors of systematic effects in the measurement of the neutron star (NS) tidal
deformability and quantify their magnitude for several types of neutron star—black hole (NSBH) binaries.
Gravitational waves from NSBH mergers contain information about the components’ masses and spins as
well as the NS equation of state. Extracting this information requires comparison of the signal in noisy
detector data with theoretical templates derived from some combination of post-Newtonian (PN)
approximants, effective one-body (EOB) models, and numerical relativity (NR) simulations. The accuracy
of these templates is limited by errors in the NR simulations, by the approximate nature of the PN/EOB
waveforms, and by the hybridization procedure used to combine them. In this paper, we estimate the impact
of these errors by constructing and comparing a set of PN-NR hybrid waveforms, for the first time with
NR waveforms from two different codes, namely, SPEC and SACRA, for such systems. We then attempt to
recover the parameters of the binary using two non-precessing template approximants. As expected, these
errors have negligible effect on detectability. Mass and spin estimates are moderately affected by systematic
errors for near equal-mass binaries, while the recovered masses can be inaccurate at higher mass ratios.
Large uncertainties are also found in the tidal deformability Λ, due to differences in PN base models used in
hybridization, numerical relativity NR errors, and inherent limitations of the hybridization method. We find
that systematic errors are too large for tidal effects to be accurately characterized for any realistic NS
equation of state model. We conclude that NSBH waveform models must be significantly improved if they
are to be useful for the extraction of NS equation of state information or even for distinguishing NSBH
systems from binary black holes.
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I. INTRODUCTION

Compact object binaries are of paramount importance
in gravitational wave (GW) physics because their signals
are loud, have a significant rate of occurrence, and are
amenable to theoretical modelling. It is perhaps only a
matter of time before neutron star-black hole (NSBH)
binaries are discovered [1,2]. The phenomenological mod-
eling of such systems is thus an important problem today.
From the point of view of tidal effects, an NSBH binary
constitutes a simplified version of the binary neutron star
(BNS) system, as it involves only one tidal parameter.
Consequently, any inference drawn on the NS equation of
state (EOS) from their GW signal would be cleaner than
that from BNSs.
A few phenomenological (Phenom) models of NSBH

binary waveforms already exist. Post-Newtonian (PN) and
numerical relativity (NR) waveforms were first combined
to make complete NSBH waveform families by Lackey
et al. [3]. They created two template families, based on
different analytical waveform models. One used the
aligned-spin IMRPhenomC binary black hole (BBH)
model [4], while the other used a time-domain effective
one-body (EOB) model [5]. The merger phase and ampli-
tude were then modified by analytic correction functions
calibrated to 134 NR simulations produced by the SACRA

code [6]. We will henceforth call these waveforms the
“LEA”model. As an extension of LEA, Pannarale et al. [7]
introduced a more detailed frequency-domain model for the
waveform amplitude by distinguishing systems with vari-
ous degrees of expected tidal disruption. Finally, Kumar
et al. [8], as part of a study of systematic errors in mass and
spin estimates due to tidal effects, produced an enhanced
version of the LEA templates, using SEOBNRv2 [9] as the
underlying BBH model, with the same tidal corrections as
LEA. We call the resulting templates the “LEA + ” model.
In this paper, we identify key systematic errors that can

affect the measurement of the NS tidal deformability
parameter, Λ, in possible NSBH detections. Cross-code
comparisons are common for BBH [10–12]. There have
also been some previous attempts at comparing NR
simulations with models for BNS systems [13–18] as well
as for NSBH systems [19,20]. Very recently, waveforms for
inspiral of compact binaries were also proposed from the
EOB formalism [21]. The added complexities of the micro
physics make cross-code comparisons of NSBH/BNS
systems arguably even more important. This is the first
time that results impacting NSBH parameter estimation are
obtained by comparing waveforms based on simulations
carried out with two different NR codes, namely, SPEC [22]
and SACRA [6]. The paper is organized as follows: In Sec. II
we summarize the different sources of systematic errors in
the tidal deformability estimation. We also describe the NR
late-inspiral-merger-ringdown waveforms and the pro-
cedure for constructing hybrid waveforms by combining
them with PN inspiral cycles. In Sec. III, we present the

results of parameter estimation for these hybrid wave-
forms using the LEA and LEA +models, before concluding
in Sec. IV.

II. WAVEFORM SYSTEMATICS

The characterization of NSBH binaries involves the
estimation of a NS tidal parameter, apart from the masses
and spins of the binary components. Here we will take
the dimensionless tidal deformability [23] to represent the
former. We follow the LEA convention and denote this
parameter by Λ≡ ð2=3Þk2ðc2RNS=GMNSÞ5, where k2, RNS
and MNS are the second Love number, radius and mass,
respectively, of the neutron star. There are multiple sources
of systematics that will affect the error budget for Λ. At the
outset they can be grouped into the following broad
categories.
(1) NR modeling: To begin with, there will be system-

atics due to errors in the NR waveforms, namely, the
effects of finite resolution and of the extrapolation of
waveforms to infinity. In the limit of infinite reso-
lution and perfect initial data, all evolution methods
are equivalent, but with the introduction of a finite
grid (or finite extraction radius), the equivalence is
broken and so numerical errors become dependent
on the process chosen to evolve the field equations.
There will also be errors due to imperfect initial data
leading to, for example, nonzero residual eccen-
tricities or “junk” GW radiation.

(2) Choice of EOS model: The choice of EOS model
may also influence parameter estimation. To first
order, Λ is the best measured matter property of the
NS from the premerger phase of the GW signal from
an NSBH. Yet, the space of EOSs is not one
dimensional, and two different stars with the same
mass and Λ can be constructed from two different
EOS models, e.g., (somewhat simplistically) a single
polytrope and a piecewise polytrope. In this sense,
the choice of the EOS model used by NR can distort
the GW waveform computed because the true EOS
presumably does not fall perfectly within the EOS
family used in the NR survey, albeit possibly only
during the last few orbits of inspiral and during/after
merger.

(3) Choice of PN waveform: When constructing hybrid
waveforms, the choice of the PN approximant used
is also a potential source of error.

(4) The PN-NR bridge: The method for combining the
PN andNR cycles to produce completewaveforms in
the detector band—also termed as “hybridization”—
can be a source of systematic error. This is true even if
the technique itself is perfect, in that it produces an
accurate complete waveform if the PN and NR parts
themselves are accurate. This is because as long as
even one set of cycles (PN or NR) is erroneous or the
number of overlapping PN and NR cycles is too few,
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the hybridization procedure can create a waveform
that is inaccurate even at frequencies where the
original PN or NR parts were in themselves accurate.

(5) Sampling the ambiguity function in Λ: Accurate
parameter estimation depends on the knowledge and
application of accurate waveform models. Estimat-
ing the value of a signal parameter then involves
cross-correlating normalized templates based on
such waveforms with the GW data containing a
signal. As detailed here, the rate at which this cross-
correlation (or, more precisely, the match, as defined
below) changes with δΛ≡ Λtemplate − Λsignal is slow:
When the signal itself is a unit-norm “neighboring”
template, the match drops by a few tenths of a
percent even when δΛ is as high as several tens to a
few hundreds. This is just another way of stating that
the ambiguity function [24] in Λ is diffuse or not
sharply peaked. For strong signals, this spread in Λ
will reduce, and its estimation will be more precise.
It does not impact estimation accuracy by itself.
However, we show here that even for reasonably
accurate templates if the sampling rate of the data
(and the templates) is not considerably higher than
4096 Hz, the match can have multiple closely-
spaced local maxima, which can cause parameter
estimation algorithms to miss the global maximum.
This effect can make Λ estimation inaccurate.

(6) The mass-ratio effect: The mass ratio of the binary
(i.e., q≡MBH=MNS, where MBH and MNS are the
black hole and neutron star masses, respectively)
inversely dictates the magnitude of the tidal effect
in its signal. With increasing q, tidal effects on
the waveform are reduced. Systematic errors like
the ones we discussed start to dominate over the
physical tidal effects, and this means that it is harder
to estimate the tidal parameter accurately. Note that
this is in addition to the statistical effect whereby
a smaller value of a parameter will incur a larger
spread in its measured value. The high mass ratios
also tend to make NR simulations harder.

The first five systematic errors can be reduced through
improved modeling or better parameter estimation algo-
rithms and their implementation in data in the future. The
last effect is related to actual physical processes, and tells us
where modeling errors will impact parameter estimation
the most (i.e., at high mass ratios).

A. Systematics from numerics

Since tidal effects are expected to be small, numerical
errors can significantly impact measurements of the tidal
deformability in NSBH binaries. In this paper, we employ
waveforms from two of the major NR codes used to model
NSBH mergers: SACRA [6] and SPEC [22]. These two
codes were written independently of each other and use
different formulations of general relativity, grid structures,

and numerical methods. The SACRA waveforms utilized
here are from the same set that was used to calibrate LEA.
Some of the SPEC waveforms come from simulations
recently used to study the impact of dynamical tides on
NSBH waveforms [25], while others are presented for
the first time here (see below). Both SPEC and SACRA

simulations have drastically improved in phase accuracy in
recent years with the introduction of sophisticated tech-
niques such as higher-order hydrodynamics [26] and
constraint propagation [27]. Since we use waveforms made
over a period of several years, numerical errors vary
significantly from system to system.
There are several possible sources of NR error. One

source is residual eccentricity in the initial data. SPEC
simulations use an iterative approach [28] to reduce the
initial eccentricity, resulting in residual eccentricities
e ∼ 0.0005–0.003 for the simulations presented here.
The SACRA simulations employed to calibrate LEA, on
the other hand, used quasi-circular initial data, with typical
residual eccentricities e ∼ 0.01. Another source of error is
the extrapolation to future null infinity. In SPEC, this error
is estimated by comparing extrapolation methods of differ-
ent orders [29], and is found to be small compared to other
numerical errors (phase errors of ∼0.01 rad) [30]. For the
SACRA simulations used in LEA, gravitational waves were
extracted at a fixed radius of ∼1000 km instead. We note
that the eccentricity reduction and extrapolation to null
infinity are both performed in BNS simulations by SACRA

[31], and that updated NSBH simulations are ongoing.
At the current accuracy of numerical simulations, how-

ever, the largest source of error is truncation error. The
magnitude of that error can be estimated by comparing
simulations at different resolutions, and in some cases by
extrapolating results to infinite resolution. The most recent
SPEC simulations (cf. Cases 1 and 2 in Tables I and II)
accumulate phase difference of about 0.1–0.3 radian at
merger over 20–30 waveform cycles.
These errors must be compared to the expected impact of

finite size effects on the phase of the GW signal. This is a
very strong function of the mass ratio of the binary. Finite
size effects are negligible for q ≳ 6, non-spinning binary.
For q ¼ 6, the result of BBH simulations falls within the
error bars of NSBH simulations [32]. On the other hand,
even our most conservative error estimates predict that
finite size effects are resolved with ∼20% relative errors at
the time of merger for the lowest mass ratios considered
here (q ¼ 1–2, nonspinning binaries [25]). Finally, for high
mass-ratio binaries with rapidly spinning black holes, the
rapid falloff of the GW amplitude due to the disruption of
the NS is the strongest finite-size effect on the waveform,
and is well captured by simulations.
Analytical waveform templates may also have errors

induced by their calibration to a set of NR simulations
using a restricted family of EOS, i.e., EOS with a fixed
functional form and a set of freely specifiable parameters
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that can capture some but not all of the properties of real
NSs. Errors from this effect are expected to be small
because, to leading order, finite size effects only depend on
the tidal deformability of NSs, and the same range of Λ can
be covered with many EOS families. The SACRAwaveforms
used for LEA assume a two-component piecewise poly-
tropic EOS, i.e., an equation of state in which the pressure
P is related to the baryon density ρ by

P ¼
�
κ0ρ

Γ0 if ρ < ρt

κ1ρ
Γ1 if ρ > ρt;

ð1Þ

where κ0 ¼ 3.5966 × 1013 in cgs units and Γ0 ¼ 1.3569.
This EOS family has two free variables, which are taken to
be Γ1, the high-density polytropic exponent, and P1, the
pressure at a fiducial density ρfidu ¼ 1014.7 g cm−3. It has
been suggested in Ref. [33] that the pressure at this
numerical value of ρfidu is correlated with the NS radius.
The value of ρt is determined from these quantities by
requiring the continuity of the pressure at the interface as
ρt ¼ ðκ0=κ1Þ1=ðΓ1−Γ0Þ with κ1 ¼ P1=ρ

Γ1

fidu. In this paper, we
will use NR waveforms generated with this EOS family as

well as those generated using a single-component poly-
tropic EOS: P ¼ κρΓ, with Γ ¼ 2.

B. Systematic errors from templates

In Sec. III, we compare PN-NR hybrid waveforms to the
LEA and LEAþmodels. Our results are impacted by
systematic errors in these models. For example, there exists
known residual discrepancy between the LEA waveforms
and the SACRA simulations used in their construction.
According to Lackey et al. [3], systematic errors in the
analytical Phenom waveform due to this fitting error are
jΔΛ1=5j=σΛ1=5 ∼ 0.1 (worse for q > 4), where σΛ1=5 , the
aLIGO statistical error for a source at 100 Mpc, is between
0.5 and 1 (see Fig. 15 of [3]). So jΔΛj=Λ≈5jΔΛ1=5j=Λ1=5≈
5–12%, perhaps twice as big for q between 4 and 5.
Systematic errors in the analytical EOB waveforms due to
their discrepancy from their simulation input are about
twice as big as those in the analytical Phenom waveforms
[3]. Further, as an example of in built template systematic
errors, there are known instances for LEAwhere the phase
of the calibrating hybrid waveform is known to have
significant amplitude mismatch with the analytical template
(Figs. 21 and 22 of Ref. [3]), all of which add to the
systematic error budget.
Systematic errors in the LEA and LEA + templates are

also impacted by the choice of underlying point-particle

TABLE I. The parameter estimates and fitting factors for a set
of hybridized NSBH waveforms, constructed from NR late-
inspiral and merger cycles at different resolutions from SPEC and
SACRA, when match-filtered with LEA templates in aLIGO noise
PSD. For example, Case 1 shows three resolutions of SPEC
waveforms with q ¼ 1.5 and Λ ¼ 791 recovered against LEA
templates. Asterisk-marked cases were hybridized using the step
method.

Injected waveform Best matched parameters
FF

Resolution Code MBH MNS χBH Λ %

Case 1. q ¼ 1.5; χBH ¼ 0; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 791
Low SpEC 2.06 1.42 0.001 579.0 99.80
Medium SpEC 2.06 1.41 −0.005 546.3 99.80
High SpEC 2.10 1.39 −0.006 551.3 99.77

Case 2. q ¼ 2; χBH ¼ 0; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 791
Low SpEC 2.76 1.41 −0.008 −785.0 99.72
Medium SpEC 2.79 1.40 −0.002 −659.1 99.71
High SpEC 2.71 1.43 −0.021 −742.9 99.75

Case 3. q ¼ 2; χBH ¼ 0.75; MNS ¼ 1.2; EOS 2H; Λ ¼ 4382
Medium SPEC 2.35 1.21 0.813 4097 98.94
High SACRA 2.53 1.22 0.816 3977 99.86

Case 4. q ¼ 3; χBH ¼ 0; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 620
Low SpEC 4.00 1.46 −0.031 −107.7 98.97
Medium SpEC 4.00 1.46 −0.027 −103.8 98.95
High SpEC 4.00 1.46 −0.034 −2288 99.49

Case 5. q ¼ 3; χBH ¼ 0; MNS ¼ 1.35; EOS H; Λ ¼ 607
Medium SPEC* 3.86 1.40 −0.038 −6358 99.41
High SPEC* 3.99 1.37 −0.000 594.1 97.70
Low SACRA 3.79 1.43 −0.042 −426.7 99.05
Medium SACRA 3.86 1.40 −0.036 −3750 99.61
High SACRA 3.86 1.40 −0.029 −891 99.09

Case 6. q ¼ 5; χBH ¼ 0.75; MNS ¼ 1.35; EOS 2H; Λ ¼ 2324
Low SACRA* 5.70 1.53 0.859 2367 97.46
Medium SACRA* 5.92 1.49 0.861 16784 97.31
High SACRA* 5.82 1.51 0.849 121.5 97.58

Case 7. q ¼ 5; χBH ¼ 0.5; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 791
Low SpEC 5.28 1.73 0.475 1008 99.27
Medium SpEC 5.30 1.72 0.476 997 99.28

TABLE II. Same as Table I, but now employing LEA +
templates instead of LEA.

Injected waveform Best matched parameters
FF

Resolution Code MBH MNS χBH Λ %

Case 1. q ¼ 1.5; χBH ¼ 0; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 791
Low SPEC 2.08 1.41 0.000 587.6 99.40
Medium SPEC 2.07 1.41 −0.000 723.6 99.39
High SPEC 2.06 1.45 −0.015 373.5 99.41

Case 2. q ¼ 2; χBH ¼ 0; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 791
Low SPEC 2.75 1.42 −0.004 0.0 99.88
Medium SPEC 2.78 1.40 −0.003 78.7 99.88
High SPEC 2.78 1.40 −0.003 44.9 99.87

Case 3. q ¼ 2; χBH ¼ 0.75; MNS ¼ 1.2; EOS 2H; Λ ¼ 4382
Medium SPEC 2.47 1.16 0.760 4960 98.45
High SACRA 2.38 1.20 0.770 4322 99.87

Case 4. q ¼ 3; χBH ¼ 0; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 620
Low SPEC 3.82 1.52 −0.046 663.6 98.97
Medium SPEC 3.76 1.54 −0.059 796.2 98.95
High SPEC 3.81 1.52 −0.042 580.4 99.49

Case 5. q ¼ 3; χBH ¼ 0; MNS ¼ 1.35; EOS H; Λ ¼ 607
Medium SPEC* 3.62 1.48 −0.056 278.9 99.48
High SPEC* 3.63 1.48 −0.055 272.3 99.49
Low SACRA 3.72 1.45 −0.041 375.8 99.49
Medium SACRA 3.61 1.48 −0.063 366.3 99.65
High SACRA 3.72 1.45 −0.040 456.9 99.54

Case 6. q ¼ 5; χBH ¼ 0.75; MNS ¼ 1.35; EOS 2H; Λ ¼ 2324
Low SACRA* 6.30 1.42 0.846 2298 97.67
Medium SACRA* 5.79 1.52 0.846 64.1 97.93
High SACRA* 6.25 1.43 0.845 1896 97.71

Case 7. q ¼ 5; χBH ¼ 0.5; MNS ¼ 1.4; EOS Γ ¼ 2; Λ ¼ 791
Low SPEC 6.04 1.56 0.502 475.6 99.41
Medium SPEC 6.11 1.54 0.509 795.2 99.35
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(BBH) waveform, as the models are constructed by adding
tidal terms to BBH templates. Naturally, the performance
of the tidal templates depends on the quality of the BBH
model. This is the key difference between LEA and LEA + ,
and we will see that this non-trivially affects Λ estimates
when we perform comparisons between LEA and LEA + .

C. PN model and hybridization systematics

As we noted earlier, the choice of PN model and the
method used to construct the full inspiral-merger-ringdown
hybrid waveforms are themselves potential sources of
systematic errors. In this study, the hybrid waveforms are
constructed using the procedure outlined in Ref. [34], unless
mentioned otherwise. We use the 3.5PN phase corrected
SpinTaylorT4 PN approximant, with 1.5PN amplitude
correction whereas tidal corrections are taken up to 6PN
order. SpinTaylorT4 is one of the popular inspiral models
and matches remarkably well with NR in the case of equal
mass, non-spinning binaries [29], whereas for non-equal
mass binaries, it is of comparable accuracy as other Taylor-
approximants [35]. Therefore, we use the SpinTaylorT4
model for the inspiral part of the hybrid waveforms. The
systematics due to the use of different PN approximants in
constructing hybrids for nonprecessing NSBH systems will
be studied in a future publication.
The hybridization is performed in the time domain. We

minimize the integrated absolute squared difference
between PN and NR waveforms in a time window where
we have NR data and where the PN approximation is
expected to be valid:

δ ¼
Z

T

0

jhPNðtÞ − a � hNRðt; μ⃗Þj2dt: ð2Þ

Here ½0; T� is the aforementioned overlap region of PN and
NR waveforms in the time domain. We choose t ¼ 0 to be
at an instantaneous signal frequency that is immediately
after the point when the junk radiation in the NR signal
was emitted. On the other hand, T is chosen more
adaptively by allowing for as many cycles of the PN
waveform into the minimization domain as possible
without coming closer than a few cycles of the last stable
circular orbit (LSCO). The minimization of δ is carried out
over an amplitude scaling factor a and the extrinsic
parameters μ⃗ of the NR waveforms, namely, the initial
phase ϕ0 and the initial time of arrival t0. Once the
minimizing values (i.e., amin and μ⃗min ¼ fϕ0min; t0ming)
are obtained, we make use of a linear interpolation joining
function to produce the hybrid waveforms. The wave-
forms so produced can be expressed as:

hhybðt; μ⃗Þ ¼ hPNðtÞ½1 − τðtÞ� þ aminhNRðt; μ⃗minÞτðtÞ; ð3Þ

where τðtÞ is the linear interpolation function, given by

τðtÞ ¼
8<
:

0 if t ≤ t0min
t−t0min

tmax−t0min
if t0min < t ≤ tmax

1 if tmax < t:

ð4Þ

Here, tmax is the time up to which we take the PN
waveform to be valid; it is typically somewhat before
the LSCO. Such an interpolation requires that NR cycles
are available not just for the merger and ringdown phases,
but also for at least several cycles of the late-inspiral phase
at separations larger than the LSCO. This is the method
used to produce the hybrids shown in Fig. 1.
It is important to note here that the ultimate test of the

quality of these hybrid waveforms is how well the hybrid

FIG. 1. Examples of hybrid waveforms generated for SPEC (right) and SACRA (left). Both have q ¼ 5, χBH ¼ 0.5. The time in total
mass M at which the instantaneous frequency of the binaries crosses 10 Hz is, respectively, −7.143 × 106 and −7.863 × 106 for SPEC
and SACRA.
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matches a NR waveform with the same binary parameters
that covers the complete band of the signal in Eq. (3).
Phenomenological waveform models are approximations
of such waveforms that are usually deduced by requiring
high fitting factors against the hybrids. Such a criterion,
however, does not guarantee that those waveform models
will also estimate signal parameters highly accurately. Note
that phenomenological models are calibrated to imperfect
hybrid waveforms, and thus are themselves imperfect—
even if they match perfectly the waveform they are
calibrated against. Details on errors that can result from
the hybridization procedure have been examined in
Ref. [35]. Even though it analyzed only binary black hole
systems, its findings have relevance for NSBH systems
studied here, with the main difference being that the latter
include an additional parameter, in the form of the NS tidal
deformability Λ.
It is also worth mentioning that this hybridization

method fails for our shortest NR waveforms, as the
matching interval ½0; T� does not contain more than a
few GW cycles. When that is the case, we set a ¼ 1 in
Eq. (2) and adaptively modify the function τ in Eq. (3) to a
step function. The hybrid waveform is then

hhybðt; μ⃗Þ ¼ hPNðtÞ½1 − τðtÞ� þ hNRðt; μ⃗minÞτðtÞ; ð5Þ

where

τðtÞ ¼
�
0 if t ≤ t0min

1 if t0min < t;
ð6Þ

and t0min is defined as in Eqs. (3) and (4). Henceforth,
we will refer to this method as the “step” method of
hybridization.
In passing, we note that the regular method of hybridi-

zation is more likely to fail if there are large values of q
or χBH in the parameter space. This is partly due to the fact
that the NR waveforms available for high q or high χBH
are usually shorter compared to the low mass, low spin
waveforms.

III. RESULTS

Our goal here is to study the effect of the various sources
of systematic errors listed above on the estimation of the
tidal deformability parameter. In practice, a Bayesian
parameter estimation analysis is employed to infer the
parameters of the source from its GW signal [36]. However,
this method is computationally expensive and beyond the
scope this paper (we will present the results for the
Bayesian analysis in a future work). Instead we quote
the maximum likelihood estimators of the parameters (i.e.,
parameter values of the best matched template) and the true
values of the parameter; their respective differences are the
errors in their measurement. Below we briefly describe how
we compute the error in the tidal deformability parameter.

Let hðt; p⃗hÞ denote a unit-norm hybrid waveform char-
acterized by parameters p⃗h ¼ fMh

BH;M
h
NS; χ

h
BH;Λhg. Let

uðt; p⃗Þ be the generic form of a unit-norm template, where
p⃗ ¼ fMBH;MNS; χBH;Λg are the dynamical parameters of
the binary template. The inner product between u and h,
i.e., huðf; p⃗Þjhðf; p⃗hÞi, maximized over the initial phase
and time-of-arrival, is the match. The inner product itself is
defined for vectors a and b as,

hajbi ¼ 4Re

�Z
fhigh

flow

ãðfÞb̃�ðfÞ
ShðfÞ

df

�
; ð7Þ

where ShðfÞ is the one-sided power spectral density (PSD)
of the noise of the detector. The fitting factor (FF) is the
match maximized over the template parameters:

FF ¼ max
p⃗;t0;ϕ0

hũðf; p⃗Þjh̃ðf; p⃗hÞi: ð8Þ

The maximization required for computing the FF was
carried out using the well-known Nelder-Mead downhill
simplex algorithm [37].
In this paper, we use the zero-detuned-high-power

(ZDHP) noise-curve of aLIGO [38] for PSD calculation,
and choose flow to be 10 Hz. The systematic effects will
therefore influence the bias Δpμ ¼ ðpμ

0 − pμ
hÞ=pμ

h, where μ
is a parameter index and pμ

0 denotes the maximizing values
of the template parameters. We study below how large these
biases are and explain the reason behind them.
The estimates of the tidal deformability parameter

across different NR codes and numerical resolutions are
summarized in Tables I and II. The cases where the step
hybridization was applied are indicated in the same tables
by asterisks. Further, estimates of the key nontidal param-
eters are presented in Fig. 2. The faithfulness of different
tidal templates (namely, LEA vs LEA +) in estimating Λ
can be inferred by comparing Tables I and II. Using these
data, we will estimate the importance of the various
systematic errors in turn.

A. Numerical sensitivity: Comparison of NR codes

Since SACRA and SPEC differ in gridding, formulation of
Einstein’s equations (BSSN [39,40] vs generalized har-
monic [41]), method of treating black holes (moving
punctures vs excision), and gauge, that the two codes give
consistent answers for gauge-invariant outputs, up to the
truncation errors of each code, is an important test of both
codes. For this test, we pick two binary configurations used
in the construction of LEA and simulate them with the
SPEC code. For both cases and for both codes, only the last
roughly 5 orbits prior to merger are simulated. The initial
data of the SPEC simulations has undergone an eccentricity
reduction procedure, so the initial eccentricity for these
runs (0.005–0.008) may be slightly lower than that of the
SACRA runs. In this work, whenever piecewise polytropes
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were used for our NR simulations, be they with SACRA or
SPEC, we used the same corresponding EOSs, namely H
and 2H. We have employed both (relatively) old and new
NR waveforms in this work. Use of old waveforms was
made mainly because LEA and LEA + templates were
constructed with them. However, in order to probe the
source of the systematic errors, we produced and employed
some newer waveforms as well.
For our first comparison, we choose an extreme case that

maximizes the importance of tidal effects: low mass-ratio
(q ¼ 2), high BH spin (χBH ¼ 0.75), and a large (even if
somewhat unnatural in the light of GW170817 [42]), low-
mass NS (MNS ¼ 1.2 M⊙, Λ ¼ 4382). This large NS
radius is a consequence of the very stiff piecewise-poly-
tropic EOS used in this case, labeled “2H” in [3]. Tidal
effects are easy for both codes to resolve for this case. The
results are listed in Case 3 in Table I, and the error in Λ
turns out to be less than 10% for both codes.
For the second comparison, we choose a binary system

close to the center of the LEA parameter space, namely,
with q ¼ 3, χBH ¼ 0, MNS ¼ 1.35 M⊙, Λ ¼ 607. For this
configuration, listed as Case 5 in Table I, the tidal effects
are difficult to resolve, but we have as many as 3 SACRA

resolutions and 2 SPEC resolutions to estimate errors. With
the LEA templates, differences between the recovered Λ
for different numerical resolutions is up to ten times the
injected value of Λ, and we are thus entirely unable to
reliably recover Λ. With LEA+, the recovered Λ is order-
of-magnitude accurate, despite larger errors in the masses
of the compact objects.
Next, we compare the l ¼ 2, m ¼ 2 mode of the

decomposition of numerical waveforms in spherical har-
monics in Fig. 3. In the top panel of that figure, we show for
two different binaries the SACRA waveform, time-shifted
relative to the SPEC results to maximize the match between

waveforms. The top left panel plots SACRA and SPEC
waveforms for the first (high spin, 2H EOS) case. For this
“easy” case, we find reasonable agreement, with a match
around 90%. However, the agreement between SPEC and
SACRA is not as good for the second (nonspinning, H EOS)
case, shown on the top right of Fig. 3. For this case, visible
dephasing is seen, and the match is lower than 70%. This
disagreement indicates a large error in at least one set of
simulations. It is only a sign of inconsistency between the
two codes if it is larger than the numerical errors of the
individual simulations. We thus turn to a consideration of
the error of each code’s simulations, revealed by differences
between resolutions.
A second SPEC simulation at higher resolution agrees

with the lower-resolution to 0.1 radian through inspiral and
0.5 radian at the end of merger. However, details of SPEC’s
adaptive mesh refinement algorithm can occasionally lead
to significant overestimates of the numerical errors when
only 2 simulations are used to estimate these errors. While
the numerical errors are consistent with those measured in
other recent SPEC NSBH simulations, a more rigorous
error estimate would require a third simulation. On the
other hand, the two available resolutions allow us at least to
test the effect on parameter estimation of this level of
phase error.
Convergence of the SACRA run is illustrated in the bottom

panels of Fig. 3. If the time is shifted for optimal match, the
agreement of different SACRA resolutions is reasonably
good. For purposes of detection, this is the most important
convergence check. If time shifting is not done (since
different resolutions start from the same initial state),
dephasing comparable to the SPEC-SACRA difference is
seen. This more pessimistic comparison is more relevant
for parameter estimation errors. That is, the ability to
optimize match to a high value may give overly optimistic

FIG. 2. Component mass estimation errors for templates based on two PN (IMRPhenomC & LEA) and two EOB (SEOBNRv2 &
LEA+) models. Apart from q ¼ 5, which has χBH ¼ 0.5, all other systems shown above are non-spinning.
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expectations for parameter estimation errors. A longer
waveform would also make the first comparison a lot
worse than it is—the only reason this time shift works is
because the numerical error happens to roughly compen-
sate the change in inspiral rate at a different separation for a
large portion of the very short simulation.

B. Numerical sensitivity: Effect of resolution
and the base BBH waveforms used

1. Effect of resolution on parameter estimates

One way to test the importance of numerical truncation
error is to find the best template matches to numerical
waveforms generated from simulations of different reso-
lutions. We compare best matched parameters for each

binary system for which we have multiple numerical
resolutions. The results are listed in Table I for best matches
to LEA templates and Table II for best matches to LEA
+ templates.
Several conclusions are apparent. First, the Λ estimates

are indeed often sensitive to the NR contribution, as can be
seen from the effect of altering resolution. One might
imagine that the many PN cycles with the correct tidal
contributions would “override” the effect of numerical error
in the last few cycles, but this does not turn out to be the
case, in general. Including correct PN tidal terms in the
inspiral part of the waveform will not guarantee that the Λ
estimate remains unaltered with changing resolution.
Second, tidal effects are seen to be recovered with some-
what small errors for the low mass case q ¼ 1.5 in LEA.

FIG. 3. In each of the two cases in the top panel, we show the relative phasing between SPEC and SACRA NR cycles when their overlap
has already been maximized over initial phase and time for the interval where both types of cycles are present. The case on the left shows
good overlap ∼95%, while that on the right gives poorer overlap ∼65%. In the left figure of the bottom panel the same maximization is
done for two different resolutions of SACRA NR cycles. The resulting overlap between the different resolutions is seen to be ∼97%. In the
right figure of that panel no maximization is done but two different resolutions of SACRA NR cycles are shown with their instantaneous
starting frequency aligned.
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Tidal effects are also seen to be recovered accurately for
high spin systems, for which the NS disrupts well outside
the innermost stable circular orbit even for moderate mass
ratios, leaving a strong, easily resolved imprint in the
waveform. On the other hand, for q ≥ 3 and low spin the
deviations between resolutions, even for resolutions with
lowest phase difference, swamp the measurement of Λ. We
see that in many cases, the best-fit template does not even
have positive Λ. For q ¼ 2, χBH ¼ 0, numerical accuracy
does appear to be sufficient, in that recovered parameters
change little with resolution. But here there are other
sources of systematic error which again swamp the physical
tidal effect and produce negative recovered Λ.
Why does the estimated Λ often vary so widely with

resolution? One interpretation would be that the numerical
truncation error is swamping the physical tidal effect.
However, there is another possibility. If a template family
has multiple members with match close to the maximum,
small differences between resolutions might cause large

jumps in parameter estimates. We explore this possibility
below in the following section.

2. Effect of the base BBH waveforms

We performed a detailed comparison of the estimates
of tidal and nontidal parameters by LEA and LEA+
(see Tables I and II). We will mainly focus on the overall
trend in the estimation of the tidal parameter Λ (see Fig. 4
as well). It is immediately clear that LEA + does better at
returning physically acceptable (non-negative) values of Λ.
Given that LEA and LEA + have similar tidal terms in their
waveform models, we reason that the choice of the base
BBH models, namely IMRPhenomC and SEOBNRv2,
respectively, is likely responsible for most of these
differences.
A comparison of Tables I and II indicates that the

sensitivity of Λ estimates to numerical resolution is itself
PN template-dependent. Notice that the variation in Λ
with resolution is much larger for Case 1 when LEA

FIG. 4. Estimates of Λ for the highest resolution (top row) and lowest resolution (bottom row) SPEC and SACRA waveforms for the
cases listed in Tables I and II. The red and the blue thick lines denote the true (or injected) value of Λ for those two cases, respectively.
The brown and green colored bars show the estimated values of Λ while employing LEA and LEA + templates, respectively.
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+ templates are used than when LEA templates are used.
For Case 5, the opposite is seen: good consistency in Λ
for estimation using LEA+, but wide variation when
LEA is used. From the behavior of Case 1 in LEA+,
we see that parameters differ most at the highest reso-
lution, a result that seems to contradict the good con-
vergent behavior seen in the numerical waveforms.
Extreme sensitivity to the waveform (or the lack thereof)
can result from the shape of the match as a function of the
deviation in the values of the template parameters from
those of the signal.
Indeed, estimating the value of a parameter then

involves maximizing the match of normalized templates

with the data containing the signal. In Fig. 5 we show
that the rate at which the match changes with a deviation
in the value of Λ from that of the signal is slow in the
sense that the match drops by a few tenths of a percent
even when that deviation is as high as several tens to a
few hundreds. This is because the ambiguity function
[24] in Λ is diffuse.1 What is plotted, however, is not the
ambiguity function itself since the hybrid waveform and

FIG. 5. Constrained ambiguity functions in Λ produced for SPEC hybrids matched with LEA (left panel) and LEA+ (right panel)
templates for two different mass ratios, namely, q ¼ 1.5 and q ¼ 5. Note that ΔΛ≡ Λ − ΛFF, where ΛFF is the value for which the
match is maximum, and is given in Tables I and II. The sampling rate for computing the above match was chosen to be 4096 Hz. For
rates as high as 32 kHz, the small oscillations go away. The concomitant local maxima prevent our fitting factor code from finding the
global maximum. Let us illustrate this behavior with the plots in the top panel: The peak in the left figure (high resolution) is at
ΔΛ ≈ −130, where Λ ≈ 551.3 − 130 ¼ 421.3 is what the FF code should have ideally recovered instead of 551.3 if it had not got stuck
at a local maximum (see Table I). That would imply a bigger error in Λ estimate of about 47%. (Note that error covariances of Λ with
other NSBH parameters can change this estimate somewhat.) The peak in the top right figure (high resolution) is at ΔΛ ≈ −80, where
Λ ¼ 373.5 − 80 ¼ 293.5 is what the FF code should have ideally recovered (see Table II), once again, ignoring covariances with other
NSBH parameters. That would still imply an error in Λ estimate of about 63%. In all of the cases we observe that jΔΛj ≲ 200.

1In this case, the ambiguity function is the match between two
unit-norm templates, from the same waveform family, with
different values of Λ.
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the template are not from the same waveform family. We
will call this quantity the constrained ambiguity function
since the templates, in general, may be constrained to
reside in a subspace of the data-space that does not fully
overlap with the subspace in which the hybrid waveform
resides. Additionally, the same figure shows that this
function has multiple local maxima where a parameter
estimation algorithm can get stuck and miss finding the
global maximum. This effect introduces a fraction of the
error in Λ estimation. The small oscillations, accompa-
nied by the local maxima and minima, in the constrained
ambiguity function arise when the sampling rate of the
data and the templates is not high enough (Fig. 5 used
4096 Hz) and has been studied in a somewhat different
context in Ref. [43]. As illustrated in Fig. 5 this effect
can contribute to the systematic error in the estimation of
Λ, and its extent is somewhat different for LEA and
LEA+.

C. Challenges for hybridization

As we noted before, the regular technique of hybridi-
zation is likely to fail when there are not enough NR cycles
available in the physical time-frequency “overlap” region
where PN waveforms are sufficiently accurate. For NR
waveforms available to us, this happens when q or χBH are
large. For such cases, we use the step method. All such
cases in point have been highlighted with an asterisk in
Tables I and II.
Since hybridization issues are affected by the number of

NR cycles available, pursuing the simulation of sufficiently
long NR waveforms is a worthwhile goal for achieving
reliable hybrid waveforms. With such NR input, step
hybridization will not be necessary at all, because all the
waveforms will be guaranteed a relatively large patching
region. These waveforms will be critical for producing more
accurate NSBH templates, especially, for estimating Λ.
In the same way, having fewer NR cycles implies a

smaller patching region thus making hybridization by
method of Eqs. (2) and (3) more likely to fail. Once a
stable patching region is established involving a sufficiently
large number of cycles from accurate overlapping regions
of PN and NR waveforms, the tidal estimate is expected to
vary minimally with addition of more NR cycles—a fact
that has been demonstrated conclusively in [35]. It is also
known from the same work that for some of the nontidal
parameters their accuracy depends on where in the fre-
quency domain the overlapping region is chosen for
hybridizing the waveforms. The important message here
is this: given an SNR value, there exists an upper bound on
the number of NR cycles necessary for the construction of a
hybrid waveform of a desired accuracy. Going above this
bound will make the systematic error arising from hybridi-
zation subdominant to the statistical error.
Finally, for a few representative cases where both the

regular and stepmethods worked, the estimates ofΛ are seen

to agree to within ∼1% of each other. Moreover, to assess
howmuch error our hybridizationmethod itself introduces in
the estimation of Λ, we sliced a complete LEA waveform
corresponding to Case 2, in such a way that it had at least
30 cycles in the overlapping region, and hybridized the
two overlapping pieces using both the regular and the step
methods. We then estimated the value of Λ for both hybrids
using the fitting factor procedure and found the two estimates
to agree within ∼1% of the original unsliced waveform.

D. Binary parameter estimates

Before concluding, we state the results of the estimates
for the nontidal parameters, namely, MBH;MNS, and χBH.
The results of the parameter estimation of masses of the
Γ ¼ 2 SPEC waveforms against different tidal as well as
nontidal templates are shown in Fig. 2. For estimates of the
masses, the templates show consistent trends. Errors in the
masses are small for the low-mass binaries, at a few to
several percent, and increase with q to≲22% for q ¼ 5. An
important contributor to this error is the unfaithfulness
of the base waveforms (IMRPhenomC or SEOBNRv2)
relative to the NR waveforms on which they are modeled,
which itself can cause a bias in the mass parameter
of several percent [44]. Differences in the base PN wave-
form and the hybridization procedure can add to this
error as well. Nevertheless, for low mass-ratios it is
expected that these biases would be comparable, if not
subdominant compared to the other sources of error we
have highlighted.
In addition to the estimation of the individual masses, we

note in Tables I and II that the error in χBH can be as high
as 14%.

IV. CONCLUDING REMARKS

In this paper, we classified some of the sources of
systematic errors in NSBH tidal waveforms and demon-
strated their significant effect on accuracy of NS tidal
parameter estimation. Importantly, even though the fitting
factor values of the NR-based tidal NSBH templates LEA
and LEA + are very high, their best-matched values of the
tidal parameter Λ show a bias of tens to several tens of
percent relative to the true value. In addition to the
magnitude of the systematic error in Λ, our study allows
us to draw several conclusions about the nature of
this error.
First, we learn that the final cycles, the portion modeled

by numerical relativity, have a significant effect on the
systematic error even though they are a small part of the
waveform. The modeling of this portion of the evolution is
confirmed to be an important endeavor.
Second, we find that the binary BH base of the template

family has a large effect on the measured Λ. The
IMRPhenomC used by LEA, for example, is insufficiently
accurate for mass ratios q > 2.
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Third, use of undersampled data or templates can
contribute to systematic error in Λ, as evidenced in the
appearance of multiple local maxima in the constrained
ambiguity function shown in Fig. 5.
Fourth, there are nevertheless significant errors in some

NR waveforms in use. Meaningful consistency between
SACRA and SPEC could not be established in all cases.
(Errors were too large to definitely establish inconsistency
as well.) This comparison should be continued with each
group’s more-accurate current code. These errors have
rather little effect on the match and hence on detectability,
but they have a modest effect on parameter estimates.
Finally, the number of cycles in some of the available NR

waveforms is inadequate to avoid problems in the hybridi-
zation process and that longer NR waveforms can mitigate
the greater part of this issue. The limitations of using
shorter NR inspirals were systematically studied by
McDonald et al. [35]. Those limitations are fundamental
enough that they extend beyond just BBH waveforms and
can impact NSBH template construction as well.
One could, in principle, try to circumvent many of the

problems by restricting efforts in the inspiral-only regime.
But this quick fix suffers from obvious shortcomings, apart
from losing valuable SNR, we also lose valuable information
on the EOS, because the EOS effects are strongest just before
merger. A further point is that the agreement of the PN and
the numerical waveforms is another strong sanity check on
the overall consistency of the waveforms. Resorting to PN
only techniques will also rob us of this check.
Evidently the important lesson drawn from this exercise

is that concerted effort among NR groups is needed to
develop accurate NR waveforms with at least a few tens of
cycles that can be used to construct longer NSBH wave-
forms, through hybridization or calibration, for reliable
tidal parameter estimation. With this in mind, our recom-
mendations for any possible future attempts on NSBH
waveform construction are as follows. First, the focus of
templates should crucially involve the low to intermediate

mass ratio 2 ≤ q ≤ 5 because of stronger prevalence of
tidal effects. Targeting the construction of accurate wave-
forms with a wide range of BH spin is also desirable since
stellar mass black holes are known to have low to high
spins, even though there is no information available yet on
how large these spins might be in NSBH systems. A part of
this space of physical parameters was already explored in
LEA, but with tidal pieces calibrated solely with SACRA

waveforms that were old. We propose that until more
accurate tidal templates are found, LEA + should be used
for tidal parameter estimation in real-data searches. The
gold standard is to have templates that are tidally calibrated
across multiple families of high-quality numerical wave-
forms with consistently high accuracy.
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