
Grapple: A Graph System for Static Finite-State
Property Checking of Large-Scale Systems Code

Zhiqiang Zuo

State Key Lab for Novel Software

Technology, Nanjing University

zqzuo@nju.edu.cn

John Thorpe

UCLA

jothor@cs.ucla.edu

Yifei Wang, Qiuhong Pan,

Shenming Lu

State Key Lab for Novel Software

Technology, Nanjing University

Kai Wang, Guoqing Harry Xu

UCLA

{wangkai,harryxu}@cs.ucla.edu

Linzhang Wang, Xuandong Li

State Key Lab for Novel Software

Technology, Nanjing University

Abstract
Many real-world bugs in large-scale systems are related to

object state that is supposed to obey a specified finite state

machine (FSM). They are triggered when unexpected events

occur on objects in certain states, making these objects tran-

sition in a way that violates their specifications. Detecting

such FSM-related bugs with static analysis is challenging,

especially in distributed systems that have large codebases.

This paper presents a single-machine, disk-based graph

system, called Grapple, which was designed to conduct pre-

cise and scalable checking of finite-state properties for very

large codebases. Grapple detects bugs through context-sensitive,

path-sensitive alias and dataflow analyses, which are both

formulated as dynamic transitive-closure computations and

automatically parallelized by the system. We propose a novel

path constraint encoding/decoding algorithm to attach a path

constraint to a graph edge, allowing the graph engine to ef-

ficiently recover a path and compute its constraint during

the computation. We have implemented Grapple and con-

ducted a comprehensive evaluation over widely deployed

distributed systems. Grapple reported a total of 376 warn-

ings, of which only 17 are false positives. Our results also

demonstrate the scalability of Grapple: it took between 51

minutes and 33 hours to finish all the analyses on a low-

end desktop with 16G memory and 1T SSD space, while the

traditional approaches ran out of memory in all cases.

CCS Concepts • Software and its engineering → Soft-
ware reliability; Formal software verification;

Permission to make digital or hard copies of all or part of this work for

personal or classroom use is granted without fee provided that copies

are not made or distributed for profit or commercial advantage and that

copies bear this notice and the full citation on the first page. Copyrights

for components of this work owned by others than the author(s) must

be honored. Abstracting with credit is permitted. To copy otherwise, or

republish, to post on servers or to redistribute to lists, requires prior specific

permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys’19, March 25–28, 2019, Dresden, Germany

© 2019 Copyright held by the owner/author(s). Publication rights licensed

to ACM.

ACM ISBN 978-1-4503-6281-8/19/03. . . $15.00

https://doi.org/10.1145/3302424.3303972

Keywords static analysis, graph processing, bug detection

ACM Reference Format:
Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming

Lu, Kai Wang, Guoqing Harry Xu, and Linzhang Wang, Xuandong

Li. 2019. Grapple: A Graph System for Static Finite-State Prop-

erty Checking of Large-Scale Systems Code. In Fourteenth EuroSys

Conference 2019 (EuroSys’19), March 25–28, 2019, Dresden, Germany.

ACM,NewYork, NY, USA, 17 pages. https://doi.org/10.1145/3302424.
3303972

1 Introduction
Large-scale software systems — from operating systems [27],

through web browsers [52], to databases [23, 25] and data

processing engines [2, 24, 26] — form the backbone of mod-

ern computing. As these systems are widely used in a spec-

trum of areas, ensuring their reliability is critical. Despite

ceaseless efforts from the industry and research community

to make these systems more reliable, bugs are still regularly

seen in all kinds of systems [13, 32, 44, 46, 53, 76].

1.1 Problem

One popular category of bugs is state related — a bug mani-

fests after a (finite) sequence of events occur on an object of

interest, driving the object into an erroneous state. Common

examples include acquired locks that are not released after

no longer being used, opened file handlers that are not closed

after file accesses are done, or allocated memory regions that

are not freed when the contained data is no longer used, or

are double freed. Objects involved in such bugs often have a

finite-state machine (FSM) description of their possible states.

Any event that makes the object transition to an unaccept-

able state indicates a bug. As reported by Chou et al. [13],

bugs with FSM properties constitute the dominant category

among all bugs studied in (an old version of) Linux kernel.

Over the twenty years since the study [13] was published,

thanks to the significant progress made on bug detection

and fixing [9, 10, 20, 33, 47, 48, 50, 51, 54, 56, 57, 73, 75], the

numbers of bugs in traditional single-machine systems such

as the Linux kernel have gone down dramatically [53, 67].

However, as modern computing is entering the “Big Data”

https://doi.org/10.1145/3302424.3303972
https://doi.org/10.1145/3302424.3303972
https://doi.org/10.1145/3302424.3303972

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

public void configure(InetSocketAddress addr, int maxcc) throws
IOException {

...
this.ss = ServerSocketChannel.open();
...
LOG.info("binding to port " + addr);
ss.socket().bind(addr);
ss.configureBlocking(false);
acceptThread = new AcceptThread(ss, addr, selectorThreads);

}
public void reconfigure(InetSocketAddress addr){

ServerSocketChannel oldSS = ss;
try {

this.ss = ServerSocketChannel.open();
...
LOG.info("binding to port " + addr);
ss.socket().bind(addr);
ss.configureBlocking(false);
...
oldSS.close();
acceptThread.wakeupSelector();
try {

acceptThread.join();
} catch (InterruptedException e) {

...
}
acceptThread = new AcceptThread(ss, addr, selectorThreads);
acceptThread.start();

} catch(IOException e) {
LOG.error("...");

}
}

Figure 1. The code snippet showing a ServerSocketChannel

leak in class NIOServerCnxnFactory of ZooKeeper 3.5.0.

Open CloseInit

socket().bind()

configureBlocking()

open()

Bound

close()

accept()

Figure 2. A (partial) finite state machine defining the state

transitions of a ServerSocketChannel object.

era, the last few years have seen a proliferation of distributed

computing systems developed for various analytical needs.

Recent studies [32, 43, 76] on bugs in popular distributed

systems show, surprisingly, that FSM-related bugs are still

the dominant category. For instance, almost all bugs in error

handling and error propagation studied [32, 76] and several

“deep bugs” found [43] have finite-state properties.

Example. To illustrate, consider Figure 1, which depicts a

simplified code snippet from the class NIOServerCnxnFactory

of Apache ZooKeeper [35], a widely deployed open-source

system designed to provide centrialized services for dis-

tributed applications. The code snippet shows a socket chan-

nel leak, which is due to an inappropriate use of the Java

NIO class ServerSocketChannel, whose (partial) FSM specifi-

cation is shown in Figure 2.

During initialization, method configure is first invoked.

This method initializes a SocketChannel object this.ss by

invoking ServerSocketChannel.open(). Based on the FSM in

Figure 2, ss transitions to the stateOpen. Next, socket().bind()

is invoked on ss to bind the channel’s socket to an address

addr. The non-blocking mode can be enabled on a bound

channel via themethod call configureBlocking(false). Once

bound, the socket channel can be made ready to listen to

connections via a call to accept(). In the example, the object

acceptThread is ready to accept connections at the end of

method configure.

Method reconfigure is called later to bind to another port.

reconfigure first saves the old socket object in oldSS and

then overwrites this.sswith a newly created socket channel

object. oldSS is not closed until several statements later. This

is problematic — upon any exception thrown from these

middle statements, the execution would either go to the last

catch block in themethod or another catch block that handles

the exception in a caller of the method. In either case, oldSS

would remain open indefinitely due to the loss of reference.

State of the Art. Effectively detecting such bugs is of

critical importance for reliable executions of distributed

cloud systems that often last for weeks and months for

continuous processing of online requests. While dynamic

analysis [7, 9, 22, 28, 42, 74] is often the weapon of choice

for precisely capturing bugs in large programs, it needs

representative workloads to achieve coverage, which is of-

ten a daunting task for distributed systems. Static analysis

[1, 16, 19, 31, 38, 47, 55, 62], as an alternative, has attracted

much attention in the past as it has a potential to find bugs

early on during development and yet does not need any input

to run the program.

However, finding FSM-related bugs with a static analysis

is challenging, especially for distributed systems that have

large codebases. This is first because static detection of such

bugs requires precise tracking of state transitions for each

object of interest. As each such object can flow a long way

through many methods and control-flow branches, to accu-

rately report true bugs (as apposed to many false warnings),

the static analysis needs to be both context sensitive and

path sensitive: context sensitivity distinguishes analysis re-

sults based on calling contexts while path sensitivity tracks

control-flow branches and eliminates infeasible flows that

can never happen in actual executions.

In the above example, for instance, path sensitivity en-

ables us to track the flow of these socket-channel objects

in various control-flow paths and report a bug only in that

particular exception-handling path. Without path sensitiv-

ity, the checker would either over-approximate that bugs

exist for all objects in all paths (because behaviors in dif-

ferent control-flow paths are not distinguishable) or under-

approximate that there is no bug (because method close is

indeed called at the end). Clearly, neither is acceptable for

large-scale software systems where the checker can gener-

ate too many warnings to be manually verified by a human

developer. Despite a large body of prior work on context-

sensitive [41, 63, 70, 72] and path-sensitive [1, 4, 18, 34, 62]

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

analysis algorithms, these algorithms are often sequential,

hard to implement, and unable to scale to modern systems

such as the Apache Hadoop software stack.

“Systemizing” StaticAnalysis. Pioneered byGraspan [67],

a recent line of work attempted to develop Big Data systems

for scaling sophisticated static analysis. This direction is

particularly promising due to the following three benefits.

First, complicated analysis algorithms get reduced to sim-

ple data computations that can be automatically parallelized

by the underlying system; the concern on efficiency and

scalability is shifted from analysis developers’ shoulders to

the system, which can leverage massive amounts of (CPU,

memory, and disk) resources to scale the analysis workloads

running on top. Second, the implementation of a client anal-

ysis requires only the development of simple user-defined

functions (UDFs), enabling regular developers to easily pro-

totype and maintain an analysis without worrying about

how to tune its performance.

1.2 Our Contributions

This work is another quest in this direction: we developed

a new system, called Grapple, which can perform precise

and scalable static checking of finite-state properties for

very large codebases. Grapple takes as input (1) a program

graph, (2) a set of types of interest (e.g., files, locks, tasks, etc.),

and (3) a set of FSMs describing the appropriate states and

transitions for these types. Grapple tracks the flow of each

object of each specified type, in a fully context-sensitive and

path-sensitive manner, to identify the possible and feasible

sequences of events that may occur on the object.

Grapple checks these sequences against the FSM speci-

fication provided by the user — a bug report is generated

if there exists any event sequence that can drive an object

into an undefined or erroneous state of the specification.

Grapple is effective at detecting a broad range of bugs, in-

cluding source-sink problems [12] (e.g., resource leaks), a

subset of distributed-concurrency bugs [44] (e.g., Hadoop-

MapReduce concurrency control), exception-handling errors

[76] (e.g., missing error handling code), or typestate-related

bugs [21, 64] (e.g., inappropriately used file handlers). All of

them are common bugs in modern distributed systems.

Problem Statement. To statically detect the sequences

of events that occur on an object o in an enormous scope,

Grapple requires three important pieces of information about

o. First, we need to identify all the program points (and

variables) to which o can flow. Because the events we care

about are mostly method calls, finding these program points

would allow us to extract all possible sequences of calls

invoked on o. To this end, we need a dataflow analysis [58].

Second, many variables can alias along o’s flow. The sec-
ond piece of information we need is the aliasing relationships

among these variables, that is, we want to know the set of all

variables that can potentially reference o. This information

cannot be obtained by a dataflow analysis because many of

the aliasing relationships are due to complicated heap reads

and writes, and cannot be detected by a dataflow analysis

that tracks only stack operations. For this piece of informa-

tion, we need a pointer/alias analysis [63].

Third, a static flow of o may go through many control-flow

branches; some of these branches may conflict with others.

For example, if a program has the following two branches:

if(b) a.m(); if(!b) a.n(), it is clear that the two events n
andm can never occur in the same sequence, since it is im-

possible for the object to flow into both branches at run time.

To effectively filter out infeasible flows, we need path sensi-

tivity, which, in turn, requires the modeling and checking of

path constraints (e.g., b∧!b in the above example).

Putting them all together, to accurately report FSM-related

bugs, we need a fully context-sensitive, path-sensitive alias

analysis and a fully context-sensitive, path-sensitive dataflow

analysis. Context sensitivity is needed to distinguish analysis

results based on calling contexts (i.e., results under differ-

ent contexts do not get merged) for precise bug reports,

while path sensitivity is critical for eliminating irrelevant

paths to reduce false warnings. Context sensitivity and path

sensitivity are both difficult to achieve — the numbers of

distinct calling contexts and control-flow paths both grow

exponentially with the size of the program, not to mention

the multiplicative effects that arise when both need to be

done simultaneously. We have not seen any evidence that

a fully context-sensitive and path-sensitive analysis could

scale to a real-world distributed system such as Hadoop.

The Grapple System. We developed Grapple, the first

graph system that can perform fully context-sensitive and

path-sensitive finite-state property checking for very large

programs. The major research question is how to express

these sophisticated analysis algorithms with a simple compu-

tation model that can be performed in a mechanical manner

by the system. To answer this question, we leverage Gras-

pan’s insight [67] that alias and dataflow analyses can both

be modeled as a dynamic transitive-closure computation over

a graph representation of the program.

Challenges and Solutions. Grapple uses this samemodel

for the transitive-closure computation to obtain the aliasing

and dataflow information. However, as a significant depar-

ture from Graspan, Grapple employs a series of new tech-

niques to encode, decode, and solve path constraints during

processing. Making these techniques work for large systems

requires a fundamentally new system design to overcome

two major challenges: (1) how to represent constraints (i.e.,

large boolean formulas) in a graph efficiently and (2) how

to quickly find a path and compute its constraint during the

computation.

To overcome the first challenge, we developed a technique

that builds an interprocedural control-flow execution tree

(ICFET) as an index engine using symbolic execution. Instead

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

of letting each edge carry a large boolean path constraint,

we encode the path (based upon the ICFET) concisely and

losslessly into a sequence of intervals, which can uniquely

identify the path (§3). This sequence is associated with each

graph edge to reduce the space requirement.

To overcome the second challenge, we developed an ef-

ficient encoding/decoding algorithm that can quickly find

an interprocedural path from its interval-based encoding,

compute and solve its constraint, as well as compose a new

constraint if a transitive edge is added (§4).

We chose to implement Grapple as a single-machine, out-

of-core system. As a bug-finding tool, Grapple is intended

to be used by developers on a daily basis. Hence, a single-

machine system is desirable as developers can perform code

checking on their own desktops/laptops without needing

access to a cluster. However, computing the aforementioned

analysis information can be both CPU and memory intensive.

If a single machine’s memory cannot satisfy the computa-

tional need, Grapple leverages support from fast SSDs to

store, on disk, part of the input and intermediate data, and

efficiently swap data between memory and disk.

Summary of Results. We have implemented Grapple in

C++ and made it publicly accessible at https://github.com/
grapple-system. We performed an extensive evaluation over

four widely deployed distributed systems: Apache Hadoop,

HBase, HDFS, and ZooKeeper, all with large codebases. Us-

ing Grapple, we have checked four important FSM-related

properties including Java I/O, error handlers, lock usage, and

socket usage. Grapple reported a total of 376 warnings, of

which only 17 are false warnings. Our results also demon-

strate the efficiency of Grapple: it took Grapple between 51

minutes and 34 hours to check these complicated properties

on a low-end desktop, while traditional approaches could

not finish checking any of these programs — they all crashed

with out-of-memory errors.

2 Background and Overview
We now provide some background related to static type-state

analysis, and an overview of Grapple.

2.1 Background

Figure 3 shows a FSM specification (3a) and a program

(3b) that we use as example to describe how our analy-

sis works to find FSM-related bugs. The FSM specifies the

possible states during the lifespan of each object of type

java.io.FileWriter and the transitions among them. At the

beginning, the object is at state Init. It transitions to Open

upon the invocation of the constructor, and remains at Open

for any number of calls to write until method close is in-

voked on it, leading it to the Close state. Invoking write on

Close drives the object into Error.

The program in Figure 3b has two control-flow branches,

resulting in four possible paths. Along each path, we extract

an event sequence of the object created at Line 4. The first

Open

Error

Init

close()

write()

write()

/close()

new()

Close

close()

write()

exit

(a)

public static void main(String[] args) {
1 FileWriter out = null, o = null;
2 int x = Integer.parseInt(args[0]), y=x;

3 if(x >= 0) {
4 out = new FileWriter("out.txt");
5 o = out;
6 y--;

}
7 else {
8 y++;

}

9 if(y > 0) {
10 out.write(x);
11 o.close();

}

12 return;
}

Open

Error

Init

close()

write()

write()

/close()

new()

Close

close()

write()

(b)

Figure 3. Example of a finite-state-machine related property

and a buggy program. Figure (a) shows a FSM describing the

properties objects of type java.io.FileWriter and Figure (b)

shows a buggy Java program related to the property.

path (1 → 2 → 3 → 4 → 5 → 6 → 9 → 10 → 11 → 12)

contains an event sequence new→ write → close; in the

second path (1 → 2 → 3 → 4 → 5 → 6 → 9 → 12),

the sequence of events only includes new; the third path

(1 → 2 → 3 → 7 → 8 → 9 → 10 → 11 → 12) contains

write→close; and finally, no event occurs on the fourth path

(1→ 2→ 3→ 7→ 8→ 9→ 12) where the false branch is

taken for both conditionals.

Among these four paths, the third one is infeasible because

if x < 0, y must be ≤ 0 at Line 9. For each of the other three

paths, we check its event sequence against the specification

in Figure 3. No problem is found for the first and the fourth

paths. For the second path, although the event new does not

lead the object into the erroneous state, the object would not

be in the accept state (Close) when the program finishes and

hence, a potential bug is reported.

Note that we would have reported an additional bug had

the third path been considered, but it would be a false warn-

ing as the path can never be reached at run time. This clearly

demonstrates the importance of path sensitivity in eliminat-

ing false reports.

Analyses Under the Hood. Three analyses work together

to extract the set of feasible event sequences as seen above.

First, an alias analysis [63] analyzes the program to under-

stand, for each object of interest, what variables can reference

it. In the example, the pointer/alias analysis determines that

the variables o and out are aliases as they both point to the

object created at Line 4. Hence, method calls invoked on o
and out become the events we are interested in.

Second, a dataflow analysis [58] runs to identify the states

the tracked objects can be in at each program point. The four

states in Figure 3 form the set of dataflow facts. Based on a

control-flow graph of the program, the analysis computes a

subset of facts for each program point (i.e., before and after

https://github.com/grapple-system
https://github.com/grapple-system

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

each statement) based on the effect of the statement. At each
control-flow join point (e.g., before Line 9 or before Line
12), the sets coming from different control-flow branches are
combined to form a new set. For example, before Line 9, the
two sets of dataflow facts from the true and false branches
of the conditional x ≥ 0 are {Open} and {Init}, and hence, the
new set of states reaching Line 10 is {Open, Init}. If a loop
exists, the computation is done on the loop body repeatedly
until a fixed point is reached.
Third, as discussed earlier, path conditions need to be

taken into account explicitly in both alias and dataflow anal-
yses to eliminate infeasible aliasing relationships and infea-
sible dataflows. In our example, out and o are feasible aliases
because the path condition for the statement causing the
aliasing (o = out) is x ≥ 0, which is satisfiable. By con-
trast, the dataflow from the else branch at Line 7 into the
if branch at Line 9 is infeasible due to the unsatisfiable path
condition (x < 0 ∧ y > 0 ∧ y = x + 1).

Graph Formulation. Both the pointer/alias analysis and
dataflow analysis can be formulated as a grammar-guided
graph-reachability problem [67]. The program is turned into
a graph, with vertices and edges representing program en-
tities of interest. A (context-free) grammar is given by the
developer to specify the constraints the analysis has to fol-
low, and during execution the analysis traverses the graph
to find paths whose labels match the grammar rules and add
transitive edges over such paths.
To illustrate, consider the formulation of Java pointer anal-

ysis [63]. The graph is constructed in such a way that vertices
represent variables and edges represent assignments. Each
edge has a label representing the semantics of the repre-
sented assignment. Figure 4(a) shows the four types of state-
ments important to the analysis and their corresponding
edge representations.

Type Stmt Edge

object initialization x = new O() x
new←−−− o (1)

assignment x = y x
assiдn←−−−−− y (2)

field store x . f = y x
store[f]←−−−−−− y (3)

field load x = y. f x
load [f]←−−−−−− y (4)

(a) Statements and edge representations

flowsTo ::= new (assiдn | store[f] alias load[f])∗ (5)

alias ::= flowsTo flowsTo (6)

(b) Context-free grammar

Figure 4. Graph edges and grammar for the Java pointer
analysis proposed by Sridharan and Bodik [63].

Given the graph representation, the pointer/alias analysis
uses the context-free grammar shown in Figure 4(b). The

non-terminal flowsTo is a relation overO ×V whereV is the
variable set and O is the set of objects (i.e., allocation sites).
Object o may flow to variable v (i.e., v may reference o), if
there is a path from o to v in the graph and the sequence of
labels on the path can be reduced to flowsTo based on the
grammar. As can be seen from the first part of rule (5), a path
is a flowsTo path if it contains a new edge and an arbitrary
sequence of assign edges.
It becomes trickier when field accesses are considered. A

flow exists only when an object is written into a heap loca-
tion and later read out from the same location. In Java, the
representation of a heap location a. f has two components: a
base object (a) and a field (f). Consider a pair of statements
a. f = b and d = c .д. An object flow exists from b to d only
if f and д are the same field and a and c are aliases. This
explains the second part of rule (5) (store[f] alias load[f]),
where alias is a relation that is recursively defined — if ob-
ject o can flow to both variable u and v (i.e., (o,u) ∈ flowsTo

and (o,v) ∈ flowsTo), u and v are aliases. Note that we use

a bar edge flowsTo to represent the reverse of flowsTo: if

(o,u) ∈ flowsTo, then (u,o) ∈ flowsTo.
At the core of this analysis is to compute a transitive clo-

sure over the edges whose labels are compliant with the
grammar rules. Since the computation can be very expensive
for large programs (especially if context sensitivity is consid-
ered and callees are cloned into callers), Graspan solves the
scalability problem by exploiting disk support — it first parti-
tions the large program graph into multiple partitions based
on vertex intervals; every computational iteration loads two
partitions into memory, checking each pair of consecutive
edges to find opportunities to add transitive edges. Newly
added edges are flushed into the partitions defined by their
source vertices and oversized partitions get dynamically
repartitioned to guarantee that the computation never runs
out of memory. The dataflow analysis has a different graph
representation and grammar; we refer the interested reader
to Graspan [67] for details.

Graph Cloning for Context Sensitivity. To achieve con-
text sensitivity, Graspan adopts the top-down approach [61]
— for each method, its intraprocedural graph representation
is cloned at each call site that invokes the method. The clone
of the callee method is included into the graph of the caller
method that contains the call site. The callee’s formal param-
eters and the actual parameters at the call site are connected
explicitly with edges. Graph cloning is done in a reverse-
topological order — the cloning of a graph not only copies
the edges and vertices in one method; it does so for all edges
and vertices in its (direct and transitive) callees.
Graspan follows the standard treatment [71] to handle

recursion — strongly connected components (SCC) are iden-
tified on a pre-computed call graph, and then the graphs for
methods in each SCC are collapsed into a single graph and
treated context insensitively.

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

An alternative way to achieve context sensitivity, which

was used by most existing context-sensitive techniques, is

the bottom-up approach [61] that computes a summary for

each method to summarize the interesting behavior of the

method. The summary is applied at each call site invoking

the method. This approach does not clone methods and is

hence more scalable than the cloning-based approach, since

it doesn’t increase memory use significantly. However, the

summary-based approach cannot provide complete infor-

mation about the program and has only limited ability to

answer user queries. For example, since it does not explicitly

represent calling contexts, it is not able to answer queries

such as "what objects does a variable point to under a par-

ticular context?". In addition, as path sensitivity is required

in property checking, a summary-based approach would ad-

ditionally need to compute separate summaries for distinct

control-flow paths in a method, which is difficult to do for

large complicated programs. In fact, we are not aware of any

existing technique that can summarize both path-sensitive

aliasing and dataflow effects.

The cloning-based approach can cause the size of the

graph to grow dramatically and hence the generated graph is

often large. However, this is not a concern as the out-of-core

support in Graspan efficiently handles graphs that are too

large to fit into main memory.

2.2 Overview of Grapple

The main contribution of this paper is to add path sensitivity

into the alias and dataflow analyses by incorporating path

constraints into the graph representation, and constraint

solving into dynamic transitive-closure computation.

At a high level, each edge carries a boolean formula, rep-

resenting the conditions of a set of control-flow branches

taken to reach the statement represented by the edge. A tran-

sitive edge is added over a graph path if (1) the sequence

of the labels on the path matches the grammar and (2) the

conjunction of the formulas on the path is satisfiable. Using

this approach, both the pointer/alias and dataflow analyses

can be made path sensitive, producing precise results for

finite-state property checking.

Workflow of Grapple. Grapple has a frontend and a back-

end. The frontend consists of two compiler-based graph

generators, which turn a program into two different graph

representations, one for pointer/alias analysis [63] and a

second for dataflow analysis [58]. The backend is Grapple’s

single-machine, disk-based graph engine that leverages fast

SSDs to process very large input graphs.

To find FSM-related bugs, Grapple has a three-phase work-

flow. The first phase performs path-sensitive alias computa-

tion, as discussed earlier in this section, over the first pro-

gram graph (prepared for the alias analysis). The compu-

tation produces an expanded graph at the end, with many

transitive edges added. Aliasing pairs can be easily com-

puted by enumerating edges with an alias label. The second

phase conducts path-sensitive dataflow computation over

the second program graph (prepared for the dataflow analy-

sis). During this phase, the aliasing results produced by the

first phase are held in memory to answer alias queries for

dataflow analysis. The final phase extracts state information

at each program point computed by the second phase and

checks it against all applicable FSMs to detect bugs.

Both the alias and dataflow analyses are context sensitive—

analysis solutions are separately maintained for distinct call-

ing contexts, leading to significantly increased precision in

final results. For both analyses, context sensitivity is achieved

through aggressive method cloning, as discussed earlier at

the end of §2.1.

3 Constraint Representation
To enable path sensitivity in graph processing, Grapple needs

to embed boolean constraints in the graph representation

of the program. A naïve approach is to represent a formula

in its original format (with variables, and boolean and arith-

metic operators) and associate it with each edge. When a

transitive edge is added, a new constraint is generated by

combiningmultiple input constraints into a conjunctive form.

The constraint is then stored as edge data for further pro-

cessing. However, this approach can be prohibitively expen-

sive for processing real-world graphs. A path constraint is

a combination of a set of control-flow conditions. Since an

interprocedural path can be arbitrarily long, representing

this combination in its original form would require a large

amount of storage space for each edge in the graph.

3.1 Intraprocedural Path Constraints

To solve this problem, we develop a novel encoding scheme

to represent path constraints. This subsection discusses the

encoding for intraprocedural path constraints. We will dis-

cuss an extension of this encoding shortly to represent in-

terprocedural paths.

Our idea is to create a static control-flow execution tree

(CFET) using symbolic execution to represent all possible

control-flow paths in a method. A control-flow path can

be uniquely represented as an interval on the CFET, which

can be encoded concisely as a pair of integers. Instead of

carrying a boolean formula, each graph edge contains an

interval-based encoding of a constraint, which can be used as

an index to quickly locate the path and compute its constraint

during the graph computation.

A CFET is a binary tree, where each node represents an

“extended basic block”, which corresponds to one basic block
1

or multiple blocks fused together along a fall-through edge.

A leaf node ends at the procedure exit, while each non-leaf

node always ends at a branch conditional. The conditional

represents a branching point and hence, the node has two

child nodes indicating the true and false branches of the con-

ditional. An example of the CFET will be discussed shortly.

1https://en.wikipedia.org/wiki/Basic_block

https://en.wikipedia.org/wiki/Basic_block

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

Each node in the CFET has a unique integer ID, computed us-

ing the following algorithm similar to Eytzinger’s method
2
:

• The root node has the ID 0;

• For a node with ID = n, the IDs computed for its chil-

dren are, respectively, 2 ∗ n + 1 for its false child, and
2 ∗ n + 2 for its true child.

Despite its simplicity, the algorithm has a number of ad-

vantages. First, it is monotonic, providing a guarantee that

each node in a CFET is assigned a unique ID. Moreover, it is

rather easy and inexpensive to compute the ID of a node’s

parent by simply bit-shifting its own ID. As discussed shortly,

these IDs will be needed to perform online path recovery

and, hence the efficiency of the path computation is critical

to the overall system performance.

public static void main(String[] args) {
1 FileWriter out = null, o = null;
2 int x = Integer.parseInt(args[0]), y=x;

3 if(x >= 0) {
4 out = new FileWriter("out.txt");
5 o = out;
6 y--;

}
7 else {
8 y++;

}

9 if(y > 0) {
10 out.write(x);
11 o.close();

}

12 return;
}

Open

Error

Init

close()

write()

write()

/close()

new()

Close

close()

write()

out

o

object

out

x>=0

x-1>0

new

assign

0

2

6

o

0
x>=0

1

3 4

x+1>0
2

5 6

x-1>0

TF

F T F T

out

o

object

out

new

assign

0

2

6

o

[0, 2]

[2, 6]

(a)

Open

Error

Init

close()

write()

write()

/close()

new()

Close

close()

write()

exit

out2

o6

object

out0

new

assign

0

2

6

o2

{[0, 2]}

{[2, 6]}

(b)

Figure 5. (a) The CFET for the example code in Figure 3b;

(b) the program graph for the alias analysis.

To illustrate, Figure 5a depicts the CFET for Figure 3b.

A root node 0 is first created with conditional x ≥ 0 to

represent the entry basic block (i.e., Lines 1 – 3 in Figure 3b).

After symbolically evaluating the conditional at Line 3, we

create two child nodes 1 and 2 and connect them to node 0

through F and T edges, respectively. In the true branch (i.e.,

Lines 4, 5, 6, and 9), since y equals x − 1, we compute and

associate with node 2 a symbolic condition x − 1 > 0. For

node 1 that represents the false branch (i.e., Lines 8 – 9), y
equals x + 1 and hence the symbolic condition computed is

x+1 > 0. Similarly, two child nodes are created for both node

1 and node 2, indicating the different execution branches.

Note that a node in CFET can represent multiple basic

blocks. For example, node 4 corresponds to the basic block

containing Line 10 and 11, as well as the return statement at

Line 12. As another example, node 1 corresponds to the basic

block containing Line 4 – 6 as well as the conditional y > 0

at Line 9, while node 2 includes the basic block containing

Line 8 and the same conditional at Line 9.

The CFET representation is similar in spirit to the block-

level symbolic execution tree used by symbolic execution

2https://en.wikipedia.org/wiki/Genealogical_numbering_systems

engines [11, 37]. In a symbolic execution tree, a path con-

straint and the symbolic values of the involved variables are

maintained at each node. CFET differs from this tree in the

following three ways. First, the symbolic execution tree is

mostly intraprocedural (to perform function-level symbolic

execution); its goal is to make control-flow paths explicit

for a symbolic analysis to traverse. By contrast, as discussed

shortly, CFETs for individual methods are connected to form

an interprocedural CFET, which is used as an index for the

graph engine to perform online lookup for constraints of

interprocedural paths. Second, each CFET has an integer ID

that is uniquely maintained and can be used to easily find its

parents. Finally, in CFET, we do not maintain the constraint

of a long path at each node. Instead, only the conditional of

the local branch represented by the node is stored. A path is

retrieved online and its constraint is computed during the

graph processing.

Algorithm 1: A high-level description of path decoding.

Input: An interval encoding of a path [IDstart , IDend
]

Output: Its path constraint Pc
1 begin
2 Pc ← true

3 Idcurrent ← ID
end

4 repeat
5 Idparent ← GetParent(IDcurrent)
6 c ← GetConstraint(IDparent)
7 Pc ← Pc ∧ c
8 Idcurrent ← IDparent

9 until Idcurrent == IDstart

10 return Pc

11 function GetParent(ID)

12 return ID >> 1

Based on CFET and the node-numbering algorithm, we

devise a novel interval-based path encoding/decoding tech-

nique to efficiently represent path constraints:

Path encoding: each path in the CFET can be represented

as a pair of IDs [IDstart , IDend], which denote, respectively,

the IDs of the start and end nodes of the path.

Path decoding: given an interval-based encoding of a

path, i.e., [IDstart , IDend], a unique path can be determined by

a backward traversal starting at the end node IDend until the

start node IDstart is reached. The detailed decoding algorithm

is given in Algorithm 1.

To handle loops, we bound the number of loop iterations

to avoid the infinite growth of CFET. Particularly, we stati-

cally unroll the loop a certain number of times, effectively

transforming each loop into a piece of cycle-free code. Given

a cycle-free CFET, an ID interval uniquely identifies a CFET

path — since CFET is a binary tree, each node can only have

a single parent and, thus, the backward traversal conducted

https://en.wikipedia.org/wiki/Genealogical_numbering_systems

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

in decoding must deterministically reach the start node of
the internal at the end.

3.2 Interprocedural Path Constraints

To encode constraints for paths crossing multiple methods,
we build interprocedural CFET (ICFET)3 by augmenting
CFET with call/return edges that connect callers and callees.
In particular, two extra edges are created at each call site of
method M that invokes method N : (1) a call edge from the
node (say n) inM’s CFET representing the basic block that
contains the callsite, to the root node of N ’s CFET; and (2) a
return edge from each leaf node in N ’s CFET to node n. Each
call/return edge is annotated with two pieces of informa-
tion: a call site ID and the symbolic equation for parameter
passing under which the call/return is made. The call site ID
indicates the calling context while the symbolic equation is
used to “pass parameters” to compute interprocedural path
constraints.
Since a node in an ICFET may have multiple parents (i.e.,

predecessors in the graph), the interval-based path encoding
we used in CFET does not generalize to ICFET. To effectively
encode an ICFET path, we extend the interval-based algo-
rithm by representing a path as a list of intervals, each of
which represents a path fragment in a method. A path can be
decoded by repeatedly executing Algorithm 1 on each frag-
ment. The conjunction of the constraints for all sub-paths
thus becomes the constraint for the ICFET path.

private void foo(int x){
1 int y = x+1;
2 if(x > 0) {
3 y = bar(2*x);

}
4 if(y < 0) {
5 …

}
6 return;

}

private int bar(int a) {
7 if(a < 0) {
8 return a+1;

}
9 return a-1;

}

(a)

0
x>0

1

3 4

x+1<0
2

5 6

0
a<0

1 2

y<0

(b)

Figure 6. An example of interprocedural path encoding/de-
coding: (a) shows a code snippet and (b) shows its corre-
sponding ICFET.

Compared to representing a path constraint in its original
form (i.e., a boolean formula), our interval-sequence-based
representation is much more concise. Although it still re-
quires variable-sized storage for each edge, this storage is
bounded by the depth of method calls on a path. In practice,
this depth is often small.
Example. To illustrate, consider the simple code snippet in
Figure 6a and its corresponding ICFET in Figure 6b. Given

3Strictly speaking, ICFET is not a tree due to call and return edges, but

rather a collection of connected trees. We call it ICFET just for presentation

purposes.

that method bar is invoked in the true branch of the condi-
tional at Line 1, a (dashed) call edge is created to connect
node 2 of foo and the root node 0 of bar. Two (dotted) return
edges are created to link each leaf (exit) node (i.e., 1 and 2)
of bar back to node 2 of foo. These edges are labeled with
the IDs of the call sites as well as the symbolic equations for
parameter passing. To distinguish calls from returns, we use
a left parenthesis (i to denote the call edge at the call site
i and a right parenthesis)i to denote the return edge back
to the call site i . During an online ICFET traversal, left and
right parentheses are matched to guarantee that we end up
obtaining a context-sensitive ICFET path.
Following the encoding algorithm, the execution path

for the statements 1->2->3->7->8->4->6 is encoded as a se-
quence of intervals connected by call/return edges: [foo0, foo2]
a=2∗x,(f 2−−−−−−−→ [bar0, bar2]

y=a+1,)f 2−−−−−−−−→ [foo2, foo5]. The first inter-
val [foo0, foo2] indicates the sub-path from the root node of
foo to node 2 containing the call site. [bar0, bar2] denotes
the execution path within method bar, while [foo2, foo5] rep-
resents the last fragment of the graph in foo from the branch
containing the call site to the leaf node 5.
As for path decoding, we first extract the constraints x > 0,

a < 0 and ¬(y < 0), respectively, for the three path frag-
ments. By computing symbolic values for each variable using
symbolic execution and passing them between foo and bar

with call/return edges, we obtain the final path constraint,
i.e., x > 0 & a = 2 ∗ x & a < 0 & y = a + 1 & ¬(y < 0), which
is the conjunction of the constraints for all three sub-paths
(i.e., x > 0, a < 0, and ¬(y < 0)) as well as the equations
modeling parameter passing (i.e., a = 2 ∗ x and y = a + 1).
An off-the-shelf SMT solver can be employed next to solve
this interprocedural constraint using x as the input variable.

3.3 Constructing ICFET

ICFET is not a representation of the input program; rather,
it is created as an index to make the information of control-
flow paths explicit so that a path can be encoded concisely
and retrieved efficiently. The program graph to be analyzed
is the same as that used in Graspan [67] except that each
edge now contains an additional path encoding. The ICFET
is constructed simultaneously as the program is transformed
into the program graph.
To construct the ICFET, we first create an individual CFET

for each method and connect CFETs using call/return edges
based on a pre-computed call graph. To compute a CFET from
a method, we perform symbolic execution on the method
body using the method’s formal parameters as symbolic
variables. For call sites whose return values are assigned to
variables (e.g., a = m()), these variables (e.g., a) are also used
as symbolic variables as their values are not known until the
callees are analyzed.
The symbolic execution computes, for each variable, a

symbolic value expressed in terms of the symbolic variables

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

(i.e., formal parameters of the method). Upon encountering a

control-flow divergence point, we create two child nodes and

associate with them the symbolic representation of the con-

ditional guarding the branch. At each call site, we compute

the symbolic expression for each argument. At the return

statement, we compute the symbolic expression for the vari-

able returned. These symbolic expressions are subsequently

used to connect CFETs to form an ICFET.

Discussion. While the ICFET contains information about

calling contexts, we do not perform method inlining on it

— instead of cloning methods aggressively, the CFETs for

methods are not cloned to form the ICFET; they are trivially

connected using call/return edges at call sites. As a result, the

encoding of each ICFET path has to contain call/return infor-

mation to uniquely identify an ICFET path and compute a

context-sensitive path constraint. By contrast, the program

graph to be processed is a fully inlined representation of

the program where context sensitivity is explicitly modeled

using cloning. Recursion is not an issue for the construc-

tion of ICFET, while for the program graph, we collapse

the methods in each strongly connected component (repre-

senting recursively-invoked methods) and treat them in a

context-insensitive manner.

Clearly, the program graph is explicitly context sensitive

while the ICFET is not. This difference in handling is due to

an important insight — the explicit context sensitivity en-

abled by method inlining in the program graph significantly

simplifies our computation model because there is no need

to let each edge carry call-site information and match calls

with returns during computation; any solution computed

over the program graph is context sensitive by nature. Al-

though inlining can blow up the size of a program graph and

make it exceed the memory capacity, the increased memory

use can be mitigated by leveraging fast SSDs and developing

efficient scheduling algorithms. ICFET, on the other hand, is

created primarily for encoding and indexing purposes; it has

to be small enough to stay in memory throughout the com-

putation to provide quick path/constraint lookups. Hence,

we choose not to perform inlining for ICFET, and context

sensitivity is achieved by matching calls and returns (i.e., left

and right parentheses) during a path lookup.

4 The Grapple Graph Computation
In this section, we first discuss how the program graph is

generated (§4.1). We next present Grapple’s graph compu-

tation model (§4.2), and in particular, how to add transitive

edges and compute their path constraints. We finally discuss

Grapple’s system design to support this model (§4.3).

4.1 Program Graph Generation

We build the ICFET using symbolic execution as discussed

in §3. Next, to turn a program into a graph for Grapple to

process, we generate a sub-graph for each basic block, e.g., by

using the rules shown in Figure 4. Here, we discuss our graph

generation algorithm in the context of alias analysis while a

similar algorithm can be easily derived to generate a graph

for dataflow analysis. Initially, each edge is labeled with its

assignment type and a sequence with only one interval {[i, i]},
where i is the ID of its containing basic block.

For each variable v that appears in multiple basic blocks

(e.g., b1,b2, . . . ,bn), we create a separate vertex vi for each
such basic block bi and an artificial assignment edge from

vi to vj if there exists a path on the ICFET from block bi to
bj . For instance, Figure 5b shows the program graph for the

alias analysis of the example in Figure 3b. At block 2, two

edges object → out2 and out2 → o2 are created due to the

new and assign statements. Because variable out appears in

both block 0 and 2, two separate vertices out0 and out2 are

created, one for block 0 and a second for block 2.

Next, we add an edge labeled assign and a sequence with

only one interval {[0, 2]} to connect out0 and out2. Similarly,

another assign edge is added to link o2 and o6. In Figure 5b,

we omit the [i , i] intervals for ease of presentation; label

assign is also not shown on the artificial edges.

Cloning for Context Sensitivity. Given the intraproce-

dural program graphs, we perform aggressive inlining by

cloning the graph of a callee for each of its invoking call

sites and including a clone into the graph of each caller. This

is done in a bottom-up manner based on a pre-computed

context-insensitive call graph. Two special types of edges

are created during inlining to (1) connect the value flow be-

tween a caller and a callee and (2) incorporate the call site

information into the graph. A parameter-passing edge con-

nects an actual parameter in the caller to its corresponding

formal parameter in a clone of the callee. It is annotated with

an assign label and a single-element list {cid }, where cid is the

corresponding call edge ID in the ICFET. Note that for each

parameter-passing edge here, there exists a corresponding

call edge in the ICFET. We simply use the ID of this call edge

as an identifier. Similarly, a value-return edge connects a

return variable in the clone of the callee to the left-hand-side

(LHS) variable at its invoking call site in the caller. It is an-

notated with an assign label and {rid }, where rid is the ID of

its corresponding return edge in the ICFET.

To summarize, before the computation, each edge in the

program graph is annotated with its assignment type and a

path encoding represented by a sequence containing exactly

one element. For each edge connecting two methods, this

sequence contains the ID of its corresponding call/return

edge in the ICFET. For regular edges inside a method, it

contains one single interval, encoding a control-flow path

on the ICFET. More complicated sequences are computed

upon the addition of transitive edges.

4.2 Constraint-guided Edge Induction

Grapple performs dynamic transitive-closure computation

over the program graph based on two kinds of constraints:

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

(1) the labels of each pair of consecutive edges match the

grammar rules and (2) the conjunction of the constraints car-

ried by these edges is satisfiable. Since Graspan [67] already

checks constraints of (1), we focus on how to retrieve and

solve constraints of (2).

Before the computation starts, Grapple loads the ICFET

entirely into memory. The size of the ICFET, even for a large

program, is reasonably small (e.g., about 3GB for Hadoop)

and can easily fit into themainmemory. Similarly to Graspan,

Grapple checks a pair of edges at a time — this significantly

simplifies the computation model and yet does not lose any

generality because any context-free grammar can be trans-

formed into an equivalent grammar such that the right hand

side of each production rule contains only two terms [58],

similar to the Chomsky normal form.

For a pair of consecutive edges x
⟨la,i1 ⟩−−−−−→ y and y

⟨lb ,i2 ⟩−−−−−→ z
in the program graph where la and lb are their assignment

types, and i1 and i2 are their interval sequences representing
two ICFET paths, the key research question to be answered

here is how to find their combined path constraint and form

a path encoding for a new edge.

Compute Combined Constraints. Finding the two path

constraints requires decoding of i1 and i2. The decoding

process is straightforward if i1 and i2 both contain a single

interval, as described in Algorithm 1. If i1 and/or i2 contain a

call/return edge ID or are already sequences of multiple inter-

vals connected by call/return edge IDs, these call/return IDs

are suppose to be matched ensuring that the ICFET traver-

sal during decoding passes exactly the same call and return

edges. In other words, the interprocedural ICFET path found

must match the particular clone of the method where these

edges are located in the program graph. Next, the constraints

for the two sub-paths involved are merged into a conjunctive

form, representing the constraint of the combined path.

Compute aNewEncoding. The combined path constraint

is sent to an SMT solver to check its satisfiability. If it is sat-

isfiable, a new edge is added from x to z. The two paths

represented by i1 and i2 are merged into a single path, whose

encoding is written into the new edge as a label together

with a nonterminal in the context-free grammar to which la
and lb can be reduced. Generating the new encoding requires

far beyond concatenating the two sequences. We need to

consider the following four cases:

1. Neither i1 nor i2 contains any call/return edge ID: for

example, if i1 and i2 are, respectively, {[a, b]} and {[b,

c]}, the new encoding is {[a, c]}.

2. i1 or i2 contains just one single call/return edge ID: for

example, if i1 and i2 are, respectively, {[a, b]} and {ci},

the new encoding is {[a, b], ci, [0, 0]}, where 0 means

the entry basic block of the callee.

3. i1 and i2 both contain multiple intervals, and the con-

catenated sequence of call/return edge IDs in i1 and
i2 contain matched call/return pairs: for example, if i1

and i2 are, respectively, {[a, b], ci , [0, 0]} and {[0, d], ri ,
[b, c]}, the new encoding is {[a, c]}.

4. i1 and i2 both contain multiple intervals, and the con-

catenated sequence of call/return edge IDs in i1 and i2
do not contain matched call/return pairs: for example,

if i1 and i2 are, respectively, {[a, b], ci , [0, 0]} and {[0,

d], c j , [0, 0]}, the new encoding is {[a, b], ci , [0, d], c j ,
[0, 0]}.

The cases (1) and (2) are straightforward. Case (3) describes

a scenario in which the interprocedural path starts from a

caller, goes through a callee, and eventually comes back to

the caller. In this case, the intervals between this pair of

matched call and return edge IDs (i.e., ci and ri) are removed

in the new encoding, because the part inside the callee has

been “completed” and does not need to be represented. In

case (4), both sequences involve a call and, thus, the extended

call sequence needs to be modeled in the new encoding.

4.3 System Implementation

Interprocedural Control Flow

Execution Tree

Pi Pj

Memory

Disk

Path Decoding

Edge-pair Induction
loading storing

Inlined Program Graphs

Figure 7. Grapple’s computing engine.

We implemented Grapple’s graph engine based upon Gras-

pan’s edge-pair-centric computation model [67]. Figure 7

illustrates Grapple’s architecture.

Graph Engine. There are three phases in program graph

processing. First, a preprocessing step partitions the input

graph into a set of smaller partitions stored on disk. Each par-

tition is defined by a logical interval of vertices and contains

all edges whose source vertices fall in the interval. Edges are

sorted by their destination vertices. Since Grapple’s computa-

tion is performed on a pair of partitions in each iteration, the

partitioning is done in a way such that any two partitions, if

loaded together, would not exceed the memory capacity.

Next, the edge-pair-centric computation is started to add

transitive edges. In each iteration, two edge partitions are

loaded into memory. This computation is similar in spirit to

table joining in relational algebra, but it differs from table

joining in the matching criteria — we need to consider the

constraints of both assignment semantics and paths when

joining edges. New edges are written into the partitions that

contain their source vertices.

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

Third, a postprocessing step runs to take care of work at

the end of each iteraton. For example, we need to repartition

oversized partitions to guarantee all partitions are balanced

and would not grow to exceed the memory size after new

edges are added. A scheduler then picks two other partitions

to load into memory for the next iteration. The computation

iterates until no new edges can be found.

To implement Grapple, we augmented Graspan’s engine

by building the ICFET and holding it in memory throughout

the execution as read-only data, which can be concurrently

accessed by multiple edge-induction threads.

A challenge here is that Grapple’s edge data has variable

sizes due to the need of carrying interval sequences. Instead

of creating separate interval-sequence objects and linking

them to each edge via pointers, we inline all intervals and

call/return edge IDs explicitly in the storage for each edge.

The first byte of the edge storage contains the length of the

sequence. This design makes it hard to perform random edge

accesses, because the location of an edge cannot be easily

computed using its ID. This is not a concern in Grapple,

however, as most edge accesses are sequential.

Another impact of variable-sized edge data is that it is easy

for Grapple to produce unbalanced partitions. To overcome

this challenge, we conduct eager repartitioning during an

iteration — Grapple repartitions an edge partition as soon as

we observe that the size of its edge data exceeds a threshold

instead of waiting until the end of the iteration to do the

repartitioning.

Constraint Memoization. It is easy to see that edges lo-

cated in the same program scope may share common paths,

exhibitting temporal locality. Hence, memoizing the results of

constraint solving can significantly improve the computation

efficiency. To implement memoization, Grapple leverages

the least recently used (LRU) caching policy. We implemented

the LRU cache by maintaining a hash map and using en-

coded paths as the keys. Before retrieving and solving the

actual constraint, Grapple first checks if an encoding has

been solved recently. The result is reused if the encoding can

be found in the hash map. Least used keys are moved away.

5 Evaluation
Our implementation of Grapple consists of approximately

15.2K lines of code in Java (for the ICFET generator and graph

generators) and C++ (for the graph engine). We reused about

1.5K lines of code from Graspan when implementing Grap-

ple’s backend. Microsoft’s Z3
4
was used as the SMT solver.

We have conducted a comprehensive set of experiments to

understand Grapple’s usefulness and performance. Our eval-

uation sets out to answer the following questions:

• Q1: Is Grapple useful? (§5.1)

• Q2: How well does Grapple perform? (§5.2)

4
https://github.com/Z3Prover/z3

• Q3: How does Grapple compare against other imple-

mentations of finite-state property checkers? (§5.3)

Table 1. Characteristics of subject programs.

Subject Version #LoC Description

ZooKeeper 3.5.0 206K distributed coordination service

Hadoop 2.7.5 568K data-processing platform

HDFS 2.0.3 546K distributed file system

HBase 1.1.6 1.37M distributed database

We selected four large-scale distributed systems — Apache

Hadoop, HDFS, Apache HBase, and Apache ZooKeeper —

as our target programs. Table 1 reports the characteristics

of each program including the version, the number of lines

of code, and a short description. Using Grapple, we imple-

mented four different finite-state property checkers: a Java

I/O resource checker, a lock-usage checker , an exception-

handler checker (that finds mishandling of the thrown ex-

ceptions as proposed by Yuan et al. [76]), and a socket-

usage checker. These properties are important in distributed-

system implementations since misuse of any of these re-

sources can cause service failures, deadlocks, performance

degradation, or even data loss. Their FSMs can be easily un-

derstood and specified — it took one developer one day to

read the related API information to acquire these FSMs.

The front end contains Java compiler support, implemented

using the Soot Java compiler infrastructure [66] (https://
github.com/Sable/soot) that translates each program into a

graph for alias analysis and a second graph for dataflow anal-

ysis. Each of these graph generators has around 1500 lines of

Java code. The implementation of the ICFET generator is also

based on Soot and has approximately 3200 lines of Java code.

All experiments were conducted on a commodity desktop

with an Intel Xeon W-2123 4-Core CPU, 16GB memory, and

1T SSD, running Ubuntu 16.04.

5.1 Bugs Found

Table 2. The numbers of bugs reported for the I/O checker,

the lock-usage checker, the exception-handling checker, and

the socket-usage checker; TP and FP report the numbers of

true bugs and false positives, respectively.

Checker I/O lock except. socket total

TP FP TP FP TP FP TP FP TP FP

ZooKeeper 2 0 0 0 59 0 4 0 65 0

Hadoop 0 0 0 0 54 2 0 0 54 2

HDFS 1 1 1 0 43 3 4 1 49 5

HBase 15 2 0 0 176 8 0 0 191 10

Bug Statistics. We ran the four checkers on each pro-

gram. Table 2 reports the numbers of true bugs and false

positive warnings produced by Grapple. For each warning

generated, we manually inspected the program code to un-

derstand whether it is a true bug or a false warning. Note

https://github.com/Sable/soot
https://github.com/Sable/soot

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

that even true bugs detected by a static analysis may not

cause real problems during the execution since they may not

be triggered (or even are never triggered due to certain dy-

namic constraints). The Java I/O resource checker reported

21 warnings, of which 18 are real bugs. All of these bugs

are due to the missing of a call to method close on certain

control-flow paths. The 3 false positives were reported due

to the lack of support for the try-with-resources construct

in Java 8, which automatically closes a stream at the end of

the block it guards.

The developers appeared to be very careful with lock us-

age: our lock checker reported one bug for HDFS where the

two methods lock and unlock are mis-ordered. As for ex-

ception handling, Grapple found more than 300 cases where

explicitly thrown exceptions never have handlers. According

to Yuan et al. [76], these exceptions can lead to various kinds

of failures; they need to be handled in a catch block in ei-

ther their throwing methods or the callers of these methods.

The false positives reported here are primarily due to the

imprecise control flow graphs generated by Soot for nested

try-catch blocks. The socket checker found eight real socket

leaks. In HDFS, one false positive was reported because the

checker failed to recognize the initialization of a socket ob-

ject as the object is fetched from a collection.

In total, Grapple found 359 true bugs through 4 checkers

on four large-scale distributed systems, with a 4.7% false

positive rate.

Example Bugs. Figures 8(a) and 8(b) show two additional

bugs found in these systems. For example, the code in Fig-

ure 8(a) attempts to establish a connection using a for loop

that tries at most five times. Each iteration of the loop in-

vokes method sockConnect, which may or may not throw an

IOException. If it does, the catch block needs to handle it be-

fore trying another time. The major exception handling logic

is in the last else branch in the catch block — a new socket

object is created and a timeout is set on it. The problem here

is the method call sockConnect in the try block attempts to

advance the state of the socket object from Init to Open, and

eventually to Ready. An exception can be thrown when the

object is in state Open before it transitions to Ready. Such

an exception would cause those sockets to remain in Open

although none of them can be used.

Figure 8(b) shows a simple bug due to the missing of excep-

tion handling logic. This is actually a known bug, which led

to a server performance problem in HDFS. The bugmanifests

when a large file is uploaded to a DataNode. When the block

scanner starts, shutting down the DataNode progresses ex-

tremely slowly. The code snippet shows that, within method

shutdown, blockScannerThread is sent an interrupt (via a call

to interrupt) and then waiting to complete (join). The bug

manifests under the following call stack: DataBlockScanner.run

→ . . .→ BlockSender.sendBlock→ BlockSender.sendPacket

void connectToLeader(InetAddress
addr){

sock = new Socket();
...

for (int tries = 0; tries < 5;
tries++) {

try {
sockConnect(sock, addr);
sock.setTcpNoDelay(nodelay);
break;

}
catch (IOException e) {
if (...) {
LOG.error("...");
throw e;

}
else if (tries >= 4) {
LOG.error("...");
throw e;

}
else {
//The most common case
LOG.warn("...");
sock = new Socket();
...

}
}
Thread.sleep(1000);

}
}

void shutdown() {
synchronized (this) {
if (blockScannerThread != null) {
blockScannerThread.interrupt();
}
}
if (blockScannerThread != null) {
try {
blockScannerThread.join();
}
catch (InterruptedException e) {

... }
}

}
void throttle(long numOfBytes) {
while (...) {
long now =

System.currentTimeMillis();
long curPeriodEnd =

curPeriodStart + period;
if (now < curPeriodEnd) {
try {
wait(...);
} catch (InterruptedException

ignored) {
//Should handle interrupt

and stop the loop!
}

}
}

}

(a) (b)

Figure 8. Bugs found: (a) a representative socket leak bug in
ZooKeeper, and (b) missing error handling in HDFS causing

significant performance degradation.

→ DataTransferThrottler.throttle. A simplified code snip-

pet of method throttle is also shown in Figure 8(b). When

method throttle receives the interrupt sent from shutdown,

it does not execute any handling logic. Consequently, the

interrupt gets ignored and the while loop continues iterating,

leading to a long wait in shutdown.

Confirmed Bugs. We have reported all the bugs found to

their corresponding bug repositories. As of February 2019,

four bugs have been confirmed and others are pending. Among

them, one bug was determined as a “blocker”-level bug (i.e.,

highest severity level), one as “critical”-level (i.e., second

highest severity level), and two others as major. We will up-

date the list of the bugs in our GitHub repository [78] as

more bugs are confirmed.

Table 3. Grapple’s Performance: shown in the columns are

the numbers of vertices (#V), the total numbers of edges

before computation (#EB), the total numbers of edges after

computation (#EA), the preprocessing time (PT), the compu-

tation time (CT), and the total running time (TT).

Subject #V (K) #EB (K) #EA (K) PT CT TT

ZooKeeper 2,420 12,860 24,066 47s 01h06m15s 01h07m02s

Hadoop 8,349 17,426 30,206 1m25s 51m49s 53m14s

HDFS 7,610 17,977 29,354 56s 01h53m56s 01h54m52s

HBase 26,090 70,860 125,852 9m51s 33h42m08s 33h51m59s

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

5.2 Grapple Performance

To understand Grapple’s performance, we performed a va-

riety of measurements. Table 3 reports various statistics in-

cluding the numbers of vertices and edges in the original

input program graphs, the numbers of edges at the end of

computation, the preprocessing time, the computation time

and the end-to-end running time. It took Grapple between

53 minutes and 33 hours to perform checking for these large-

scale distributed systems. The running time depends on a

number of factors including the code size, the number of

methods and paths, and the depth of method calls.

We further broke down an execution into 4 different com-

ponents — I/O, constraint encoding/decoding, SMT solving,

and (in-memory) edge-pair-centric computation — and mea-

sured the time spent on each component. As these compo-

nents can be performed in parallel, we had to sum up the

time of each component across all threads, and then calculate

the percentage of each component in the total time. Figure 9

depicts the cost breakdown.

1 4.2 1.1 2.2

0.4 0.2 0.8 0.4

89.5

32.7

87.5 83.7

9.1

62.9

10.6 14

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

I/O Constraint lookup SMT solving Edge computation

Figure 9. Performance breakdown: for each subject, shown

bottom-up are the percentages of I/O time, constraint encod-

ing/decoding time, constraint-solving time, and edge com-

putation time.

The majority of the time is spent on SMT solving and

edge computation. For Apache Hadoop, edge computation

dominates the execution, taking more than 60% of the total

time. We found that this is because there is a huge number

of consecutive edges in the same basic blocks and all pairs

of them are checked for edge induction.

By contrast, for the other programs, SMT solving takes

most of the time because (1) there are more cross-block edge

pairs than same-block edge pairs and (2) objects flow through

many long interprocedural control-flow paths. Both factors

contribute to increased complexity in path constraints and

hence more time spent on constraint solving. As each edge

is embedded with an encoded path, the size of the graph

increases significantly, leading to increased I/O costs. The

percentage of I/O in Grapple is larger than that in Graspan

[67], where I/O takes about 1%. Compared with the other

three components, constraint encoding/decoding is relatively

inexpensive due to our concise representation and efficient

encoding/decoding.

Table 4. Effectiveness of caching: reported are the total num-

bers of constraints solved during computation, the num-

bers of cache hits, the hit rates, the constraint-solving times

without (TOC) and with caching (TWC), and the savings

from caching (i.e., 1-
TWC
TOC), respectively. The total constraint-

solving times reported here were obtained by summing up

the times across all processing threads.

#Const. #Hits Rate TOC(s) TWC(s) Saving

ZooKeeper 536579 321385 59.9% 68622 24808 63.7%

Hadoop 494856 385894 78.0% 51715 6883 86.7%

HDFS 1074770 647960 60.3% 131742 38882 70.5%

HBase 22054460 15895429 72.1% 2895804 770077 73.4%

Constraint Caching. We have also evaluated the effec-

tiveness of our constraint caching mechanism. Table 4 re-

ports the results. Because many edges share the same path

constraint, most of the hashmap lookups hit the cache. Clearly,

caching provides substantial improvement for Grapple’s com-

putation efficiency.

5.3 Comparisonwith other analysis implementations

Traditional Implementations. Our initial goal was to

compare Grapple with all the existing path-sensitive finite-

state property checkers. However, there does not exist any

path-sensitive analysis implementation for Java that is im-

mediately available for comparison purposes. There are a

number of them for C, though. For example, Saturn [1] is

a path-sensitive finite-state checker that has been used to

check various properties for large-scale systems such as the

Linux kernel. However, Saturn was implemented more than

a decade ago and its source code could not even compile on

the Linux we used.

Furthermore, Saturn achieves its scalability using func-

tion summaries — no function inlining is explicitly made.

As described earlier in §1, it summarizes the behavior of

each function and applies the summary of a callee at each

of its invoking call sites. Although this approach is scal-

able, it cannot provide a complete answer to many analysis

questions. For example, questions such as whether there is

resource leak under a given call stack cannot be answered.

In addition, function summarization has many shortcom-

ings such as the inability of precisely modeling heap effects,

while none of them exist in a cloning-based technique such

as Grapple. Finally, Saturn only performs intraprocedural

path-sensitive alias analysis while Grapple enjoys full inter-

procedural path sensitivity. Another path-sensitive analysis

tool, Pinpoint [62], is also designed for C and suffers from

similar problems.

Because there was no tool available for comparisons, we

implemented a path-sensitive alias analysis ourselves in a

traditional (non-systemized) way. In this implementation, we

represented the actual constraints using objects and saved

them with edges via pointers. A worklist-based algorithm

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

was employed to iteratively check existing edges and add

new edges. This implementation could not successfully ana-

lyze any program in our set — it ran out of memory quickly

after several iterations.

String-based Constraint Representations. Next, to val-

idate the effectiveness of our path encoding/decoding mech-

anism, we compared Grapple with the systemized imple-

mentation that represents constraints as strings and embeds

them directly in edges. The results are reported in Table 5.

As the need of space increases dramatically with the string-

based implementation, more partitions (and more frequent

repartitioning) are required to prevent the computation from

running out of memory. This can be seen from the number of

partitions in Table 5. For large programs such as HDFS, the

number of partitions required by the string-based implemen-

tation is around 10× larger than that by Grapple. Since each

iteration processes a much smaller amount of data, more

iterations and constraint solving are needed for the compu-

tation to reach the fixed point. For HBase, the string-based

implementation could not even terminate in 200 hours.

Table 5. The comparison with a naïve implementation that

encodes constraints into strings; reported are # partitions, #

computational iterations, # constraints solved (in thousand),

and the total execution time, respectively.

#Partition #Iteration #Constraint (K) Time

Grapple naive Grapple naïve Grapple naïve Grapple naïve

ZooKeeper 2 18 11 142 215 645 01h07m 03h25m

Hadoop 4 24 24 157 109 488 53m 03h02m

HDFS 4 38 20 546 427 4853 01h54m 22h15m

HBase 20 - 215 - 6159 - 33h51m >200h

6 Related Work
There is a large body of work related to Grapple. Here we

focus our discussion on those that are most closely related.

Static Analysis for Bug Detection. Static program anal-

ysis is widely used to detect software defects [19, 47, 55] and

security vulnerabilities [8]. Engler et al. [20] used a simple

pattern-based analysis to find bugs in the Linux kernel. A

decade later, Palix et al. reimplemented the same bug detec-

tion tool using Coccinelle [53] and used it to check a later

version of the kernel. During the past decade, a great num-

ber of commercial checkers, including e.g., Coverity[5, 16],

CodeSonar[31], and KlocWork[38], were also developed and

used to find bugs in the wild. Most of these checkers are

based on simple patterns/rules and/or intraprocedural analy-

sis. As a result, they are inexpensive and scalable, but would

likely miss bugs and report many false positives [36, 39, 45].

Earlier work from Hallem et al. [33] proposed a language

and an analysis system that allows analysis designers to eas-

ily describe a static analysis using an FSM-based abstraction.

While Grapple also focuses on FSM-related bugs, Grapple

differs from the work [33] in that Grapple provides a pre-

cise and scalable solution to finite-state property checking.

For example, our property checking is based on a context-

sensitive, path-sensitive alias analysis while the system [33]

does not even use an alias analysis, which can lead to large

numbers of false positives and negatives.

Path-sensitive Analysis. To precisely report true bugs,

researchers proposed various path-sensitive analysis tech-

niques. BLAST [34], SLAM [4], and CBMC [15] support path-

sensitive program verification for bug detection. Their tech-

niques are all based on an algorithm called counterexample-

driven refinement, which can significantly improve the scala-

bility of a model checker [14]. Saturn [1] supports intrapro-

cedural path sensitivity. Calysto [3] improves the scalability

of a path-sensitive analysis by exploiting program structure

information. ESP [17] and Saber [65] use a sparse value-flow

representation for programs to improve analysis efficienty.

Pinpoint [62] uses a holistic design for a sparse value-flow

analysis. Moreover, a number of tools [9, 10, 28, 60] employ

symbolic execution [37] to find bugs. However, these tech-

niques are fundamentally limited by the exponential number

of paths in a program and hence can only be used to check

individual methods or very small programs. Finite-state prop-

erty checking can also be thought of as typestate-based verifi-

cation [64]. There exists a body of work [6, 21] that attempts

to perform typestate checking in the presence of aliasing.

However, no evidence has been shown that these techniques

can scale to modern distributed systems.

Graph Systems. There exists a large body of work on

distributed [29, 30, 49] and single-machine graph process-

ing [40, 59, 67–69, 77], among which Graspan [67] is the

only one designed for static analysis. Grapple is based upon

Graspan, but incorporates techniques that can perform full-

blown context-sensitive and path-sensitive analysis. None

of the other systems were designed for such workloads.

7 Conclusion

This paper presents Grapple, the first single-machine, disk-

based graph system for scalable context-sensitive, path-sensitive

finite-state property checking. UsingGrapple, we have checked

a number of important FSM-based properties for four widely-

deployed distributed systems. Grapple found numerous true

bugs with reasonable checking time.

Acknowledgements

We thank the EuroSys reviewers for their thorough and in-

sightful comments. We are especially grateful to our shep-

herd Petros Maniatis for his feedback, helping us improve the

paper substantially. This work is partially supported by the

National Key R&DProgram of China (Grant #2017YFA0700604),

the National Natural Science Foundation of China (Grants

#61802168, #61632015, #61561146394), and the Fundamen-

tal Research Funds for the Central Universities of China

(#020214380047). The UCLA authors acknowledge the sup-

port from National Science Foundation grants CNS-1613023,

CNS-1703598, and CNS-1763172, as well as Office of Naval

Research grants N00014-16-1-2913 and N00014-18-1-2037.

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

References
[1] Alex Aiken, Suhabe Bugrara, Isil Dillig, Thomas Dillig, Brian Hackett,

and Peter Hawkins. 2007. An Overview of the Saturn Project. In

Proceedings of the 7th ACM SIGPLAN-SIGSOFT Workshop on Program

Analysis for Software Tools and Engineering (PASTE ’07). ACM, New

York, NY, USA, 43–48. https://doi.org/10.1145/1251535.1251543
[2] Sattam Alsubaiee, Yasser Altowim, Hotham Altwaijry, Alexander

Behm, Vinayak Borkar, Yingyi Bu, Michael Carey, Inci Cetindil, Mad-

husudan Cheelangi, Khurram Faraaz, Eugenia Gabrielova, Raman

Grover, Zachary Heilbron, Young-Seok Kim, Chen Li, Guangqiang

Li, Ji Mahn Ok, Nicola Onose, Pouria Pirzadeh, Vassilis Tsotras, Rares

Vernica, Jian Wen, and Till Westmann. 2014. AsterixDB: A Scalable,

Open Source BDMS. Proc. VLDB Endow. 7, 14 (Oct. 2014), 1905–1916.

https://doi.org/10.14778/2733085.2733096
[3] Domagoj Babic and Alan J. Hu. 2008. Calysto: Scalable and Precise

Extended Static Checking. In Proceedings of the 30th International

Conference on Software Engineering (ICSE ’08). ACM, New York, NY,

USA, 211–220. https://doi.org/10.1145/1368088.1368118
[4] Thomas Ball and Sriram K. Rajamani. 2002. The SLAM Project:

Debugging System Software via Static Analysis. In Proceedings of

the 29th ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL ’02). ACM, New York, NY, USA, 1–3.

https://doi.org/10.1145/503272.503274
[5] Al Bessey, Ken Block, Ben Chelf, Andy Chou, Bryan Fulton, Seth

Hallem, Charles Henri-Gros, Asya Kamsky, Scott McPeak, and Dawson

Engler. 2010. A Few Billion Lines of Code Later: Using Static Analysis

to Find Bugs in the Real World. Commun. ACM 53, 2 (Feb. 2010), 66–75.

https://doi.org/10.1145/1646353.1646374
[6] Kevin Bierhoff and Jonathan Aldrich. 2007. Modular Typestate Check-

ing of Aliased Objects. In Proceedings of the 22Nd Annual ACM SIG-

PLAN Conference on Object-oriented Programming Systems and Appli-

cations (OOPSLA ’07). ACM, New York, NY, USA, 301–320. https:
//doi.org/10.1145/1297027.1297050

[7] D. L. Bird and C. U. Munoz. 1983. Automatic generation of random

self-checking test cases. IBM Systems Journal 22, 3 (1983), 229–245.

https://doi.org/10.1147/sj.223.0229
[8] Suhabe Bugrara and Alex Aiken. 2008. Verifying the Safety of User

Pointer Dereferences. In Proceedings of the 2008 IEEE Symposium on

Security and Privacy (SP ’08). IEEE Computer Society, Washington, DC,

USA, 325–338. https://doi.org/10.1109/SP.2008.15
[9] Cristian Cadar, Daniel Dunbar, and Dawson Engler. 2008. KLEE: Unas-

sisted and Automatic Generation of High-coverage Tests for Complex

Systems Programs. In Proceedings of the 8th USENIX Conference on

Operating Systems Design and Implementation (OSDI’08). USENIX As-

sociation, Berkeley, CA, USA, 209–224. http://dl.acm.org/citation.
cfm?id=1855741.1855756

[10] Cristian Cadar, Vijay Ganesh, Peter M. Pawlowski, David L. Dill, and

Dawson R. Engler. 2006. EXE: Automatically Generating Inputs of

Death. In Proceedings of the 13th ACM Conference on Computer and

Communications Security (CCS ’06). 322–335.

[11] Cristian Cadar and Koushik Sen. 2013. Symbolic Execution for Soft-

ware Testing: Three Decades Later. Commun. ACM 56, 2 (Feb. 2013),

82–90.

[12] Sigmund Cherem, Lonnie Princehouse, and Radu Rugina. 2007. Practi-

cal Memory Leak Detection Using Guarded Value-flow Analysis. In

Proceedings of the 28th ACM SIGPLAN Conference on Programming

Language Design and Implementation (PLDI ’07). ACM, New York, NY,

USA, 480–491. https://doi.org/10.1145/1250734.1250789
[13] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson

Engler. 2001. An Empirical Study of Operating Systems Errors. In

Proceedings of the Eighteenth ACM Symposium on Operating Systems

Principles (SOSP ’01). ACM, New York, NY, USA, 73–88. https://doi.
org/10.1145/502034.502042

[14] Edmund Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and Helmut

Veith. 2000. Counterexample-Guided Abstraction Refinement. In Com-

puter Aided Verification, E. Allen Emerson and Aravinda Prasad Sistla

(Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 154–169.

[15] Edmund Clarke, Daniel Kroening, Natasha Sharygina, and Karen Yorav.

2004. Predicate Abstraction of ANSI-C Programs Using SAT. Form.

Methods Syst. Des. 25, 2-3 (Sept. 2004), 105–127. https://doi.org/10.
1023/B:FORM.0000040025.89719.f3

[16] Coverity. 2012. The Coverity Code Checker. http://www.coverity.com/.
[17] Manuvir Das, Sorin Lerner, and Mark Seigle. 2002. ESP: Path-sensitive

Program Verification in Polynomial Time. In Proceedings of the ACM

SIGPLAN 2002 Conference on Programming Language Design and Im-

plementation (PLDI ’02). ACM, New York, NY, USA, 57–68. https:
//doi.org/10.1145/512529.512538

[18] Isil Dillig, Thomas Dillig, and Alex Aiken. 2008. Sound, Complete

and Scalable Path-sensitive Analysis. In Proceedings of the 29th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’08). ACM, New York, NY, USA, 270–280. https:
//doi.org/10.1145/1375581.1375615

[19] Dawson Engler, Benjamin Chelf, Andy Chou, and Seth Hallem. 2000.

Checking System Rules Using System-specific, Programmer-written

Compiler Extensions. In Proceedings of the 4th Conference on Sym-

posium on Operating System Design & Implementation - Volume 4

(OSDI’00). USENIX Association, Berkeley, CA, USA, Article 1.

[20] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Ben-

jamin Chelf. 2001. Bugs As Deviant Behavior: A General Approach

to Inferring Errors in Systems Code. In Proceedings of the Eighteenth

ACM Symposium on Operating Systems Principles (SOSP ’01). 57–72.

[21] Stephen Fink, Eran Yahav, Nurit Dor, G. Ramalingam, and Emmanuel

Geay. 2006. Effective Typestate Verification in the Presence of Aliasing.

In Proceedings of the 2006 International Symposium on Software Testing

and Analysis (ISSTA ’06). ACM, New York, NY, USA, 133–144. https:
//doi.org/10.1145/1146238.1146254

[22] Justin E. Forrester and Barton P. Miller. 2000. An Empirical Study of

the Robustness of Windows NT Applications Using Random Testing.

In Proceedings of the 4th Conference on USENIX Windows Systems Sym-

posium - Volume 4 (WSS’00). USENIX Association, Berkeley, CA, USA,

6–6. http://dl.acm.org/citation.cfm?id=1267102.1267108
[23] Apache Software Foundation. 2018. Apache Cassandra. http://

cassandra.apache.org/.
[24] Apache Software Foundation. 2018. Apache Hadoop. http://hadoop.

apache.org/.
[25] Apache Software Foundation. 2018. Apache HBase. https://hbase.

apache.org/.
[26] Apache Software Foundation. 2018. Apache Spark. https://spark.

apache.org/.
[27] Linux Foundation. 2018. Linux. https://www.linux.org/.
[28] Patrice Godefroid, Nils Klarlund, and Koushik Sen. 2005. DART: Di-

rected Automated Random Testing. In Proceedings of the 2005 ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’05). ACM, New York, NY, USA, 213–223. https:
//doi.org/10.1145/1065010.1065036

[29] Joseph E. Gonzalez, Yucheng Low, Haijie Gu, Danny Bickson, and Car-

los Guestrin. 2012. PowerGraph: Distributed Graph-parallel Computa-

tion on Natural Graphs. In Proceedings of the 10th USENIX Conference

on Operating Systems Design and Implementation (OSDI’12). USENIX

Association, Berkeley, CA, USA, 17–30. http://dl.acm.org/citation.
cfm?id=2387880.2387883

[30] Joseph E. Gonzalez, Reynold S. Xin, Ankur Dave, Daniel Crankshaw,

Michael J. Franklin, and Ion Stoica. 2014. GraphX: Graph Processing in

a Distributed Dataflow Framework. In Proceedings of the 11th USENIX

Conference on Operating Systems Design and Implementation (OSDI’14).

USENIX Association, Berkeley, CA, USA, 599–613. http://dl.acm.org/
citation.cfm?id=2685048.2685096

https://doi.org/10.1145/1251535.1251543
https://doi.org/10.14778/2733085.2733096
https://doi.org/10.1145/1368088.1368118
https://doi.org/10.1145/503272.503274
https://doi.org/10.1145/1646353.1646374
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1145/1297027.1297050
https://doi.org/10.1147/sj.223.0229
https://doi.org/10.1109/SP.2008.15
http://dl.acm.org/citation.cfm?id=1855741.1855756
http://dl.acm.org/citation.cfm?id=1855741.1855756
https://doi.org/10.1145/1250734.1250789
https://doi.org/10.1145/502034.502042
https://doi.org/10.1145/502034.502042
https://doi.org/10.1023/B:FORM.0000040025.89719.f3
https://doi.org/10.1023/B:FORM.0000040025.89719.f3
http://www.coverity.com/
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/512529.512538
https://doi.org/10.1145/1375581.1375615
https://doi.org/10.1145/1375581.1375615
https://doi.org/10.1145/1146238.1146254
https://doi.org/10.1145/1146238.1146254
http://dl.acm.org/citation.cfm?id=1267102.1267108
http://cassandra.apache.org/
http://cassandra.apache.org/
http://hadoop.apache.org/
http://hadoop.apache.org/
https://hbase.apache.org/
https://hbase.apache.org/
https://spark.apache.org/
https://spark.apache.org/
https://www.linux.org/
https://doi.org/10.1145/1065010.1065036
https://doi.org/10.1145/1065010.1065036
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2387880.2387883
http://dl.acm.org/citation.cfm?id=2685048.2685096
http://dl.acm.org/citation.cfm?id=2685048.2685096

EuroSys’19, March 25–28, 2019, Dresden, Germany Z. Zuo et al.

[31] GrammaTech. 2012. The GrammaTech CodeSonar Static Checker.

https://www.grammatech.com/products/codesonar.
[32] Haryadi S. Gunawi, Mingzhe Hao, Tanakorn Leesatapornwongsa,

Tiratat Patana-anake, Thanh Do, Jeffry Adityatama, Kurnia J. Eliazar,

Agung Laksono, Jeffrey F. Lukman, Vincentius Martin, and Anang D.

Satria. 2014. What Bugs Live in the Cloud? A Study of 3000+ Issues

in Cloud Systems. In Proceedings of the ACM Symposium on Cloud

Computing (SOCC ’14). ACM, New York, NY, USA, Article 7, 14 pages.

https://doi.org/10.1145/2670979.2670986
[33] Seth Hallem, Benjamin Chelf, Yichen Xie, and Dawson Engler. 2002.

A System and Language for Building System-specific, Static Analyses.

In Proceedings of the ACM SIGPLAN 2002 Conference on Programming

Language Design and Implementation (PLDI ’02). 69–82.

[34] Thomas A. Henzinger, Ranjit Jhala, Rupak Majumdar, and Grégoire

Sutre. 2002. Lazy Abstraction. In Proceedings of the 29th ACM SIGPLAN-

SIGACT Symposium on Principles of Programming Languages (POPL

’02). ACM, New York, NY, USA, 58–70. https://doi.org/10.1145/503272.
503279

[35] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed.

2010. ZooKeeper:Wait-free Coordination for Internet-scale Systems. In

Proceedings of the 2010 USENIX Conference on USENIX Annual Technical

Conference (USENIXATC’10). USENIX Association, Berkeley, CA, USA,

11–11. http://dl.acm.org/citation.cfm?id=1855840.1855851
[36] Brittany Johnson, Yoonki Song, Emerson Murphy-Hill, and Robert

Bowdidge. 2013. Why Don’T Software Developers Use Static Analysis

Tools to Find Bugs?. In Proceedings of the 2013 International Conference

on Software Engineering (ICSE ’13). IEEE Press, Piscataway, NJ, USA,

672–681.

[37] James C. King. 1976. Symbolic Execution and Program Testing. Com-

mun. ACM 19, 7 (July 1976), 385–394. https://doi.org/10.1145/360248.
360252

[38] KlocWork. 2015. The KlocWork Static Checker. https://www.klocwork.
com/products-services/klocwork.

[39] Ted Kremenek and Dawson Engler. 2003. Z-ranking: Using Statistical

Analysis to Counter the Impact of Static Analysis Approximations.

In Proceedings of the 10th International Conference on Static Analysis

(SAS’03). Springer-Verlag, Berlin, Heidelberg, 295–315. http://dl.acm.
org/citation.cfm?id=1760267.1760289

[40] Aapo Kyrola, Guy Blelloch, and Carlos Guestrin. 2012. GraphChi:

Large-scale Graph Computation on Just a PC. In Proceedings of the 10th

USENIX Conference on Operating Systems Design and Implementation

(OSDI’12). USENIX Association, Berkeley, CA, USA, 31–46. http:
//dl.acm.org/citation.cfm?id=2387880.2387884

[41] Chris Lattner, Andrew Lenharth, and Vikram Adve. 2007. Making

Context-sensitive Points-to Analysis with Heap Cloning Practical for

the Real World. In Proceedings of the 28th ACM SIGPLAN Conference on

Programming Language Design and Implementation (PLDI ’07). ACM,

New York, NY, USA, 278–289. https://doi.org/10.1145/1250734.1250766
[42] Vu Le, Mehrdad Afshari, and Zhendong Su. 2014. Compiler Valida-

tion via Equivalence Modulo Inputs. In Proceedings of the 35th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’14). ACM, New York, NY, USA, 216–226. https:
//doi.org/10.1145/2594291.2594334

[43] Tanakorn Leesatapornwongsa, Mingzhe Hao, Pallavi Joshi, Jeffrey F.

Lukman, and Haryadi S. Gunawi. 2014. SAMC: Semantic-aware Model

Checking for Fast Discovery of Deep Bugs in Cloud Systems. In Pro-

ceedings of the 11th USENIX Conference on Operating Systems Design

and Implementation (OSDI’14). USENIX Association, Berkeley, CA,

USA, 399–414. http://dl.acm.org/citation.cfm?id=2685048.2685080
[44] Tanakorn Leesatapornwongsa, Jeffrey F. Lukman, Shan Lu, and

Haryadi S. Gunawi. 2016. TaxDC: A Taxonomy of Non-Deterministic

Concurrency Bugs in Datacenter Distributed Systems. In Proceedings

of the Twenty-First International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’16). ACM,

New York, NY, USA, 517–530. https://doi.org/10.1145/2872362.2872374

[45] Chris Lewis, Zhongpeng Lin, Caitlin Sadowski, Xiaoyan Zhu, Rong Ou,

and E. James Whitehead Jr. 2013. Does Bug Prediction Support Human

Developers? Findings from a Google Case Study. In Proceedings of the

2013 International Conference on Software Engineering (ICSE ’13). IEEE

Press, Piscataway, NJ, USA, 372–381. http://dl.acm.org/citation.cfm?
id=2486788.2486838

[46] Sihan Li, Hucheng Zhou, Haoxiang Lin, Tian Xiao, Haibo Lin, Wei Lin,

and Tao Xie. 2013. A Characteristic Study on Failures of Production Dis-

tributed Data-parallel Programs. In Proceedings of the 2013 International

Conference on Software Engineering (ICSE ’13). IEEE Press, Piscataway,

NJ, USA, 963–972. http://dl.acm.org/citation.cfm?id=2486788.2486921
[47] Zhenmin Li, Shan Lu, Suvda Myagmar, and Yuanyuan Zhou. 2004. CP-

Miner: A Tool for Finding Copy-paste and Related Bugs in Operating

System Code. In Proceedings of the 6th Conference on Symposium on

Opearting Systems Design & Implementation. 289–302.

[48] Zhenmin Li, Lin Tan, Xuanhui Wang, Shan Lu, Yuanyuan Zhou, and

Chengxiang Zhai. 2006. Have Things Changed Now?: An Empirical

Study of Bug Characteristics in Modern Open Source Software. In

Proceedings of the 1st Workshop on Architectural and System Support

for Improving Software Dependability (ASID ’06). 25–33.

[49] Yucheng Low, Danny Bickson, Joseph Gonzalez, Carlos Guestrin, Aapo

Kyrola, and Joseph M. Hellerstein. 2012. Distributed GraphLab: A

Framework for Machine Learning and Data Mining in the Cloud. Proc.

VLDB Endow. 5, 8 (April 2012), 716–727. https://doi.org/10.14778/
2212351.2212354

[50] Shan Lu, Soyeon Park, Chongfeng Hu, Xiao Ma, Weihang Jiang, Zhen-

min Li, Raluca A. Popa, and Yuanyuan Zhou. 2007. MUVI: Auto-

matically Inferring Multi-variable Access Correlations and Detecting

Related Semantic and Concurrency Bugs. In Proceedings of Twenty-first

ACM SIGOPS Symposium on Operating Systems Principles (SOSP ’07).

103–116.

[51] Shan Lu, Soyeon Park, Eunsoo Seo, and Yuanyuan Zhou. 2008. Learn-

ing from Mistakes: A Comprehensive Study on Real World Concur-

rency Bug Characteristics. In Proceedings of the 13th International

Conference on Architectural Support for Programming Languages and

Operating Systems (ASPLOS XIII). ACM, 329–339. https://doi.org/10.
1145/1346281.1346323

[52] Mozilla. 2018. Firefox. https://www.mozilla.org/en-US/firefox/.
[53] Nicolas Palix, Gaël Thomas, Suman Saha, Christophe Calvès, Julia

Lawall, and Gilles Muller. 2011. Faults in Linux: Ten Years Later. In

Proceedings of the Sixteenth International Conference on Architectural

Support for Programming Languages and Operating Systems (ASPLOS

XVI). ACM, New York, NY, USA, 305–318. https://doi.org/10.1145/
1950365.1950401

[54] Soyeon Park, Shan Lu, and Yuanyuan Zhou. 2009. CTrigger: Exposing

Atomicity Violation Bugs from Their Hiding Places. In Proceedings of

the 14th International Conference on Architectural Support for Program-

ming Languages and Operating Systems (ASPLOS XIV). 25–36.

[55] William Pugh. 2015. The FindBugs Java Static Checker. http://findbugs.
sourceforge.net/.

[56] Feng Qin, Shan Lu, and Yuanyuan Zhou. 2005. SafeMem: Exploiting

ECC-Memory for Detecting Memory Leaks and Memory Corruption

During Production Runs. In Proceedings of the 11th International Sympo-

sium on High-Performance Computer Architecture (HPCA ’05). 291–302.

[57] Feng Qin, Joseph Tucek, Jagadeesan Sundaresan, and Yuanyuan Zhou.

2005. Rx: Treating Bugs As Allergies—a Safe Method to Survive Soft-

ware Failures. In Proceedings of the Twentieth ACM Symposium on

Operating Systems Principles (SOSP ’05). 235–248. https://doi.org/10.
1145/1095810.1095833

[58] Thomas Reps, Susan Horwitz, and Mooly Sagiv. 1995. Precise Inter-

procedural Dataflow Analysis via Graph Reachability. In Proceedings

of the 22Nd ACM SIGPLAN-SIGACT Symposium on Principles of Pro-

gramming Languages (POPL ’95). ACM, New York, NY, USA, 49–61.

https://doi.org/10.1145/199448.199462

https://www.grammatech.com/products/codesonar
https://doi.org/10.1145/2670979.2670986
https://doi.org/10.1145/503272.503279
https://doi.org/10.1145/503272.503279
http://dl.acm.org/citation.cfm?id=1855840.1855851
https://doi.org/10.1145/360248.360252
https://doi.org/10.1145/360248.360252
https://www.klocwork.com/products-services/klocwork
https://www.klocwork.com/products-services/klocwork
http://dl.acm.org/citation.cfm?id=1760267.1760289
http://dl.acm.org/citation.cfm?id=1760267.1760289
http://dl.acm.org/citation.cfm?id=2387880.2387884
http://dl.acm.org/citation.cfm?id=2387880.2387884
https://doi.org/10.1145/1250734.1250766
https://doi.org/10.1145/2594291.2594334
https://doi.org/10.1145/2594291.2594334
http://dl.acm.org/citation.cfm?id=2685048.2685080
https://doi.org/10.1145/2872362.2872374
http://dl.acm.org/citation.cfm?id=2486788.2486838
http://dl.acm.org/citation.cfm?id=2486788.2486838
http://dl.acm.org/citation.cfm?id=2486788.2486921
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.14778/2212351.2212354
https://doi.org/10.1145/1346281.1346323
https://doi.org/10.1145/1346281.1346323
https://www.mozilla.org/en-US/firefox/
https://doi.org/10.1145/1950365.1950401
https://doi.org/10.1145/1950365.1950401
http://findbugs.sourceforge.net/
http://findbugs.sourceforge.net/
https://doi.org/10.1145/1095810.1095833
https://doi.org/10.1145/1095810.1095833
https://doi.org/10.1145/199448.199462

Grapple: A Graph System for Static Finite-State Property Checking EuroSys’19, March 25–28, 2019, Dresden, Germany

[59] Amitabha Roy, Ivo Mihailovic, and Willy Zwaenepoel. 2013. X-

Stream: Edge-centric Graph Processing Using Streaming Partitions.

In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (SOSP ’13). ACM, New York, NY, USA, 472–488.

https://doi.org/10.1145/2517349.2522740
[60] Koushik Sen, Darko Marinov, and Gul Agha. 2005. CUTE: A Con-

colic Unit Testing Engine for C. In Proceedings of the 10th Euro-

pean Software Engineering Conference Held Jointly with 13th ACM

SIGSOFT International Symposium on Foundations of Software Engi-

neering (ESEC/FSE-13). ACM, New York, NY, USA, 263–272. https:
//doi.org/10.1145/1081706.1081750

[61] M. Sharir and A. Pnueli. 1981. Two Approaches to Interprocedural

Data Flow Analysis. In Program Flow Analysis: Theory and Applications,

S. Muchnick and N. Jones (Eds.). 189–234.

[62] Qingkai Shi, Xiao Xiao, Rongxin Wu, Jinguo Zhou, Gang Fan, and

Charles Zhang. 2018. Pinpoint: Fast and Precise Sparse Value Flow

Analysis for Million Lines of Code. In Proceedings of the 39th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI 2018). ACM, New York, NY, USA, 693–706. https:
//doi.org/10.1145/3192366.3192418

[63] Manu Sridharan and Rastislav Bodík. 2006. Refinement-based Context-

sensitive Points-to Analysis for Java. In Proceedings of the 27th ACM

SIGPLAN Conference on Programming Language Design and Imple-

mentation (PLDI ’06). ACM, New York, NY, USA, 387–400. https:
//doi.org/10.1145/1133981.1134027

[64] R. E. Strom and S. Yemini. 1986. Typestate: A Programming Language

Concept for Enhancing Software Reliability. IEEE Transactions on

Software Engineering SE-12, 1 (Jan 1986), 157–171. https://doi.org/10.
1109/TSE.1986.6312929

[65] Yulei Sui, Ding Ye, and Jingling Xue. 2012. Static Memory Leak De-

tection Using Full-sparse Value-flow Analysis. In Proceedings of the

2012 International Symposium on Software Testing and Analysis (ISSTA

2012). ACM, New York, NY, USA, 254–264. https://doi.org/10.1145/
2338965.2336784

[66] Raja Vallée-Rai, Phong Co, Etienne Gagnon, Laurie Hendren, Patrick

Lam, and Vijay Sundaresan. 2010. Soot: A Java Bytecode Optimization

Framework. In CASCON First Decade High Impact Papers (CASCON

’10). IBM Corp., Riverton, NJ, USA, 214–224. https://doi.org/10.1145/
1925805.1925818

[67] Kai Wang, Aftab Hussain, Zhiqiang Zuo, Guoqing Xu, and Ardalan

Amiri Sani. 2017. Graspan: A Single-machine Disk-based Graph

System for Interprocedural Static Analyses of Large-scale Systems

Code. In Proceedings of the Twenty-Second International Conference

on Architectural Support for Programming Languages and Operating

Systems (ASPLOS ’17). ACM, New York, NY, USA, 389–404. https:
//doi.org/10.1145/3037697.3037744

[68] KaiWang, Guoqing Xu, Zhendong Su, and Yu David Liu. 2015. GraphQ:

Graph Query Processing with Abstraction Refinement—Scalable and

Programmable Analytics over Very Large Graphs on a Single PC. In

2015 USENIX Annual Technical Conference (USENIX ATC 15). 387–401.

[69] Kai Wang, Zhiqiang Zuo, John Thorpe, Tien Quang Nguyen, and

Guoqing Harry Xu. 2018. RStream: Marrying Relational Algebra with

Streaming for Efficient Graph Mining on A Single Machine. In 13th

USENIX Symposium on Operating Systems Design and Implementation

(OSDI 18).

[70] John Whaley and Monica S. Lam. 2004. Cloning-based Context-

sensitive Pointer Alias Analysis Using Binary Decision Diagrams. In

Proceedings of the ACM SIGPLAN 2004 Conference on Programming

Language Design and Implementation (PLDI ’04). ACM, New York, NY,

USA, 131–144. https://doi.org/10.1145/996841.996859
[71] John Whaley and Monica S. Lam. 2004. Cloning-based Context-

sensitive Pointer Alias Analysis Using Binary Decision Diagrams.

In Proceedings of the ACM SIGPLAN 2004 Conference on Program-

ming Language Design and Implementation (PLDI ’04). ACM, 131–144.

https://doi.org/10.1145/996841.996859
[72] Guoqing Xu, Atanas Rountev, and Manu Sridharan. 2009. Scaling

CFL-Reachability-Based Points-To Analysis Using Context-Sensitive

Must-Not-Alias Analysis. In Proceedings of the 23rd European Con-

ference on ECOOP 2009 — Object-Oriented Programming (Genoa).

Springer-Verlag, Berlin, Heidelberg, 98–122. https://doi.org/10.1007/
978-3-642-03013-0_6

[73] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi.

2006. Using Model Checking to Find Serious File System Errors. ACM

Trans. Comput. Syst. 24, 4 (Nov. 2006), 393–423.

[74] Xuejun Yang, Yang Chen, Eric Eide, and John Regehr. 2011. Find-

ing and Understanding Bugs in C Compilers. In Proceedings of the

32Nd ACM SIGPLAN Conference on Programming Language Design

and Implementation (PLDI ’11). ACM, New York, NY, USA, 283–294.

https://doi.org/10.1145/1993498.1993532
[75] Zuoning Yin, Xiao Ma, Jing Zheng, Yuanyuan Zhou, Lakshmi N.

Bairavasundaram, and Shankar Pasupathy. 2011. An Empirical Study

on Configuration Errors in Commercial and Open Source Systems. In

Proceedings of the Twenty-Third ACM Symposium on Operating Systems

Principles (SOSP ’11). 159–172.

[76] Ding Yuan, Yu Luo, Xin Zhuang, Guilherme Renna Rodrigues, Xu

Zhao, Yongle Zhang, Pranay U. Jain, and Michael Stumm. 2014. Simple

Testing Can Prevent Most Critical Failures: An Analysis of Production

Failures in Distributed Data-intensive Systems. In Proceedings of the

11th USENIX Conference on Operating Systems Design and Implemen-

tation (OSDI’14). USENIX Association, Berkeley, CA, USA, 249–265.

http://dl.acm.org/citation.cfm?id=2685048.2685068
[77] Xiaowei Zhu, Wentao Han, and Wenguang Chen. 2015. GridGraph:

Large-scale Graph Processing on a Single Machine Using 2-level Hi-

erarchical Partitioning. In Proceedings of the 2015 USENIX Conference

on Usenix Annual Technical Conference (USENIX ATC ’15). USENIX

Association, Berkeley, CA, USA, 375–386. http://dl.acm.org/citation.
cfm?id=2813767.2813795

[78] Zhiqiang Zuo, John Thorpe, Yifei Wang, Qiuhong Pan, Shenming Lu,

Kai Wang, Guoqing Harry Xu, LinzhangWang, and Xuandong Li. 2019.

The Confirmed Bug Lists. https://drive.google.com/file/d/1Xx6eO2_
HMxm2SThz5sU9cT0a2Zx5fSN9/view?usp=sharing.

https://doi.org/10.1145/2517349.2522740
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/1081706.1081750
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/3192366.3192418
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1145/1133981.1134027
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1109/TSE.1986.6312929
https://doi.org/10.1145/2338965.2336784
https://doi.org/10.1145/2338965.2336784
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/1925805.1925818
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/3037697.3037744
https://doi.org/10.1145/996841.996859
https://doi.org/10.1145/996841.996859
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1007/978-3-642-03013-0_6
https://doi.org/10.1145/1993498.1993532
http://dl.acm.org/citation.cfm?id=2685048.2685068
http://dl.acm.org/citation.cfm?id=2813767.2813795
http://dl.acm.org/citation.cfm?id=2813767.2813795
https://drive.google.com/file/d/1Xx6eO2_HMxm2SThz5sU9cT0a2Zx5fSN9/view?usp=sharing
https://drive.google.com/file/d/1Xx6eO2_HMxm2SThz5sU9cT0a2Zx5fSN9/view?usp=sharing

	Abstract
	1 Introduction
	1.1 Problem
	1.2 Our Contributions

	2 Background and Overview
	2.1 Background
	2.2 Overview of Grapple

	3 Constraint Representation
	3.1 Intraprocedural Path Constraints
	3.2 Interprocedural Path Constraints
	3.3 Constructing ICFET

	4 The Grapple Graph Computation
	4.1 Program Graph Generation
	4.2 Constraint-guided Edge Induction
	4.3 System Implementation

	5 Evaluation
	5.1 Bugs Found
	5.2 Grapple Performance
	5.3 Comparison with other analysis implementations

	6 Related Work
	7 Conclusion
	References

