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With the growing popularity of autonomous unmanned aerial vehicles (UAVs), the improve-
ment of safety for UAV operations has become increasingly important. In this paper, a landing
trajectory optimization scheme is proposed to generate reference landing trajectories for a
fixed-wing UAV with accidental engine failure. For a specific landing objective, two types of
landing trajectory optimization algorithms are investigated: i) trajectory optimization algo-
rithm with nonlinear UAV dynamics, and ii) trajectory optimization algorithm with linearized
UAV dynamics. An initialization procedure that generates an initial guess is introduced to
accelerate the convergence of the optimization algorithms. The effectiveness of the proposed
scheme is verified in a high-fidelity UAV simulation environment, where the optimized landing
trajectories are tracked by a UAV equipped with an L1 adaptive altitude controller in both the
offline and online modes.

I. Nomenclature

N = {0, 1, 2, · · · }, set of natural numbers with 0
N+ = {1, 2, · · · }, set of natural numbers without 0
V = speed
X = horizontal flight distance
h = UAV height above ground
H = UAV altitude above sea level
α = angle of attack
β = angle of sideslip
γ = flight-path inclination angle
φ, θ, ψ = attitude Euler angles for roll, pitch, and yaw
p, q, r = roll, pitch, and yaw rates
δe, δr, δa = elevator, rudder, and ailerons deflections
δt = thrust level

II. Introduction

Engine failure is one of the most fatal accidents for aircraft systems [1]. US Airways Flight 1549’s landing over
Hudson River in 2009 was because of an engine-out failure [2]. Thanks to the professional response of Captain

Chesley Sullenberger, the Airbus A320 carrying 155 passengers and crew members landed safely on the Hudson River
after striking a flock of birds and losing thrust in both engines. For a civil airplane, the safety of passengers is always the
priority at all costs, and engine-out-failures are typically not common. However, for a commercial fixed-wing UAV,
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which is preferably designed as a low-cost aircraft, an engine-out accident is more probable. In this paper, we propose to
equip autonomous UAVs with a safety feature for emergency landing, which otherwise requires an experienced human
operator.

Autonomous UAVs are playing an important role in the modern world. For example, UAVs have already been
employed to deliver commercial packages [3, 4] and medications [5, 6]. Consequently, the safety concerns of using
UAVs are increasingly drawing the attention of researchers and companies. When a UAV flies over a populous urban
area, failures in the UAV systems can even endanger the safety of humans and facilities on the ground. Engine
failure is undoubtedly one of the most hazardous UAV failures [1, 7, 8]. An engine-out aircraft can be landed via
gliding [9–12]. An adaptive trajectory generation scheme with a certain presumed best glide ratio and bank angle for
turns was proposed in [11]. Trajectory planning for an engine-out aircraft towards a specified airstrip was investigated
in [12]. In [10], the reachable set for auto-landing was calculated by using the numerical method in optimal control
theory. The maximum-range trajectory problem was solved in [9] by implementing the singular perturbation theory.
However, when generating a reference gliding trajectory for a UAV that usually flies over an urban area in low altitude,
more requirements should be considered in addition to avoiding densely populated areas or providing enough time
for evacuation on the ground [9]. Since most of the UAV autopilot software is executed on some low-cost embedded
platform, the desired UAV landing trajectory optimization scheme should generate a trajectory quickly and without
costing substantial computation resources, such that the engine-out UAV can have enough time and resources to follow
the reference trajectory. Meanwhile, since the urban surroundings along the flight path can be versatile, the optimization
scheme should be able to generate the trajectories with different landing requirements.

Direct and indirect methods are two categories of approaches in solving the trajectory optimization problem [13].
The fundamental basis of indirect methods is given by the analytical solution of the Hamilton–Jacobi–Bellman equation
and by Pontryagin’s maximum principle. Nevertheless, for most practical and complicated systems, these analytical
solutions can hardly be derived [14]. In contrast, direct methods are more applicable to solving real-world problems.
Direct methods discretize the optimization problem into a nonlinear numerical optimization problem and solve it. Some
well-known algorithms in the direct methods are multiple shooting [13, 15], full collocation, and pseudo-spectral
method [16]. In general, large amounts of computations are demanded by these algorithms to recursively search for the
optimal solution in an offline mode. Nonetheless, a wise choice of initial value can accelerate the optimization process
remarkably.

Subject to the requirements mentioned above, an emergency landing trajectory optimization scheme for engine-out
UAV is investigated. Two types of landing trajectory optimization algorithms are proposed: i) optimization with
nonlinear UAV dynamics, and ii) optimization with linearized UAV dynamics. By defining different cost functions,
we can generate landing trajectories with different properties, such as maximal horizontal distance or maximal flight
time. For a specific objective function, the optimization algorithm with nonlinear UAV dynamics can generally obtain a
trajectory with a lower cost value, while the algorithm with linearized UAV dynamics can find comparable trajectory
with an average 40% less running time. Initialization procedure that generates an initial guess is introduced to accelerate
the convergence of the optimization algorithms. With this well-selected initial guess, the running time of both algorithms
is limited within 1.2 s in the emergency landing examples, presented at the end of this paper. Incorporated with a
sampled data L1 adaptive altitude tracking controller, the optimized emergency landing trajectories are verified in a
high-fidelity UAV simulation environment.

This paper is organized as follows: Section III introduces the preliminary knowledge and the problem formulation;
Section IV presents the main results on UAV emergency landing trajectory optimization. High-fidelity UAV emergency
landing simulation examples are provided in Section V. Finally, Section VI concludes the paper.

III. Preliminaries and Problem Formulation
Two basic assumptions of this paper are stated first.

Assumption 1 The longitudinal and lateral dynamics and control of fixed-wing UAV are weakly coupled.

Remark 1 This assumption is widely adopted in the existing literature on fixed-wing aircraft and UAV [17, 18].
With this assumption, we only consider the UAV longitudinal dynamics when optimizing the landing trajectory, while
the lateral dynamics are assumed to be free of constraints. In simulations, the optimized results are applied to the
longitudinal dynamics only, while the lateral dynamics are assumed to be stabilized by some preexisting controllers or
commanded by some independent reference signals.
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Assumption 2 The flight states of UAV are available to the trajectory generation software, when the engine fails.

Remark 2 Since the objective of the emergency landing trajectory optimization scheme is to quickly generate an optimal
landing trajectory for an engine-out UAV to follow, it is crucial for the trajectory generation software to access the
most updated UAV flight states as the initial condition in optimization. This information can be retrieved from the
measurement units on UAV operated with a fault-detection system.

A. UAV Motion Models
Nonlinear and linearized UAV dynamics are considered to optimize the emergency landing trajectories, and the

effectiveness of the optimized trajectories is verified in a high-fidelity UAV simulation environment. All the model
parameters used in this paper are found in [19], where anUltra StickTM 25e high-fidelity model was developed from wind
tunnel experiments. Since the nonlinear and linearized UAVmodels have been extensively discussed in literature [18–20],
we only represent them in general terms.

1. Nonlinear Model
A nonlinear six degrees of freedom UAV model can generally be expressed as

Ûx = f (x, u), (1)

where x and u are the states and control vectors, respectively. Without considering disturbances, the nonlinear model
Eq.(1) is precise enough to illustrate the dynamics of fixed-wing UAV flight, and hence it provides an accurate model for
the trajectory optimization algorithms to find a landing trajectory that satisfies the flight constraints. More detailed
descriptions about nonlinear UAV models are provided in [18, 20]. The parameters and software package of the
nonlinear UAV model can be found in [19].

2. Trim Point and Linearized Model
Although the nonlinear models can describe the UAV dynamics accurately, a precise nonlinear UAV model demands

considerable computation resources in each update. The extensive computation contradicts our requirements for fast
trajectory generation and reduced computational burden. One approach to mitigate this problem and accelerate the
optimization process is to replace the nonlinear UAV model with a linearized UAV model, which is less complex and
less accurate. The linearized UAV dynamics are obtained around trim points. A trim point is a steady-state flight
operation point of UAV. For an engine-out UAV, the trim point for a steady-state glide without turn or sideslip can be
retrieved by solving the following conditions[

ÛVs, Ûαs, Ûβs, Ûφs, Ûθs, Ûψs, Ûps, Ûqs, Ûrs
]>
= ftrim(ps, zs) = 0, (2)

where ftrim is a subset of f in Eq.(1); ps =
[
Vs, βs, δt,s,H

]> is the parameters vector with (βs, δt,s) = (0, 0), and
H denotes the UAV altitude above sea level; the vector zs =

[
αs, φs, θs, ps, qs, rs, δe,s, δr,s, δa,s

]T can be obtained by
solving Eq.(2) at the trim point, and the subscript s denotes the value retrieved from the trim. For convenience, we define
the function xs = trim(Vs,H), in which xs = [Vs, γs, αs, qs, δe,s] with γs = θs − αs . More comprehensive introduction
on UAV trim algorithms can be found in [20].

Once the parameters are determined, we can linearize the nonlinear dynamics in Eq.(1) around the trim point xs.
The linearized model is given as follows

Ûxlin = A(xlin − xs) + B Ûδe,

ÛX = V cos γ,
Ûh = V sin γ,

(3)

where xlin = [V, γ, α, q, δe]>, A B ∂ f (xs)/∂xlin, and B B [0, 0, 0, 0, 1]>. The kinetic update laws of X and h are kept
in nonlinear form. More detailed investigation on longitudinal motion analysis and linearization is available in [18].
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3. High-Fidelity Simulation Environment
After generating the reference landing trajectories using the nonlinear and the linearized models, we verify the

effectiveness of the optimized trajectories in a high-fidelity UAV simulation platform developed by the UAV Lab
at the University of Minnesota∗. This high-fidelity platform incorporates a nonlinear UAV model, actuator models,
measurement noise, and models of environmental factors. Position limits, rate limits, and bandwidths of actuators
are considered in the actuator model. The measurement noise is modeled as a Gaussian process. The environmental
model considers steady winds, wind gusts, a precise gravity field, a magnetic field, and a precise atmospheric model.
More detailed information and applications on this high-fidelity simulation platform for Ultra StickTM 25e can be found
in [19].

B. Landing Trajectory Optimization
The generation of UAV emergency landing trajectory is formulated as an optimization problem. Safety concerns

and landing requirements are formulated in the cost function. For example, when we desire the longest time to evacuate
an area before the engine-out UAV crashes, we can choose the cost function such that the terminal time t f is maximized,
and the cost function can be designed to maximize the horizontal distance X(t f ), when we want to deviate an engine-out
UAV from a densely populated area. In the following sections, both scenarios will be considered. The UAV models,
actuator limitations, and flight envelope are formulated as the constraints of the optimization problem. Mathematical
formulae of this optimization problem will be given in Section IV.

To solve the optimization problem, this paper utilizes the optimal control tool, FALCON.m†, developed by the
Institute of Flight System Dynamics at the Technical University of Munich. This optimization solver is based on
the direct methods, e.g., the trapezoidal collocation scheme, and has been applied to various trajectory optimization
tasks [21–24]. FALCON.m can automatically convert the general optimal control problem into a standard nonlinear
programming (NLP) problem, and then solve the NLP problem with mature third-party NLP solvers embedded in
FALCON.m, such as IPOPT [25] and SNOPT [26]. In this paper, the NLP problem is solved numerically by IPOPT,
which is based on a primal-dual interior-point algorithm with a filter line-search method.

C. Altitude Tracking Controller
To verify the effectiveness of the reference trajectories in a high-fidelity UAV simulation environment, an altitude

tracking control framework is developed to follow the landing trajectories generated by the optimization problem. The
control framework consists of an altitude tracker that generates a reference command for pitch angle [19], and a pitch
angle tracker using L1 adaptive control structure. L1 adaptive controllers have been successfully implemented and
verified on numerous aerial vehicles [27–30], including F-16, Learjet, and AirSTAR. For conciseness, the formulation
of the control scheme is provided in the Appendix. One can also implement other altitude tracking controllers here to
follow the reference landing trajectories.

IV. UAV Emergency Landing Trajectory Optimization Algorithms
The mathematical formulation of UAV emergency landing optimization problem is given in this section. An

initialization technique is introduced to accelerate the convergence of the landing trajectory optimization. At the end of
this section, the optimization algorithms using the nonlinear and linearized UAV models are provided.

The trajectory optimization problem can be formulated as an optimal control problem with the goal to determine the
optimal control history u(t) and the corresponding state history x(t) on a time interval t ∈ [0, t f ] to minimize a given
cost function J subject to various constraints. A general mathematical formulation is given as follows

min
u(t)

J = Φ(x(t f ), t f ) +
∫ t f

0
L(x(t), u(t), t)dt

s.t. Ûx(t) = f (x(t), u(t)),

Ψ0,lb 6 Ψ0(x(0)) 6 Ψ0,ub,

Ψ f ,lb 6 Ψ f (x(t f )) 6 Ψ f ,ub,

glb 6 g(x(t), u(t)) 6 gub,

(4)

∗UAV Lab, University of Minnesota Twin-Cities, URL: https://www.uav.aem.umn.edu.
†FALCON.m - Fast and Free Optimal Control for MATLAB®, URL: http://www.fsd.mw.tum.de/software/falcon-m/.
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where the cost function J is in the Bolza form with Φ and L being the Mayer and Langrange terms, respectively; Ψ0
and Ψ f are respectively the initial and final boundary constraints with Ψ ·,lb and Ψ ·,ub being the lower and upper bounds,
and g represents the path constraints that are limited by glb and gub. In this paper, the notation v(t) ∈ RNv×Nt may
also be used to represent the discretized time history of a vector v, where Nv is the number of elements in v, and Nt is
the number of discretization points. Meanwhile, the notation v(ti) ∈ RNv denotes the value of vector v at the specific
discretized time point ti .

For the UAV trajectory optimization problem, when an emergency landing trajectory with maximal horizontal
distance X(t f ) is desired, we can design the cost function of Eq.(4) in the following form

J = −X(t f ) +W
∫ t f

0
Ûδ2
edt. (5)

When the longest flight time is desired, we can choose the cost function in Eq.(4) as follows

J = −t f +W
∫ t f

0
Ûδ2
edt, (6)

where the Lagrange term W
∫ t f

0
Ûδ2
edt in Eq.(5) and Eq.(6) prevents the oscillations in control commands and improves

the convergence, and the weighting factor W should be chosen as a small positive constant such that the modified
cost function is close enough to the original one. Elevator rate Ûδe instead of the elevator position δe is considered
as the control input, which allows the formulations of Lagrange terms in Eq.(5) and Eq.(6), as well as a latter path
constraint on actuator rate. The dynamic constraints Ûx(t) = f (x(t), u(t)) in Eq.(4) can be either the nonlinear UAV
model or linearized UAV model in Eq. (3), with x = [X, h,V, γ, α, q, δe]> and u = Ûδe. Some boundary conditions and
path constraints are given as follows

Ψ0 = x(0) − xini = 0, (7a)
Ψf = h(t f ) = 0, (7b)
h(t) ≥ 0, (7c)
V(t) ≥ Vlb, (7d)
αlb ≤ α(t) ≤ αub, (7e)
qlb ≤ q(t) ≤ qub, (7f)
δe,lb ≤ δe(t) ≤ δe,ub, (7g)
Ûδe,lb ≤ Ûδe(t) ≤ Ûδe,ub. (7h)

Eq.(7a) implies that when the engine fails the states of the reference landing trajectory x(t) at the initial time t = 0
should take the value of the UAV states xini, i.e. the initialization is given by x(0) = xini. According to Assumption 2,
the initial flight states of UAV xini are available to the landing trajectory generation software. Eq.(7b) and Eq.(7c)
present respectively the final boundary conditions and the path constraint on the height h(t). Path constraints Eq.(7d)
and Eq.(7e) prevent UAV from stalling. The path constraint Eq.(7f) on pitch rate prevents UAV from drastic maneuvers.
Path constraints Eq.(7g) and Eq.(7h) reflect the position and the rate limitations of the elevator. In order to recursively
search for an optimal landing trajectory with the formulation above, an initial guess for the landing trajectory is required
to start the optimization iterations. For most optimization problems a well-selected initial guess that is close to the
optimal trajectory can significantly reduce the amount of iteration times and running time, which is highly desired for
the low-cost embedded environment of a UAV [31].

A. Initial Guess Generation Strategy
For UAV emergency landing trajectory optimization problem, a feasible initial guess [x0(t), u0(t), t0

f
], which consists

of a feasible state history x0(t), a control history u0(t), and a landing time t f , can be selected to be an arbitrary point
from a steady-state gliding trajectory of the UAV from its initial position to the ground, where the superscript 0 denotes
the index of optimization iteration. For a fixed altitude H, we can find an optimal steady-state glide velocity V∗s ,
which can further be used to determine the states history x0(t) by xs = trim(Vs,H), introduced in Section III.A. More
specifically, for the nonlinear UAV model discussed in Section III.A with H = 100 m and a lift-drag polar shown
in Fig. 1(a), Fig. 1(b) gives the corresponding speed polar for different steady-state glides. Among these steady-state
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glides, the point with minimal descent rate, marked by a circle in Fig. 1(b) with V∗s,t f = 9.516 m/s, is the optimal
steady-state glide for maximal flight time; and the point with minimal path inclination angle |γs |, marked by an asterisk
with V∗s,X = 11.534 m/s, denotes the steady-state glide with maximal horizontal distance.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0

0.5

1

1.5

2

2.5

3

(a) Lift-drag polar

5 10 15 20 25 30

-12

-10

-8

-6

-4

-2

0

max horizontal range

max flight time

(b) Speed polar

Fig. 1 Polars of steady-state glide conditions for nonlinear UAV model.

With the optimal steady-state glide velocityV∗s , we can determine the corresponding trim condition x∗s by x∗s = trim(V∗s ,H).
The straight-line glide trajectory x0(t)with x0(0) =

[
0, hini,V∗s , γ∗s, α∗s, q∗s, δe,s

]> and x0(t f ) = [−hini/tan(γ∗s), 0,V∗s , γ∗s, α∗s,
q∗s, δe,s]

> is selected as the state history in the initial guess, where hini denotes the UAV height above ground, when
the engine fails. The control history in initial guess is assigned as u0(t) = Ûδ0

e(t) = 0, and the flight time or terminal
time in the initial guess satisfies t0

f
= −hini/(V∗s sin γs). In practice, a look-up table or an interpolation function of

x∗s = trim(V∗s ,H) can be pre-calculated to fast generate an initial guess x0(t) for different heights H. Without the
initialization procedure discussed in this section, the following optimization algorithms may not be able to find an
optimal trajectory.

B. Optimization Algorithm with Nonlinear Model
With the optimization formulation and the initial guess introduced above, the algorithm of UAV emergency landing

trajectory optimization with nonlinear model is summarized as follows:

Algorithm 1 Emergency Landing Trajectory Optimization with Nonlinear Model
Formulation:
1: Choose the objective function J satisfying the landing requirement;
2: Choose the nonlinear UAV model Ûx = f (x, u) as dynamic constraint;
3: Measure UAV flight states xini, and formulate boundary constraints x(0) − xini = 0 and h(t f ) = 0;
4: Formulate all path constraints, and determine the values of the bounds, such as lower bound of speed Vlb, bounds

of AoA (αlb, αub), bounds of pitch rate (qlb, qub), bounds of elevator (δe,lb, δe,ub), and bounds of elevator rate
( Ûδe,lb, Ûδe,ub).

Initialization:
5: Measure UAV initial altitude above sea level H, and determine optimal steady-state glide velocity V∗s from a look-up

table or using an interpolation function;
6: Find the optimal steady-state glide velocity x∗s = trim(V∗s ,H) from the look-up table or using an interpolation

function;
7: Generate initial guess [x0(t), u0(t), t0

f
] with initial height above ground hini and x∗s .

Optimization:
8: Solve trajectory optimization problem with FALCON.m, and return the optimized trajectory x∗(t), u∗(t) and t∗f .
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C. Landing Trajectory Optimization with Linear UAV Dynamics
Algorithm 1 can be modified and accelerated for computations by incorporating the linearized UAV model. As

the UAV model is called and evaluated in each iteration of the optimization, replacing the nonlinear UAV model
in Algorithm 1 with a linearized UAV model can significantly speed up the optimization process. An accurate
linearized model can also be generated by linearizing the UAV model around the optimal steady-glide point x∗s , which is
determined by xs = trim(V∗s ,H). In practice, the linearized system matrix A = ∂ f (x∗s)/∂xlin can also be retrieved from
a pre-calculated look-up table or an interpolation function with respect to UAV’s initial altitude H. The optimization
algorithm with linearized UAV model is summarized as follows:

Algorithm 2 Emergency Landing Trajectory Optimization with Linearized Model
Formulation:
1: Choose objective function J satisfying the landing requirement;
2: Choose linearized UAV model Eq.(3) as dynamic constraint;
3: Measure UAV initial flight states xini, and formulate boundary constraints x(0) − xini = 0 and h(t f ) = 0;
4: Formulate all path constraints, and determine the values of bounds, such as lower bound of speed Vlb, bounds of AoA
(αlb, αub), bounds of pitch rate (qlb, qub), bounds of elevator (δe,lb, δe,ub), and bounds of elevator rate ( Ûδe,lb, Ûδe,ub).

Initialization:
5: Measure UAV initial altitude above sea level H, and determine optimal steady-state glide velocity V∗s by look-up

table or interpolation function.
6: Find the optimal steady-state glide velocity x∗s = trim(V∗s ,H) from look-up table or interpolation function.
7: Generate matrix A B ∂ f (x∗s)/∂xlin and B in Eq.(3) from look-up table or interpolation function.
8: Generate initial guess [x0(t), u0(t), t0

f
] with initial height above ground hini and x∗s .

Optimization:
9: Solve trajectory optimization problem with FALCON.m, and return the optimized trajectory x∗(t), u∗(t) and t∗f .

V. Illustrative Examples
The effectiveness of the UAV emergency landing trajectory optimization scheme is verified in this section with a

high-fidelity UAV simulation environment. Both algorithms are employed to generate the emergency landing trajectories
with the longest flight time t f and maximal horizontal distance X(t f ). Incorporated with a sampled-data L1 adaptive
altitude tracker, the optimized trajectories are then applied to a high-fidelity UAV model in both online and offline
modes. A comparison between Algorithm 1 and Algorithm 2 is given at the end of this section.

A. Landing without Reference Trajectory
We first consider an example of an engine-out UAV without any landing trajectory generation scheme. Throughout

this section, we assume that a UAV is cruising on a steady level flight, when the engine fails. The initial flight
states when engine fails, xini =

[
Xini, hini,Vini, γini, αini, qini, δe,ini

]> in Eq.(7a) satisfies Xini = 0 m, hini = 100 m,
Vini = 17.025 m/s, γini = 0 deg, αini = 1.771 deg, qini = 0 deg/s and δe,ini = −5 deg. A feasible set of control
parameters (see Appendix for details) is: Proportional gain Kp = 0.08, integral gain Ki = 0.001, desired dynamics
M(s) = (−0.2067s − 20.67)/(s2 + 4s + 5), and low-pass filter C(s) = 4/(s + 4). For landing without optimized reference
trajectory, we assume that the UAV is trying to maintain its altitude at 100 m after the engine fails. The UAV trajectory
in the vertical plane and the altitude information with respect to time are shown in Fig. 1.

Without any reference landing trajectory, the maximum horizontal position that the UAV can reach is 1008.9 m,
and the flight time before landing is 113.08 s. During this landing process, the range of speed V is [7.7, 17.4] m/s; the
range of elevator deviation δe is [−4.92,−17.3] deg; the range of pitch angle θ is [2.46, 9.76] deg; the range of pitch
rate is [−4.15, 4.86] deg/s, and the range of angle of attack is [3.1, 16.2] deg. Although this trajectory falls inside the
flight envelope of UAV [19], better landing conditions can be obtained with more aggressive trajectories and landing
strategies, which exploit more area inside the flight envelope.

B. Landing Trajectories with Longest Flight Time t f
An emergency landing trajectory with maximal flight time is desired, when time is needed to evacuate the humans

and facilities on the ground. Correspondingly, the cost function is selected as Eq.(5) with W = 0.01. The bounds of
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Vertical Position

Fig. 2 Emergency landing without optimized reference trajectory.

path constraints in Eqs.(7) are selected as Vlb = 8 m/s, αlb = −20 deg, αub = 30 deg, qlb = −30 deg/s, qub = 30 deg/s,
δe,lb = −25 deg, δe,ub = 25 deg, Ûδe,lb = −40 deg/s, and Ûδe,ub = 40 deg/s. By running Algorithm 1 and Algorithm 2 with
the amount of discretization points Nt = 501, the reference landing trajectories with longest flight time are plotted as the
blue solid lines in Fig. 3 and Fig. 4, respectively. Incorporated with a high-fidelity UAV simulation environment and a
sampled-data L1 adaptive altitude tracker, the reference trajectories are investgated in two different modes, offline mode
and online mode. In offline mode, we consider the scenario when the reference landing trajectories are stored on UAV
or sent to UAV by the ground station, such that the UAV starts to track the reference landing trajectory immediately after
the engine failed. In online mode, we first execute Algorithm 1 or Algorithm 2 to generate a landing trajectory, while
the UAV is trying to maintain its initial altitude, and the UAV begins to track the reference landing trajectory after the
optimization scheme returned the optimized trajectory. The landing trajectories of UAV in offline mode and online
mode are respectively plotted in red dashed lines and green dotted lines.
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Fig. 3 Emergency landing trajectory generated by Algorithm 1 with maximal flight time t f .
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Fig. 4 Emergency landing trajectory generated by Algorithm 2 with maximal flight time t f .

With an Intel® Core™ i7-6700K @ 4.00GHz CPU, the running time of Algorithm 1 in this scenario is 1.151 s
with 18 iterations in the IPOPT solver. The running time of Algorithm 2 is 0.669 s, which is 41.9% faster than the
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running time of Algorithm 1, with 21 iterations in the IPOPT solver. The maximal flight time of landing trajectory
generated by Algorithm 1 is 117.32 s with terminal horizontal position X(t f ) = 1106.34 m, while the maximal flight
time of trajectory generated by Algorithm 2 is 116.46 s with landing horizontal position X(t f ) = 1101.22 m. These
results validate our previous proposition that due to the introduction of the linearized UAV model, optimization scheme
based on Algorithm 2 is faster than the scheme based on Algorithm 1. However, with a more precise UAV model and
longer running time, Algorithm 2 is able to find the trajectory with lower objective value. Both of the reference landing
trajectories generated by Algorithm 1 and Algorithm 2 can be divided into three major phases. The first phase is a
transition phase, during which the UAV changes from the initial condition xini to the optimal steady-state glide x∗s . In
Fig. 3 and Fig. 4, since initial speed Vini = 17.025 m/s is larger than the optimal glide speed V∗s,t f = 9.516 m/s, the
UAV first climbs to gain potential energy and then transits to the steady-state glide condition x∗s . The second phase is
the optimal steady-state glide phase, in which UAV continuously descends with optimal glide velocity V∗s,t f . For the
simulations shown in Fig. 3 and Fig. 4, this phase is approximately between 10 s and 110 s with V∗s = 9.516 m/s and α,
θ, q, δe being stable. The last phase is the landing phase, when UAV leaves steady-state glide and lands on the ground.
In Fig. 3 and Fig. 4, we can tell that the optimizer tries to exploit all the mechanical energy to maximize t f and X(t f ) in
this phase. The online trajectories in Fig. 3 and Fig. 4 imply that the long running time of Algorithm 1 deteriorates
the performance of altitude tracking controller, while the running time of Algorithm 2 has little impact on the control
system. The UAV altitude can follow both reference signals well in the offline mode, and the values of other flight
parameters are within small intervals around the reference signals. By introducing some compensations or thresholds in
the tracking control law, we can further diminish the tracking errors in the landing phase.

C. Landing Trajectories with Maximal Horizontal Distances X(t f )
In the end, we consider the emergency landing trajectory with maximal horizontal distance X(t f ), which will be

desired when the regulators want to deviate the engine-out UAV from a critical area. Cost function is correspondingly
selected as Eq.(6) with W = 0.01. Initial conditions, boundary conditions, path constraints values, and control
parameters are set to be the same as the previous example. Reference landing trajectories obtained from Algorithm 1
and Algorithm 2 are respectively presented in Fig. 5 and Fig. 6.
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Fig. 5 Emergency landing trajectory generated by Algorithm 1 with maximal horizontal distance X(t f ).
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Fig. 6 Emergency landing trajectory generated by Algorithm 2 with maximal horizontal distance X(t f ).

Algorithm 1 finds the solution in 1.047 s with 16 iterations in the IPOPT solver, while Algorithm 2 finds it in
0.721 s, which is 31.1% faster than the former, with 20 iterations in the IPOPT solver. The maximal horizontal distance
of trajectory generated by Algorithm 1 is X(t f ) = 1225.56 m with flight time t f = 106.99 s. The maximal horizontal
distance of trajectory generated from Algorithm 2 is X(t f ) = 1223.76 m with flight time t f = 106.93 s. The reference
trajectories generated by both algorithms have comparable cost value. Incorporated with the L1 adaptive altitude tracker,
the high-fidelity UAV can track the reference altitude signals well in both online mode and offline mode, and the values
of all other flight parameters are within small intervals around the reference signals.

D. Summary
The optimization results of Algorithm 1 and Algorithm 2 with different objective functions are listed in Table 1. In

general, Algorithm 1 with nonlinear UAV model can find trajectories with less cost values, while the running time of
Algorithm 2 is at least 30% shorter. Comparing with the flight trajectory without reference landing signal, the optimized
trajectories have better performance on the optimized parameters.

Cost Function Algorithm t f [s] X(t f ) [m] Iterations IPOPT running time [s]
No optimization Ref. height = 100 m 113.06 1008.9 - -

max t f
Alg. 1 (Nonlinear) 117.30 1106.8 18 1.151
Alg. 2 (Linearized) 116.46 1101.2 21 0.669 (41.9% faster)

max X(t f )
Alg. 1 (Nonlinear) 106.99 1225.6 16 1.047
Alg. 2 (Linearized) 106.94 1223.7 20 0.721 (31.1% faster)

Table 1 Landing trajectory optimization results.

VI. Conclusion
An optimization and control scheme for the emergency landing of engine-out UAVs has been proposed in this paper.

Two landing trajectory optimization algorithms have been introduced. An initialization procedure that generates an
initial guess has been investigated to accelerate the landing trajectory optimization. Incorporated with a sampled-data
L1 adaptive altitude tracking controller, the optimized reference landing trajectories have been simulated and verified in
a high-fidelity UAV simulation environment.

Appendix
The altitude tracking controller consists of: i) An outer-loop proportional-integral altitude tracker that generates the

reference pitch angle θr from the planned altitude hr and UAV altitude h, and ii) An inner-loop multi-rate L1 adaptive
pitch angle tracker that drives the UAV pitch angle θ to follow the reference signal θr generated by the outer-loop
tracking law. The formulations of these two tracking control laws are given as follows.
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A. Proportional-Integral Altitude Tracker
The altitude tracker is a discrete-time proportional-integral controller with a saturation constraint on the output

signal θr [19]. The transfer function of the proportional-integral compensator is

θr (z) = Kp · he(z) + Ki ·
Ts

z − 1
he(z),

where ·(z) is the z-transform of variable ·(t) in time-domain; he is the altitude tracking error, Ts = 0.04s is the sampling
period of control systems; Kp and Ki are respectively the proportional gain and the integral gain of the discrete-time
PI controller. The reference pitch angle signal θr is constrained within [−15◦, 15◦], which is an effective approach to
prevent the actuator saturation in the inner-loop control framework.

B. Multi-Rate Adaptive Pitch Angle Tracker
The multi-rate adaptive pitch angle tracking control law adopted in this paper consists of a pitch angle output

tracking control law, an output predictor, and an adaptation law [8, 32].

1. Tracking Control Law
Control input u(t) or the deviation of elevator δe(t) is implemented via a zero-order hold mechanism with control

period Ts:
u(t) = ud[i].

where t ∈ [iTs, (i + 1)Ts), i ∈ N, in which N = {0, 1, 2, · · · } denotes the set of natural numbers with 0, and ud[i] is a
discrete-time control input. The output of inner-loop control system y(t) or UAV pitch angle θ(t) is sampled N ∈ N+

times faster with period Ts/N , whereN+ = {1, 2, · · · } represents the set of natural numbers without 0. In our simulations,
we take N = 2 and therefore Ts/N = 0.02 s. Then the discrete-time output yd[ j] can be expressed as

yd[ j] = y

(
j
Ts

N
, ( j + 1)

Ts

N

)
,

where t ∈ [ jTs/N, ( j + 1)Ts/N] and j ∈ N+. Next, we consider the desired dynamics as follows

M(s) = Cm(sI − Am)
−1Bm,

where the triple {Am, Bm,Cm} is a minimal state-space realization of M(s), with Am being Hurwitz and (CmBm) being
nonsingular. The Laplace transform of the desired response ym(t) is given as

ym(s) = M(s)Kgr(s),

where Kg = −(CmA−1
m Bm)

−1, r(s) is the Laplace transform of r(t) given by r(t) = rd[k], t ∈ [kTs, (k +1)Ts], and rd[k] is
the discrete-time reference command or the reference pitch angle θr [k] from PI altitude tracker in this scenario. Finally,
let C(s) be the low-pass filter on control input [33]. Define O(s) := C(s)M−1(s)Cm(sI − Am)

−1, and let {Ao, Bo,Co} be
a minimal state-space realization such that O(s) = Co(sI − Ao)

−1Bo. The discrete-time output tracking control law is
then defined as follows

ud[i] = uN (iTs) + Kgr(iTs), (8)

where i ∈ N, uN (t) = uNd
[ j] with t ∈ [ jTs/N, ( j + 1)Ts/N], uNd

[ j] = −Coxu[ j], xu[ j + 1] = exp(AoTs/N)xu[ j] +
A−1
o [exp(AoTs/N) − I]Bo exp(−AoTs/N)σ̂d[ j] with xu[0] = 0 and j ∈ N, and σ̂d[·] is provided by the adaptation law.

2. Output Predictor
The construction of σ̂d[·] is based on an output predictor governed by

x̂d[ j + 1] = eAm
Ts
N x̂d[ j] + A−1

m

(
eAm

Ts
N − I

)
+ A−1

m

(
Bmup[ j] + σ̂d[ j]

)
,

ŷd[ j] = Cm x̂d[ j],
(9)

where the control input of predictor is defined by up[ j] = u ( jTs/N) with j ∈ N.
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3. Adaptation Law
Since the matrix Am is Hurwitz, there exists a positive definite matrix P solving AT

mP + PAm = −Q for a given
positive definite matrix Q. Define

Λ =

(
Cm

D
√

P

)
, (10)

where
√

P satisfies P =
√

P
T√

P and D is a matrix that is in the null space of Cm

(√
P
)−1

. Let Φ(·) be a matrix such that

Φ(Ts) :=
∫ Ts

N

0
eΛAmΛ

−1
(
Ts
N −τ

)
Λdτ. (11)

The adaptation law is governed by the following equation

σ̂d[ j] = −Φ−1(Ts)eΛAmΛ
−1 Ts

N 1ỹd[ j], (12)

where ỹd[ j] = ŷd[ j] − yd[ j], j ∈ N, and 1 is given by

1 :=

(
I
0

)
. (13)
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