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In this work, we propose and study a novel optimization framework (which we call Grab-n-Pull , or in 

abbreviated form, GnP ) for signal design problems involving max-min fractional quadratic programming. 

Such optimization problems occur frequently in various subareas of signal and information processing. 

Using a penalized version of the original design problem, we derive a simplified quadratic reformulation 

of the problem in terms of the signal (to be designed). Each iteration of the proposed design frame- 

work consists of a combination of power method-like iterations and the Gram-Schmidt process, and as 

a result, enjoys a low computational cost. Particularly, the numerical examples show that the proposed 

method outperforms the widely used semidefinite relaxation approach in terms of both the quality of 

approximate solutions and the computational cost. Moreover, the suggested approach can handle vari- 

ous types of signal constraints such as total-power, per-antenna power, unimodularity, or discrete-phase 

requirements—an advantage which is not shared by other existing approaches in the literature. 

Published by Elsevier B.V. 

1

 

p  

u

 

t  

e  

n  

s  

o  

(  

b  

t  

S  

p  

v

C

u

t

[

l

w  

C  

f  

F  

t  

t

1

 

p

h

0

. Introduction 

Notation: We use bold lowercase letters for vectors and bold up-

ercase letters for matrices. Please see Table 1 for other notations

sed throughout this paper. 

Maximizing the minimal performance is a widely used proac-

ive approach to achieve fairness [2–11] , robustness [12–18] , or

fficiency [19–23] in networked systems requiring advanced sig-

al processing. Interestingly, many of such applications share a

imilar structure of the performance metric; namely, a variety

f quality metrics for signal design, including e.g. signal-to-noise

plus interference) ratio (SINR) and mean-square error (MSE), can

e represented as a ratio of quadratic functions of the signal

o be designed—several examples will be presented shortly in

ection 1.1 . The goal of this paper is therefore to study and pro-

ose an efficient approach to signal design dealing with the fol-
� This work was supported in part by European Research Council (ERC) Ad- 

anced Grant AGNOSTIC-742648 , U.S. National Science Foundation (NSF) Grants 

CF-1704401 , ECCS-1809225 and the National Research Fund ( FNR ) of Luxembourg, 

nder AFR Grant 5779106 . Some parts of this work were presented at the IEEE In- 
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owing NP-hard [7,8] optimization problem: 

P 1 : max. 
w 

min 

i ∈ [ K] 

{ 
w 

H A i w 

w 

H B i w 

} 
s. t. w ∈ �

, (1) 

here w ∈ C 

N is the signal to be designed, A i ∈ C 

N×N and B i ∈
 

N×N are positive semidefinite (PSD) matrices, and � denotes the

easible set of w determined by the associated signal constraints.

or instance the feasible set can be comprised of unimodular vec-

or w or vector w with a finite-energy, depending on the applica-

ion. 

.1. Applications in signal and information processing 

We describe below several examples from signal processing ap-

lications that require tackling P 1 . 

• Precoding for fairness-achieving networks: 

A common interpretation of fairness in the networks entails al-

ocating the available resources in order to maximize the minimal

ser performance [2–10] . In such scenarios, a judicious design of

he precoding signals for different users can be viewed as a vital

art of the network configuration. We consider the general multi-

roup multicast precoding problem [8] for a downlink channel, with

 n Tx -antenna transmitter and K single-antenna users assigned to

 ≤ K multicast groups. In multigroup multicast scenario, G differ-

nt streams are directed to K users, each with their own channel.

https://doi.org/10.1016/j.sigpro.2019.02.006
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
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https://doi.org/10.13039/501100001866
mailto:ahmad.gharanjik@databourg.com
https://doi.org/10.1016/j.sigpro.2019.02.006
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Table 1 

Notations. 

x ( k ) The k th entry of the vector x 

‖ x ‖ n The l n -norm of x , defined as ( 
∑ 

k | x (k ) | n ) 1 n 

X H The complex conjugate of a matrix X 

X T The transpose of a matrix X 

X 
1 
2 The Hermitian square-root of X 

Tr( X ) The trace of a matrix X 

‖ X ‖ F The Frobenius norm of a matrix X 

vec( X ) The vector obtained by column-wise stacking of X 

arg ( X ) The phase angle (in radians) of X 

σ max ( X ) The maximal eigenvalue of X 

σ min ( X ) The minimal eigenvalue of X 

� { X } The real part of X 

E { X } The expected value of the matrix random variable X 

Diag( x ) The diagonal matrix formed by the entries of x 

X �Y The matrix X − Y is positive semidefinite definite 

� The Kronecker product of matrices 

I n The identity matrix of dimension n 

e i The i th standard basis vector in C K 

R + The set of positive real numbers 

C The set of complex numbers 

[ K ] The set { 1 , 2 , . . . , K} 
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We denote the subset of user indices in the k th group by G k for

any k ∈ [ G ]. Let h i ∈ C 

n Tx denote the channel between the transmit

antennas and the i th user. Also let w k ∈ C 

n Tx denote the precoding

vector corresponding to the k th , k ∈ [ G ], multicast group of users.

To form the data stream to the users, any complex symbol to be

transmitted, will be modulated by the precoding vector of the in-

tended group of users. The signal transmitted to the group k from

the antenna array takes the form 

∑ G 
k =1 w 

H s k (t) , where s k ( t ) is the

information stream to the users in k th multicast group. Further

s k ( t ) is modelled as a random variable with zero-mean and unit

variance. The precoding vectors are to be designed in order to en-

hance the network performance. In particular, the SINR value for

any user i ∈ G k (and any k ∈ [ G ]) is given by Karipidis et al. [8,24] 

SINR i = 

w 

H 
k 

R i w k (∑ 

j∈ [ G ] \{ k } w 

H 
j 
R i w j 

)
+ σ 2 

i 

, (2)

where R i = E { h i h 

H 
i } is the covariance matrix of the i th channel,

σ 2 
i 

denotes the variance of the zero-mean additive white Gaussian

noise (AWGN). 

Consequently, the problem of maximizing the minimal user

SINR performance in the network can be formulated as [8] , 

max . 
{ w k } G k =1 

min 

k ∈ [ G ] 

{ 

min 

i ∈G k 

{ 

w 

H 
k 

R i w k (∑ 

j∈ [ G ] \{ k } w 

H 
j 
R i w j 

)
+ σ 2 

i 

} } 

s. t. 

G ∑ 

k =1 

‖ w k ‖ 

2 
2 ≤ P. (3)

Note that by a specific reformulation, the SINR metric in (2) can be

rewritten as a fractional quadratic criterion. To see this, define the

stacked precoding vector w ∈ C 

N (with N = n Tx G ) as 

w � vec ([ w 1 w 2 . . . w G ]) , (4)

and observe that (2) will increase for any increased scaling of w .

As a result, any finite-energy constraint on w while maximizing

{SINR i } will be active , i.e. it will be satisfied with equality. Accord-

ingly, we let ‖ w ‖ 2 2 = P, implying the constraint is active and w

should be designed with maximum possible energy. The we make

use of the definitions, 

A i � Diag ( e i ) � R i , ∀ i ∈ [ K] , (5)

B i � ( I K − Diag ( e i ) ) � R i + 

σ 2 
i I N , ∀ i ∈ [ K] . (6)
P 
ow, it is not difficult to verify that 

INR i = 

w 

H A i w 

w 

H B i w 

, ∀ i ∈ [ K] , (7)

n which { A i } are PSD and { B i } are positive definite (PD). As a re-

ult, the precoding design problem for maximizing the minimal

ser SINR performance can be formulated as P 1 . Note that P 1 may

lso be used to formulate the weighted SINR optimization prob-

ems; see [2,3,8,25,26] for details. 

The problem of optimizing a particular SINR i in Eq. (7) takes

he form of a general Rayleigh coefficient maximization. However,

nlike the Rayleigh coefficient optimization, the problem pursued

nvolved constraints on the feasible set of w and also involves op-

imization of multiple coefficients. 

• Relay beamforming: 

Relays are typically needed to improve the communication per-

ormance between user pairs experiencing poor channel quality.

e consider a MIMO AF two-way relay network consisting of M R 

ntennas, L operators and pairs of user terminals as described in

27,28] . We assume single-antenna user terminals and flat fading

hannels between the i th user of the j th operator and the relay,

hich are denoted by { h i,j } [29] . The received signal at the relay

an be expressed as [27–29] , 

 = 

L ∑ 

j=1 

2 ∑ 

i =1 

h i, j x i, j + n R , (8)

here x i,j is the transmitted symbol by the i th user of the j th oper-

tor with power p i,j (given by E {| x i, j | 2 } ), and n R denotes the circu-

arly symmetric white Gaussian noise with covariance matrix σ 2 
R 

I 

t the relay. By employing the AF protocol, the transmit signal of

he relay is given by 

 

 = W r (9)

ith W ∈ C 

M R ×M R being the relay amplification matrix, which is to

e designed. Assuming channel reciprocity between the relay and

sers [27] , the received signal y i,j of the i th user at the j th operator

ecomes 

 i, j = h 

T 
i, j ̃

 r + n i, j , (10)

here n i,j is the associated (white) noise component (with variance
2 
i, j 

). The minimal user-rate in the network can be formulated as

27] 

 min = 

1 

2 

min 

j∈ [ L ] , i ∈ [2] 
log 2 (1 + γi, j ) . (11)

erein, γ i,j denotes the signal-to-interference-plus-noise ratio

SINR) for the i th user of the j th operator and it has the follow-

ng expression [27] 

i, j = 

w 

H �i, j w 

w 

H ( ϒi, j + �i, j ) w + σ 2 
i, j 

, (12)

here w = vec ( W ) and the matrices �i,j , ϒi,j , �i,j are defined as 

�i, j = p i, j 

(
h 

T 
3 −i, j � h 

T 
i, j 

)H (
h 

T 
3 −i, j � h 

T 
i, j 

)
, (13)

ϒi, j = 

∑ 

˜ i 

∑ 

˜ j 	 = j 
p ˜ i , ̃  j 

(
h 

T ˜ i , ̃  j 
� h 

T 
i, j 

)H (
h 

T ˜ i , ̃  j 
� h 

T 
i, j 

)
, 

�i, j = σ 2 
R 

(
I M R 

� ( h i, j h 

T 
i, j ) 
)
. 

he minimal-rate maximization is constrained via the total avail-

ble power P R at the relay, viz. 

 {‖ ̃

 r ‖ 

2 
2 } = Tr { E { W r r H W 

H }} 

= 

L ∑ 

j=1 

2 ∑ 

i =1 

p i, j ‖ W h i, j ‖ 

2 
2 + σ 2 

R ‖ W ‖ 

2 
F ≤ P R (14)
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c 1  

1 A specific formulation of SDR to tackle P 1 is discussed in Section 5 . 
hich can be expressed with respect to (w.r.t.) w as w 

H Cw ≤ P R 
here 

 = σ 2 
R I M 

2 
R 
+ 

L ∑ 

j=1 

2 ∑ 

i =1 

p i, j (( h i, j h 

H 
i, j ) 

T 
� I M R 

) . (15)

herefore, the design problem (i.e., min-rate maximization) in

IMO AF relay networks with L operators can be cast as the fol-

owing problem: 

ax . 
w 

min 

j∈ [ L ] , i ∈ [2] 
log 2 

(
1 + 

w 

H �i, j w 

w 

H (ϒi, j + �i, j ) w + σ 2 
i, j 

)
s. t. w 

H C w ≤ P R . (16) 

imilar to the previous example, the inequality constraint in the

bove problem is active at the optimal point, so we can assume

hat w 

H C w = P R . Also note that log 2 (1 + γi, j ) is a strictly increas-

ng monotonic function of γ i,j . Therefore, we can simplify (16) by

eplacing log 2 (1 + γi, j ) with γ i,j . Thus, (16) can be equivalently

ritten in the form of P 1 . 

• Doppler-robust waveform design for active sensing: 

In the following, we describe briefly the robust waveform de-

ign formulation of [16] for enhancing the detection of moving

argets whose speed is unknown at the radar transmitter. We

onsider a radar system with (slow-time) transmit sequence x ∈
 

N and receive filter w ∈ C 

N . The discrete-time received signal

ackscattered from a moving target corresponding to the range-

zimuth cell under the test can be modeled as (see, e.g. [30,31] ):

 = αT x � p (ν) + c + n , (17)

here αT is a complex parameter associated with backscatter-

ng effects of the target as well as propagation effects, p (ν) =
1 , e jν , . . . , e j(N−1) ν ] T with ν being the normalized target Doppler

hift (expressed in radians), c is the N -dimensional column vector

ontaining clutter (signal-dependent interference) samples, and n

s the N -dimensional column vector of (signal-independent) inter-

erence samples. The SINR at the output of the receive filter can be

ormulated as 

INR (ν) = 

| αT | 2 
∣∣w 

H ( x � p (ν) ) 
∣∣2 

w 

H �c ( x ) w + w 

H M w 

, (18) 

here M � E { n n 

H } and �c ( x ) is the covariance matrix of c given

y Aubry et al. [30] 

c ( x ) = 

N c −1 ∑ 

k =0 

L −1 ∑ 

i =0 

σ 2 
(k,i ) J k �( x , (k, i )) J T k (19)

ith σ 2 
(k,i ) 

= E 

[| α(k,i ) | 2 
]

being the mean interfering power as-

ociated with the clutter patch located at the (k, i ) th range-

zimuth bin whose Doppler shift is supposed to be uniformly

istributed in the interval �c = 

(
ν̄d (k,i ) 

− ε(k,i ) 

2 , ν̄d (k,i ) 
+ 

ε(k,i ) 

2 

)
[31] .

erein �( x , (k, i )) = Diag ( x ) �
ν̄d (k,i ) 
ε(k,i ) 

Diag ( x ) H where �
ν̄d (k,i ) 
ε(k,i ) 

(l, m ) is

he covariance matrix of p (νd (k,i ) 
) [30] , viz. 

ν̄d (k,i ) 

ε(k,i ) 
(l, m ) = 

{ 

1 if l = m (
sin [0 . 5(l−m ) ε(k,i ) ] 

[0 . 5(l−m ) ε(k,i ) ] 

)
e 

j(l−m ) ̄νd (k,i ) if l 	 = m 

(l, m ) ∈ { 1 , . . . , N} 2 . 
(20) 

he problem of Doppler robust joint design of transmit sequence

 and receive filter w can be cast as the following max-min opti-
ization problem: 

 D : 
max. 
x , w 

min 

ν∈ �

{ ∣∣w 

H ( x � p (ν) ) 
∣∣2 

w 

H �c ( x ) w + w 

H M w 

} 

s. t. ‖ x ‖ 

2 
2 = e 

, (21) 

here � = [ νl , νu ] ⊆ [ −π, π ] denotes a given interval of the tar-

et Doppler shift ν and e denotes the maximum available trans-

it energy. Note that for a priori known target Doppler shift ˜ ν (i.e.

= [ ̃  ν, ̃  ν] ), the problem P D boils down to the considered prob-

em in [30] . The reader may now observe that for any given ν , and

xed x , the objective of (21) is a fractional quadratic function of

 . Similarly, for any given ν , and fixed w , the objective of (21) can

e written as a fractional quadratic function of x . As a result, for

ny of x or w , (21) can be considered as a continuous version of

 1 , with Doppler shifts taking values within a continuous interval.

n the other hand, a discrete version of (21) , whose Doppler shifts

ccur on a discrete grid, will fit exactly the formulation of P 1 . 

• Robust classification in machine learning: 

The focus of this example is the linear discriminant analysis

LDA) method used in statistics, pattern recognition and machine

earning to find a linear function of the features that separates sev-

ral classes of objects or events [32–38] . We assume T classes with

he i th class of data having a mean of μi and the same covariance

atrix �. Then the scatter between classes may be defined by the

ample covariance of the class means [39] 

′ = 

1 

T 

T ∑ 

i =1 

( μi − μ)( μi − μ) T , (22) 

here μ is the mean of the class means. The class separation in a

irection w in this case will be given by 

= 

w 

H �′ 
w 

w 

H �w 

. (23) 

owever, we note that the class parameters may be subject to

hange in time-varying scenarios, or may come from different

gents in networked environments. Moreover, LDA can be sensitive

o errors or imperfections in the input data [40] . As a result, one

ay need to simultaneously optimize θ for various pairs of ( �, �′ )
o achieve a robust classifier, which will require tackling P 1 . 

.2. Related works and contributions of the paper 

Due to its vast of area of applications, P 1 has been studied ex-

ensively in the literature, particularly when � denotes a total-

ower or per-antenna power constraint (see e.g., [2–6,8–10] and

he references therein). As a result, different approaches have been

roposed to solve the design problem, including those based on

plink-downlink duality [2] , the Lagrangian duality [4] and quasi-

onvex formulations [10] . The semidefnite relaxation (SDR) [41] is,

owever, the most prominent approach to the type of problems

esembling to P 1 . 
1 In this work, we propose a novel optimization

ramework (which we call Grab-n-Pull, or GnP) that can efficiently

ackle P 1 . Note that the proposed framework subsumes the tra-

itional methods handling total-power or per-antenna power con-

traints, while also allowing for intricate signal constraints such as

nimodularity or discrete-phase requirements. In addition, the pro-

osed method appear to outperform the widely used semidefinite

elaxation approach in terms of both the quality of approximate

olutions and the computational cost. 

The rest of this work is organized as follows. Section 2 dis-

usses several properties of P , and presents various interesting
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problem structures with strong connection to P 1 . Section 3 dis-

cusses the proposed max-min optimization framework. Section IV

further studies the proposed framework and associated parameter

settings. Several numerical examples are provided in Section 5 . Fi-

nally, Section 6 concludes the paper. 

2. Preliminaries and related problems 

In order to study P 1 , the following preliminary remarks appear

to be necessary: 

1) The objective of P 1 and its optima (values) are independent to

a scaling of w . As a result, we can readily assume that w has

a given l 2 -norm. More precisely, in the sequel we assume that

‖ w ‖ 2 
2 

= P where P ∈ R + is fixed. Such an assumption can be

used conveniently along with other signal constraints used in

practice— see the discussion on signal constraints below (42) . 

2) The objective of P 1 is upper bounded via the generalized eigen-

value bound [42] , 

w 

H A i w 

w 

H B i w 

≤ σmax 

{
B 

−1 
i A i 

}
, ∀ w 	 = 0 . (24)

Due to the max-min inequality [43] , the latter bound implies 

max 
w 

{
min 

i ∈ [ K] 

{
w 

H A i w 

w 

H B i w 

}}
≤ min 

i ∈ [ K] 

{
max 

w 

{
w 

H A i w 

w 

H B i w 

}}
≤ min 

i ∈ [ K] 

{
σmax 

{
B 

−1 
i A i 

}}
. (25)

As a consequence of (25) , any optimization approach that can

yield a monotonically increasing sequence of the objective of

P 1 is convergent [44] . 

There are several interesting problems that have strong connec-

tions to P 1 ; and thus tackling P 1 may hold the key to approaching

them. We itemize such problems below. 

• Fractional quadratic programming: 

P 1 ,single : max. 
w 

w 

H A i w 

w 

H B i w 

s. t. w ∈ �, (26)

Clearly, this is a special case of P 1 with K = 1 . 

• Max-min quadratic programs: 

P 1 ,QP : max. 
w 

min 

i ∈ [ K] 

{
w 

H A i w 

}
s. t. w ∈ �, (27)

which is a special case of P 1 with { B i } set to an scaled version

of the identity matrix. 

• Min-max fractional quadratic programming: The proposed al-

gorithm in this paper can be used to approach the min-max

alternatives of P 1 : 

P 1 , minmax : min. 
w 

max 
i ∈ [ K] 

{
w 

H A i w 

w 

H B i w 

}
s. t. w ∈ �, (28)

as such problems can be easily rewritten in the form of P 1 .

Namely, (28) is equivalent to 

max. 
w 

min 

i ∈ [ K] 

{
w 

H B i w 

w 

H A i w 

}

s. t. w ∈ �. (29) 
• Matrix P 1 : One can tackle the matrix optimization problem 

P 1 , Tr : max. 
W 

min 

i ∈ [ K] 

{ 

Tr 
(
W 

H A i W 

)
Tr 
(
W 

H B i W 

)} 

s. t. W ∈ � (30)

through P 1 by employing the identity Tr 
(
W 

H X W 

)
= w 

H ( I �

X ) w , in which w = v ec( W ) . 

. The max-min optimization framework 

We begin by considering a reformulated version of P 1 ;

amely, 

 2 : max. 
w 

min 

i ∈ [ K] 
{ λi } 

s. t. w ∈ �, (31)

λi = 

w 

H A i w 

w 

H B i w 

, ∀ i ∈ [ K] . (32)

ote that (32) holds if and only if ‖ A 

1 
2 
i 

w ‖ 2 
2 

= λi ‖ B 

1 
2 
i 

w ‖ 2 
2 
, or equiv-

lently ‖ A 

1 
2 
i 

w ‖ 2 = 

√ 

λi ‖ B 

1 
2 
i 

w ‖ 2 . In particular, the left-hand side of

32) is close to the right-hand side of (32) if and only if ‖ A 

1 
2 
i 

w ‖ 2 
s close to 

√ 

λi ‖ B 

1 
2 
i 

w ‖ 2 . Therefore, by employing the auxiliary vari-

bles { λi }, one can consider the following optimization problem as

n alternative to P 2 (and P 1 ): 

 3 : max. 
w , { λi } 

min 

i ∈ [ K] 
{ λi } − η

K ∑ 

i =1 

(‖ A 

1 
2 

i 
w ‖ 2 −

√ 

λi ‖ B 

1 
2 

i 
w ‖ 2 ) 

2 

s. t. w ∈ � ; λi ≥ 0 , ∀ i ∈ [ K] ; (33)

n which η > 0 determines the weight of the penalty-term added

o the original objective of P 2 ; and where P 3 and P 2 coincide as

→ + ∞ . Note that optimizing P 3 w. r. t. w may require rewriting

 3 as a quartic objective in w . To circumvent this, we continue by

ntroducing P 4 —yet another alternative objective: 

 4 : max. 
w , { λi } , { Q i } 

min 

i ∈ [ K] 
{ λi } − η

K ∑ 

i =1 

‖ A 

1 
2 

i 
w −

√ 

λi Q i B 

1 
2 

i 
w ‖ 

2 
2 

s. t. w ∈ � , λi ≥ 0 , ∀ i ∈ [ K] ; (34)

Q 

H 
i Q i = I N , ∀ i ∈ [ K] . (35)

o see why P 4 and P 3 are equivalent, observe that the minimizer

 i of P 4 (satisfying (35) , also known as Steifel manifold [45–47] ) is

 unitary rotation matrix that aligns the vector B 

1 
2 
i 

w in the same

irection as A 

1 
2 
i 

w , without changing its � 2 -norm. More precisely, at

he minimizer Q i of P 4 , we have that 

 i B 

1 
2 

i 
w = 

( 

A 

1 
2 

i 
w 

‖ A 

1 
2 

i 
w ‖ 2 

) 

‖ B 

1 
2 

i 
w ‖ 2 . (36)

sing (36) , it is straightforward to verify that 

K ∑ 

i =1 

‖ A 

1 
2 

i 
w −

√ 

λi Q i B 

1 
2 

i 
w ‖ 

2 
2 

= 

K ∑ 

i =1 

∥∥∥∥∥A 

1 
2 

i 
w −

√ 

λi 

( 

A 

1 
2 

i 
w 

‖ A 

1 
2 

i 
w ‖ 2 

) 

‖ B 

1 
2 

i 
w ‖ 2 

∥∥∥∥∥
2 

2 

= 

K ∑ 

i =1 

(∥∥∥A 

1 
2 

i 
w 

∥∥∥
2 

−
√ 

λi 

∥∥∥B 

1 
2 

i 
w 

∥∥∥
2 

)2 

(37)
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hich concludes the observation. 

In contrast to P 3 , the optimization problem P 4 can be easily

ewritten as a quadratic program (QP) in w ; a widely studied type

f program that facilitates the usage of power method-like itera-

ions, and thus employing different signal constraints �—more on

his later. Note that, until now, we have shown that, 

• P 1 and P 2 are equivalent. 

• P 3 and P 4 are equivalent. 

• P 3 and P 4 can be used as alternatives to the original problem,

i.e. P 1 . 

In the following, our goal is to 

• propose an efficient iterative optimization framework based on

a separate optimization of the objective of P 4 over its three par-

tition of variables, viz. w , { Q i }, and { λi }, and in particular, 

• study the properties of P 4 to pave the way for an effective us-

age of our proposed framework in tackling fractional quadratic

programs. 

We note that considering P 3 can also be useful in such a study,

s P 3 may be viewed as a simplified version of P 4 , in which the

bjective is already optimized w. r. t. { Q i }. 

.1. Power method-Like iterations (optimization w. r. t. w ) 

For fixed { Q i } and { λi }, one can optimize P 4 w. r. t. w via mini-

izing the criterion: 

K 
 

i =1 

‖ A 

1 
2 

i 
w −

√ 

λi Q i B 

1 
2 

i 
w ‖ 

2 
2 = w 

H R w , (38) 

here 

 = 

K ∑ 

i =1 

{ 
( A i + λi B i ) −

√ 

λi ( A 

1 
2 

i 
Q i B 

1 
2 

i 
+ B 

1 
2 

i 
Q 

H 
i A 

1 
2 

i 
) 
} 
. (39) 

ue to the fact that � enforces a fixed � 2 -norm on w (i.e. ‖ w ‖ 2 2 =
 ), by defining ˆ R � μI − R (in which μ> 0 is larger than the max-

mum eigenvalue of R ), we have that 

 

H R w = −w 

H ˆ R w + μ P ︸︷︷︸ 
const. 

(40) 

onsequently, one can minimize (or decrease monotonically) the

riterion in (38) by maximizing (or increasing monotonically) the

bjective of the following optimization problem: 

max. 
w 

w 

H ˆ R w (41) 

s. t. w ∈ �. 

lthough (41) is NP-hard for a general signal constraint set [4 8,4 9] ,

 monotonically increasing objective of (41) can be obtained using

ower method-like iterations developed in [49,50] ; namely, we up-

ate w iteratively by solving the following nearest-vector problem

t each iteration: 

min 

 

(s +1) 

∥∥w 

(s +1) − ˆ R w 

(s ) 
∥∥

2 
(42) 

. t. w 

(s +1) ∈ �, 

here s denotes the internal iteration number, and w 

(0) is the cur-

ent value of w . Note that we can continue updating w until con-

ergence in the objective of (41) , or for a fixed number of steps,

ay S . A proof of the monotonic behavior of power method-like iter-

tions is presented in Appendix A . The interested readers can also

nd an approximation method to solve (41) and (42) in [52,53] . 

Now, we take a deeper look at various signal constraints � typ-

cally used in practice, as well as their associated constrained so-

utions to (42) : 
• Total-power constraint: Note that the energy of designed sig-

als should always be upper bounded in practice, which can be

ormulated as a total-power constraint, viz. 

= { w : ‖ w ‖ 

2 
2 = P } , P > 0 . (43) 

In this case, the set of power method-like iterations in

42) boils down to a typical power method aiming to find the dom-

nant eigenvector of ˆ R , however with an additional scaling to attain

 power of P . 

• Per-antenna power constraint: Power management per an-

enna avoids an uneven (and most likely hazardous) distribution

f power over the antenna array, and is shown to be more ef-

ective than total-power constraint in some applications; see e.g.

54] . We consider K antennas each with a power of P ant , and as-

ume that M = N/K entries of w are devoted to each antenna. As

 result, we can solve (42) by considering the nearest-vector prob-

em for sub-vectors associated with each antenna separately—i.e.,

 nearest-vector problems all with vector arguments of length M . 

• Unimodular signal design: Unimodular codes are widely used

n many radar and communication applications due to their low

eak-to-average-power ratio [49,55] . The set of unimodular codes

s defined as 

= 

{
e jϕ : ϕ ∈ [0 , 2 π) 

}N 
. (44) 

oreover, the unimodular solution to (42) is simply given by 

 

(s +1) = exp 

(
j arg 

(
ˆ R w 

(s ) 
))

. (45) 

• Discrete-phase signal design: Such signals share the low peak-

o-average-power ratio property of unimodular signals, and at the

ame time, offer a reduced implementation complexity due to their

iscrete/finite nature [55,56] . We define the set of discrete-phase

ignals as 

= 

{ 
e j 

2 π
Q q : q = 0 , 1 , · · · , Q − 1 

} N 
(46) 

here Q denotes the phase quantization level. The discrete-phase

olution to (42) is given by 

 

(s +1) = exp 

(
jμQ 

(
arg 
(

ˆ R w 

(s ) 
)))

(47) 

here μQ (.) yields (for each entry of the vector argument) the

losest element in the Q -ary alphabet described in (46) . 

We refer the interested reader to find more details on the prop-

rties of power method-like iterations in [49–51] . 

.2. Rotation-Aided fitting (optimization w. r. t. { Q i }) 

Suppose w and { λi } are fixed. As discussed earlier, the maxi-

izer Q i of P 4 is a rotation matrix that maps B 

1 
2 
i 

w in the same

irection as A 

1 
2 
i 

w . Let 
 

u i = A 

1 
2 

i 
w / ‖ A 

1 
2 

i 
w ‖ 2 , 

v i = B 

1 
2 

i 
w / ‖ B 

1 
2 

i 
w ‖ 2 , 

(48) 

nd note that (36) can be rewritten as, 

 i = Q i v i (49) 

or all i ∈ [ K ]. We define unitary matrices Q u i 
and Q v i in C 

N×N as 

 u i 
= [ ̂  u i 1 , ̂  u i 2 , . . . , ̂  u iN ] (50) 

 v i = [ ̂  v i 1 , ̂  v i 2 , . . . , ̂  v iN ] , (51) 

here each of the sets { ̂  u i j } j and { ̂  v i j } j , j ∈ [ N ], builds an orthonor-

al basis for C 

N , and ̂ u i 1 = u i , ̂ v i 1 = v i . 
(52) 
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Table 2 

Recursive Grab-n-Pull procedure to determine ϒ . 

Step 0 : Set ϒ = ∅ . 

Step 1 : Include 1 in ϒ . 

Remark: Based on Lemma 2 , the primitive index 1 belongs to ϒ , as 
√ 

λ� is always larger than γ 1 . 

Step 2 : Given the current index set of minimal variables ϒ , obtain 
√ 

λ� using (57) . 

Remark: Note that if 
√ 

λ� is smaller than γ k for all k ∈ [ K ] \ ϒ then the obtained ϒ is optimal, as all λk with k ∈ [ K ] \ ϒ have chosen their values freely to maximize the 

objective of �; as a result, adding other indices to ϒ will lead to a decreased objective of �. 

Step 3 : Let { h } ⊂ [ K ] denote the indices for which h 	∈ ϒ . If γh ≤
√ 

λ� , include h in ϒ , and goto Step 2; otherwise stop. 

Remark: This is a direct consequence of Lemma 2 , particularly considering that 
√ 

λ� is only increasing with growing | ϒ |, which corresponds to adding larger γ i s to the 

weighted sum in ( 58 ). 
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Based on the above definitions, the following lemma constructs the

optimal Q i (the proof of Lemma 1 is straightforward and omitted

herein): 

Lemma 1. The maximizer { Q i } of P 4 can be found as 

Q i = Q u i 
Q 

H 
v i (53)

for all i ∈ [ K ] . 

Remark 1. Note that { Q u i 
} and { Q v i } are not generally unique

since { ̂  u i j } and { ̂  v i j } can be chosen rather arbitrarily for j 	 = 1. This

further implies that the maximizer { Q i } of P 4 is also not unique,

which is in agreement with the common understanding that ro-

tation matrices are not necessarily unique when the dimension

grows large. 

3.3. Grab-n-Pull (optimization w. r. t. { λi }) 

Note that according to (37) , once the optimal { Q i } are used, the

objectives of P 3 and P 4 can be considered interchangeably. We as-

sume that optimal w and { Q i } are obtained according to the guide-

lines described in Sections 3.1 and 3.2 , respectively, and are fixed.

Therefore, to find { λi }, we can equivalently focus on obtaining the

maximizer { λi } of P 3 via the optimization problem: 

� : max. 
{ λi } 

min 

i ∈ [ K] 
{ λi } − η

K ∑ 

i =1 

(‖ A 

1 
2 

i 
w ‖ 2 −

√ 

λi ‖ B 

1 
2 

i 
w ‖ 2 ) 

2 

s. t. λi ≥ 0 , ∀ i ∈ [ K] . (54)

While the above problem may be reformulated and solved using

convex optimization tools, a more insightful approach to optimize

{ λi }, referred to as Grab-n-Pull, is presented below. Particularly, the

proposed approach sheds light on the behavior of λi s in their op-

timal setting. 

Definition 1. Let { λ� 
i 
} denote the optimal { λi } of �, and λ� �

min i ∈ [ K] 

{
λ� 

i 

}
. We let ϒ to denote the set of all indices m for which

λ� 
m 

takes the minimal value among all { λ� 
i 
} , i.e. 

ϒ = { m ∈ [ K] : λ� 
m 

= λ� } . (55)

Moreover, we refer to γ 2 
i 

� ‖ A 

1 
2 
i 

w ‖ 2 
2 
/ ‖ B 

1 
2 
i 

w ‖ 2 
2 

as the shadow

value of λ� 
i 
, for all i ∈ [ K ]. 

It is straightforward to verify from the objective of (54) that if

λ� 
i 

> λ� , then λ� 
i 

= γ 2 
i 

. On the other hand, to obtain λ� , we need

to maximize the criterion: 

f (λ) = λ − η
∑ 

k ∈ ϒ

(
‖ A 

1 
2 

k 
w ‖ 2 −

√ 

λ‖ B 

1 
2 

k 
w ‖ 2 

)2 

. (56)

Provided that η is large enough (see Section 4 ), the optimal λ� of

the quadratic criterion in (56) is given by 

√ 

λ� = 

η
∑ 

k ∈ ϒ αk βk 

η
∑ 

k ∈ ϒ β2 − 1 

(57)

k c
n which αk � ‖ A 

1 
2 
k 

w ‖ 2 , and βk � ‖ B 

1 
2 
k 

w ‖ 2 . It is interesting to have

ome insight into what 
√ 

λ� represents: Note that (57) can be

ewritten as 

 

λ� = 

∑ 

k ∈ ϒ γk β
2 
k ∑ 

k ∈ ϒ β2 
k 

− 1 /η
. (58)

s a result, 
√ 

λ� can be viewed as a weighted average of γ k 

or k ∈ ϒ—except that the term −1 /η in the denominator of

58) makes 
√ 

λ� a bit larger than the actual weighted average.

owever, for an increasing η, 
√ 

λ� converges to the exact value of

he weighted average specified above. 

Hereafter, we propose a recursive Grab-n-Pull procedure to fully

etermine ϒ . Note that once ϒ is given, one can obtain 

√ 

λ� 

ia (57) . The proposed approach will make use of the following

bservation: 

emma 2. If γ 2 
i 

< λ� for any i ∈ [ K ], then i ∈ ϒ . 

roof. The inequality γ 2 
i 

< λ� implies that λ� 
i 

	 = γ 2 
i 

. Considering

he discussion above (56) , one can conclude that λ� 
i 

≤ λ� , which

ue to the definition of λ� yields λ� 
i 

= λ� . Hence, the proof is

omplete. �

Without loss of generality, and for the sake of simplicity, we

ssume in the sequel that the matrix pairs {( A i , B i )} are sorted in

uch a way to form the ascending order: 

 ≤ γ1 ≤ γ2 ≤ · · · ≤ γK . (59)

ased on the above reordering, the proposed approach is described

n Table 2 . Moreover, an illustration of the method is depicted in

ig. 1 . The name of the method, i.e. Grab-n-Pull , comes from the

ntuition that the method grabs and pulls the lowest values of { λi }

o a level which is suitable for optimization of the alternative ob-

ectives, while achieving equality , at least for the lowest λi s. 

Finally, our optimization framework based on maximizing the

bjective of P 4 over w , { Q i }, and { λi } is summarized using a

owchart in Fig. 2 . Note that, due to the key role of Grab-n-Pull

rocedure in the proposed optimization framework, we also use

he term Grab-n-Pull (or its abbreviated form GnP) when referring

o the general framework. In the following section, we study dif-

erent criteria in choosing a suitable η, as well as the various in-

eresting aspects tied to the proposed framework. 

. Grab-n-Pull: convergence, settings and discussions 

To perform a suitable selection of η, one should note that unlike

he objective of the original problem P 1 , choosing η may be sensi-

ive not only to { A k } and { B k }, but also to the power, or a scaling of

he signal w . This can be observed easily from the penalty terms

n P 3 and P 4 where a scaling of w can be fully compensated via a

orresponding scaling in η. 
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Fig. 1. An illustration of the Grab-n-Pull procedure. The optimal values of { λi } are obtained when λ� < γ 2 
3 , which sets ϒ to {1, 2}. 

Fig. 2. Flowchart of the proposed algorithm performing the optimization w. r. t. all variables at each iteration. 
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.1. Guaranteed convergence by bounding η

We begin our study from f ( λ) in (56) . In particular, by defining

k and βk as in (57) , f ( λ) can be written as 

f (λ) = λ − η
∑ 

k ∈ ϒ

(
α2 

k + λβ2 
k − 2 

√ 

λαk βk 

)
= λ

( 

1 − η
∑ 

k ∈ ϒ
β2 

k 

) 

+ 2 

√ 

λη

( ∑ 

k ∈ ϒ
αk βk 

) 

− η
∑ 

k ∈ ϒ
α2 

k . (60) 

ote that the above quadratic function of 
√ 

λ can be meaning-

ully maximized (with a bounded solution) if and only if 1 −∑ 

k ∈ ϒ β2 
k 

< 0 , or equivalently, 

> 

( ∑ 

k ∈ ϒ
β2 

k 

) −1 

= 

( 

w 

H 

( ∑ 

k ∈ ϒ
B k 

) 

w 

) −1 

. (61) 
P

n order to ensure the satisfaction of (61) , one can choose the fol-

owing conservative lower bound for η: 

> ηlb � 

1 

P 

(
max 
i ∈ [ K] 

{
σ−1 

min 
( B i ) 
})

. (62) 

t should be emphasized that satisfying (62) also guarantees the

onvergence of our optimization framework, due to the following

esult: 

heorem 1. Suppose η is large enough to satisfy (62) . Then, f ( λ) is

pper bounded (at its maximizer λ� , see (57) ) as 

f (λ� ) ≤
∑ 

k ∈ ϒ α2 
k ∑ 

k ∈ ϒ β2 
k 

− 1 /η

≤ σmax 

⎧ ⎨ ⎩ 

( ( ∑ 

k ∈ ϒ
B k 

) 

− 1 

ηP 
I 

) −1 ( ∑ 

k ∈ ϒ
A k 

) 

⎫ ⎬ ⎭ 

. (63) 

roof. Please refer to Appendix B . 
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Proof of Convergence: To see why Theorem 1 implies the con-

vergence of our algorithm, observe that different steps of the pro-

posed framework lead to an increasing objective of P 4 (and P 3 ).

To guarantee convergence in terms of the objective value, we only

need to show that the objective is bounded from above—a con-

dition which will be met by satisfying (62) . Thus, the proof is

complete. �

4.2. Error-bound derivation 

Considering the value of η as in (62) lays the ground for un-

folding further connections between P 1 / P 2 and P 3 / P 4 , as well as

what the alternative objectives in P 3 / P 4 represent. In particular,

we show in the following that the error induced by transition to

the alternating objectives P 3 / P 4 (namely employing { √ 

λi } in lieu

of { γ i }) is always bounded by the amount of the penalty function:

Theorem 2. Suppose η satisfies (62) . In such a case, the deviation in

the values of { √ 

λi } with regard to the shadow values { γ i } will be

bounded as 2 ∣∣∣∣min 

i ∈ [ K] 
{ γi } − min 

i ∈ [ K] 

{ √ 

λi 

} ∣∣∣∣2 < � (64)

where ϱ denotes the penalty function of P 3 / P 4 , viz. 

� = η
K ∑ 

i =1 

(∥∥∥A 

1 
2 

i 
w 

∥∥∥
2 

−
√ 

λi 

∥∥∥B 

1 
2 

i 
w 

∥∥∥
2 

)2 

. (65)

Proof. Let ε denote the l 2 -norm of the representation error , 

ε 2 � 

K ∑ 

i =1 

(
γi −

√ 

λi 

)2 

(66)

caused by using { √ 

λi } in lieu of { γ i } in the original max-min ob-

jective of P 1 . We make use of the following lemma whose proof is

provided in Appendix C . 

Lemma 3. The difference of minimal { γ i } and { √ 

λi } is bounded by

the representation error as ∣∣∣∣min 

i ∈ [ K] 
{ γi } − min 

i ∈ [ K] 

{ √ 

λi 

} ∣∣∣∣2 ≤ ε 2 . (67)

Now it remains to verify that ε2 ≤ ϱ: 

� = η
K ∑ 

i =1 

(∥∥∥A 

1 
2 

i 
w 

∥∥∥
2 

−
√ 

λi 

∥∥∥B 

1 
2 

i 
w 

∥∥∥
2 

)2 

= η
K ∑ 

i =1 

( w 

H B i w ) 
(
γi −

√ 

λi 

)2 

≥
K ∑ 

i =1 

(
γi −

√ 

λi 

)2 

= ε 2 (68)

as η( w 

H B i w ) > 1 holds for all i ∈ [ K ], due to (62) . This concludes the

proof. �

By mathematically bounding the error, the above result reaf-

firms that the smaller we can get the penalty function, the smaller

the difference between the original and the alternative objec-

tives becomes. In particular, if the penalty function attain zero

then the original and alternative problems are equivalent . Now,
2 It might be useful to mention that the error bound is given for 

(
{ γi } , { 

√ 

λi } 
)
, 

which is as effective as a bound derived for 
({ γ 2 

i 
} , { λi } 

)
. 

t  

b  

v  

n  
et g({ λi } , { γ 2 
i 
} ) denote the objective function of P 3 / P 4 . It follows

rom (68) that 

({ λi } , { γ 2 
i } ) = min 

i ∈ [ K] 
{ λi } − � (69)

≤ min 

i ∈ [ K] 
{ λi } − ε 2 � 

˜ g ({ λi } , { γ 2 
i } ) . 

ote that while ˜ g shares the same first term (i.e. min i ∈ [ K ] { λi }) as g ,

ts second term denotes the representation error. In other words, g̃

eplaces the original objective min i ∈ [ K ] { γ i } with min i ∈ [ K ] { λi }, and

onsiders a penalty function that clearly represents the error in-

uced by such change of variables. From this point of view, ˜ g can

e a very interesting objective to look at instead of the objective

f P 1 / P 2 . The fascinating fact here is that by maximizing g (which

s an easier task to accomplish), we are also maximizing ˜ g at the

ame time, as g minorizes ˜ g . We refer the reader to a review of

inorization-maximization (MM) scheme in [57,58] . 

.3. On the penalty coefficient: the larger, the better? 

Although with a larger η one may expect a lower value of the

enalty functions in P 3 and P 4 , a lower η can play a useful role in

peeding up the algorithm. Remember that, given the index set ϒ ,

he maximizer of f ( λ) is given by 

 

λ� = 

∑ 

k ∈ ϒ γk β
2 
k ∑ 

k ∈ ϒ β2 
k 

− 1 /η
. (70)

s discussed earlier, for a finite η > 0, 
√ 

λ� is larger than the below

ighted sum of { γ k } k ∈ [ K ] : 
 ∑ 

k ∈ ϒ
γk β

2 
k 

) 

/ 

( ∑ 

k ∈ ϒ
β2 

k 

) 

, (71)

hich leads to the following bootstrapping effect . 

Remark 2 (Bootstrapping Effect): For the sake of simplicity, as-

ume ϒ has a cardinality of one (including solely a generic index

 ), and consider the associated objective function of �: 

f (λ) = λ − η
(
αk −

√ 

λβk 

)2 
(72)

he goal of employing the penalty function in (72) is for λ
o be as close as possible to its shadow value γ 2 

k 
= α2 

k 
/β2 

k 
=

( w 

H A k w ) / ( w 

H B k w ) . Note that: 

a) For a finite η > 0, the maximizer λ� of f ( λ) is larger than γ 2 
k 

: 

λ� = (β2 
k / (β

2 
k − 1 /η)) γ 2 

k . (73)

b) Only the penalty term of (72) is variable with w . In particu-

lar, for a fixed λ, optimization w. r. t. w will be performed to

achieve a γ 2 
k 

as close as possible to λ� . 

c) Then, thanks to (a), λ� will be chosen to be larger than the cur-

rent value of γ 2 
k 

, and the same phenomenon persists by con-

tinuing with (b). 

In sum, an increased γ 2 
k 

will lead to an increased λ� , and an in-

reased λ� will lead to an increased γ 2 
k 

, until convergence. It is worth

oting that a similar behavior can be observed for | ϒ | > 1. 

Now note that while the bootstrapping effect occurs for any fi-

ite η > 0 satisfying (62) , the penalty coefficient η can be viewed

s a tuning parameter for the speed of the algorithm. Specifically,

ne can easily see that if η is large, λ� will be slightly greater than

he weighted average of { γ 2 
k 
} k ∈ ϒ, whereas for smaller values of η,

he bounces from the weighted average are much larger—and the

ootstrapping process can occur much quicker. In a related obser-

ation, one can also verify that the choice of η affects the cardi-

ality of ϒ . By evaluating f ( λ) at its maximizer λ� (see (70) ) we
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Fig. 3. Transition of the GnP optimization parameters { λi } and { γ 2 
i 
} (distinguished by colors and line-styles) vs. the iteration number for different weights ( η) of the 

penalty-term in P 3 and P 4 : (a) η = 1 , and (b) η = 10 . 
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f (λ� ) = η

( 

η( 
∑ 

k ∈ ϒ αk βk ) 
2 

η
∑ 

k ∈ ϒ β2 
k 

− 1 

−
∑ 

k ∈ ϒ
α2 

k 

) 

(74) 

= 

( ( ∑ 

k ∈ ϒ
β2 

k 

) 

− 1 /η

) −1 

×

⎛ ⎜ ⎜ ⎜ ⎜ ⎝ 

∑ 

k ∈ ϒ
α2 

k + η

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

( ∑ 

k ∈ ϒ
αk βk 

) 2 

−
( ∑ 

k ∈ ϒ
β2 

k 

) ( ∑ 

k ∈ ϒ
α2 

k 

) 

︸ ︷︷ ︸ 
(∗) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎦ 

⎞ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (75) 

ccording to the Cauchy–Schwarz inequality, ( ∗) is always less than

r equal to zero. Also, the equality is attained only if all { γ k } k ∈ ϒ
re identical, or | ϒ | = 1 . As a result, we can conclude that for suf-

ciently large values of η, a pair ( ϒ , λ� ) can serve as a solution to

only if | ϒ | is kept to its minimum, given by the number of min-

mal { γ k } which are also identical. This implies that at the initial

terations of the method when { γ k } are most likely to be distinct,

e should have | ϒ | = 1 ; this can cause difficulty combined with

he fact that a large η requires λ� to take many small steps while

oving away from γ 2 
1 and reaching other { γ k }, and thus increas-

ng | ϒ | (assuming the ordering in (59) ). We should add that the

rab-n-Pull procedure is most useful when | ϒ | > 1, or equivalently

hen η is not very large. 

We conclude this section by discussing the trade-off originated

rom the selection of η, namely the question of a higher conver-

ence speed vs. a smaller value of the penalty functions in P 3 

nd P 4 . To devise a reasonable approach to this trade-off, we con-

ider the following insight: While we can tackle P 1 by blindly

ncreasing all the fractions in the max-min structure, P 3 and P 4 

uggest an alternative approach by employing the auxiliary vari-

bles { λi }. The role of { λi } is to determine the increasing levels

( w 

H A k w )/( w 

H B k w )} should converge to, and the optimization w.

. t. w will be performed such that {( w 

H A k w )/( w 

H B k w )} can get

lose to those levels. Consequently, putting less focus on small val-

es of the penalty functions specified above, only makes the pro-

osed method closer to the blind approach—while leaving us with

he interesting advantages of the proposed framework including
he quadratic nature of the objective, efficiency, and possibility of

orking with various signal constraints. 

. Numerical examples 

In this section, we provide several numerical examples to in-

estigate the performance of the proposed method (performing the

ptimization w. r. t. all variables at each iteration). We first study

he impact of choosing η on the performance of GnP. We then

ompare GnP with SDR in terms of run-time and quality of ap-

roximate solutions. Additionally, we provide an application-driven

xample, in which the GnP algorithm is used to tackle a network

eamforming problem. 

For numerical evaluations, random PSD matrices { A i } and { B i }

re generated using the formula, 

 i = X i X 

H 
i , B i = Y i Y 

H 
i , ∀ i ∈ [ K] , (76) 

here X i and Y i are random matrices in C 

N×N whose elements

re i.i.d. circularly symmetric zero-mean complex Gaussian random

ariables with variance σ 2 = 1 . 

The run-times are obtained on a standard PC with 4 GB mem-

ry and 2.80 GHz processor. In all examples, we stop the op-

imization iterations whenever the increase in the objective be-

omes smaller than ε0 = 10 −6 . Recall from Definition 1 that at op-

imum λ� = min i ∈ [ K] { λi } . Accordingly, we make use of the defini-

ion γ � 2 � min i ∈ [ K] { γ 2 
i 
} , where { γ 2 

i 
} are the shadow values de-

cribed in Definition 1 . 

.1. Impact of the penalty coefficient ( η) 

A discussion on the impact of η was provided in Section 4.3 .

erein, we present a numerical example that illustrates the out-

ome of choosing various values of η in connection to our previous

iscussions. We consider a scenario with (K, N) = (5 , 5) where the

ignal w belongs to set of unimodular vectors (defined in (44) ). The

atrices { A i } and { B i } are generated according to (76) , and the op-

imization problem P 3 (equivaletly P 4 ) is solved for different val-

es of η. 

Note that while the shadow values { γ 2 
i 
} represent the value of

he fractional quadratic terms in the original objective P 1 , the aux-

liary variables { λi } tend to be as close as possible to { γ 2 
i 
} depend-

ng on the weight ( η) of the penalty-terms in P and P . In Fig. 3 ,
3 4 
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Table 3 

Comparison of the performance of GnP and SDR for 100 random realization of { A i } and { B i }, and N = 5 . 

K η Average 

γ � 2 / υSDR (GR1) 

Average 

γ � 2 / υSDR (GR2) 

Average 

γ � 2 / υ� 
SDR 

Average GnP 

CPU time (s) 

Average SDR time / 

Average GnP time 

(GR1) 

Average SDR time / 

Average GnP time 

(GR2) 

Average number of 

GRs (in 10 0 0) (GR2) 

10 1 1.054 1.046 0.8941 1.7034 4.44 10.093 48.7 

0.5/10/10 0 0 1.11 1.105 0.9456 2.4733 3.20 10.045 79.8 

15 1 1.085 1.063 0.8486 2.8970 2.73 10.042 84.6 

0.5/10/10 0 0 1.123 1.103 0.8818 3.4127 2.47 10.034 99.6 

20 0.3 1.067 1.046 0.7753 2.6522 3.32 10.063 58.47 

1 1.096 1.059 0.7884 4.1367 2.11 10.038 105.9 

0.5/10/10 0 0 1.143 1.112 0.8279 4.3395 1.96 10.034 113.1 
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we present the transition of variables { λi } and { γ 2 
i 
} vs. the iter-

ation number for two different settings of η; namely η = 1 and

η = 10 . As discussed earlier, although with a larger η one may ex-

pect a lower value of the penalty functions in P 3 and P 4 , a lower

η can play a useful role in speeding up the algorithm. This phe-

nomenon can also be observed in Fig. 3 , noting that the aforemen-

tioned values of η are chosen to accentuate the trade-off originated

from the selection of η. 

5.2. Comparison with SDR 

In order to examine the performance of the proposed method,

we compare it with the widely used SDR approach [41] . Consider-

ing the total power constraint on the signal ( ‖ w ‖ 2 
2 

= 1 ), P 1 can be

equivalently reformulated as, 

R 1 : max . 
W 

min 

i ∈ [ K] 

{
Tr ( A i W ) 

Tr ( B i W ) 

}
s. t. Tr ( W ) = 1 , W � 0 , Rank ( W ) = 1 , (77)

where W = w w 

H . Relaxing the rank-one constraint and noting that

the objective function is quasi-concave, we can write the corre-

sponding feasibility problem as follows: 

R 2 : find W 

s. t. 
Tr ( A i W ) 

Tr ( B i W ) 
≥ μ, ∀ i ∈ [ K] , 

Tr ( W ) = 1 , W � 0 . (78)

Note that a maximal value of μ may be found using the bisec-

tion method. Particularly, R 2 followed by the bisection procedure

is equivalent to a relaxed version of R 1 in which the rank-one

constraint is dropped. Moreover, for any given μ, R 2 is a (con-

vex) semidefinite program and can be solved using interior-point

solvers [41] . We stop the bisection in the solver whenever the in-

crements in μ become bounded by 10 −6 . 

Let W 

� denote the solution to R 2 after the bisection proce-

dure is complete. Due to the rank relaxation in R 2 , W 

� will not

(in general) be rank-one. In this case, the Gaussian randomization

(GR) method [41,48,59] is typically used to generate L candidates

(from which the one leading to the largest objective will be cho-

sen) for approximating the optimum w 

� of P 1 : Let W 

� = V �V 

H be

the eigen-decomposition of W 

� . The l th candidate ( l ∈ [ L ]) can be

generated as w l = V �1 / 2 v l , where v l ∈ C 

N ∼ CN (0 , I ) [8] . Note that

each w l may be scaled in order to satisfy the constraint ‖ w l ‖ 2 2 = 1 .

We denote the best candidate by w 

� 
GR 

. The corresponding objective

value is thus given by 

υSDR = min 

i ∈ [ K] 

{
w 

� H 
GR A i w 

� 
GR 

w 

� H 
GR 

B i w 

� 
GR 

}
. (79)

As R 2 followed by bisection is a relaxed version of R 1 (and P 1 ),

the optimal value of its objective yields an upper bound on the
ptimal objectives of R 1 (and P 1 ); although it may not be tight.

his upper bound is given as 

� 
SDR = min 

i ∈ [ K] 

{
Tr ( A i W 

� ) 

Tr ( B i W 

� ) 

}
. (80)

hich may be used to examine further the goodness of approxi-

ate solutions provided by various methods. 

We compare the proposed method and SDR with two different

ettings of the GR process. In the first scenario (GR1), we limit the

umber of GRs to L = 10 0 0 . In the second scenario (GR2), we stop

he GR process whenever the SDR computations (including the GR

rocess) lasts at least 10 times of the CPU time required by GnP.

his gives enough time to perform very large number of GRs, in

he order of several 10 0 0 0 randomizations. Table 3 presents the

erformance comparison of GnP and SDR averaged over 100 ran-

om realizations of { A i } and { B i } with N = 5 , a set of values for K ,

nd various η for both scenarios GR1 and GR2. Other than setting a

onstant value for η, inspired by the literature, we have considered

he case with η being increased in two steps (0.5 → 100 → 10 0 0)

fter achieving convergence for each η in use. 

As expected, GR2 provides a (slightly) better performance com-

ared to GR1, however, its run-time is considerably larger than that

f GR1 thanks to the very large number of randomizations. Most

mportantly, it is interesting to observe that, in all cases, GnP out-

erforms SDR in terms of both run-time and the obtained objective

alue of P 1 . In other words, it appears that SDR cannot achieve the

ame quality of approximate solutions even with many random-

zations (the GR2 scenario) which effectively makes SDR compu-

ationally exhaustive. This is presumably due to the specific frac-

ional structure of P 1 (in contrast to the many quadratic optimiza-

ion problems for which SDR is known to yield quality results with

 moderate number of randomizations [41] ). 

.3. Application to multigroup multicast precoding 

Finally, we will use GnP to solve the max-min network precod-

ng problem for achieving fairness in a multigroup multicast sce-

ario. A formulation of this problem in the form of P 1 was detailed

n Section 1.1 . We consider a downlink transmitter with n Tx = 4

ntennas, as well as K = 12 single-antenna users which are di-

ided into G = 2 multicast groups of 6 users. The entries of the

hannel vectors h i are drawn from an i.i.d. complex Gaussian dis-

ribution with zero-mean and unit-variance. The Gaussian noise

omponents received at each user antenna are assumed to have

nit variance, i.e. σ 2 
i 

= 1 for all i ∈ [ K ]. We consider a normalized

otal-power constraint, i.e. with P = 1 , and stop the optimization

terations whenever the objective increase becomes bounded by

= 10 −6 . 

Table 4 summarizes the results of the max-min precoding de-

ign for 300 random realizations of the multigroup multicasting

hannel. Average performance of the GnP for different values of η
s compared with SDR followed by 10 0 0 GRs. It can be seen that

= 10 leads to higher objective of P but increases the run-time
1 
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Table 4 

Comparison of the performance of GnP and SDR in multigroup multicast network precoding for 300 random realization of the channel 

( N = 8 , K = 12 ). 

K η Average γ � 2 / υSDR Average γ � 2 / υ� 
SDR Average GnP CPU time (s) Average SDR time / Average GnP time 

12 1 1.16 0.7796 1.4034 7.5013 

10 1.25 0.8827 8.7017 1.2139 

0 . 5 / 10 / 10 0 0 1.21 0.8449 2.8303 3.6625 
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f the algorithm. On the other hand, increasing η in a few steps,

.e. the case with η = 0 . 5 / 10 / 10 0 0 , provides a good balance be-

ween the solution quality and run-time, while outperforming SDR

n both criteria. 

. Concluding remarks 

An optimization framework for efficient max-min fractional

uadratic programming was proposed and studied. The results can

e summarized as follows: 

• A quadratic alternative of the original problem was proposed.

Thanks to this reformulation, the proposed method can handle

different signal constraints by employing the power method-

like iterations. Moreover, the proposed method enjoys a low

computational cost owing to the simple tasks to be performed

at each iteration. 

• Various aspects of the proposed approach were studied. It was

shown that a lower value of the penalty coefficient η can play

a useful role in speeding up the algorithm. To ensure the effec-

tiveness of the proposed framework, a set of lower bounds on

η were established. 

• It was shown through numerical examples that the proposed

method outperforms SDR (a widely used approach in the lit-

erature) in terms of both quality of the approximate solutions

and the computational cost. 

Based on the above, the proposed framework presents many

nique potentials in tackling max-min fractional quadratic opti-

ization problems, which can be of significant interest in signal

nd information processing applications—many of which are de-

ailed in Section 1.1 . 

ppendix A. Power method-like iterations: proof of 

onotonicity of optimization objective 

While the monotonic increase in quadratic optimization objec-

ives when applying power method-like iterations has been estab-

ished in previous works [49–51] , a short proof will be provided

erein for reader’s convenience. Let w 

(s +1) denote an update of

he vector w provided by power method-like iterations. For a fixed

 

( s ) , the said vector w 

(s +1) is the minimizer of the criterion in (42) ,

.e., 

w 

(s +1) − ˆ R w 

(s ) 
∥∥2 

2 
= const − 2 � 

{
w 

(s +1) H ˆ R w 

(s ) 
}

(81) 

hich implies that w 

(s +1) yields the largest value of

 

{
w 

(s +1) H ˆ R w 

(s ) 
}

among all vectors in �. Now note that 

w 

(s +1) − w 

(s ) 
)H 

ˆ R 

(
w 

(s +1) − w 

(s ) 
)

≥ 0 . (82) 

s a result, 

 

(s +1) H ˆ R w 

(s +1) ≥ 2 � 

{
w 

(s +1) H ˆ R w 

(s ) 
}

− w 

(s ) H ˆ R w 

(s ) 

≥ w 

(s ) H ˆ R w 

(s ) , (83) 

ue to the fact that � 

{
w 

(s +1) H ˆ R w 

(s ) 
}

≥ w 

(s ) H ˆ R w 

(s ) . 
ppendix B. Proof of Theorem 1 

By evaluating f ( λ) at its maximizer λ� (see (57) ) we obtain 

f (λ� ) = η

( 

η( 
∑ 

k ∈ ϒ αk βk ) 
2 

η
∑ 

k ∈ ϒ β2 
k 

− 1 

−
∑ 

k ∈ ϒ
α2 

k 

) 

(84) 

= 

(
1 ∑ 

k ∈ ϒ β2 
k 

− 1 /η

)

×

⎛ ⎝ 

∑ 

k ∈ ϒ
α2 

k + η

⎡ ⎣ 

( ∑ 

k ∈ ϒ
αk βk 

) 2 

−
( ∑ 

k ∈ ϒ
β2 

k 

) ( ∑ 

k ∈ ϒ
α2 

k 

) 

⎤ ⎦ 

⎞ ⎠ (85) 

≤
∑ 

k ∈ ϒ α2 
k ∑ 

k ∈ ϒ β2 
k 

− 1 /η
= 

w 

H ( 
∑ 

k ∈ ϒ A k ) w 

w 

H 
(
( 
∑ 

k ∈ ϒ B k ) − 1 
ηP 

I 
)
w 

(86) 

≤ σmax 

⎧ ⎨ ⎩ 

( ( ∑ 

k ∈ ϒ
B k 

) 

− 1 

ηP 
I 

) −1 ( ∑ 

k ∈ ϒ
A k 

) 

⎫ ⎬ ⎭ 

(87) 

ccording to the generalized eigenvalue upper bound. Note that

he transition from (85) and (86) is made possible by using the

auchy-Schwarz inequality. The proof is complete. 

ppendix C. Proof of Lemma 3 

Due to the defintion of ε, we have 

γi −
√ 

λi 

∣∣∣ ≤ ε, ∀ i ∈ [ K] . (88) 

uppose min i ∈ [ K] { γi } ≤ min i ∈ [ K] 

{ √ 

λi 

} 
, and note that according to

88) there exists λj ( j ∈ [ K ]) such that 

min 

i ∈ [ K] 
{ γi } −

√ 

λ j 

∣∣∣∣ < ε. (89) 

learly, min i ∈ [ K] { γi } ≤ min i ∈ [ K] 

{ √ 

λi 

} 
≤
√ 

λ j which implies 

min 

i ∈ [ K] 
{ γi } − min 

i ∈ [ K] 

{ √ 

λi 

} ∣∣∣∣ ≤ ε. (90) 

 similar argument can be presented in the case min i ∈ [ K] { γi } >
in i ∈ [ K] 

{ √ 

λi 

} 
, leading again to (90) . The difference of objectives

s thus contained as 

min 

i ∈ [ K] 
{ γi } − min 

i ∈ [ K] 

{ √ 

λi 

} ∣∣∣∣2 ≤ ε 2 . (91) 
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