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1. Introduction

Notation: We use bold lowercase letters for vectors and bold up-
percase letters for matrices. Please see Table 1 for other notations
used throughout this paper.

Maximizing the minimal performance is a widely used proac-
tive approach to achieve fairness [2-11], robustness [12-18], or
efficiency [19-23] in networked systems requiring advanced sig-
nal processing. Interestingly, many of such applications share a
similar structure of the performance metric; namely, a variety
of quality metrics for signal design, including e.g. signal-to-noise
(plus interference) ratio (SINR) and mean-square error (MSE), can
be represented as a ratio of quadratic functions of the signal
to be designed—several examples will be presented shortly in
Section 1.1. The goal of this paper is therefore to study and pro-
pose an efficient approach to signal design dealing with the fol-
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lowing NP-hard [7,8] optimization problem:

P1: max. min{
w ie[K]

s. t. weQ

wiAw }

wHBw

(1)

where w e CVN is the signal to be designed, A; e CN*N and B; e
CN*N are positive semidefinite (PSD) matrices, and © denotes the
feasible set of w determined by the associated signal constraints.
For instance the feasible set can be comprised of unimodular vec-
tor w or vector w with a finite-energy, depending on the applica-
tion.

1.1. Applications in signal and information processing

We describe below several examples from signal processing ap-
plications that require tackling 7.

» Precoding for fairness-achieving networks:

A common interpretation of fairness in the networks entails al-
locating the available resources in order to maximize the minimal
user performance [2-10]. In such scenarios, a judicious design of
the precoding signals for different users can be viewed as a vital
part of the network configuration. We consider the general multi-
group multicast precoding problem [8] for a downlink channel, with
a nrg-antenna transmitter and K single-antenna users assigned to
G <K multicast groups. In multigroup multicast scenario, G differ-
ent streams are directed to K users, each with their own channel.
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Table 1
Notations.
x(k) The kth entry of the vector x
[1%]|n The I,-norm of &, defined as (3, |x(l<)\”)%
XH The complex conjugate of a matrix X
X' The transpose of a matrix X
X1 The Hermitian square-root of X
Tr(X) The trace of a matrix X
X1l The Frobenius norm of a matrix X
vec(X) The vector obtained by column-wise stacking of X
arg(X) The phase angle (in radians) of X
0 max(X) The maximal eigenvalue of X
o min(X)  The minimal eigenvalue of X
R{X} The real part of X
E{X} The expected value of the matrix random variable X
Diag(x) The diagonal matrix formed by the entries of x
X-Y The matrix X —Y is positive semidefinite definite
® The Kronecker product of matrices
I, The identity matrix of dimension n
e The ith standard basis vector in CK
Ry The set of positive real numbers
C The set of complex numbers
K] The set {1,2,...,K}

We denote the subset of user indices in the k" group by G, for
any ke|[G). Let h; e C"x denote the channel between the transmit
antennas and the ith user. Also let w;, € C"x denote the precoding
vector corresponding to the kth, ke [G], multicast group of users.
To form the data stream to the users, any complex symbol to be
transmitted, will be modulated by the precoding vector of the in-
tended group of users. The signal transmitted to the group k from
the antenna array takes the form Zle whs, (t), where si(t) is the
information stream to the users in kth multicast group. Further
sk(t) is modelled as a random variable with zero-mean and unit
variance. The precoding vectors are to be designed in order to en-
hance the network performance. In particular, the SINR value for
any user i € G, (and any k€ [G]) is given by Karipidis et al. [8,24]

W?R,'Wk
H 2’
(Zjetenig WHRw;) +0;
where R; = E{h;h{"} is the covariance matrix of the ith channel,
O'l-z denotes the variance of the zero-mean additive white Gaussian
noise (AWGN).

Consequently, the problem of maximizing the minimal user
SINR performance in the network can be formulated as [8],

SINR; = (2)

. . wHRw,
max. min{ min

e, keldl| i€ | (Sjeqon i WIRW)) + 07
G
> w3 <P. (3)
k=1

Note that by a specific reformulation, the SINR metric in (2) can be
rewritten as a fractional quadratic criterion. To see this, define the
stacked precoding vector w € CN (with N = ngG) as

WG])? (4)

and observe that (2) will increase for any increased scaling of w.
As a result, any finite-energy constraint on w while maximizing
{SINR;} will be active, i.e. it will be satisfied with equality. Accord-
ingly, we let ||w||2 =P, implying the constraint is active and w
should be designed with maximum possible energy. The we make
use of the definitions,

A; £ Diag(e) ® R, Vie[K], (3)

w £ vec(jw; wy ...

o2

% “LIy, VielK] (6)

B = (I — Diag(e))) ® Ri + =

Now, it is not difficult to verify that

SINR; = LAW,

wHB;w
in which {A;} are PSD and {B;} are positive definite (PD). As a re-
sult, the precoding design problem for maximizing the minimal
user SINR performance can be formulated as P;. Note that P; may
also be used to formulate the weighted SINR optimization prob-
lems; see [2,3,8,25,26] for details.

The problem of optimizing a particular SINR; in Eq. (7) takes
the form of a general Rayleigh coefficient maximization. However,
unlike the Rayleigh coefficient optimization, the problem pursued
involved constraints on the feasible set of w and also involves op-
timization of multiple coefficients.

* Relay beamforming:

Relays are typically needed to improve the communication per-
formance between user pairs experiencing poor channel quality.
We consider a MIMO AF two-way relay network consisting of Mg
antennas, L operators and pairs of user terminals as described in
[27,28]. We assume single-antenna user terminals and flat fading
channels between the ith user of the jth operator and the relay,
which are denoted by {h;;} [29]. The received signal at the relay
can be expressed as [27-29],

Vie[K], 7)

L 2
r= ZZ’I,‘JXL]‘-I-HR, (8)
j=1 i=1

where ¥;; is the transmitted symbol by the ith user of the jth oper-
ator with power p;; (given by E{|x; j|2}) and ny denotes the circu-
larly symmetric white Gaussian noise with covariance matrix aRI
at the relay. By employing the AF protocol, the transmit signal of
the relay is given by

F=Wr 9)

with W e CMr*Mr being the relay amplification matrix, which is to
be designed. Assuming channel reciprocity between the relay and
users [27], the received signal y;; of the ith user at the jth operator
becomes

T ~
Yij=hijr+n;; (10)
where n;; is the associated (white) noise component (with variance

o,._zj). The minimal user-rate in the network can be formulated as
[27]

log, (1 + ;). (11)

Rmin =

2 jellhia
Herein, y;; denotes the signal-to-interference-plus-noise ratio
(SINR) for the ith user of the jth operator and it has the follow-
ing expression [27]

whd,; w
wh (Y, +Al,)w+02 ’

Vij= (12)

where w = vec(W) and the matrices ®;;, Y;j, A;; are defined as

ijo Lijr
;= pi;(hS_ ;@ b)) (S @ h]). (13)
Y=Y Y pij(hjehl))" (he ;).
T

2 T
A,‘_j = 0y (IMR X (h,_,hl]))
The minimal-rate maximization is constrained via the total avail-
able power Py at the relay, viz.

E{|IF|I3} = Tr{E{Wrr”wH}}

L
=ZZP1}||W’11]||2+UR Wi < P (14)
=1 =1
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which can be expressed with respect to (w.r.t.) w as whCw <Py
where

L 2

C=0gly: + Yy pij((hijhi))T @ I,). (15)
j=1i=1

Therefore, the design problem (i.e., min-rate maximization) in

MIMO AF relay networks with L operators can be cast as the fol-
lowing problem:

max. min lo 1+ w”<1>“-w
W elih i) %2 WH(Y j + A w + 02,
s. t. wicw < B, (16)

Similar to the previous example, the inequality constraint in the
above problem is active at the optimal point, so we can assume
that wCw = P;. Also note that log, (1 + ¥ij) is a strictly increas-
ing monotonic function of y;;. Therefore, we can simplify (16) by
replacing log, (1+ y;;) with y;;. Thus, (16) can be equivalently
written in the form of P;.

« Doppler-robust waveform design for active sensing:

In the following, we describe briefly the robust waveform de-
sign formulation of [16] for enhancing the detection of moving
targets whose speed is unknown at the radar transmitter. We
consider a radar system with (slow-time) transmit sequence x
CN and receive filter w e CN. The discrete-time received signal
backscattered from a moving target corresponding to the range-
azimuth cell under the test can be modeled as (see, e.g. [30,31]):

r=orxopv)+c+n, (17)

where a7 is a complex parameter associated with backscatter-
ing effects of the target as well as propagation effects, p(v) =
[1,efv, ..., edN-DV]T with v being the normalized target Doppler
shift (expressed in radians), ¢ is the N-dimensional column vector
containing clutter (signal-dependent interference) samples, and n
is the N-dimensional column vector of (signal-independent) inter-
ference samples. The SINR at the output of the receive filter can be
formulated as

jar 2w (x 0 p(v))|°
wiE . (x)w+wiMw’

SINR(V) = (18)

where M £ E{nn'} and X(x) is the covariance matrix of ¢ given
by Aubry et al. [30]

Ne—1 L-1

Te@®) =Y Y of kL& (kD)) (19)
k=0 i=0

with a(zk_i) =E[|ag|?] being the mean interfering power as-
sociated with the clutter patch located at the (k,i)th range-
azimuth bin whose Doppler shift is supposed to be uniformly

A . . {5 ki) 5 €k
distributed in the interval Q. = (u%“ — =7V, + 2 ) [31].

Dy Vg . .
Herein L'(x, (k,i)) = Diag(x)<I>€?;"i')') Diag(x)! where <I>€z£"i')') (I, m) is
the covariance matrix of P(ch(k l_)) [30], viz.

\_}dk 1 lf l:m

®_“(1,m)= in[0.5(I— ; i(1-m)by .
w2 (e ) et 1
(I,m)e{1,...,N}%.

(20)

The problem of Doppler robust joint design of transmit sequence
x and receive filter w can be cast as the following max-min opti-

mization problem:

W x o p))|*

max. min
Pp: xw veQ wE x)w+wiMw | (21)
s. t. Ix]13 =e

where Q = [v;, vy] € [-7m, ] denotes a given interval of the tar-
get Doppler shift v and e denotes the maximum available trans-
mit energy. Note that for a priori known target Doppler shift 7 (i.e.
Q = [V, ¥]), the problem Pp boils down to the considered prob-
lem in [30]. The reader may now observe that for any given v, and
fixed x, the objective of (21) is a fractional quadratic function of
w. Similarly, for any given v, and fixed w, the objective of (21) can
be written as a fractional quadratic function of x. As a result, for
any of ¥ or w, (21) can be considered as a continuous version of
P1, with Doppler shifts taking values within a continuous interval.
On the other hand, a discrete version of (21), whose Doppler shifts
occur on a discrete grid, will fit exactly the formulation of P;.

* Robust classification in machine learning:

The focus of this example is the linear discriminant analysis
(LDA) method used in statistics, pattern recognition and machine
learning to find a linear function of the features that separates sev-
eral classes of objects or events [32-38]. We assume T classes with
the ith class of data having a mean of 4; and the same covariance
matrix X. Then the scatter between classes may be defined by the
sample covariance of the class means [39]

T
¥ = %Z(ui—u)(m—u)T, (22)

i=1

where p is the mean of the class means. The class separation in a
direction w in this case will be given by
Hy/
pWIW (23)
wHEIw

However, we note that the class parameters may be subject to
change in time-varying scenarios, or may come from different
agents in networked environments. Moreover, LDA can be sensitive
to errors or imperfections in the input data [40]. As a result, one
may need to simultaneously optimize 6 for various pairs of (X, X/)
to achieve a robust classifier, which will require tackling P;.

1.2. Related works and contributions of the paper

Due to its vast of area of applications, P; has been studied ex-
tensively in the literature, particularly when 2 denotes a total-
power or per-antenna power constraint (see e.g., [2-6,8-10] and
the references therein). As a result, different approaches have been
proposed to solve the design problem, including those based on
uplink-downlink duality [2], the Lagrangian duality [4] and quasi-
convex formulations [10]. The semidefnite relaxation (SDR) [41] is,
however, the most prominent approach to the type of problems
resembling to P;.! In this work, we propose a novel optimization
framework (which we call Grab-n-Pull, or GnP) that can efficiently
tackle P;. Note that the proposed framework subsumes the tra-
ditional methods handling total-power or per-antenna power con-
straints, while also allowing for intricate signal constraints such as
unimodularity or discrete-phase requirements. In addition, the pro-
posed method appear to outperform the widely used semidefinite
relaxation approach in terms of both the quality of approximate
solutions and the computational cost.

The rest of this work is organized as follows. Section 2 dis-
cusses several properties of Py, and presents various interesting

1A specific formulation of SDR to tackle P; is discussed in Section 5.
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problem structures with strong connection to P;. Section 3 dis-
cusses the proposed max-min optimization framework. Section IV
further studies the proposed framework and associated parameter
settings. Several numerical examples are provided in Section 5. Fi-
nally, Section 6 concludes the paper.

2. Preliminaries and related problems

In order to study P;, the following preliminary remarks appear
to be necessary:

1) The objective of P; and its optima (values) are independent to
a scaling of w. As a result, we can readily assume that w has
a given l,-norm. More precisely, in the sequel we assume that
|lw||2 =P where PR, is fixed. Such an assumption can be
used conveniently along with other signal constraints used in
practice— see the discussion on signal constraints below (42).

2) The objective of P; is upper bounded via the generalized eigen-
value bound [42],

whAw
wHBw

<omux{B;'Aj}, Ywz#0. (24)

Due to the max-min inequality [43], the latter bound implies

max { min wiAw
w | icx] | wHB;w

. wlAw
< mingymax{ ———
k]| w | wiB;w

=< llflg[ilg{o—max {Bi_lAi}}~ (25)

As a consequence of (25), any optimization approach that can
yield a monotonically increasing sequence of the objective of
P is convergent [44].

There are several interesting problems that have strong connec-
tions to P;; and thus tackling P; may hold the key to approaching
them. We itemize such problems below.

« Fractional quadratic programming:

. wiAw
P],single . mWaX. WHB:W
1
s. t. we Q, (26)

Clearly, this is a special case of P; with K = 1.
Max-min quadratic programs:

. . Hap.
Piop: Max. pg[lKr]l{w Aw)

s. t. we Q, (27)

which is a special case of P; with {B;} set to an scaled version
of the identity matrix.

Min-max fractional quadratic programming: The proposed al-
gorithm in this paper can be used to approach the min-max
alternatives of Py:

wiAw
wHB;w

P mi : min. max
1, minmax w ielK] {
s. L. we Q, (28)

as such problems can be easily rewritten in the form of P;.
Namely, (28) is equivalent to

.| wBw
max. min
w ic[k] | wHA;w

s.t. weQ. (29

Nl

+ Matrix P;: One can tackle the matrix optimization problem

Tr(W'AW)
P11 . mMax. min ey T r—
w ielk] | Tr(W"BW)

s.t. We®Q (30)

through P; by employing the identity Tr(WHXW) =wh(®
X)w, in which w = vec(W).

3. The max-min optimization framework

We begin by considering a reformulated version of 7Py;
namely,

P, i max. mln{k}

w ie[K]
s.t. we€, (31)
wiAaw .
M= gy ViclKl (32)

Note that (32) holds if and only if ||A2w||2 =A; ||Bzw||2, or equiv-

alently ||Al.2w||2 = \/7||Bl.2w||2. In particular, the left-hand side of
1

(32) is close to the right-hand side of (32) if and only if ||Ai7w||2

1

is close to /A;||B? w||,. Therefore, by employing the auxiliary vari-
ables {A;}, one can consider the following optimization problem as
an alternative to P, (and P1):

: (A} — A2w - 82w 2
Ps: max. min() n2<|| o = V/Ail1B7wl>)

s. t. weQ; A,-zO, Vie [K]; (33)

in which >0 determines the weight of the penalty-term added
to the original objective of P,; and where P3 and P, coincide as
17 — +oo. Note that optimizing P3 w. I. t. w may require rewriting
P3 as a quartic objective in w. To circumvent this, we continue by
introducing P4—yet another alternative objective:

1
: . (A} - Az 2:Q:BZw||
P By T -7 - /Aa
s.t. weQ, )»,-30, Vie[K]; (34)
QQ, =1y, Vie[K]. (35)

To see why P4 and P3 are equivalent, observe that the minimizer
Q; of P, (satisfying (35), also known as Steifel manifold [45-47]) is
1

a unitary rotation matrix that aligns the vector BF w in the same

1
direction as A7 w, without changing its ¢;-norm. More precisely, at
the minimizer Q; of P4, we have that

1 Ai%w 1
QB/w=|——|IBw|>. (36)

Using (36), it is straightforward to verify that

K
1 1

> lA7w—/2,.Q;B w|3

P

2
K
1
> Atw- f( Aw_ )uafwnz
1Az w, ,

1

S (], vl

i=1
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which concludes the observation.

In contrast to P3, the optimization problem P, can be easily
rewritten as a quadratic program (QP) in w; a widely studied type
of program that facilitates the usage of power method-like itera-
tions, and thus employing different signal constraints 2—more on
this later. Note that, until now, we have shown that,

Py and P, are equivalent.

P3 and P4 are equivalent.

P3 and P4 can be used as alternatives to the original problem,
i.e. P1.

In the following, our goal is to

propose an efficient iterative optimization framework based on
a separate optimization of the objective of P, over its three par-
tition of variables, viz. w, {Q;}, and {};}, and in particular,
study the properties of P, to pave the way for an effective us-
age of our proposed framework in tackling fractional quadratic
programs.

We note that considering P5 can also be useful in such a study,
as P3 may be viewed as a simplified version of P4, in which the
objective is already optimized w. r. t. {Q;}.

3.1. Power method-Like iterations (optimization w. 1. t. W)

For fixed {Q;} and {A;}, one can optimize P4 w. r. t. w via mini-
mizing the criterion:

K
> lIA7w — /2,QB: w3 = w'Rw, (38)
i=1
where
K 1 1 1 1
R= Z{(Ai+ki8i) — J/x (A} QB! +B;Q{’Af)}, (39)

i=1
Due to the fact that Q enforces a fixed ¢;-norm on w (i.e. ||w||§ =
P), by defining R 2 I — R (in which g > 0 is larger than the max-
imum eigenvalue of R), we have that

w'Rw = —w'Rw+ P (40)

——
const.

Consequently, one can minimize (or decrease monotonically) the
criterion in (38) by maximizing (or increasing monotonically) the
objective of the following optimization problem:

max. w'Rw (41)
s.t. weQQ.

Although (41) is NP-hard for a general signal constraint set [48,49],
a monotonically increasing objective of (41) can be obtained using
power method-like iterations developed in [49,50]; namely, we up-
date w iteratively by solving the following nearest-vector problem
at each iteration:

“r,r(ls% HW(SH) — Rw® ”2 (42)

s.t. wétD e Q

where s denotes the internal iteration number, and w(% is the cur-
rent value of w. Note that we can continue updating w until con-
vergence in the objective of (41), or for a fixed number of steps,
say S. A proof of the monotonic behavior of power method-like iter-
ations is presented in Appendix A. The interested readers can also
find an approximation method to solve (41) and (42) in [52,53].

Now, we take a deeper look at various signal constraints 2 typ-
ically used in practice, as well as their associated constrained so-
lutions to (42):

« Total-power constraint: Note that the energy of designed sig-
nals should always be upper bounded in practice, which can be
formulated as a total-power constraint, viz.

Q={w: |w|2=P}, P>0. (43)

In this case, the set of power method-like iterations in
(42) boils down to a typical power method aiming to find the dom-
inant eigenvector of R, however with an additional scaling to attain
a power of P.

« Per-antenna power constraint: Power management per an-
tenna avoids an uneven (and most likely hazardous) distribution
of power over the antenna array, and is shown to be more ef-
fective than total-power constraint in some applications; see e.g.
[54]. We consider K antennas each with a power of Pgp, and as-
sume that M = N/K entries of w are devoted to each antenna. As
a result, we can solve (42) by considering the nearest-vector prob-
lem for sub-vectors associated with each antenna separately—i.e.,
K nearest-vector problems all with vector arguments of length M.

« Unimodular signal design: Unimodular codes are widely used
in many radar and communication applications due to their low
peak-to-average-power ratio [49,55]. The set of unimodular codes
is defined as

Q= {ef“’ 1@ elo, Zn)}N. (44)
Moreover, the unimodular solution to (42) is simply given by
w1 = exp (jarg (Rw®)). (45)

« Discrete-phase signal design: Such signals share the low peak-
to-average-power ratio property of unimodular signals, and at the
same time, offer a reduced implementation complexity due to their
discrete/finite nature [55,56]. We define the set of discrete-phase
signals as

o N
Q:{ef%q: q:O,l,--.,Q—l} (46)
where Q denotes the phase quantization level. The discrete-phase
solution to (42) is given by

WD = exp (juq (arg (RW®))) (47)
where q(.) yields (for each entry of the vector argument) the
closest element in the Q-ary alphabet described in (46).

We refer the interested reader to find more details on the prop-
erties of power method-like iterations in [49-51].

3.2. Rotation-Aided fitting (optimization w. r. t. {Q;})

Suppose w and {;} are fixed. As discussed earlier, the maxi-
1
mizer Q; of P4 is a rotation matrix that maps B?w in the same

1
direction as Al? w. Let

1 1

L — 2 2
u; _AEW/ ”Ai w|,, (48)
v = B,'ZW/ ”B,'ZW”Zs

and note that (36) can be rewritten as,

u; = Qv (49)
for all i e [K]. We define unitary matrices Q,, and Q,, in CN*N as

Q,, = (Ui Uy, ... U] (50)
Qy, = [Vi1. V. ... U], (51)

where each of the sets {i;;}; and {’17,-1-}1, j€[N], builds an orthonor-
mal basis for CN, and

ﬁ,‘] =u;,
b 52
{Vn =1 (52)
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Table 2
Recursive Grab-n-Pullprocedure to determine Y.

Step 0: Set T = &.
Step 1: Include 1 in Y.

Remark: Based on Lemma 2, the primitive index 1 belongs to Y, as ~/A* is always larger than y.

Step 2: Given the current index set of minimal variables Y, obtain +/A* using (57).

Remark: Note that if ~/A* is smaller than y,, for all ke [K\Y then the obtained Y is optimal, as all A, with ke [K\Y have chosen their values freely to maximize the
objective of A; as a result, adding other indices to Y will lead to a decreased objective of A.

Step 3: Let {h} c [K] denote the indices for which h¢ Y. If y, <

A*, include h in Y, and goto Step 2; otherwise stop.

Remark: This is a direct consequence of Lemma 2, particularly considering that ~/A* is only increasing with growing ||, which corresponds to adding larger ys to the

weighted sum in (58).

Based on the above definitions, the following lemma constructs the
optimal Q; (the proof of Lemma 1 is straightforward and omitted
herein):

Lemma 1. The maximizer {Q;} of P4 can be found as

Qi = QuiQZ
for all ie [K].

(53)

Remark 1. Note that {Q,,i} and {Qv,-} are not generally unique
since {i;;} and {ﬁ,-j} can be chosen rather arbitrarily for j# 1. This
further implies that the maximizer {Q;} of P4 is also not unique,
which is in agreement with the common understanding that ro-
tation matrices are not necessarily unique when the dimension
grows large.

3.3. Grab-n-Pull (optimization w. . t. {A;})

Note that according to (37), once the optimal {Q;} are used, the
objectives of P3 and P, can be considered interchangeably. We as-
sume that optimal w and {Q;} are obtained according to the guide-
lines described in Sections 3.1 and 3.2, respectively, and are fixed.
Therefore, to find {A;}, we can equivalently focus on obtaining the
maximizer {A;} of P53 via the optimization problem:

K

. 1 1

A max. gl[ll(r]l{)\i}_UZ(HAizwnz—\/)\i”BiZWHZ)Z
i i=1

s.t. A;>0, Yie[K]. (54)

While the above problem may be reformulated and solved using
convex optimization tools, a more insightful approach to optimize
{A;}, referred to as Grab-n-Pull, is presented below. Particularly, the
proposed approach sheds light on the behavior of ;s in their op-
timal setting.

Definition 1. Let {A:} denote the optimal {A;} of A, and A* £
min; (g {A7}. We let Y to denote the set of all indices m for which
Ay, takes the minimal value among all {A?}, ie.

T={melK] : A =A%), (55)

1 1
Moreover, we refer to y2 £ |[AZwl||3/|B?w||3 as the shadow
value of A}, for all ie[K].

It is straightforward to verify from the objective of (54) that if
A} > A%, then A = yiz. On the other hand, to obtain A*, we need
to maximize the criterion:

1 1 2
§0) =n=n Y (Iaiwla VA 11Bwlz) .

keY

(56)

Provided that n is large enough (see Section 4), the optimal A* of
the quadratic criterion in (56) is given by

Vi — 1 ke %P

nZkeT :313 -1 (57)

1 1
in which o 2 |[AZw||;, and By £ || BZw/|,. It is interesting to have
some insight into what +/A* represents: Note that (57) can be
rewritten as

Ve — D ke Vk.B;?

== 58

Sker BE— 1/ (58)
As a result, v/A* can be viewed as a weighted average of y,
for ke Y—except that the term -1/n in the denominator of
(58) makes ~A* a bit larger than the actual weighted average.
However, for an increasing 1, vA* converges to the exact value of
the weighted average specified above.

Hereafter, we propose a recursive Grab-n-Pull procedure to fully
determine Y. Note that once Y is given, one can obtain +A*
via (57). The proposed approach will make use of the following
observation:

Lemma 2. If y2 < A* for any i< (K], then ie Y.

Proof. The inequality y? < A* implies that A! # y?. Considering
the discussion above (56), one can conclude that A} < A*, which
due to the definition of A* yields A} =A*. Hence, the proof is
complete. O

Without loss of generality, and for the sake of simplicity, we

assume in the sequel that the matrix pairs {(A;, B;)} are sorted in
such a way to form the ascending order:
O<yi<yp=- =W (59)
Based on the above reordering, the proposed approach is described
in Table 2. Moreover, an illustration of the method is depicted in
Fig. 1. The name of the method, i.e. Grab-n-Pull, comes from the
intuition that the method grabs and pulls the lowest values of {A;}
to a level which is suitable for optimization of the alternative ob-
jectives, while achieving equality, at least for the lowest A;s.

Finally, our optimization framework based on maximizing the
objective of P, over w, {Q;}, and {A;} is summarized using a
flowchart in Fig. 2. Note that, due to the key role of Grab-n-Pull
procedure in the proposed optimization framework, we also use
the term Grab-n-Pull (or its abbreviated form GnP) when referring
to the general framework. In the following section, we study dif-
ferent criteria in choosing a suitable 7, as well as the various in-
teresting aspects tied to the proposed framework.

4. Grab-n-Pull: convergence, settings and discussions

To perform a suitable selection of 7, one should note that unlike
the objective of the original problem P;, choosing n may be sensi-
tive not only to {A} and {By}, but also to the power, or a scaling of
the signal w. This can be observed easily from the penalty terms
in P3 and P4 where a scaling of w can be fully compensated via a
corresponding scaling in 7.
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Final values E— RN € Aa
YRR & i 3 'y

current

Xk

Fig. 1. An illustration of the Grab-n-Pull procedure. The optimal values of {};} are obtained when A* < 2, which sets Y to {1, 2}.

Power Method- w Rotation {Q; }
Like Iterations Aided Fitting Grab n-Pull @
w, {\:}.{Q;} as input for next iteration

Fig. 2. Flowchart of the proposed algorithm performing the optimization w. r. t. all variables at each iteration.

4.1. Guaranteed convergence by bounding n In order to ensure the satisfaction of (61), one can choose the fol-
lowing conservative lower bound for 7:
We begin our study from f(A) in (56). In particular, by defining 1
ay and By as in (57), f{A) can be written as n>np2 (m{m}({ r;lln(Bi)}). (62)
f) =r-n Z (ot,f +Aﬂ,§ — Zﬁakﬁk) It should be emphasized that satisfying (62) also guarantees the
ke convergence of our optimization framework, due to the following

result
2 2
T-n Zﬂk> +2vAn (Z akﬂk) -ny_ . (60) Theorem 1. Suppose 7 is large enough to satisfy (62). Then, f(1) is

keT ke ke upper bounded (at its maximizer A*, see (57)) as
Note that the above quadratic function of /A can be meaning- O D ket 0‘13
fully maximized (with a bounded solution) if and only if 1-— T D ker ﬂf —1/n

N Y key B2 <0, or equivalently,

2)_1: (WH (ng)w)_l. o < Omax ((§Bk> ) (gm) . (63)

ke Proof. Please refer to Appendix B.
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Proof of Convergence: To see why Theorem 1 implies the con-
vergence of our algorithm, observe that different steps of the pro-
posed framework lead to an increasing objective of P4 (and P3).
To guarantee convergence in terms of the objective value, we only
need to show that the objective is bounded from above—a con-
dition which will be met by satisfying (62). Thus, the proof is
complete. O

4.2. Error-bound derivation

Considering the value of n as in (62) lays the ground for un-
folding further connections between P;/P, and P3/P,4, as well as
what the alternative objectives in P3/P, represent. In particular,
we show in the following that the error induced by transition to
the alternating objectives P3/P, (namely employing {\/)T,-} in lieu
of {y;}) is always bounded by the amount of the penalty function:

Theorem 2. Suppose n satisfies (62). In such a case, the deviation in
the values of {\/)T,»} with regard to the shadow values {y;} will be
bounded as’

min {y;} — min {\/):}

ie[K] ie[K]

2
<o (64)

where o denotes the penalty function of P3/P4, viz.
K 1

0=y (|Aiw],-vasiw
i=1

Proof. Let ¢ denote the I,-norm of the representation error,

1
Alw

2)2. (65)

K

223 (M - M)z (66)

i=1

caused by using {\/)Tl-} in lieu of {y;} in the original max-min ob-
jective of P;. We make use of the following lemma whose proof is
provided in Appendix C.

Lemma 3. The difference of minimal {y;} and {\/)Ti} is bounded by
the representation error as

2
<& (67)

min {y;} — min { Ai}

ie[K] ie[K]

Now it remains to verify that €2 <o:
K 5 2
0= 2 ([aiwl, - vileiw])
i=1
K 2
=) (WHBiW)(Vi - \/?Tl)
i=1

1
Alw

K

= Y (n-vh) = (68)

i=1

as n(w"B;w) > 1 holds for all i € [K], due to (62). This concludes the
proof. O

By mathematically bounding the error, the above result reaf-
firms that the smaller we can get the penalty function, the smaller
the difference between the original and the alternative objec-
tives becomes. In particular, if the penalty function attain zero
then the original and alternative problems are equivalent. Now,

2 It might be useful to mention that the error bound is given for ({y,»}, {\/)Ti})A,

which is as effective as a bound derived for ({y?}, {A:}).

let g({Ai}, {yiz}) denote the objective function of P3/Py. It follows
from (68) that

g(h). (v?) = min{r) - (69)
= minfh;} -2 £ Z(h) (7))

Note that while g shares the same first term (i.e. min;c {A;}) as &
its second term denotes the representation error. In other words, g
replaces the original objective min; ) {y;} with min; {4}, and
considers a penalty function that clearly represents the error in-
duced by such change of variables. From this point of view, g can
be a very interesting objective to look at instead of the objective
of Py/P,. The fascinating fact here is that by maximizing g (which
is an easier task to accomplish), we are also maximizing & at the
same time, as g minorizes § We refer the reader to a review of
minorization-maximization (MM) scheme in [57,58].

4.3. On the penalty coefficient: the larger, the better?

Although with a larger n one may expect a lower value of the
penalty functions in P53 and P4, a lower 7 can play a useful role in
speeding up the algorithm. Remember that, given the index set Y,
the maximizer of f{\) is given by

\/F _ ZkeT Vkﬂl? ) 0
Srer BE—1/1 (70)

As discussed earlier, for a finite >0, +/A* is larger than the below
wighted sum of {y}xc k)

(Z nﬁ,?) / (Z /3,3), (71)
ke ke

which leads to the following bootstrapping effect.

Remark 2 (Bootstrapping Effect): For the sake of simplicity, as-
sume Y has a cardinality of one (including solely a generic index
k), and consider the associated objective function of A:

fG) =k —n (Vi) (72)

The goal of employing the penalty function in (72) is for A
to be as close as possible to its shadow value y?=a?/B7 =
(wHA,w)/(wlB,w). Note that:

(a) For a finite n > 0, the maximizer A* of f(A) is larger than ykz:

M= (B2 (B2 -1/m) V2. (73)

(b) Only the penalty term of (72) is variable with w. In particu-
lar, for a fixed A, optimization w. r. t. w will be performed to
achieve a y,f as close as possible to A*.

(c) Then, thanks to (a), A* will be chosen to be larger than the cur-
rent value of ykz, and the same phenomenon persists by con-
tinuing with (b).

In sum, an increased ykz will lead to an increased A*, and an in-
creased A* will lead to an increased ykz, until convergence. It is worth
noting that a similar behavior can be observed for | Y| > 1.

Now note that while the bootstrapping effect occurs for any fi-
nite 1 > 0 satisfying (62), the penalty coefficient n can be viewed
as a tuning parameter for the speed of the algorithm. Specifically,
one can easily see that if n is large, A* will be slightly greater than
the weighted average of {)/kz}ke'r, whereas for smaller values of 7,
the bounces from the weighted average are much larger—and the
bootstrapping process can occur much quicker. In a related obser-
vation, one can also verify that the choice of n affects the cardi-
nality of Y. By evaluating f()A) at its maximizer A* (see (70)) we
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Fig. 3. Transition of the GnP optimization parameters {A;} and {y;?} (distinguished by colors and line-styles) vs. the iteration number for different weights (1) of the

penalty-term in P; and P4: (a) n =1, and (b) n = 10.

obtain

2
f()\‘*) =17 U(de akﬂk) _ Zalz (74)

nkerBi-1 &

-1

= (> 82)-1/m

ke

(75)

2
X Z O[,% +1n Z ay B - Z ﬂl? Z al%

keY keY ke keY

(%)

According to the Cauchy-Schwarz inequality, (*) is always less than
or equal to zero. Also, the equality is attained only if all {y}xcr
are identical, or | Y| = 1. As a result, we can conclude that for suf-
ficiently large values of n, a pair (Y, A*) can serve as a solution to
A only if | Y| is kept to its minimum, given by the number of min-
imal {y,} which are also identical. This implies that at the initial
iterations of the method when {y} are most likely to be distinct,
we should have | Y| =1; this can cause difficulty combined with
the fact that a large n requires A* to take many small steps while
moving away from yf and reaching other {y}, and thus increas-
ing | Y| (assuming the ordering in (59)). We should add that the
Grab-n-Pull procedure is most useful when |Y'| > 1, or equivalently
when 7 is not very large.

We conclude this section by discussing the trade-off originated
from the selection of 1, namely the question of a higher conver-
gence speed vs. a smaller value of the penalty functions in P3
and P4. To devise a reasonable approach to this trade-off, we con-
sider the following insight: While we can tackle P; by blindly
increasing all the fractions in the max-min structure, P3 and P4
suggest an alternative approach by employing the auxiliary vari-
ables {A;}. The role of {A;} is to determine the increasing levels
{(wHA,w)/(WB,w)} should converge to, and the optimization w.
r. t. w will be performed such that {(w"A,w)/(wHB,w)} can get
close to those levels. Consequently, putting less focus on small val-
ues of the penalty functions specified above, only makes the pro-
posed method closer to the blind approach—while leaving us with
the interesting advantages of the proposed framework including

the quadratic nature of the objective, efficiency, and possibility of
working with various signal constraints.

5. Numerical examples

In this section, we provide several numerical examples to in-
vestigate the performance of the proposed method (performing the
optimization w. r. t. all variables at each iteration). We first study
the impact of choosing 1 on the performance of GnP. We then
compare GnP with SDR in terms of run-time and quality of ap-
proximate solutions. Additionally, we provide an application-driven
example, in which the GnP algorithm is used to tackle a network
beamforming problem.

For numerical evaluations, random PSD matrices {A;} and {B;}
are generated using the formula,

A =XX" B =YY! VieclK], (76)

where X; and Y; are random matrices in CN*N whose elements
are i.i.d. circularly symmetric zero-mean complex Gaussian random
variables with variance 02 = 1.

The run-times are obtained on a standard PC with 4 GB mem-
ory and 2.80 GHz processor. In all examples, we stop the op-
timization iterations whenever the increase in the objective be-
comes smaller than €, = 10-6. Recall from Definition 1 that at op-
timum A* = min;¢{A;}. Accordingly, we make use of the defini-
tion y*2 £ min;;{y?}. where {y?} are the shadow values de-
scribed in Definition 1.

5.1. Impact of the penalty coefficient (n)

A discussion on the impact of 1 was provided in Section 4.3.
Herein, we present a numerical example that illustrates the out-
come of choosing various values of 7 in connection to our previous
discussions. We consider a scenario with (K, N) = (5,5) where the
signal w belongs to set of unimodular vectors (defined in (44)). The
matrices {A;} and {B;} are generated according to (76), and the op-
timization problem P5; (equivaletly P4) is solved for different val-
ues of 7.

Note that while the shadow values {yiz} represent the value of
the fractional quadratic terms in the original objective P;, the aux-
iliary variables {;} tend to be as close as possible to {yl.z} depend-
ing on the weight (1) of the penalty-terms in P35 and P4. In Fig. 3,
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Table 3

Comparison of the performance of GnP and SDR for 100 random realization of {A;} and {B;}, and N = 5.

K n Average Average Average Average GnP Average SDR time | Average SDR time | Average number of
y*2/uspr (GR1)  y*2/uspr (GR2)  y*2/udps CPU time (s) Average GnP time Average GnP time GRs (in 1000) (GR2)
(GR1) (GR2)
10 1 1.054 1.046 0.8941 1.7034 4.44 10.093 48.7
0.5/10/1000 111 1.105 0.9456 24733 3.20 10.045 79.8
15 1 1.085 1.063 0.8486 2.8970 2.73 10.042 84.6
0.5/10/1000 1123 1.103 0.8818 3.4127 2.47 10.034 99.6
20 03 1.067 1.046 0.7753 2.6522 3.32 10.063 58.47
1 1.096 1.059 0.7884 41367 211 10.038 105.9
0.5/10/1000 1143 1112 0.8279 4.3395 1.96 10.034 1131

we present the transition of variables {};} and {yiz} vs. the iter-
ation number for two different settings of n; namely n =1 and
1 = 10. As discussed earlier, although with a larger  one may ex-
pect a lower value of the penalty functions in P3 and P4, a lower
1 can play a useful role in speeding up the algorithm. This phe-
nomenon can also be observed in Fig. 3, noting that the aforemen-
tioned values of n are chosen to accentuate the trade-off originated
from the selection of 7.

5.2. Comparison with SDR

In order to examine the performance of the proposed method,
we compare it with the widely used SDR approach [41]. Consider-
ing the total power constraint on the signal (||w||§ =1), P, can be
equivalently reformulated as,

min Tr(A;W)
ie[k] | Tr(B;W)

Tr(W)=1,W > 0,Rank(W) =1,

Rq :Mmax.
w

s. t. (77)

where W = ww!, Relaxing the rank-one constraint and noting that
the objective function is quasi-concave, we can write the corre-
sponding feasibility problem as follows:

Ry : find w
Tr(A;W) .
s. t. Wiw)zu, Vie [K],

Tr((W)=1,W > 0. (78)

Note that a maximal value of x4 may be found using the bisec-
tion method. Particularly, R, followed by the bisection procedure
is equivalent to a relaxed version of R; in which the rank-one
constraint is dropped. Moreover, for any given u, R, is a (con-
vex) semidefinite program and can be solved using interior-point
solvers [41]. We stop the bisection in the solver whenever the in-
crements in 4 become bounded by 1075,

Let W* denote the solution to R, after the bisection proce-
dure is complete. Due to the rank relaxation in R,, W* will not
(in general) be rank-one. In this case, the Gaussian randomization
(GR) method [41,48,59] is typically used to generate L candidates
(from which the one leading to the largest objective will be cho-
sen) for approximating the optimum w* of P;: Let W* = VIV be
the eigen-decomposition of W*. The Ith candidate (I€[L]) can be
generated as w; = VEl/Zv,, where v; € CN ~ CN(0, 1) [8]. Note that
each w; may be scaled in order to satisfy the constraint ||w;||2 = 1.
We denote the best candidate by wg,. The corresponding objective
value is thus given by

* H A >
weg' Ai Wi }

(79)
wi Biw,

Uspr = min
ie[K]

As R, followed by bisection is a relaxed version of R; (and P;),
the optimal value of its objective yields an upper bound on the

optimal objectives of R; (and P;); although it may not be tight.
This upper bound is given as

. .| Tr(AW™)
Usor = I TrBWF)
which may be used to examine further the goodness of approxi-
mate solutions provided by various methods.

We compare the proposed method and SDR with two different
settings of the GR process. In the first scenario (GR1), we limit the
number of GRs to L = 1000. In the second scenario (GR2), we stop
the GR process whenever the SDR computations (including the GR
process) lasts at least 10 times of the CPU time required by GnP.
This gives enough time to perform very large number of GRs, in
the order of several 10000 randomizations. Table 3 presents the
performance comparison of GnP and SDR averaged over 100 ran-
dom realizations of {A;} and {B;} with N =5, a set of values for K,
and various 7 for both scenarios GR1 and GR2. Other than setting a
constant value for 7, inspired by the literature, we have considered
the case with n being increased in two steps (0.5 — 100 — 1000)
after achieving convergence for each 7 in use.

As expected, GR2 provides a (slightly) better performance com-
pared to GR1, however, its run-time is considerably larger than that
of GR1 thanks to the very large number of randomizations. Most
importantly, it is interesting to observe that, in all cases, GnP out-
performs SDR in terms of both run-time and the obtained objective
value of P;. In other words, it appears that SDR cannot achieve the
same quality of approximate solutions even with many random-
izations (the GR2 scenario) which effectively makes SDR compu-
tationally exhaustive. This is presumably due to the specific frac-
tional structure of P; (in contrast to the many quadratic optimiza-
tion problems for which SDR is known to yield quality results with
a moderate number of randomizations [41]).

(80)

5.3. Application to multigroup multicast precoding

Finally, we will use GnP to solve the max-min network precod-
ing problem for achieving fairness in a multigroup multicast sce-
nario. A formulation of this problem in the form of P; was detailed
in Section 1.1. We consider a downlink transmitter with nr, =4
antennas, as well as K = 12 single-antenna users which are di-
vided into G =2 multicast groups of 6 users. The entries of the
channel vectors h; are drawn from an i.i.d. complex Gaussian dis-
tribution with zero-mean and unit-variance. The Gaussian noise
components received at each user antenna are assumed to have
unit variance, i.e. al.z =1 for all ie[K]. We consider a normalized
total-power constraint, i.e. with P =1, and stop the optimization
iterations whenever the objective increase becomes bounded by
€ =105,

Table 4 summarizes the results of the max-min precoding de-
sign for 300 random realizations of the multigroup multicasting
channel. Average performance of the GnP for different values of 7
is compared with SDR followed by 1000 GRs. It can be seen that
n = 10 leads to higher objective of P; but increases the run-time
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Table 4
Comparison of the performance of GnP and SDR in multigroup multicast network precoding for 300 random realization of the channel
(N=8, K=12).
K n Average y*2/uspr Average y*? /vér  Average GnP CPU time (s)  Average SDR time | Average GnP time
12 1 116 0.7796 1.4034 7.5013
10 1.25 0.8827 8.7017 1.2139
0.5/10/1000  1.21 0.8449 2.8303 3.6625

of the algorithm. On the other hand, increasing n in a few steps,
i.e. the case with n =0.5/10/1000, provides a good balance be-
tween the solution quality and run-time, while outperforming SDR
in both criteria.

6. Concluding remarks

An optimization framework for efficient max-min fractional
quadratic programming was proposed and studied. The results can
be summarized as follows:

+ A quadratic alternative of the original problem was proposed.
Thanks to this reformulation, the proposed method can handle
different signal constraints by employing the power method-
like iterations. Moreover, the proposed method enjoys a low
computational cost owing to the simple tasks to be performed
at each iteration.

Various aspects of the proposed approach were studied. It was
shown that a lower value of the penalty coefficient n can play
a useful role in speeding up the algorithm. To ensure the effec-
tiveness of the proposed framework, a set of lower bounds on
n were established.

It was shown through numerical examples that the proposed
method outperforms SDR (a widely used approach in the lit-
erature) in terms of both quality of the approximate solutions
and the computational cost.

Based on the above, the proposed framework presents many
unique potentials in tackling max-min fractional quadratic opti-
mization problems, which can be of significant interest in signal
and information processing applications—many of which are de-
tailed in Section 1.1.

Appendix A. Power method-like iterations: proof of
monotonicity of optimization objective

While the monotonic increase in quadratic optimization objec-
tives when applying power method-like iterations has been estab-
lished in previous works [49-51], a short proof will be provided
herein for reader’s convenience. Let w+1) denote an update of
the vector w provided by power method-like iterations. For a fixed
w(), the said vector wG*1D is the minimizer of the criterion in (42),
ie,

[weD — Rw® ||§ = const — 29t {w DH Rw® } (81)

which implies that wO®tD)  yields the largest value of
i{wE+DHRw(®} among all vectors in . Now note that

(WD — w<5))H R(wED —w®) > 0. (82)
As a result,
W(s+1)HRW(s+1) > 25“{W<S+1)HRW(S)} _ w(s) HRW(S)

> wOHRW®), (83)

due to the fact that m{w(”””ﬁw(”} > wOHRW®),

Appendix B. Proof of Theorem 1
By evaluating f(A) at its maximizer A* (see (57)) we obtain

n(ZkeT ak.Bk)z _ 2 84
UZkeT,B,f—l ,;;ak (84)

1
N <Zke¥ﬁ,§‘1/n)

2
< I ag+n| D aBe) (DB D]k (85)

f)=n

ke ke ke ke
o Dker af _ W AW (86)
T Lker Bi =1 wH(Sier Bo) - pl)w
-1
1
=< Omax ZBk - ﬁl ZAk (87)
ke ke

according to the generalized eigenvalue upper bound. Note that
the transition from (85) and (86) is made possible by using the
Cauchy-Schwarz inequality. The proof is complete.

Appendix C. Proof of Lemma 3

Due to the defintion of &, we have

vi-Vhi| e Vielkl (88)

Suppose min ) {¥;} < minig {\/)T,} and note that according to
(88) there exists A; (j[K]) such that

min {1} — /A;

<e. (89)
ic[K]

Clearly, min;x) {y;} < minjcg {\/)T,] < /Aj which implies

min {y;} — min {\/)T,}

<é&. 90
ie[K] ie[K] - ( )

A similar argument can be presented in the case min;x;{y;} >
min;e g [‘/ki}, leading again to (90). The difference of objectives
is thus contained as

2
<e? (91)

‘min {yi} — min { ki}

ie[K] ie[K]
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