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Abstract

Multidrug resistance consists of a series of genetic and epigenetic alternations
that involve multifactorial and complex processes, which are a challenge to suc-
cessful cancer treatments. Accompanied by advances in biotechnology and high-
dimensional data analysis techniques that are bringing in new opportunities in
modeling biological systems with continuous phenotypic structured models, we
study a cancer cell population model that considers a multi-dimensional con-
tinuous resistance trait to multiple drugs to investigate multidrug resistance.
We compare our continuous resistance trait model with classical models that
assume a discrete resistance state and classify the cases when the continuum
and discrete models yield different dynamical patterns in the emerging hetero-
geneity in response to drugs. We also compute the maximal fitness resistance
trait for various continuum models and study the effect of epimutations. Fi-
nally, we demonstrate how our approach can be used to study tumor growth
regarding the turnover rate and the proliferating fraction, and show that a con-
tinuous resistance level may result in a different dynamics when compared with
the predictions of other discrete models.
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1. Introduction

The biological mechanisms responsible for the emergence of drug resistance
and its propagation often involve a multifactorial and complex process of genetic
and epigenetic alternations [1-3], that arise through a series of genetic and non-
genetic changes [4-7]. Such changes can be due to drug administration (drug
induced resistance), or they can emerge independent of therapy due to intrinsic
mechanisms. Cancer cells may develop simultaneous resistance to structurally
and mechanistically unrelated drugs, leading to multidrug resistance (MDR)
[1, 2, 8]. The complex dynamical nature of MDR is one of the most challenging
obstacles to successful treatment.

The complexity of the mechanisms underlying drug resistance has encour-
aged its study through mathematical modeling. Such models aim at providing
quantitative tools for testing therapies that circumvent or at least delay the
unfortunate consequences of drug resistance. Examples include the models of
Goldie and Coldman [9-11] that are based on resistance due to point mutations.
These works were proceeded by many studies considering stochastic models (in-
cluding branching process and multiple mutations) to study MDR and optimal
control of drug scheduling [12-15]. Alternative approach includes continuum
deterministic models using ordinary differential equations, for example, mod-
eling kinetic resistance [16] and point mutations [17], and partial differential
equations, where spatial heterogeneity and vascularization can be readily incor-
porated [18-20]. For additional approaches see [15, 21-26].

In addition to the aforementioned modeling approaches, the advance of
biotechnology in collecting data characterizing the phenotype is bringing in
new opportunities of mathematical modeling of biological systems. The most
recent technology allows cytometry data to be collected up to O(50) dimensions,
Methylation profiles in the scale of O(1000), and gene-expression profile in the
scale of O(10000) [27-32]. In particular, recent advances in single cell RNA
sequencing technologies has enabled a new high-dimensional definition of cell

states, that is on the order of 20,000 protein encoding genes that compose the
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transcriptome [30, 33]. The high-dimensionality of the data makes it practically
impossible to consider a meaningful model on the original space in which the
data is collected. Thus, various dimension reduction techniques, such as, prin-
cipal component analysis [34, 35], t-distributed stochastic neighbor embedding
[28, 36, 37], diffusion maps [38, 39], and machine learning techniques [40, 41],
have been employed to reduce the dimensionality and to identify only the criti-
cal directions. In contrast to classical biology and modeling approaches, where
cell types are classified into discrete states and differentiation is considered as
a stepwise process of binary branching decision, the new technologies and data
analysis enabled considering cell differentiation as a continuous process that can
be mapped into a continuum of cellular and molecular phenotypes [29, 31, 38].
In other words, the high-dimensional configuration space is mapped into a con-
tinuous trait in a lower-dimensional space. Figure 1 shows two examples of
high-dimensional cell data mapped into a continuous trait in a lower dimensional
space using stochastic neighbor embedding (viSNE) [36] and diffusion mapping
[39]. This reveals the continuous phenotypic trait space where resistance can be
locally characterized. For instance, the left figure shows that relapsed leukemia
cells are associated with high expression of CD34, and the ALDH1 in the right
figure is related to cancerous stem cells in mammary gland and breast cancer
[42]. This opens the door to mathematical models that assume a continuous
trait space [43, 44].

Among continuous phenotypic structured models, recent studies in [45-50]
consider a continuous trait variable that represents the level of cytotoxic drug re-
sistance. This framework allows to explicitly model the heterogeneous response
to drugs and effectively study the selection dynamics under microenvironmental
constraints and chemotherapy. The asymptotic distributions on the resistance
trait space are obtained in [45], and the following works in [47, 49] extend it
to include mutations and epimutations. The distribution of resistance levels
can be then translated to therapeutic recommendation. The effectiveness of a
combination of cytotoxic and cytostatic drugs when cytotoxic resistance emerge

is studied in [45]. An optimal combination therapy to eliminate the most resis-
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Figure 1: High-dimensional cell data projected into a lower dimensional continuous trait space,
where the reduced dimensions are obtained by dimension reduction techniques. Figures are
reproduced from the data provided in [36] and [39]. Figure (a) shows the CD34 expression level
of 41 dimensional data [36] mapped into two dimensions by stochastic neighbor embedding
(viSNE), and the relapsed leukemia cells are located at where CD34 is highly expressed.
Figure (b) shows the ALDHI1 expression level of 4773 dimensional data [39] mapped into
three dimensions by diffusion mapping, where ALDH1 is related to cancerous stem cells in

mammary gland and breast cancer [42].

tant clones is proposed in [50]. Moreover, [50] extends the framework that was
restricted to solid tumor that is radially symmetric with a fixed boundary [46]
to an asymmetric tumor growth model with moving boundary. However, this
framework is limited to a single trait variable to a cytotoxic drug.

In this paper we extend the framework of [50] to multi-dimensional resistance
trait. We compare our approach that allows for a continuous drug response to
more traditional approaches that assume a discrete response to drugs. The pa-
per is organized as follows. In section 2, we introduce a mathematical model
for MDR assuming continuous trait variables. We parameterize our model as
an extension of a discrete resistance state model in section 2.1 and compute the
maximal fitness trait of resistance in section 2.2 for different types of continuum
models. This allows us to characterize the cases when the solutions of the contin-
uous models are qualitatively different than the corresponding discrete models.
Section 2.3 presents simulation results for the different cases of cytotoxic and
cytostatic drugs studied in 2.2. The impact of mutations and epimutations is

studied in section 2.4. In section 3 we simulate tumor growth and resistance dy-
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namics subject to MDR on different types of tumors characterized by turnover
rates and the proliferating ratios. Our simulations correspond to the discrete
MDR models studied by Komarova and Wodarz (2005) [51] and Gardner (2002)
[62]. We observe that a combination therapy with multiple cytotoxic drugs is
also effective in high turnover tumors using relatively high dosages. Increasing
the dosage in low turnover tumor is effective only for certain drug uptake func-
tions. In addition, the drug response function plays a key role in determining the
tumor growth dynamics when combination therapy is administered using cell-
cycle nonspecific cytotoxic drugs, such as Cyclophosphamide and Doxorubicin.

Conclusions and future directions are discussed in section 4.

2. Models of multidrug resistance

Let us consider a cancer growth model under multidrug therapy that de-
pends on an M-dimensional phenotype variable 6 = (61, ..., f5;) € T =TI T;.
The phenotype variable in the i-th direction §; € T'; = [0, 1] characterizes the
resistance level to the i-th drug or the i-th drug mechanism, where ; = 0 and
0; = 1 represents the fully-sensitive cells and fully-resistant cells to drug i, re-
spectively. The value of 6; can be obtained by normalizing the expression level
of a gene or a gene cluster that is linked to the cellular levels of drug resistance
and proliferative potential, such as ALDH1, CD44, CD117, or MDRI1 [36, 53—
55]. The governing equations follows the dynamics of the density of proliferating

cells, np = np(t, ), and quiescent cells, ng = ng(t,0), as

onp(t,0) = ((1—w)R(t,0) — D — Cp(t,0) — g) np(t,0) (1)
+pno(t0) + w / M0, 9)R(t, 0)np(t, 9)dd),
r
ong(t,0) = qnp(t,0)+ (—p— Dqg — Cq(t,0)) nq(t,0). (2)

The first term on the RHS of Eq. (1) is a growth term, R(¢, ), which we assume
depends on the resource level sq(¢) with the proliferation rate function () as
R(t,0) = ©(0)so(t). Also, we assume an exponential growth by considering a

constant apoptosis rate D for the proliferating cells and D¢ for the quiescent
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cells. To consider a logistic growth, we substitute both terms with a density-

dependent apoptosis term dp(t), where p(¢) is the total number of cells

p(t) = /an(t,ﬂ) +ng(t, 0)do,

and d is a constant that determines the cell capacity.

The net effects of the cytotoxic drugs on the proliferating and quiescent cells
are denoted as Cp(t,0) and Cq(t,6), respectively. These terms depend on the
marginal drug effects, C; = C;(¢,0;¢;(t)), the cell death rate due to the i-th
drug, which is assumed to be a function of the drug concentration ¢;(t). We
either consider C;(t,0) = p;(0)c;(t), where p;(0) is the drug uptake function
of the i-th drug, or the exponential kill model [52], C;(6;) = e~ (Imaz—0i)ei(t)
where C; represents the probability of the cell death due to the i-th drug. The
net drug effect is modeled as Cp(t,0) = ®(C4,...,Cr), where @ is the overall

drug effect function that can be taken for the cytotoxic drugs as

Cp(t,0) = ®(Cy,...Cy) =1 -] (1 - Cy), (3)

3

and similarly for Cg. The form (3) is valid when C; is the probability of death
due to the i-th drug (C; < 1), and assuming that the drug effects are indepen-
dent. Dependency between the drugs can be imposed through different choices of
®, e.g., Copula functions [56] that are used to describe the dependence between
random variables using multivariate probability distributions with prescribed
marginal distribution functions. In addition to the cytotoxic drugs, we consider

cytostatic drugs, which we assume delay the proliferation according to

C1+9(Cy,., Cnr)’
The net cytostatic drug effect delays the progression of the proliferating cells

through the cell cycle. We assume an additive ®:
o(Cy,...,Crr) = > _Cs.

Proliferating cells enter the quiescent state at a rate ¢ and quiescent cells
return to the cycling compartment at a rate p. These rates regulate the pro-

liferating portion 6(t) = [npdf/p(t). To balance a fixed ratio of proliferating
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cells, namely the proliferating index ¢*, the transfer rate ¢ can be computed as
g = (maxg R(0) — D + Dg)(1 — 6*) + p(1 — &*)/6*.

The last term in Eq. (1) is a mutation term. We assume that mutations occur
at a rate w during the proliferation cycle. The mutation is modeled as a inte-
gral term with a kernel function M (6, d). M(6,) represents the probability of a
mother trait ¥ mutating to a daughter trait 6 that is taken as an asymmetric ex-
ponential function with mutation range ¢, i.e., M(6,9) = Mexp [(§ — 0)?/¢?]
for 8 > ¢, and zero otherwise. Here, M, is a normalizing constant. This model
represents a mutation that gradually increases the resistance level through mul-
tiple mutations. A rare mutation that confers a complete drug resistance in a
single step can be imposed with a discrete kernel function [48] and a smaller

value of w.

2.1. Multidrug resistance models parameterized with a binary level of resistance

In this section, we simplify the model given by Eq. (1) to a model that
assumes a binary trait space. In this case, cells are either fully-sensitive or
fully resistant with respect to each drug, i.e., 8; € {0,1},Vi. To compare the
discrete- and continuous-trait models, we parameterize the proliferation and
drug function with the parameters related to the microenvironment selection as
follows. We denote the proliferation rate of the fully-sensitive cells (6 = 0) as
7, and assume that the proliferation rate of the fully-resistant cells (6 = 1) is

reduced by 1. With a normalized constant resource level (sg = 1),

R0) =¢(0) =7, R()=¢(1)=7—n

We scale the drug dosage ¢(t) to represent the drug effect on the fully-sensitive
cells and assume that the fully-resistant cells do not respond to the drug. This
yields a drug uptake function for which p(0) = 1 and (1) = 0. Hence, the
effect of the cytotoxic drug C(t,0) = ¢(t)u(f) boils down to

C(t,0)=c(t), C(t1)=0.

See Table 1 for a summary of the fitness parameters.
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parameters | biological meaning
¥ maximum proliferation rate
7 reduced proliferation due to resistance (selection gradient)
c(t) maximum apoptosis rate of sensitive cells due to drug

Table 1: Parameters of the proliferation and drug effect that yield the microenvironmental

selection process [49].

The resulting model can be written as a dynamical system. For instance, we
consider a single (M = 1) cytotoxic drug affecting the proliferating cells. There
exists two cell states: sensitive cells, ng(t) = np(t,0 = 0), and resistant cells,

ngr(t) =np(t,0 = 1). In this case, the resulting system is

ng = ((1—w)y—D—c(t))ns, @
nr = wyns+((y =n) = D)ng,
where, D = dp(t), and p(t) = ng(t) + nr(t). In the case of a single cytostatic

drug affecting the proliferating cells, the dynamics follows

s = ((1—w)—— — D) ng,
( )

1+c¢(t) (5)

i = wioesns + (=) = D).
In case of M drugs, the resulting model will involve 2 discrete cell state vari-
ables.

The binary models (4) and (5) yield an outcome where either the sensitive
cells ng or the resistant ngr cells dominate the population asymptotically de-
pending on the fitness parameters. In particular, for Eq. (4), with fixed values
of v and 7, if the drug dosage is low, ¢(t) < n—wy, the sensitive cells dominate,
but if the drug dosage increases as ¢(t) > n — wy, the resistant cells dominate
the population. The same holds for Eq. (5) with a threshold (n—w~)/(y—n). If
the mutation during treatment is negligible (w = 0) [51], the thresholds become
n and /(v —n) for models (4) and (5), respectively.

To connect between models with binary traits and models with continuous

traits, we extend the binary models assuming that the proliferation and drug
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effects are smooth and monotone with respect to 6. This assumption (although
may not always hold) makes it possible to classify continuum scenarios and
helps in identifying cases in which the continuous traits dynamics is qualita-
tively different than the corresponding binary models. Since we only consider
proliferating cells, the transfer terms to the quiescent cells are removed from

Eq. (1), and we simulate
on(t,0) = (R(A)—D—C(t0))n(t,0). (6)

Starting from the proliferation, we assume that cells that are resistant to
cytotoxic drugs use their resources to develop and maintain the drug resistance
mechanism [57, 58], that is, ¢'(¢) < 0. On the domain of § € [0, 1], the pro-
liferation function R(6) = ¢(#) can be characterized according to its concavity.
We consider three sample cases: ¢(0) =~ —n+n(0 — 1)2, p(0) = v —nb, and
©(0) = v —nh%. The cytotoxic drug effect C(0) = c(t)u(f) can be modeled
similarly. Assuming that apoptosis decreases with an increased level of resis-
tance, we have p/(6) < 0. Accordingly, we consider three characteristic cases:
(@) = (0 — 1), pu@) = (1 —0), and u(d) = (1 — 6?). The models we consider

are summarized in Table 2 and Figure 2.

concave up linear concave down
e(0) | (1) y—n+n(0—1)° (2) v —no (3) v — no?
(6) (i) (9 —1)? (i) (1—0) (i) 1 — 6

Table 2: Classification of the continuous proliferation and drug effect functions depending on
the concavity. We consider three cases for both R(0) = ¢(0) and C(0) = p(0)c(t) denoted as
case {1, 2, 3} and {j, ii, iii}, respectively.

2.2. Differentiating models with binary traits from models with continuous traits

To demonstrate the difference between models that are based on binary traits
and continuous-traits models, we compute the trait that achieves the maximal

fitness of Eq. (6) under different microenvironment conditions. We denote such
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Figure 2: Models of proliferation rate ¢(f) and drug uptake p(6) considering a continuous
resistance trait space on 6 € [0, 1]. We assume that the proliferation rate reduces from ~ to

v — n as the resistance level increases, and the drug effect reduces from1 to 0.

trait with the maximal growth rate as 0a(c(t), n,v) = argmaxy (R(8) — C(0)).
150 Our choices of R(#) and C(6) in Section 2.1 yield nine cases that are presented
in the following list!. We comment that among the nine cases, six cases resemble
the discrete model in a sense that the maximal fitness trait is binary, either fully-
sensitive or fully-resistant, while three cases allow intermediate trait levels. This
demonstrates that in certain circumstances, continuum models are necessary.
155 We first consider the single cytotoxic drug setup that is comparable to the

binary model (4). The results are summarized in Table 3.

e Case (3,i). The maximal growth rate is achieved at 0y = ¢(t)/(n + ¢(t))
that changes its value from 0p;(c = 0,-,-) = 0 to lime— o0 Ops(c, -, ) = 1.
This case allows an intermediate maximal fitness trait for any drug dosage

160 C(t) c R+ .

e Case (3,ii). The maximal growth rate is achieved at 05; = ¢(t)/(2n). This
model increases the maximal trait linearly in terms of the drug dosage

when ¢(t) < 27. For ¢(t) > 27, the maximal fitness occurs at 0y = 1.

e Case (3,iii). The maximal growth rate is either achieved at 65, = 0 when

165 c(t) < m, or at 0y = 1 when ¢(t) > 7. Since the phenotype distribution

1For simplicity, we compute the maximal fitness trait following the assumption that mu-

tations during treatment are negligible (w = 0) [51].

10
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asymptotically converges to a delta function centered at 8 =0 or 8 = 1,
the overall quality of the solution is similar to the binary-trait model. We
also remark that there exists a critical drug dosage at ¢(t) = n that yields

multiple fitness traits.

e Case (2,i). This model is similar to the case (3,ii), but opposite in the
sense that the maximal growth rate is achieved at 6y = 0 for ¢(t) < 1/2,

and increases as 0y = (2¢(t) — n)/2¢(t) for ¢(t) > n/2.

e Cases (2,ii), (2,iil), (1,i), (L,i), and (1,iii). These models also yield a
solution that is either concentrated at 63; = 0 or 83, = 1, similar to case

(3,iii), that is, Oas = 1.5, where 14 is an indicator function on A.

i Case (1) Case (2) Case (3)
W
. 2c—n c
() | Onr = Lesy Orr = Lesy O = min <; 1>
n
(111) 91\/[ = 1C>"7 61\/[ == ]-c>77 eM == 1C>77

Table 3: The selected trait with maximal growth rate 6ay = 0pr(c,n,7) depending on the

cytotozic drug concentration ¢ and the resource parameters v and 7.

In addition to cytotoxic drugs, we also consider the drug uptake models in
Table 2 for a single cytostatic drug that is comparable to the binary model (5).
The maximal fitness traits for the different choices of proliferation rate functions

and drug uptake functions are summarized in Table 4.

2.8. Simulation of continuum model in cytotoxic and cytostatic resistance

In this section, we simulate the model (6) for the cases shown in Table 2
and compare the results with the binary models (4)—(5). For the numerical

simulations, we consider the maximal proliferation rate as v = 0.66 per day,

11
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Case (1) Case (2) Case (3)

I T o ) :Cli_\/%_l
(1) 9M n n2 CQ’M 0M 2 2 0’
o

Or = Yoo o 2 1 )
77| where Coy = 5F — = —1 | where Cy =1+ ¢ +

0 n
Op = Chris — \/6'27—1
(ii) Om =1, n Or =1o5 w 19— 7o
o where Clii =1 + %
(iii) HM - 1C> wﬁn eM = 1C> wjn eM = ]—C>wifn

Table 4: The selected trait with maximal growth rate 6); = 6p7(c,n,7v) depending on the
cytostatic drug concentration ¢ and the resource parameters v and 7. We remark that 6, are

taken as 0 or 1 in cases (2,i) and (3,ii) similar to Table 3.

corresponding to a cell cycle of approximately 25 hours [59, 60]. We also assume
that the reduction in proliferation of the resistant cells is = 0.132 per day
based on the experiments of non-small lung cancer cells exposed to Erlotinib
[67], where the growth rate of resistant cell is reduced by approximately 70%.
Experiments with HL60 leukemic cells exposed to vincristine [61] and calculation
in [49] further support this assumption. We assume a logistic growth by D =
dp(t), where the apoptosis constant that represents the average death rate is
taken as d = 0.66-10~8. This corresponds to a cell capacity of 10% [61] assuming
a solid tumor of size lem? prior to angiogenesis [62] and a tumor cell volume

10=° ~ 3-10~8cm? [63, 64].

o =

=0 c; =02 ¢ =04
10 10 10 10
5 5 5 5
0 0 0 0
0 200 0 200 0 200 0
t t t

—e—ng

—%—np

log(n(t))

0.8
100 100 100 100 200
t

Figure 3: Total number of sensitive and resistant cancer cells in log scale using the binary-
trait model (4) for different dosages of cytotoxic drug. The outcome is asymptotically binary,
where either the sensitive or resistant cells dominate depending on the drug dosage with a

threshold ¢; = n = 0.132.

12
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Figure 4: The dynamics of the resistance profile of the cancer cells in the continuous-trait
model (6). The drug dosages are considered from ¢; = 0 to 0.8 and the shown results are at

time ¢ = 30, 60, and 90. Cases (3,i), (3,ii), and (2,i) yield a distribution with an intermediate

resistance level of maximal fitness, where the maximum trait occurs at Ops(c1) = 01138#1_,_01,
c 2c¢1—0.132 : . .
Onr(c1) = 53561, and Op(ca) = 12?, respectively. Cases (2,ii) and (1,iii) result in a

distribution that is similar to the binary-trait model, either concentrated at the fully sensitive

or fully resistant trait (see Table 3).

In Figure 3, we first present the result of the binary-trait model (4) showing
that either the fully-resistant or the fully-sensitive cells survive depending on
the drug dosage ¢ (t) compared to n = 0.132. The total number of sensitive and
resistant cells, ng(t) and ng(t), are plotted in log scale with a constant drug
dosage up to time ¢ = 200. We observe that when ¢; = 0 < 7, the sensitive cells

dominate at ¢t = 200, however, when the drug dosage increases to ¢; > 0.4 > 7,

13
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the resistant cells dominate. When c¢; = 0.2 > 7, but close to 7, the resistant
cells will eventually dominate.

In contrast, Figure 4 shows the cancer cell density n(t, 8) of the continuous-
trait model (6) subject to cytotoxic drug for cases (3,i), (3.ii), (2,i), (2,ii), and
(1,iii). We vary the constant cytotoxic drug dosage from ¢; = 0 to 0.8 and
compute the solution up to time ¢t = 90. Case (3,1) always yields an intermediate

level of maximal fitness trait of resistance level fa(c1) = . Case (3,ii) also

yields intermediate levels of 0y (c1) = %17 when ¢; <21 =0.264, and Op/(c1) =1

otherwise. Alternatively in case (2,i), 6p(c1) = 0 when ¢; < 1n/2 = 0.066,

and Op7(cq) = 20210:” otherwise. These simulations are consistent with Table 3.
Moreover, we observe that the transition from the sensitive to the resistant
trait is faster in cases (3,ii) and (2,i) compared with case (3,i), and even more
rapid in cases (2,ii) and (1,iii). In particular, cases (2,ii) and (1,iii) result in a
distribution that is either concentrated at the fully sensitive or fully resistant

trait with a threshold ¢; =n = 0.132.

(a) binary (b) case (3,i) (c) case (1,iii)

10

[

Figure 5: Total number of cancer cells p(t) up to ¢ = 100 simulated with the binary model (4)
and continuous model (6). As the cytotoxic drug is increased, t; is delayed. The total number
of cells at ts when the tumor growth slows down is monotonically reduced as the drug dosage
increases in the continuum case (3,i), while it is not in the binary model and case (1,iii). In
particular, the dynamics is identical in the binary model when the dosage is relatively high as

c1 > 0.132.

In addition to the resistance trait density, the following quantities of interest

are computed. We denote the time that the tumor size p(t) = 5-107 as

* s 7
t, = min{t|p(t) > 5-10"}.

14
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In addition, the full cell capacity is approximately computed as p(ts), where

ts =min{t >t | p'(t)/p(t;) < 0.01}, the time when tumor growth slows down.

(a)

60

plts)

—+—binary

Figure 6: Comparison between the binary model (4) and continuous model (6) regarding the
time ¢ and cell capacity p(ts) in terms of cytotoxic drug dosage c¢1. The binary model yields
an identical result when the drug dosage is ¢ > 0.3, while the results of the continuum models
change gradually. Moreover, t7 varies depending on the choice of continuum models and the
measured time is shown to be more sensitive to the choice of the drug effect function than to

the proliferation function.

Figure 5 compares the dynamics of the total number of cancer cells p(t) using
the continuous model (6) and binary model (4) up to ¢ = 100. The times ¢} and
ts are delayed as the cytotoxic drug dosage increases. However, in the binary
model, the results are essentially identical when the dosage is relatively high as
c¢1 > n = 0.132. Moreover, the tumor size of approximate full capacity p(ts)
in the continuum case (3,i) is gradually reduced as the drug dosage increases,
which is not the case in the binary-trait model and case (1,iii). The results
of t7 and p(ts) with respect to the cytotoxic drug dosage ¢; shown in Figure
6, where the distinction between the binary and continuum models are more
apparent. The binary model yields an identical result after the drug dosage
increases above ¢; > 0.3, while the continuum models show a gradual change
depending on the drug dosage. We observe that with our model parameters the
than to the proliferation function (case 1, 2, 3).

The case of a cytostatic drug comparing the continuous model (6) and bi-
nary model (5) is shown in Figures 7 and 8. The resistance trait distribution

considering cases (3,i), (2,ii), and (1,iii) are plotted in Figure 7. The interme-
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Figure 7: The cancer cell distribution using continuum model (6) for different dosages of
cytostatic drug at time ¢t = 30, 60, 90. The case (3,i) shows a smooth transition of intermediate
maximal resistance trait as Oa7(c1) = 3 + 1/2c1 — 4/4+ 3/c1 +1/4c. On the other hand,
cases (2,ii) and (1,iii) show maximal trait either at the most sensitive or the most resistant

trait depending on the drug dosage threshold ¢; = 0.25 (see Table 4).

(a)

*-case ( . ,iii)
—+—binary

Figure 8: Comparison between the binary model (5) and continuous model (6) regarding the
time ¢7 and cell capacity p(ts) with respect to the cytostatic drug dosage c1. In this case, the
binary model also yields a gradual change regarding the drug dosage, still it varies from the

results of different continuum models.

diate resistance level of maximal fitness is achieved in case (3,1) for all drug
dosages ¢1 at Op(c1) = C1;/2 — \/W, where C; = 6 4+ 1/¢q, similar to
the results of using cytotoxic drugs. We also observe a binary outcome either
at the most sensitive or the most resistant trait depending on the drug dosage

threshold ¢; = n/(y —n) = 0.25. The time ¢} and approximate capacity p(ts)
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are shown in Figure 8. In contrast to the cytotoxic drug case, the binary model
also shows a gradual change as a function of the drug dosage. Still, the results

obtained by the binary and continuous models are different.

2.4. Epimutation in drug resistance

In this section, we investigate the effect of epimutation on the drug resis-
tance dynamics of cancer cells. Phenotypic variants in cancer cell populations
emerge not only from genetic mutations, but also due to epimutations. Epimu-
tations are heritable changes in gene expression that do not alter the DNA, but
contribute to the phenotypic instability [65-69]. Recent experiments demon-
strate that such non-genetic instability and phenotypic variability allows cancer
cells to reversibly transit between different phenotypic states [61, 70, 71] and
contributes to development of resistance to cytotoxic drugs [72, 73]. In the con-
tinuous phenotypic models, epimutation can be readily modeled as a diffusion
term assuming that random epimutations yield infinitesimally small phenotypic
modifications [49, 74, 75]. The dynamics of proliferating cells in Eq. (6) with
an epimutation rate v can be written as

0’n

din(t,6) = (R(6) — dp(t) — C(O))n+ v (7)

The asymptotic distribution of the continuum model with epimutation for the
case (3,1) is derived in [49]. Here, we study the effect of epimutation in different
continuum models.

Figure 9 shows the resistance trait density n(¢,6) with epimutation using
Eq. (7) corresponding to cases (3,i) and (1,iii) when the rate of epimutation is
v = 1072, Although the maximum fitness trait is similar to the results without
epimutations in Figure 4, the phenotypic instability yields a significantly more
heterogeneous population, not only in case (3,i), where the maximal fitness
trait is intermediate, but also in case (1,iii), where the distribution becomes a
Dirac-delta function at the boundary trait without epimutations.

We now study the effect of epimutations on the time ¢} that the tumor

size reaches a certain size in different models subject to cytotoxic drugs. In
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Figure 9: The cancer cell distribution using continuum model (7) with nonzero epimutation
rate v = 10~ 2. The results shown are for different drug dosages at times t = 30, 60, 90. While
the maximal resistant traits are similar to the results without the epimutations as in Figure

4, the cell population is significantly more heterogeneous.

cytotoxic drug cytostatic drug
60 60
——w =0
—ww =102

Figure 10: The comparison of ¢}, using the binary models (4)—(5) with mutation rate w = 1072
compared with the model with no mutations (w = 0). In general, mutations result with an
earlier relapse due to an increased portion of resistant cells, when the drug dosage is sufficiently

high, i.e., ¢; > 0.2 with a cytotoxic drug and cz > 0.5 with a cytostatic drug.

particular, we compare epimutations with regular mutations. Figure 10 shows
the time of relapse using the binary models (4)—(5) with and without muta-
tions of rate w = 1072 initiated from ng(0) = 0.99 and nz(0) = 0.01. In
general, mutations accelerate the relapse time by increasing the proportion of
resistant cells under a sufficiently high dosage. We remark that this is similar
in the continuum models, when using the asymmetric mutation kernel M (6, )
described section 2. However, Figures 11 and 12 show that epimutations in

the continuum model (7) often delay the relapse time. We consider two ini-
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Figure 11: The comparison of ¢; using the epimutation model (7) subject to cytotoxic drugs.
(a) and (b) correspond to different amount of preexisting resistance, modeled by the initial
conditions nq(0) and ny (@), respectively. While mutations in the discrete case accelerate the
relapse time, epimutations in the continuum models often delay the relapse time, especially
with the initial condition n,. With the initial condition n;, epimutations accelerate the relapse

in case (i), but in case (iii) only for a certain range of the drug dosage.

tial conditions: (a) nq(6) = ngexp [—6%/l], where we set Iy = 0.0739 and ng
so that f01_5 n(t = 0,0)d0 = 0.01 and p(0) = 1; and (b) a linear distribution
np(0) = —0.980 + 0.99, which has a larger population of resistant cells.

In Figure 11, using the epimutation model (7) subject to cytotoxic drugs, we
observe that ¢} is delayed with the initial condition n,, especially in case (iii)
with a larger rate v. However, epimutations with initial condition n; accelerate
the relapse in case (i), and also for a certain range of drug dosages in case (iii).
For a higher cytotoxic dosage ¢; in case (iii), the relapse time is again delayed.
Similarly, Figure 12 shows the effect of epimutations on the conitnuum model
(7) subject to cytostatic drugs. Compared with the cytotoxic drugs, resistance
to cytostatic drugs is less affected by epimutation especially when starting with
the initial condition n,. However, an earlier relapse is observed with the initial

condition ny in both models (i) and (iii).
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Figure 12: The comparison of 3 using the epimutation model (7) subject to cytostatic drugs.
(a) and (b) correspond to different amounts of preexisting resistance, modeled by the initial
conditions nq(f) and ny(@), respectively. Compared with the cytotoxic drugs, resistance
to cytostatic drugs is less affected by epimutations especially with the initial condition ng.

However, an earlier relapse is observed with the initial condition n.

In conclusion, compared with regular mutations that give advantage to tu-
mor growth under drug administration, epimutations have more diverse effects
that can either promote or slow down tumor growth depending on other cir-

cumstances, including the drug uptake function and the initial conditions.

3. Simulating tumor growth under multidrug therapy

In this section we demonstrate how our continuous phenotype structured
modeling framework can be used to study MDR. The impact of the tumor’s
turnover rate and the proliferating fraction of cancer cells have been studied
within a discrete phenotype framework by Komarova and Wodarz (2005) [51]
and by Gardner (2002) [52]. Here, we compare the results obtained with our

approach with the conclusions of [51, 52].
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3.1. Multidrug resistance: tumor turnover rate

The impact of the turnover rate in tumor growth and resistance dynamics
has been studied by Komarova and Wodarz (2005) [51]. Their model assumes
two discrete states for M cytotoxic drugs, adding to 2™ discrete resistance
levels. The model assumes a constant growth rate R, a constant death rate
D, and is independent of the cell-cycle. Komarova and Wodarz conclude that
when comparing tumors of identical sizes at detection, high turnover tumors
(R = D) have a higher probability of treatment failure than low turnover tumors
(R < D). Moreover, a combination therapy (M > 1) is less likely to have an
advantage over single-drug therapy in tumors with high turnover rates. In
contrast, in the continuum models we show that depending on the proliferation
and drug response functions, a combination therapy to high turnover tumor can
be more effective than a single drug treatment. This is the case with relatively
higher dosages when the drug uptake follows model (i). In addition, increasing
the dosage in low turnover tumors is effective in delaying the tumor relapse
when the drug uptake follows model (i), but not in model (iii).

The simulation we present is computed using the continuum model (6) with
the different drug response functions in Table 2. Asin [51], we assume a constant
proliferation rate R = 1, and model the high and low turnover tumor by setting
D = 09 and D = 0.1, respectively. The cytotoxic drug effect is taken as
Cp(0) = c(t)®(0), where we consider a single parameter ¢ for the drug dosage,
and ®(0) =1 — H?i1(1 — p;(0)) with the uptake functions p;(6). We consider
the drug dosages around ¢(t) = 0.1 in high turnover tumors and ¢(¢) ~ 0.9 in
low turnover tumors.

Figure 13 presents the cell density in the resistance trait space using the
continuum model (6) subject to a combination therapy using two cytotoxic
drugs (M = 2). We consider a high turnover tumor with the uptake functions
distributions shown are cancer cell densities in log scale, log(n(t, 61, 62)), at time
t = 100. The marginalized distribution in each resistance trait is similar to the

results of section 2.3, where case (iii) yields more localized distributions near
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Figure 13: Phenotype distribution in the continuum resistant space using two drugs with
the drug uptake functions of cases (i,i), (i,iii), and (iii,iii) computed using Eq. (6). The
distributions shown are cancer cell densities in log scale, log(n(¢,01,62)), at time ¢t = 100 for
drug dosages ¢ = 0.1, 0.2, and 0.4. The distribution is more localized near 6; = 0 or 1 in case

(iii) compared with case (i).

6 =1 in relatively higher dosages compared to case (i).
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Figure 14: The total number of cancer cells p(¢) using the continuum model (6) and case (i)
with M = 1,...,5 cytotoxic drugs. As the drug dosage ¢ and the number of drugs M are
increased, the relapse time is delayed. Increasing the number of drugs to M > 2 is effective
not only in low turnover rates but also in the high turnover rates with relatively high dosages

c>0.2.
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We now compare the responses of high and low turnover tumors with respect
to the number of drugs M in the continuous models. Figure 14 shows the
total number of cells p(t) up to ¢ = 100 for an increasing number of drugs
M =1,...,5, and increasing drug dosages. We choose case (i) for the drug
uptake function. As expected, we observe a delayed growth with an increased
number of drugs and increased dosages. While increasing the number of drugs
is not effective in high turnover tumors in the model of [51], it is effective in the
continuum model (6) with the drug update model (i) and high dosages ¢ > 0.2.
Figure 15 compares the total number of cells in four different continuum models,
combining the drug effect (case (i), (iii)) and the turnover rate (D = 0.9, 0.1).
We observe that increasing the drug dosage over a certain threshold is less likely
to delay the relapse time in low turnover tumor for which the drug uptake follows

case (iii). It is effective in drug uptake case (i).

D = 0.1, case(i) D = 0.1, case(iii) D = 0.9, case(i) D = 0.9, case(iii)

0 25 50 0 25 50 0 100 200 0 100 200
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Figure 15: Comparison of the number of cancer cells p(t) using the continuum model (6) while
increasing the drug dosages for different turnover rates and drug uptake response models.
Increasing the dosage is effective when the drug uptake follows model (i), but not in model

(iii) regarding the tumor relapse, particularly in low turnover tumors (D = 0.1).

Finally, Figure 16 shows the effect of increasing the number of drugs assum-
ing a logistic growth model by taking D = dp(t) in Eq. (6). In this case, the
dynamics does not depend on the turnover rate d except that the cell capac-
ity changes. The results are shown for d = 10~8, and we remark that taking

d =9-10~8 shows essentially no difference. However, the relapse does depend
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Figure 16: Comparison of the number of cancer cells p(¢) for an increasing the number of drugs
M in the logistic growth model D = dp(t) and the continuum model (6). Assuming a logistic
growth, the relapse does not depend on the turnover rate, but on the choice of continuum
uptake models. Increasing the number of drugs is more effective in case (iii) compared with

case (i) in our model.

on the choice of a continuum model. Increasing the number of drugs delays the
relapse in both cases (i) and (iii), but more so in case (iii) compared with (i).
We conclude that in addition to the turnover rate, the drug uptake function
of the continuum model is also important in controlling the outcome of the
treatment. In particular, a combination therapy with multiple drugs is effective
not only in low turnover tumors, but also in high turnover tumors with the drug
uptake case (i). Moreover, a high cytotoxic drug dosage in low turnover tumor
with case (iii) is less effective than case (i). The drug uptake function is often
more important than the turnover rate in determining the outcome of the tumor

growth and relapse, particularly with a logistic growth condition.

3.2. Multidrug resistance: heterogeneity due to the proliferating index

Gardner (2002) [52] proposed an individually tailored model based on the
tumor cell kinetics of patients following heterogeneous colonies of proliferating
and quiescent cells. This study considered multidrug resistance to six spe-
cific drugs, including two cell-cycle specific (CS) cytotoxic drugs, 5-Fluorouracil

and Methotrexate, that only affect the proliferating cells; two cell-cycle non-
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specific (nCS) cytotoxic drugs, Cyclophosphamide and Doxorubicin, that kill
both proliferating and quiescent cells; and two cytostatic drugs, Tamoxifen and
Herceptin. The model assumed discrete levels of resistance in addition to the pa-
rameters of cell division rates, apoptotic rates, response to drugs, and evolution
of drug resistance. It then used the discrete model to predict drug combinations

and schedules that are likely to be effective in reducing the tumor size.
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Figure 17: The drug effect C;(6;) at resistance level 6; € {0, 0.5, 1} of the six drugs used in
[52]. The drugs include two CS cytotoxic drugs: 1) 5-Fluorouracil, and 2) Methotrexate; two
nCS cytotoxic drugs: 3) Cyclophosphamide, and 4) Doxorubicin; and two cytostatic drugs:
5) Tamoxifen, and 6) Herceptin. The exponential kill models can be categorized into the

continuum models of cases (ii) and (iii).

The governing system in [52] assumes three discrete drug resistance levels,
0; = {0, 0.5, 1}, for each of the six drugs, and it is similar to Egs. (1)-(2):
np=((1—w)R—Cp—q)np+png + wM(np), ®)
ng = qnp + (—=p — Dq — Cq) nq.
Here np and ng are defined on 3° discrete resistance levels. In addition,
Cp includes the effect of apoptosis of proliferating cells of rate D, the qui-
escent cells die as a result of necrosis of rate Dg, and M denotes the mu-
tation term similar to Eq. (1) [52]. The transfer rates from the quiescent
cells to the proliferating cells to balance a fixed ratio of proliferating cells §*

is g =(R—-D+ Dg)(1—6")+p(l—206%)/6*. We denote the CS cytotoxic
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drugs as C; and C5, the nCS cytotoxic drugs as C3 and C4, and the cyto-
static drugs as C5 and Cg. The drug effects are modeled using the exponential
kill model [76] as C;(6;) = R [1 — e=@(0mas=061)ei(D] for the CS cytotoxic drug
(i=1,2), Ci(6;) =1 — e~ %maz=0:)cit) for the nCS cytotoxic drug (i = 3, 4),
and C;(0;) = z; [1 — e~ @1(Omaz=00¢i(M] for the cytostatic drug (i = 5, 6), where
Omaz = 1 and the domain of resistance trait is taken at three discrete levels

0; € {0, 0.5, 1}. The net drug effects are taken as

4
Cp(t,0) =1 (1= D) [ (1 - Culbas (1))
i=1
Colt.0) =1~ T[(1- Cilbscs(®)),  Rt6) — #(9) .
P L+ Y05 Cil0is i(t))

Figure 17 shows the three discrete levels of drug effect using the dosages cq,

.., ¢ from [52] (see Appendix A). We note that although Garduner considers
three levels of resistance, the cells with sensitive levels #; = 0 and 6; = 0.5 of
1 =1, 2, 3, and 6 have similar response to the drug. Moreover, the exponential
kill model of C7, Cy, C3, and Cg based on the concavity can be classified as our
case (iil), and Cy and Cj5 as case (ii). In the following simulations, we assume
that the proliferation R and the drug effects C; in Eqgs. (1)—(2) follow the models
as in Table 2 with the net drug effect as in (9), and compare the results with
the discrete model (8). See Appendix A for the model parameters.

Figure 18 compares the result of the discrete model (8) and the continuum
model (1)-(2), in particular with regards to the drug C3. Shown is the cell
distribution on the resistance trait space of drug Cs in log scale?, when using
no drug, a single drug ce, and all 6 drugs. Here, the continuum model is taken
as the exponential kill model that can be classified as cases (iii) and (ii). As
expected from the shape of the uptake function in Figure 17, the distribution in
the 0 trait space is concentrated at the boundary traits, similarly to the discrete

model. However, the continuum model predict emerging cells with intermediate

2n(t,02) = ng np(t,0) + ng(t,0)dss, where 65 is the vector of 6 except the i-th index 6;

and I'{ is its domain.
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Figure 18: The cell distribution in the resistance trait space of C3 in log scale, log(n(t, 62)),
using no drug, a single drug of Cq, and all drugs. The plots compare the discrete model
(8) (top) and the continuum model (1)—(2) (bottom). Due to the shape of the exponential
kill model (case (iii)), the cell distribution of the continuum model is concentrated at the
boundary traits similarly to the discrete model. However, the continuum model reveals the
cell distribution in the intermediate levels and the degree of heterogeneity in the resistance

trait.

levels of resistance, and the degree of heterogeneity in the resistance level can
be quantitatively computed.

Figure 19 compares the sensitivity of the tumor size with respect to the drug
dosage between the continuum model (1)—(2) and the discrete model (8). For
comparison, we plot the normalized total number of cells in log scale at time t =
200 that is normalized by the mean. Here, two drugs are applied, either (Cy, Cs)
or (C3, Cg), with different weighted dosages w;c;, where w; = 0, 0.2, ..., 1. The
results show that the tumor size p(t) in the continuum model is more sensitive
to the drug dosage, with variation of a larger order of magnitude compared with
the results of the discrete model. In addition, the effects of drugs Cy, C3, and
Cs in the discrete model are binary depending on whether the drug is applied
(w; > 0.2) or not (w; = 0). In contrast, the continuum model shows a gradual

decay when increasing the dosage. Figure 19 also shows the total number of
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Figure 19: Comparison of normalized total number of cells log(p(t)) at ¢ = 200 when two
drugs, either [C1, C3] or [Cs, Cg], are applied in difference dosages w;c;. Top: three discrete
levels of resistance (8). Bottom: the continuum model (1)—(2). In the discrete model, the
effects of drugs C1, Cs, and Cg are binary depending on whether the drug is applied or not,
while the continuum models show gradual changes. The figure on the right shows the results
of using all six drugs, where the tumor size significantly depends on the choice of model (two

orders of magnitude).

cells when all six drugs are applied. We observe that p(t) significantly depends
on the choice of model, as the tumor size varies by two orders of magnitudes
around ¢ = 200.

Figure 20 compares the mean resistance level® E[Q;(t,6;)] up to t = 200
when all 6 drugs are applied. While the mean resistance level in 6; implies the
dominating resistance to the i-th drug, we observe distinct results in different
models. First, using the discrete model (8), the resistance level in each drug
eventually converges to the most resistant cells §; = 1. This implies that the
surviving cancer cells are only the ones that are fully resistant to all six drugs.
However, the continuum model (1)—(2) shows a more gradual increase of resis-

tance. Moreover, the resistance to nCS cytotoxic drugs develops more rapidly in

frg np(t,0) + ng(t, 0)dos
p(t)

3E[Qi(t,0:)] = [ 0; Qi(t,0;)d0;, where Q;(t,0) =

vector of 6 except the i-th index 6; and I'{ is its domain.

and 60 is the
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Figure 20: Comparison of the mean resistant trait E[Q;(t,0;)] to the i-th drug. Each column
corresponds to different types of drug: (a) CS cytotoxic, (b) nCS cytotoxic, and (c) cytostatic
drug. Using the discrete model (8), the mean resistance level increases to 6; = 1 in all drugs,
i.e., the cancer cell population is dominated by cells that are resistant to all six drugs. In
the continuum model (1)—(2), resistance to CS cytotoxic drugs and cytostatic drug develops
faster in case (i) compared with (iii), while the resistance to nCS cytotoxic drug arises faster

in case (iii).

case (iii) than in case (i). On the other hand, resistance to CS cytotoxic drugs
and to cytostatic drugs is more sensitive to the drug application in case (i) that
in case (iii). We finally comment that E[Q; (¢, 0;)] shows similar dynamics when
using drugs with the same mechanism, that is, the results with drugs Cy, Cs,
and C5 are similar to Cy, Cy, and Cg, respectively.

Gardner (2002) [52] presents the effect of different drug combinations par-
ticularly to cancer cells with different proliferating proportions §(¢). Figure 21
shows simulations of the total number of tumor cells p(¢) with a highly prolif-
erating index (0* = 0.5) and a low proliferating index (6* = 0.05). We demon-
strate that the drug response function plays a key role in determining the tumor
growth dynamics using certain combination therapies that often involve the nCS
cytotoxic drugs (C3 and Cy). In general, the drug combinations that includes
CS cytotoxic drugs (Cy and C5) are more effective in highly proliferating tu-
mors. In the discrete model (8), the drug combinations without the CS cytotoxic
drugs show no difference. However, in the continuum model (1)—(2), the highly
proliferating cancer cells show disadvantage under drug combinations without
CS cytotoxic drugs, which reveals a possible internal dependency between the

drugs.
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Figure 21: Total number of cells p(t) using different drug combinations with either high or
low proliferating index, that is, §* = 0.5 or 0.05. The drug combination that includes CS
cytotoxic drugs (C1 and C2) are more effective in highly proliferating cells. The drug effect
of combinations without CS cytotoxic drugs is independent of the proliferating index in the
discrete model (8). In contrast, highly proliferating cancer cells show certain disadvantages

in the continuum model (1)—(2).

We observe that the choice of continuum model is critical to the emerging
drug response. For an effective individually-tailored cancer modeling, these
results stress the importance of identifying an appropriate model depending on

the drug response of each individuals.

4. Conclusion

In this paper we propose a mathematical model for multidrug resistance,
assuming a continuous resistance phenotype space. The multidrug resistance
trait variable represents the level of resistance to various drugs including cell-
cycle specific and nonspecific cytotoxic drugs, as well as cytostatic drugs. We
classify the proliferation and drug uptake functions and identify the cases where
the continuum model results in an intermediate maximal fitness resistance, i.e.,
the cases in which the continuum and discrete models are essentially different.
Thus, by observing the proliferation and drug effects, we can predict when the

continuum models are different than the corresponding discrete models. We
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study the effect of epimutation on the cytotoxic and cytostatic resistance traits.
In contrast to standard mutations that are associated with an early relapse,
epimutations may either accelerate or delay the relapse time. We demonstrate
such effects on different continuum models, initial preexisting resistance ratios,
and types of drugs.

We use our approach to revising the works of Komarova and Wodarz (2005)
[561] and the Gardner (2002) [52]. Following [51], we study the impact of the
turnover rate on tumor growth and drug response. We verify the effectiveness
of a combination therapy with multiple cytotoxic drugs in low turnover tumors
and also in high turnover tumors with a drug uptake function of case (i) under
high drug dosages. Increasing the cytotoxic drug dosage delays the relapse in
tumor that the drug uptake follows case (iii), but not in low turnover tumor with
case (i), thus in particular in such cases, the dosage should be carefully chosen.
Moreover, the choice of a drug uptake function is shown to have a higher impact
than the turnover rate under a logistic growth condition. These results provide
new isights on the dynamics beyond what is accessible by (and in certain cases
even contradictory to) the discrete-trait model of [51].

The second example we studied followed [52] by considering three different
types of drugs: cell cycle specific and nonspecific cytotoxic drugs, and cytostatic
drugs. We demonstrated that the size of the tumor is more sensitive to the
drug dosage in the continuum models compared with the model of [52]. In
addition, a drug combination without the cell cycle specific cytotoxic drug shows
no disadvantage in highly proliferating tumors in the discrete model, which is
not the case in the continuum models. We conclude that the dynamics of the
cancer cell population including the time of relapse and the resistance profile
significantly depends on the choice of (continuum) models, in addition to the
turnover rate and the proliferation index. Thus, it is critical to select appropriate
multidrug resistance models depending on the drug response of each individuals,
to accomplish an effective individually-tailored cancer modeling framework and
a corresponding optimal drug therapy.

Our future work includes deriving a continuum model from high-dimensional
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data that will be preprocessed with data analysis techniques. In addition, mod-
eling the dependency structure of multiple drugs and investigating its effect on
the resistance dynamics is another challenging topic. Finally, due to its di-
mensionality, simulation of multidrug resistance model requires developing an
efficient numerical method that balances computational cost and accuracy. This
will be addressed with adaptive numerical methods that take advantage of the

underlying low dimensional structure of the solution.
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Appendix A. Parameters of simulation

The parameters for the simulation in section 3.2 are taken from [52] as

following.

e Maximum proliferation rate of highly proliferating cells is v = 1/30, and
for less proliferating cells, it is v = 1/50. In addition, reduced proliferation
due to resistance is assumed that the cell cycle is delayed by approximately

20 hours [77-80].
e Transfer rate from quiescent to proliferating cells: p = 1/20 day [80-82].

e Proliferating proportion: 0.05 < §* < 0.5 [77-80]. We take 6* = 0.15

unless otherwise stated.
e Necrosis rate of the quiescent cells: Dg = 1/100day " [83].

61>(d7. (1 _ 67/\it) + Cf"”e’U’ t S dl

e ci(t)=9 7
cl)(ldz e it (1 _ e—)\it) + c€rev7 t>d;

of drug built up from previous drug applications and the parameters for

drug administration are as follows [84-86].
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-Periods of drug administration: )\i|§1=1 =21, A5=1, 2 =T.

-Duration of drug administration: d;|?_; = 0.1h, ds = 2h, dg = 1/3h.

-Drug dosage scaled for a; = 2 and z; = 1: ¢ = 5, ¢ = 0.005,
¢s = 0.0009, ¢4 = 0.00012, ¢5 = 0.01, ¢ = 0.01.

e Mutation rate: w = 1076 [24].
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