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Abstract. Contagious processes on networks, such as spread of disease
through physical proximity or information diffusion over social media,
are continuous-time processes that depend upon the pattern of interac-
tions between the individuals in the network. Continuous-time stochas-
tic epidemic models are a natural fit for modeling the dynamics of such
processes. However, prior work on such continuous-time models doesn’t
consider the dynamics of the underlying interaction network which in-
volves addition and removal of edges over time. Instead, researchers have
typically simulated these processes using discrete-time approximations,
in which one has to trade off between high simulation accuracy and short
computation time. In this paper, we incorporate continuous-time network
dynamics (addition and removal of edges) into continuous-time epidemic
simulations. We propose a rejection-sampling based approach coupled
with the well-known Gillespie algorithm that enables exact simulation of
the continuous-time epidemic process. Our proposed approach gives ex-
act results, and the computation time required for simulation is reduced
as compared to discrete-time approximations of comparable accuracy.

Keywords: Stochastic epidemic model, SIR model, continuous-time net-
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1 Introduction

Epidemic modeling has been an area of significant interest to the network science
community, with applications including the spread of rumors or viral content
over social media and the spread of infectious disease over face-to-face contact
networks. The distribution and duration of contacts crucially affect the transfer
of infection between individuals because it may increase or decrease the chances
for infection to occur. Hence, the underlying network topology and properties
are very important in epidemic modeling.

Epidemic models are mainly classified into two classes: deterministic and
stochastic. We consider stochastic epidemic models, which can be used to sim-
ulate a range of possible outcomes for any given set of parameters. The infec-
tion process depends upon the instantaneous topology of the network, which
is changing continuously over time. Researchers often discretize time into short
“snapshots” where the network topology is considered fixed during the time pe-
riod of a snapshot. This is an approximation of the actual network where its
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topology changes only after a fixed interval of time. The epidemic process is
then simulated in discrete time over this snapshot-based representation [2, 4].
There is a trade-off between accuracy and computation time that is attached to
discrete-time simulation models, depending on the length of the time snapshots.

Continuous-time stochastic epidemic models have traditionally been used
for tractability of mathematical analysis [3]. Fennell et al. [6] propose an ap-
proach for simulating continuous-time stochastic epidemic models directly using
the Gillespie algorithm [8] rather than by using discrete time intervals. They
also demonstrated the inaccuracies that can result by using longer intervals for
discrete-time simulations. However, the Gillespie algorithm-based approach is
not applicable when the network changes over time because the infection rates
change based on both the network dynamics (addition and removal of edges) and
the infection dynamics. Vestergaard and Génois [12] address this limitation by
proposing a method for exact continuous-time simulation on dynamic networks;
however, it applies only to discrete-time dynamic networks.

In this paper, we propose an algorithm for simulating continuous-time epi-
demic processes on continuous-time dynamic networks that can change at arbi-
trary times unlike [12]. Our algorithm combines the Gillespie algorithm-based
approach with a rejection sampling procedure that rejects inter-event times that
occur after a change in the network, i.e. addition or deletion of an edge. We
demonstrate that our approach is exact—that is, it correctly simulates the event
times in the presence of network changes. We also demonstrate that our rejec-
tion sampling Gillespie algorithm results in faster simulations than comparable
discrete-time approximations on two real dynamic social network data sets.

2 Background

2.1 Dynamic Interaction Networks

Real networks are generally time-varying in which the edges (interactions) be-
tween nodes (individuals) are not fixed or static. Therefore, the underlying net-
work for any dynamic process like infection spreading or information diffusion
changes with time, e.g. due to changing patterns of human interactions. The
dynamics of this change in network topology may have a non-trivial impact
over the processes. Holme [9] discusses several representations used for temporal
networks. An exact continuous-time representation includes a sequence of inter-
actions in the form (u, v, t, d), where u and v denote the two nodes involved, t
denotes the timestamp of the start of the interaction, and d denotes the dura-
tion. The typical discrete-time representation is a sequence of aggregated graphs
that represents how the topology of a temporal network changes with time. Each
graph in the sequence is an aggregated representation over a time interval.

2.2 Stochastic Epidemic Models

The spread of infectious disease over a population is frequently modeled by a
compartmental model in which the population is divided into a set of disjoint
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compartments. Some of the most common compartment models are the SIR,
SIS, and SEIR models, where S stands for Susceptible, I for Infectious, R for
Recovered, and E for Exposed. Any individual in this population exists in one
compartment (or group) at a time and assumes similar properties of that group.

In this paper, we consider the SIR model, although our approach general-
izes to the other compartmental models as well. In the SIR model, a susceptible
individual may get infected after coming in contact with an infectious indi-
vidual. This individual will recover after a certain amount of time. There are
two approaches for modeling the transitions between these groups: deterministic
and stochastic. In deterministic models, the transitions between these states are
governed by differential equations. In stochastic models, which we consider in
this paper, transitions between states occur with certain probabilities [3]. An
infectious individual can spread the infection to a susceptible individual with
infection probability β. Similarly, an infectious individual can transition to the
recovered state with recovery probability µ. Stochastic models are sometimes
also simulated to validate analytical results from deterministic models [13].

Discrete-time Models Discrete-time epidemic simulations consider time pro-
gressing in constant intervals of length ∆t. In a single time interval or snapshot,
any individual may make a single transition between compartments. For exam-
ple, a susceptible individual may transition to the infectious compartment de-
pending upon its contact with other infectious people, or an infectious individual
may recover. Each of these transitions happens synchronously at a fixed time.
Discrete-time epidemic models are quite convenient for simulation and have been
used both with static [1, 10] and dynamic networks evolving over discrete time
steps [11], but mathematical analysis is much more difficult in the discrete-time
setting, especially for dynamic networks.

Continuous-time Models Despite the simplicity of simulating discrete-time
epidemic models, the accuracy and efficiency of discrete-time models is depen-
dent upon the length of time interval being considered. In the continuous-time
setting, infection and recovery probabilities are replaced with infection and re-
covery rates, respectively, which denote probabilities per unit time. Allen [3]
considers analysis and simulation of continuous-time epidemic models for a fully-
connected static network. Fennell et al. [6] consider simulation of continuous-time
epidemics over a static (but not necessarily fully connected) network and inves-
tigate the effects of discretization of time and its limitations. In both studies,
the underlying continuous-time epidemics are simulated using the well-known
Gillespie algorithm [8]. Each individual in a population is considered to have an
instantaneous rate ri(t) to transition from one state to another. The Gillespie
algorithm works as per the following two properties:

1. The time that the network remains in the same state (no node transitions
between compartments) is an exponentially distributed random variable with
parameter λ(t) =

∑
i ri(t), the sum of the rates of all nodes in the network.
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2. The probability that the next node i to transition from one compartment to
another depends on the relative rate of the node ri(t)/λ(t).

Each edge (interaction) with an infectious node (individual) in the network
at a certain time increases the infection rate for a susceptible node by an amount
β that denotes the rate per infectious neighbor. Similarly, an infectious node will
recover at a rate µ. The instantaneous rate ri for node i to transition between
compartments is given by

ri(t) =

{
βmi(t) if node i is susceptible

µ if node i is infectious
, (1)

where mi(t) denotes the number of infectious individuals connected to node i [6].
The Gillespie algorithm is not applicable to dynamic networks because mi(t)

can change over time independently from the epidemic process, i.e. when edges
with an infectious node are added or deleted. Vestergaard and Génois [12] pro-
pose a temporal Gillespie algorithm to simulate continuous-time epidemics over
a discrete-time dynamic network. In this paper, we propose a different modifica-
tion to the Gillespie algorithm to deal with continuous-time dynamic networks.

3 Rejection Sampling Gillespie Algorithm

3.1 Inadequacy of Gillespie Algorithm

Fennell et al. [6] propose a method for simulating continuous-time stochastic
epidemic models on a static network using the Gillespie algorithm. The exact
Gillespie algorithm-based approach is also shown to be much faster than discrete-
time approximations that achieve reasonable accuracy. The approach works on
a static network because the network topology remains the same over time,
hence the number of infectious neighbors an individual can have will remain the
same until the next transition (infection or recovery). Thus, the instantaneous
transition rate for each node, denoted by ri(t) in (1), is constant until the next
transition happens at the simulated event time.

This assumption of static network topology does not hold in case of a dynamic
network where edges can be added or removed because the network topology may
change before the simulated event time, in which case the simulated event time
no longer follows the correct distribution. For example, if a new edge is added
with an infectious node i at time t′, then mi(t

′) in (1) increases by 1, and thus
the instantaneous transition rate ri(t

′) also increases. Thus, the inter-event time
is no longer exponentially distributed as assumed in property 1 of the Gillespie
algorithm. Instead, the cumulative distribution function (CDF) of the inter-event
time has a knot (instantaneous change in slope) at time t′ when ri(t

′) increases.

3.2 Theoretical Inter-Event Distribution

The CDF of the inter-event time can be derived analytically as as a continuous
function with a series of knots at times when edges are added or removed. With-
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Fig. 1. Comparison of theoretical CDF and empirical CDF of inter-event distribution
for (b) addition and (c) deletion of an edge at time t = 10 in 3-node network shown
in (a). The red dot in both theoretical CDFs at time t = 10 denotes the knot (instan-
taneous change in slope) when an edge is added or deleted. The two CDFs are almost
identical, validating the correctness of our rejection sampling approach.

out loss of generality, we can consider 2 cases: the addition of a single edge at a
given time and the removal of a single edge at a given time.

Consider a simple network of three nodes and one edge between node 1 and
node 2 as shown in Figure 1(a). Nodes 1 and 3 are initially infectious at time
t = 0. For a static network where the edge between nodes 2 and 3 is not added,
the CDF for the inter-event time, which is the time to infection in this case, is the
CDF of an exponential distribution with rate λ given by P (T ≤ t) = 1 − e−λt,
where λ is the infection rate parameter, i.e. the rate at which an infectious
individual infects a susceptible individual when they are connected by an edge.

Assume now that, at time t′, an edge is being added between an infectious
node (node 3) and a susceptible node (node 2). Beginning from the Law of
Total Probability and exploiting the memoryless property of the exponential
distribution, the CDF for the inter-event time can be shown to be

F (t) = P (T ≤ t) =

{
1− e−λt, t ≤ t′

1− e−2λt+λt′ , t > t′

The CDF for the case of deletion of an edge between an infectious node and a
susceptible node can be derived in a similar manner. Consider again the network
in Figure 1(a), but assume now that the edge between nodes 2 and 3 exists at
time t = 0. At time t′, the edge between node 2 and node 3 is deleted. The CDF
for the inter-event time is given by

F (t) = P (T ≤ t) =

{
1− e−2λt, t ≤ t′

1− e−λt−λt′ , t > t′

In the general case where multiple edges are added and removed over time,
each addition or removal of an edge with an infectious node creates a new knot
in the CDF. This makes it difficult to analytically express the CDF.
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Input: Interaction network with timestamps of edge additions and deletions.
1 Initialize starting time as t = 0.
2 Randomly select k Infectious nodes to initialize epidemic.
3 Compute transition rate ri for each Susceptible or Infectious node.
4 Sample the inter-event time for the next transition (infection or recovery) s

from an exponential distribution with rate parameter λ =
∑

i ri.
5 Update current event time by setting t = t+ s.
6 if t ≤ time of the next added or removed edge then {Sampled time t is valid}
7 Select node i to transition with probability ri/

∑
i ri.

8 if node i is Susceptible then
9 Change the status of node i to Infectious.

10 else
11 Change the status of node i to Recovered.

12 else {Sampled time t is invalid}
13 Reject the sampled time t and set t = time of next added or removed edge.

14 If Infectious nodes still exist, go to step 3.

Fig. 2. Exact simulation of continuous-time stochastic epidemic process on a dynamic
network using proposed rejection sampling Gillespie algorithm.

3.3 Rejection Sampling Gillespie Algorithm

To overcome the problem with the Gillespie algorithm in a dynamic network set-
ting, we employ the idea of rejection sampling1. Up to the first knot at time t′ in
the inter-event time CDF, the CDF matches that of an exponential random vari-
able. Thus, we can sample from the exponential distribution, and if the sampled
inter-event time occurs prior to the first knot, then we accept the sample. Other-
wise, we reject the sample because the exponential distribution is no longer valid
after the knot. We then re-set the current time in our simulation to the time of
the knot. Then, the inter-event time will again be exponentially distributed, so
we can once again sample the inter-event time from an exponential distribution
and decide to accept or reject based on the time of the next knot. We repeat
this process until we accept a sample. This approach is valid because the CDF
of the inter-event time after each knot is exponentially distributed until the next
knot, and the exponential distribution is memoryless. Figure 2 shows the entire
algorithm formulated and used for simulation of epidemics in this work.

We evaluate the correctness of our rejection sampling approach on the 3-node
network shown in Figure 1(a) by simulating 5000 epidemics for both the edge
addition and deletion scenarios and recording the inter-event time for each sim-
ulation. Figures 1(b)-(c) show the comparisons between the derived theoretical
CDFs from Section 3.2 and the empirical CDFs computed from the simulations.
The two plots match almost exactly, confirming the validility of our rejection
sampling approach.

1 Simulating a continuous-time epidemic model using a discrete-time approximation
is also sometimes referred to as rejection sampling, e.g. in [6, 12]. We refrain from
such terminology in this paper as our proposed rejection sampling approach is exact.
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4 Datasets

In this paper, we consider two real-world datasets on face-to-face interactions in
a high school setting. The datasets are collected among students of classes in a
high school in Marseilles, France using wearable RFID sensors with a proximity
range of roughly 1 to 1.5 m [7]. 126 individuals (118 students and 8 teachers)
from 3 classes wore the sensors for a period of 5 days in 2011. 180 students from
5 classes wore them for a period of 7 days in 2012. Every 20 seconds, each sensor
scanned and recorded the IDs of other sensors in proximity. We convert these
20-second scans to dynamic interaction networks by considering two nodes u and
v to have interacted for s seconds if the pair (u, v) shows up in s/20 consecutive
scans. Since 20 seconds is such a short interval compared to the dynamics of
an epidemic process spreading over a dynamic network, these datasets are a
good fit for our continuous-time approach, and thus we treat time as varying
continuously. The dynamic networks are very sparse—the average instantaneous
number of active edges is 5.1 in the 2011 data and 4.0 in the 2012 data.

5 Experiments

To evaluate our proposed rejection sampling Gillespie algorithm, we simulate
epidemics on both high school networks using our exact rejection sampling
Gillespie algorithm and discrete-time approximations for snapshot lengths ∆t ∈
{10, 20, 50, 100} seconds. In order to test the robustness of our method, we use
a range of values for the infection rate β ∈ {0.1, 0.02, 0.002}. For each network
and each value of infection rate considered, we simulate 1000 epidemics with our
exact continuous-time epidemic model and 1000 epidemics with a discrete-time
epidemic model for each value of ∆t. The recovery rate is fixed at µ = 2× 10−5.
Each simulation is run until the number of infectious individuals becomes zero,
indicating that the epidemic has ended. Figure 3 shows the mean number of
Susceptible (S), Infectious (I) and Recovered (R) individuals for continuous-
and discrete-time epidemics simulated over the High School 2012 network with
infection rate β = 0.1. Notice that the discrete-time approximations vary signif-
icantly in accuracy depending on the snapshot length ∆t.

To compare the disease dynamics in the networks we use the area between
the normalized mean continuous-time simulation curve and the normalized mean
discrete-time simulation curve as our metric, summed over each of the 3 com-
partments (Susceptible, Infectious, and Recovered). We refer to this as the nor-
malized error. This is a variant of an error metric used in [1], with the addition
of a normalization step. Since the mean simulation end time for each of the dif-
ferent models may be different, we normalize the computed area with respect to
time by dividing it with the minimum mean end time of the models being com-
pared. A lesser value of a normalized area between the plots indicates a better
approximation to the simulation outcomes of the exact continuous-time model.
The maximum normalized error is 3, consisting of a normalized area of 1 for
each compartment. An illustration of the computation of the normalized error
metric is shown in Figure 4 for the High School 2012 data with β = 0.1.
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Fig. 3. Mean Susceptible (S), Infectious (I), and Recovered (R) plots over 1000 simu-
lated epidemics for the exact continuous-time model and discrete-time approximations
of varying lengths on the High School 2012 dataset with infection rate β = 0.1. The
double peak in the number of infectious over time results from taking the mean of the
1000 simulated epidemics, each with different peak infectious times.

Fig. 4. Computation of normalized error metric by summing the normalized area be-
tween the mean curve for simulations with the continuous-time model and the discrete-
time model over all three compartments. Smaller normalized error denotes a more
accurate discrete-time approximation.

6 Results

The normalized error for the discrete-time models is shown in Figure 5. To
compute the standard error, we use 100 bootstrap replicates [5]. Notice that
the overall trend matches what one would expect—as the discrete-time snapshot
length increases, the approximation gets worse. This is particularly true for ∆t =
100 seconds, where the error is significantly larger than for smaller snapshot
lengths, except for the β = 0.002 when the infection is not spreading rapidly.
We also observe that the error increases as the infection rate β and the snapshot
length ∆t increase. This observation extends the observation by Fennell et al. [6]
in the static network setting to dynamic networks.

The CPU time required to simulate 1000 epidemics using our proposed
continuous-time model and each of the discrete-time models is shown in Fig-
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Fig. 5. Normalized errors between the mean continuous-time simulated SIR curves
and mean discrete-time simulated SIR curves with different ∆t values, with error bars
denoting standard errors computed using the bootstrap. Error tends to increase with
increasing ∆t, indicating poorer approximations with longer time snapshots.
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Fig. 6. CPU time taken to execute 1000 simulations for each scenario. CPU time for
our exact continuous-time simulation is slightly lower than for discrete-time simulation
with ∆t = 20. Longer snapshots can be simulated faster but incur higher approximation
error as shown in Figure 5.

ure 6. Notice that our proposed continuous-time model is significantly faster
than a discrete-time simulation with ∆t = 10 seconds and also slightly faster
than with ∆t = 20 seconds in most cases. On the other hand, discrete-time
simulations with ∆t = 50 or 100 seconds are faster than our continuous-time
simulation, but at the cost of higher approximation error as shown in Figure 5,
particularly for ∆t = 100 seconds.

There is a trade-off between computation time and accuracy for discrete-
time models. However, since our continuous-time model is exact and faster than
discrete-time approximations with extremely short snapshot lengths, we argue
that there is no benefit to using discrete-time models with such short lengths.
This is because one could use our rejection sampling Gillespie algorithm to sim-
ulate the exact continuous-time epidemic process in a shorter amount of time!
Thus, the only reason to use discrete-time approximations would be due to con-
straints on computation time, in which case one would use longer snapshots and
have to tolerate the loss of accuracy. Otherwise, our proposed continuous-time
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approach is superior both in accuracy and computation time and is thus well-
suited for general use in simulating epidemic processes over dynamic networks.

Acknowledgements

This material is based upon work supported by the National Science Foundation
grant IIS-1755824.

References

1. Ahmad, R., Xu, K.S.: Effects of contact network models on stochastic epidemic
simulations. In: Proceedings of the 9th International Conference on Social Infor-
matics. pp. 101–110 (2017)

2. Allen, L.J.: Some discrete-time SI, SIR, and SIS epidemic models. Mathematical
Biosciences 124(1), 83–105 (1994)

3. Allen, L.J.: A primer on stochastic epidemic models: Formulation, numerical sim-
ulation, and analysis. Infectious Disease Modelling 2(2), 128–142 (2017)

4. Dong, W., Heller, K., Pentland, A.: Modeling infection with multi-agent dynam-
ics. In: Proceedings of the 5th International Conference on Social Computing,
Behavioral-Cultural Modeling, and Prediction. pp. 172–179 (2012)

5. Efron, B., Tibshirani, R.J.: An introduction to the bootstrap. CRC Press (1994)
6. Fennell, P.G., Melnik, S., Gleeson, J.P.: Limitations of discrete-time approaches to

continuous-time contagion dynamics. Phys. Rev. E 94, 052125 (2016)
7. Fournet, J., Barrat, A.: Contact patterns among high school students. PLoS ONE

9(9), e107878 (2014)
8. Gillespie, D.T.: Exact stochastic simulation of coupled chemical reactions. The

Journal of Physical Chemistry 81(25), 2340–2361 (1977)
9. Holme, P.: Modern temporal network theory: a colloquium. The European Physical

Journal B 88(9), 234 (2015)
10. Kim, L., Abramson, M., Drakopoulos, K., Kolitz, S., Ozdaglar, A.: Estimating

social network structure and propagation dynamics for an infectious disease. In:
Proceedings of the 7th International Conference on Social Computing, Behavioral-
Cultural Modeling and Prediction. pp. 85–93 (2014)
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