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Abstract. In this paper, we present an h-adaptive process that defines an optimal mesh to
compute the solution transient of convection-diffusion-reaction boundary value problems by
using mimetic numerical methods. The estimation of the error, in the spatial variable, is made
from the discrete version of the gradient operator. The numerical experiment shows the good
behavior of the procedure.

1. Introduction
In the last two decades, a new type of finite difference conservative schemes, known as support
operators, and later as mimetic methods (MM) [1–3], has shown important advantages over the
classic schemes of finite differences [4–6] in solving several problems that arise in engineering
and science. However, little has been said about how to define an adaptive process that defines
a mesh that is optimal to find a solution that meets a certain precision or error that is required
by the problem to be solved.

A first step in this direction was given by [7] when constructing the gradient and
divergent operators on non-uniform structured meshes, suggesting an adaptive process using
equidistribution from a mesh-size function. On the other hand, in [8] and [9] is defined an
adaptive process (of type h) for the stationary convection-diffusion equation and parabolic
equations, respectively. In both works the approximation of the gradient is used to estimate the
error in the spatial variable. No other satisfactory adaptivity results for the mimetic schemes
proposed by [10] are known by the authors.

In this paper, an adaptive procedure is implemented that defines an optimal mesh to calculate
the solution of problems modeled by the unidimensional equation of convection-diffusion-reaction
in non-stationary regime. For this purpose, the non-uniform discrete operators proposed by [7]
are used. In addition, to define an estimate of the error committed in the mimetic (spatial)
approach, the mimetic discretization of the gradient operator is used without reference to the
analytical solution of the boundary problem, which is generally unknown. In other words, an
error estimate is made in the derivative of the solution, and not in the solution. This calculation
does not merit any additional work, since the gradient has been previously defined to calculate
the solution to the problem. Additionally, it can be said that the proposed process for estimating
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the error follows the ideas of the residual SPR estimator (superconvergent patch recovery)
introduced by [11] for smoothing tensions (derivatives), and [12] in the case of displacements
(unknown variable of the problem); both versions were implemented in the past for the finite
element method.

The error estimate and the adaptive algorithm are presented for one-dimensional problems.
In the present, the authors develop the extension to multidimensional problems in structured
meshes. On the other hand, the procedure for the case of unstructured meshes of quadrilateral
elements represents, nowadays, an open problem.

The rest of the article is structured as follows. In the following section, the mimetic method
used is briefly described and the boundary value problem considered is introduced along with its
Robin-type boundary conditions. In the third section, the error estimator is introduced; later,
in the fourth section, the adaptive process is defined. Finally, the numerical experimentation
and the discussion of the results obtained together with the references of the work are presented.

2. Mimetic difference method
The mimetic difference methods are based on the discretization of the classical operators of the
partial derivative equations (divergence, gradient and rotational) in such a way that they satisfy
a discrete version of the Stokes Theorem or Green’s identity [10]:

〈Dv, f〉Q + 〈v,Gf〉P = 〈Bv, f〉I . (1)

In the Equation (1), D, G and B are respectively the discrete versions of their corresponding
continuous operators: gradient (∇), divergence (∇·) and boundary operator ∂/∂n. Functionals
〈·, ·〉 represent a generalized internal product with Q, P and I weights. Using the identity (1),
it is obtain the relation for the boundary operator B = QD+GtP .

For spatial discretization, a non necessarily uniform mesh is defined and whose geometry
is given by the nodes xi, with i = 0, 1, . . . , N , and whose cells are the intervals [xi−1, xi],
with size Hi := xi − xi−1 for i = 1, . . . , N . The intermediate nodes of the cells are given by
xi+1/2 = (xi + xi+1)/2, and the length between two consecutive intermediate nodes is given by
Jxi := xi+1/2 − xi−1/2 for i = 1, . . . , N − 1. The cell [xi−1, xi] will be referred to as the cell
or element Ωi. The solution and the divergence operator are defined in the center of the cells,
while the operator gradient in the nodes xi that define the cells (see Figure 1).
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Figure 1. Non uniform one-dimensional mimetic mesh.

The discrete second-order gradient operator, introduced by [7] for non-uniform 1D meshes,

is given by Gu = JGĜu, where JG is a diagonal matrix with the inverses of the lengths Jxi ,

Jx0 = −8

3
x0 + 3x1/2 −

1

3
x3/2, JxN =

1

3
xN−3/2 − 3xN−1/2 +

8

3
xN ,

and Ĝ is the fixed part of the gradient operator for uniform meshes [10]. On the other hand,

the second-order divergence operator, for non-uniform meshes 1D, is given by Dv = JDD̂v,
where JD is a diagonal matrix with the inverse of the lengths of the cells and D̂ the fixed
part of the operator divergence for uniform meshes. The boundary operator B of dimension
[N + 1×N + 1] is given in [10].
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2.1. Transient model problem
A boundary problem of the convection-diffusion-reaction type and time-dependent in its
conservative form is given by the Equation (2),

∂u

∂t
=

∂

∂x

(
ν(x)

∂

∂x
u

)
+ f(x, t) en Ω× [0, T ), (2)

where Ω = (a, b), u(x, t) represents the variable of the problem (for example, temperature)
at a point x of the domain Ω at a time t, ν > 0 is the thermal transmission coefficient, and f is
a scalar function that describes the existence of a source or sink in the problem. The Equation
(2) is completed by defining the initial condition u(x, 0) = g(x) and the boundary conditions
(Equation 3),

αau(a, t) + βa
∂

∂x
u(a, t) = γa, αbu(b, t) + βb

∂

∂x
u(b, t) = γb, (3)

with {αi, βi, γi}, i = a, b, known real parameters, that depending on their value, determine
boundary conditions of Dirichlet, Neumann or Robin type.

2.2. Mimetic discretization for the model problem
Using an implicit scheme for the time discretization with a time step k, and the discretization of
the gradient and divergence operators, it is found the mimetic approximation for the convection-
diffusion-reaction Equation (2) is given by Equation (4),

Un+1 − Un = kD(νG)Un+1 + kFn+1, (4)

where Un =
(
U(x0, tn), U(x1/2, tn), . . . , U(xN−1/2, tn), U(xN , tn)

)t
represents the approxi-

mate mimetic solution in time tn = nk of the exact solution u of the problem, and Fn =(
f(x0, tn), f(x1/2, tn), . . . , f(xN−1/2, tn), f(xN , tn)

)t
represents the restriction of f to the mimetic

mesh.
Since the discretized divergence operator does not act on the boundary, then the Robin

boundary conditions (Equation (3)) are obtained from Equation (5),

[
[α] + [β](BG)

]
Un+1 = fb, (5)

where the vector fb results from restricting the non homogeneous term of the boundary
conditions to the mimetic mesh, that is, fb = (γa, 0, . . . , 0, γb)

t. The arrays [α] and [β] are such
that α1,1 = αa, αN+2,N+2 = αb, β1,1 = βa, βN+2,N+2 = βb, and all other entries are zero.

From Equations (4) and (5), the mimetic scheme for the Equation (2) subject to the Robin
boundary conditions (Equation (3)) is given by Equation (6),

[
I + [α] + [β]BG− kD(νG)

]
Un+1 = Un + kFn+1 + fb. (6)
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3. Error estimation
When solving a problem numerically, it is convenient to control the quality of the approximated
solution or the gradient of such a solution. This type of control can be achieved through a process
of adaptivity of the mesh to efficiently approximate the solution of the problem. Likewise, in
an adaptive process it is indispensable to have, throughout the domain, the local distribution
of the error that is committed when using the approximate solution as a solution of the model.
In other words, it is necessary to estimate the error committed in the approximation for each
cell of the domain. In our case, the estimation of the error in the spatial variable is done on the
gradient of the mimetic solution, that is, we must estimate the error that arises when using GU
to approximate the exact gradient ∇u. The numerical error in the approximation GU of ∇u
will be denoted by e

G := ∇u−GU .

3.1. Estimation of the error in space when using the gradient smoothing
The a posteriori error estimation process that is presented provides an approximation z∗,
obtained by doing a postprocess on the solution GU . The goal is to obtain the estimated
error e∗

G
= z∗ −GU in each cell of the Ω domain, such that e∗

G
≈ eG .

Every cell Ωi in the mesh has a patch of cells associated with it, ωi, constituted by all the
cells that surround it (see Figure 2). For the case of boundary elements, the patch of these cells
is given by the border element and the two consecutive elements (previous) to it.

The calculation of z∗ is done locally for each cell patch that is formed in the mesh. The
values of GU in the nodes of the mesh are used as input to define a polynomial of higher order
(interpolation). For one-dimensional problems, the patch of elements involves four nodes of the
mesh (see Figure 2). In this case, a cubic polynomial is defined using interpolation on the four
values of GU . In particular, for any internal node xj in the cell Ωi (see Figure 2) it can be
defined z∗(xj) in that cell. That is, the estimation of the error restricted to the cell Ωi and
evaluated in the node xj is given by Equation (7),

e∗
G

∣∣
i
= z∗j − IhGU, (7)

where IhGU represents the linear interpolation of GU evaluated in the node xj , and z∗j the
value of z∗ in the node xj .

xi-2 i-1 i i+1x x x xi-2 i-1 i i+1x x x

GU
z*

jx

GUIh

arbitrary node

Ωi

ωi

GU
j

Figure 2. Illustration of the one-dimensional procedure. Each cell ]xi−1 , xi[ is
associated with a patch ]xi−2 , xi+1[ and the corresponding values of GU in the mesh
(nodes labeled with •). It is passed a polynomial by these values (nodes •). This
polynomial is evaluated for the improved value z∗ (node labeled with �).
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In L2 norm, the error in each cell Ωi is given by ‖e∗
G
‖2i =

∫
Ωi

ψi(x)
2dx, with ψi(x) =

(z∗ − IhGU)(x) for the element Ωi. By Gaussian quadrature, it is established the Equation
(8),

‖e∗
G
‖2i =

xi − xi−1
2

npG∑
j=1

ηj

(
ψi

(xi − xi−1
2

x̂j +
xi + xi−1

2

))2
, (8)

where ηj and x̂j represent the weights and points of the Gaussian quadrature (in our case, it
is enough to take npG = 2). Continuing the process for all the cells Ωi, it is possible to define
the global estimated error ‖e∗

G
‖2 =

∑
i ‖e∗G‖i.

The smoothing proposed on the GU is able to improve the curvature of the approximate
solution, that is, the smoothed solution z∗ improves on its derivatives. However, this conclusion
does not necessarily occur for the values without derivation (solution U of the problem). This
fact justifies our selection, for the estimation of the error, in the gradient and not in the solution
U of the problem.

4. Adaptive error control
The simplest strategy to control the error committed by using the approximate solution,
e := u − U , consists of an iterative process that implements the estimation technique given
in the previous section to define the distribution of the nodes (mesh) in the current time step,
and keep such mesh in the following time steps until the tolerance of the error is not satisfied
and it is necessary to redefine the mesh. This strategy is very general and does not require
information on the type of problem to be addressed.

For the stopping criterion of the adaptive process, it is requested that ‖e‖ ≤ TOL. However,
although the error estimate is made in the solution gradient, there is no estimated value e∗ for the
error e. To solve this difficulty, it is used for each cell in the domain: ei =

∫
Ωi

eGdx ≈
∫
Ωi

e∗
G
dx.

Thus,

‖e‖ ≤
∑
i

‖e‖i =
∑
i

(∫
Ωi

|eG |2i dx
)1/2 ≈

∑
i

(∫
Ωi

|e∗
G
|2i dx

)1/2
=

∑
i

‖e∗
G
‖i. (9)

In practice, it can be used the estimated error of the gradient, ‖e∗
G
‖, instead of the estimate

‖e∗‖ of the error in the solution. However, this change can decrease the efficiency of the adaptive
process, reaching to define meshes with many more nodes than necessary, but with a behavior
similar to that achieved when using ‖e∗‖.

5. Numerical results
Now, the numerical results obtained by applying the proposed adaptive algorithm are presented.
The synthetic character of the analyzed example looks to justify the effectiveness of the estimator
in cases where the problem has strong variations in its derivatives.

The estimation quality of e∗
G
is measured using the quotient I eff :=

‖e∗
G
‖

‖e
G
‖ × 100%, which is

called index of global effectiveness or index of local effectiveness, in the case that it is measured on
a specific cell. These indexes can be used to measure the quality of the estimate when the exact
error is known (which is the case of the example analyzed); otherwise, a good approximation
of it is required. For the analysis of the error, the maximum norm, ‖ · ‖∞, and the L2 discrete
norm ‖ · ‖2, are considered.
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5.1. Example
The model problem (Equations (2) and (3)) is solved with the mimetic scheme (Equation (6))
for a thermal transmission coefficient ν(x) = 1/α+α(x−x0)

2, with α = 250 and x0 = 0.75, and
a source term f(x, t) defined in such a way that the analytical solution of the problem is given
as u(x, t) = (1−x)

[
arctan(α(x−t))+arctan(αt)

]
. For this example, u(0, t) = u(1, t) = 0, which

simplifies boundary conditions: u′(0, t) = α/(1+α2t2) y u′(1, t) = − arctan(α(1−t))−arctan(αt).
The time interval is t ∈ [0, 0.9] and a time step given by dt = 0.002. In addition, no progress in
time is made until an error tolerance of 0.001 for the gradient ‖e∗

G
‖ is met.

Figure 3(a) shows the approximate solution (line with •) together with the analytical solution
(solid line) for time t = 0.5. In the lower part, Figure 3(c), the meshes obtained (spatial
distribution of the nodes) are shown during the adaptive process, for different time steps. The
highest concentration of nodes occurs between the values where the gradient of the solution is
more pronounced (as it could be expected). Figure 3(b) illustrates the number of nodes required
in each time step.
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Figure 3. (a) Approximate (line with •) and exact (continuous line) solutions for time
t = 0.5. (b) Nodes required in each time step. (c) Spatial distribution of the nodes
(meshes) for different time steps.
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The adaptive process starts in a uniform mesh of 10 cells (11 nodes) and a relative error in
the solution close to 30%. The relative error in the gradient is around 900%, and it is wanted
to reach a solution in each step of time with an error lower than 0.1%. The numerical results
for the succession of meshes obtained in some time steps, for an error tolerance of 10−3, are
presented in the Table 1.

In Table 1, the exact relative error in the gradient, ‖eG‖/‖Gu‖, and its estimate, ‖e∗
G
‖/‖z∗‖,

are shown in the third and fourth columns, respectively. The relative error in the approach
when using the mimetic solution, ‖e‖/‖u‖, is given in the fifth column. In the last column,
the global effectiveness index is presented. The results are shown only in the maximum norm,
‖ · ‖∞, because the results obtained in standard L2 norm, ‖ · ‖2, result, in general, analogues.
In each time step shown in this table, the values obtained for the last mesh that defines the
adaptive process are given. The fact that the prescribed tolerance is not reached, at each step
of time, in the first iteration of the iterative process, does not imply that the adaptive process is
functioning erratically or its effectiveness is low, this is mainly due to the additional conditions
that are imposed on the process, for example, percentage of cells to be divided or number of
divisions per cell.

Table 1. Tolerance 10−3. Maximum norm. Values of the exact relative
error in the gradient (third column), estimated relative error in the
gradient (fourth column), exact relative error in the solution (fifth column)
and global effectiveness index.

Time
Exact relative error, estimated and effectiveness indexes

Nodes ‖eG‖/‖Gu‖ ‖e∗
G
‖/‖z∗‖ ‖e‖/‖u‖ I eff

0 11 0.920× 10+1 0.367 0.294 26.4%
0.002 171 0.762× 10−2 0.234× 10−2 0.281× 10−1 30.2%
0.1 184 0.353× 10−2 0.233× 10−2 0.249× 10−1 65.9%
0.3 184 0.272× 10−2 0.233× 10−2 0.887× 10−2 85.7%
0.5 184 0.861× 10−2 0.877× 10−2 0.988× 10−2 102.0%
0.7 131 0.723× 10−2 0.867× 10−2 0.645× 10−2 120.0%
0.9 115 0.748× 10−2 0.910× 10−2 0.610× 10−2 121.8%

Graphically, these results are shown in the Figure 4 for time t = 0.3. The estimated and
exact relative errors (gradient) in the maximum and L2 norms are shown in Figures 4. The
asymptotic tendency of the estimated error, as the mesh is adjusted, reflects the good behavior
of the proposed error estimator.

To define the performance of the adaptive process, the results are compared with a uniform
mesh of 500 elements for all time steps. The error behavior for the uniform mesh and
those obtained from the adaptive process turn out to be equivalent (see Figure 5). However,
calculations made with uniform meshes with less than 500 elements show an oscillatory behavior
in the error (Figure 5 shows the case of 300 elements), tending to lose stability as time advances.
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Figure 4. Convergence of the relative error of the gradient: � estimated error ‖e∗
G
‖/‖z∗‖,

• real error ‖eG‖/‖Gu‖. (a) Maximum norm, (b) L2 norm.
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Figure 5. Maximum norm. Comparison of the error for uniform meshes and those given
by the adaptive process.

6. Conclusions and final comments
An h-adaptive process has been established from an error estimate by softening the gradient
for the spatial variable. The mesh is held fixed by successive time steps so long as it meets the
prescribed error tolerance. Numerical experimentation verifies the good performance of error
estimator by postprocess proposed, providing adaptive meshes which accelerate the accuracy
(convergence) of the approximate solution compared to uniformly fine meshes.
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