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While global- and basin-scale processes can be captured quite well with computationally-inexpensive
hydrostatic models, smaller-scale features such as shoaling nonlinear internal waves and bores, coastal
fronts, and other convective processes require the use of a nonhydrostatic model to accurately capture
dynamics. Here the nonhydrostatic capabilities of the General Curvilinear Coastal Ocean Model (GCCOM)
in a stratified environment are introduced. GCCOM is a three-dimensional, nonhydrostatic Large Eddy
Simulation (LES), rigid lid model that has the ability to run in a fully three-dimensional general curvilinear

giy;ﬁ‘;ﬁiistmc coordinate system. This model was previously validated for unstratified flows with curvilinear coordi-
GCCOM nates. Here, recent advances of the model to simulate stratified flows are presented, focusing on sigma

coordinate grids with both flat bottom geometry and a local gently sloping seamount. In particular, a suite
of test cases widely used as benchmarks for assessing the nonhydrostatic capabilities for gravity-driven
flows and internal waves is presented: an internal seiche in a flat bottom tank, the classic lock release and
gravity current experiment, and a field-scale internal wave beam experiment consisting of an oscillating
tidal flow over a topographic ridge. GCCOM shows excellent agreement with the benchmark test cases
and is able to accurately resolve complex nonhydrostatic phenomena in stratified flows. Future studies
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will utilize the model capabilities for realistic field-scale internal wave simulations.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

One of the major challenges in the simulation of coastal ocean
dynamics is the vast range of length and time scales present. While
global- and basin-scale processes and currents can be captured
quite well with computationally-inexpensive hydrostatic models
(e.g., [1]), smaller-scale features such as shoaling nonlinear inter-
nal waves and bores, coastal fronts, and other convective processes
require the use of a nonhydrostatic model to accurately capture
dynamics [2-6]. More formally, for processes where the charac-
teristic frequency (e.g., of an internal wave) is comparable to the
buoyancy frequency for a stratified fluid, or when the character-
istic vertical length scale is comparable to the horizontal length
scale, nonhydrostatic effects cannot be neglected (e.g., [7]). This
is particularly true for simulations that aim to capture the multi-

" The model data generated in this study are available at http://dolphin.sdsu.
edu:8080/web-data/publ.3.2018/.
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scale internal wave energy cascade, a process that has wide ranging
effects on the physical and biological environment [8-16].

Simulating nonhydrostatic processes is computationally expen-
sive, as these models require an elliptic solver for the dynamic
pressure [17,3,18]. Moreover, for internal wave simulations, a high
horizontal grid resolution is required (i.e., small grid lepticity) so
that numerically-induced dispersion is small relative to physical
dispersion [19]. However, with vast improvements in comput-
ing power and computational methods, the use of nonhydrostatic
ocean models has become increasingly popular over the last decade
[20-25,7,26-30,5,31-33,6].

Key features of a subset of these models are summarized in
Table 1. Among others, a distinguishing feature between the models
is the coordinate system used. The Massachusetts Institute of Tech-
nology Global Circulation Model (MITgcm [29]) uses a curvilinear
grid in the horizontal coordinates, and z-coordinates in the vertical
with a finite-volume treatment of irregular bathymetry; the Bergen
Ocean Model (BOM, Berntsen et al. [22]) uses mode splitting and
sigma-coordinates with finite differences on a staggered grid; the
Regional Ocean Modeling System (ROMS [7]) variant with nonhy-
drostatic capabilities (not openly available via ROMS community
web-page) uses sigma coordinates, as well as the Finite Volume

1877-7503/© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.
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Table 1

Key features of select nonhydrostatic ocean models.
Models MITgcm SUNTANS ROMS-NH FVCOM-NH SOMAR GCCOM
Author, Year Marshall et al. [29] Fringer et al. [25] Kanarskaetal.[7] Laietal.[27] Chalamalla et al. [24] Present article
Equations NSE RANS NSE LES NSE NSE NSE NSE LES
Horizontal grid Orthogonal curvilinear Unstructured Curvilinear Unstructured Curvilinear Curvilinear
Vertical coordinate system z— z— o— Generalized o— Curvilinear Curvilinear
Grid type Arakawa C-grid Triangular grid Arakawa C-grid Triangular grid AMR C-grid Arakawa C-grid

Finite volume
Adams-Bashforth

Finite volume
Quasi 2nd
Adams-Bashforth
Fractional step Pressure-Split
Conjugate-Gradient (CG) CG

Spatial discretization scheme
Time discretization scheme

Pressure solution method
Pressure solver

Finite volume
Split-Explicit

Fractional step
PCG,GMRES

Library dependency
Program language

None
F90

ParaMetis
C

PetSC with Hypre
F90

Finite volume
Modified RK4/
Semi-Implicit
Fractional step
Multigrid (MG)
ParaMetis

F90

Finite volume
PPM/Semi-implicit

Fractional step
Leptic method/MG
CHOMBO

C++[F77

Finite difference
RKW3

Fractional step

MG or Block-Jacobi
AGMG, PetSC

F90

Coastal Ocean Model (FVCOM [27]); the Stanford Unstructured
Nonhydrostatic Terrain-following Adaptive Navier-Stokes Simula-
tor (SUNTANS [25]) employs an unstructured grid in the horizontal
and z-level in the vertical; Koltakov and Fringer [26] presented
a moving grid method using generalized curvilinear coordinates;
and the Stratified Ocean Model with Adaptive Refinement (SOMAR
[5]) features adaptive mesh refinement and more recently an LES
component [24].

Here, the capabilities of the nonhydrostatic General Curvilinear
Coastal Ocean Model (GCCOM) for stratified flows are intro-
duced. GCCOM is a three-dimensional large eddy simulation (LES)
Navier-Stokes solving model that has the ability to run in a fully
three-dimensional general curvilinear coordinate system. Earlier
versions of this model were described by Abouali and Castillo [20],
Torres [34], Torres et al. [35], Torres and Castillo [36], Torres et al.
[37] for flow over complex terrain; however, these earlier versions
treated stratification with a simplified buoyancy forcing term and
did not explicitly take into account hydrostatic pressure gradients.
The version of the model described here computes the density
effects by removing the buoyancy term and adding a horizontal
pressure gradient force that arises from the hydrostatic compo-
nent of pressure following Shchepetkin and McWilliams [38]. This
representation, which is described further below, has been shown
to accurately capture gravity-driven flows and internal waves. Fur-
thermore, to lower the computational cost of the nonhydrostatic
pressure, two libraries were integrated: the Aggregation-based
Algebraic MultiGrid library (AGMG [39]) and the Portable, Exten-
sible Toolkit for Scientific Computation (PetSC [40]) a comparison
of the efficiency of these libraries in GCCOM is presented in Valera
etal.[41]. GCCOM has also demonstrated the ability to nest within
a regional hydrostatic model, allowing for the efficient simulation
of multiscale processes [42], and it also includes a data assimilation
framework [43].

In this contribution, we focus on the validation of the non-
hydrostatic capabilities of the model in a stratified environment.
In particular, a suite of test cases widely used as benchmarks for
assessing the nonhydrostatic capabilities for gravity-driven flows
and internal waves are used. Details of the model, including the
equations and numerical methods, are described in Section 2. The
numerical experiments (Section 3) follow and include an internal
seiche (Section 3.1), alock release (Section 3.2), and a tidally-forced
stratified flow over a seamount aimed at investigating the forma-
tion of internal wave beams (Section 3.3). These results collectively
demonstrate the accuracy of GCCOM for these types of flows.

2. Governing equations
2.1. Equations of motion

GCCOM solves the three-dimensional Navier-Stokes equations
with the Boussinesq approximation, assuming nondivergent flow,

arigid lid at the ocean surface, and a Large Eddy Simulation (LES)
formulation with a subgrid-scale model. A complete description
of the equations used in GCCOM was presented by Abouali and
Castillo [20]. In this section, an overview of the model in physical
space is presented in order to document the new implementation
of horizontal pressure gradient force, which allows the model to
accurately simulate stratified and gravity-driven flows. Detailed
information about the curvilinear transformation and discretiza-
tions can be found in . The equations of motion are,

du 1 gp

E+U-Vu_—%Vp—%k—V-r, (1)
% +U.VT = V. (kyVT), ()
oS

— +u-VS=V.(ksVS), (3)
ot

V.u=0, (4)
and

1Y :f(Ta sv p)7 (5)

where u = (u, v, w) is the velocity vector, gok/po represents the
acceleration due to gravity, T represents the stress tensor com-
puted with a subgrid-scale model, T is temperature, S is salinity,
kr is the temperature diffusivity, ks is the salinity diffusivity, and
fis an equation of state. Note in particular that the pressure p is
not assumed to be hydrostatic. This model employs the rigid-lid
approximation.

The sub-grid stress tensor, 7y, is calculated using the Smagorin-
sky model [44],

1[0y Oy
Tii = —2V eii, v = (Csl 2 2e,.e,4’ i = — bt} + ol s
ij TEij T (S)\/ ij&ij ij 2(8xj ox;

where vr is the turbulent eddy viscosity and e;; is the strain rate

tensor. The length scaleis [ = (AxAyAz)1/3, where Ax, Ay,and Az
are the discretized grid step size in the x, y, and z directions, respec-
tively. Physically relevant values of the Smagorinsky constant Cs are
0.08-0.22 [45].

For the experiments described here, the equation of state is
taken to be a linear function of temperature and salinity,

p=f(T.8)=po (1 - T —To)+ B(S - So)) , (6)

where pp=1027kgm=3, Tp=10°C, So=35, a=1.664 x 10~4°C1,
and B=7.605 x 10~* [46]. The linear equation of state is used for
the simulations described here to facilitate close comparison of the
numerical product with theoretical results, which are described in
terms of density values. GCCOM has the capability to employ the
fully nonlinear UNESCO equation of state.
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2.2. Numerical methods

In order to perform calculations on three-dimensional arbi-
trarily (orthogonal and non-orthogonal) shaped geometries,
generalized independent variables are introduced, which trans-
form the equations of motion from physical coordinates into
general curvilinear coordinates [36] (see Appendix A). One of
the advantages of a curvilinear grid with a uniformly applied
coordinate transformation is the ease of the application of the
boundary conditions, as well as the ability to solve the transformed
equation on the computational grid which is more efficient for high-
performance computing since the computational grid maps the
computer. Central finite differences are used to calculate the met-
rics of transformation, except at the boundaries, where one-sided
second order accurate finite differences are used [20] (see Appendix
B).In the computational coordinates, derivatives are approximated
using a second-order finite-difference scheme, with central dif-
ferences used for the linear terms, and the Kawamura method
(4th-order accurate) for the nonlinear advection terms [47].

The time discretization is based on the fractional step method
of Kim and Moin [48] and employs the third-order Runge-Kutta
method described by Wicker and Skamarock [49]. The horizon-
tal pressure gradient force arising from the hydrostatic part of the
pressure py is computed explicitly (see Section 2.3 for details). First,
the density field is calculated at time step n using the equation of
state,

Pt =f(T", S"). (7)

Then the hydrostatic pressure gradient Vypy is calculated follow-
ing the methods outlined in Section 2.3, where Vy;=(0/0x, d/dy) is
the gradient in only the horizontal components, so that Vypy is zero
in the w-momentum equation. Following this, a predicted velocity
field u” is computed using the hydrostatic pressure gradient,

u* = RK3 (—u"~Vu”—%VHpH7V-‘r"), (8)

where RK3() denotes the application of the third-order
Runge-Kutta method of Wicker and Skamarock [49]. Next, a
correction to the pressure field p. is computed to ensure a
divergence-free velocity field,

1
At
assuming no-gradient boundary conditions for p., from which a
corrected velocity field is calculated at time stepn+1,

u™! = u* — AtVp,. (10)

VZpe = —V.u, (9)

The Laplacian transformation of p. (Eq. (9)) in curvilinear coordi-
nates can be found in Appendix C. Temperature and salinity are
updated as follows:

T = RK3 (—u”“ VT4V ~(I<TVT”)) , (11)
s+l = RK3 (—u"+1 VST 4+ V. (ksVS™)) . (12)
2.3. Hydrostatic pressure gradient

The discretization of the hydrostatic pressure gradient is similar
to the scheme as described by Shchepetkin and McWilliams [38].
Since hydrostatic pressure is defined by

i’;i=—gp, (13)
z

it follows that

E) a0 % e .

%:a/ gpdz:/ ga—idz, (14)

where z=0 is at the ocean surface, and z<0 in the interior. In
GCCOM, dp/0x and dp/dy are computed at each grid point on the
curvilinear grid using the same finite difference algorithm as spa-
tial derivatives of other terms in the model [36,20]. To evaluate the
integral in (14), a cubic spline is constructed for each of dp/dx and
dp/dy, according to

2 3
f(8) = O + O 4 fOL L fOF (15)
where 0<£<1 is a local computational coordinate between two
vertical grid points. The coefficients are given by

fO=fe. fV=dp. fP=(6A—2dy —4dy)/h, fO)
= (6dy + 6dy1 — 12Ay)/H?, (16)

where h=z;,1 —z; is the local change in vertical coordinate and
Ay =(fis1 —fi)/h. Here, f; represents the value of dp/0x or dp/dy at
&=0and f+ is the same function at £ = 1. The parameter d, is com-
puted as in Shchepetkin and McWilliams [38] to reduce spurious
oscillations,

2AkAk—l .
i ARAL 0,
dp = Ar+ Ak 1Sk = (17)
0 otherwise.

The cubic spline (15) is integrated vertically to evaluate dpy/dx and
dpn/dy at the cell centers of the staggered grid. The final steps of
the calculation are an interpolation of dpy/dx from the center grid
to the u-grid, and an interpolation of dpy/dy from the center grid
to the v-grid.

3. Nonhydrostatic stratified test cases
3.1. Internal seiche

The first test case that explores the nonhydrostatic capabilities
of GCCOM is that of a two layer internal seiche with various inter-
face thicknesses. This test case is similar to the two-dimensional
free-surface internal seiche test cases of Casulli [2] and Fringer
et al. [25], except that GCCOM is run in three dimensions with
free slip boundary conditions in the lateral direction and a rigid
lid. Following Kundu [50], the linearized dispersion relation for a
small-amplitude internal seiche with two layers separated by an
interface with finite thickness is given by

o? = £X tanh (k—D>f(k8), (18)
2 2
where k = 27/Ay is the wave number, which is determined by
length of the domain L and the fundamental wavelength A,, = 2L;
g =gAp[pg is the reduced gravity; g is the magnitude of the accel-
eration due to gravity; D is the domain depth; § is the interface
thickness; and f{k§)=(1+k5/2)~! represents the effect of the finite-
width interface. Dividing both sides of Eq. (18) by k? yields an
expression for the phase speed squared, which can be used to cal-
culate the speed of the leftward and rightward propagating waves
that superpose to yield the standing wave (i.e., the internal seiche),

2= 2% tanh "ij(1«3). (19)
The shallow (kD — 0) and deep (kD — oo) water limits of Eq. (19)
are investigated. In the shallow water limit, the phase speed is only
a function of depth and reverts to the shallow-water wave speed
(assuming the dispersive character of the finite interface thickness
is negligible [25]), whereas in the deep water limit, the phase speed
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Fig. 1. Initial normalized density field of the internal seiche for the various aspect ratios.
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Fig. 2. Example horizontal velocity u fields of the internal seiche experiment at the minimum (left) and maximum (right) horizontal velocity for € =1.6 at plane Y=L/2. The
insets show the velocity over time for both the horizontal (1) and vertical (w) velocities at a location slightly above the center of the domain (black dot in top panel).

becomes independent of depth. A comparison of Eq.(19) to the deep
water phase speed yields

) (%),

where € =D/L is the aspect ratio of the standing wave specified by
the size of the domain. As the aspect ratio decreases, and horizon-
tal length of the domain becomes much larger than the vertical
extent (€ « 1), the waves are not expected to become frequency-
dispersive and the wave speed will approach the shallow-water
wave speed. For cases where the horizontal extent of the domain is
on the order of the vertical extent (¢ = 0(1)), the waves will become
frequency dispersive and approach the deep-water wave speed.
Given that the frequency-dispersive behavior of internal gravity

2 gptanh (12) f(k8)
5 (k8)

(o

(6 (20)

waves is a nonhydrostatic effect, the aspect ratio can be used as a
measure of the nonhydrostacy in this test case.

The model was set up on an equally spaced Cartesian grid
with a horizontal length L=100m and a horizontal grid spacing
of Ax=1m. In order to vary the aspect ratio, and hence the nonhy-
drostacy, the model was run at the following depths with a vertical
grid resolution of 0.5m: 10, 20, 40, 80, and 160 m (representing
€=0.1, 0.2, 04, 0.8, respectively). The simulation was run for a
total of 250s with a time step of At=0.001s. Free-slip boundary
conditions were employed along all wall boundaries.

For the experiments with varying depths (aspect ratios), the
initial density stratification is given as in Fringer et al. [25],

anh [

2tanh’1ozS
)

ox,y,z,t=0)= —% t acos(kx))} _

(21)

(243 -
2
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Fig. 3. Ratio of the nonhydrostatic wave speed to the deep-water wave speed as
a function of the aspect ratio for both the model results (circles), as well as what
theory predicts (solid line). The dashed line denotes the ratio of the shallow-water
wave speed to that of the deep-water wave speed (cf. [3]).

where Ap/pg=0.06 represents the normalized difference in
density between the top and bottom layers, a=1m is the seiche-
amplitude, § =5 m, and o5 = 0.99. The initial density profiles for each
numerical experiment are shown in Fig. 1.

The modeled wave speed was calculated by first determining
the period of oscillation T by looking at the time series of the hor-
izontal velocity u over time at a particular point near the center
of the domain (Fig. 2). The wave speed was then calculated from
c=%=2Z wherek = /% = T isdetermined from the length of the
domain. The modeled wave speed was compared to the theoreti-
cal deep-water (i.e., nonhydrostatic) wave speed given by Eq. (19).
Fig. 3 shows the ratio of the nonhydrostatic wave speed to the deep-
water wave speed (denominator of Eq. (20)) for the both the model
results (open circles), as well as what theory predicts (solid line, Eq.
(20)). GCCOM accurately captures the wave speed for large aspect
ratios, where nonhydrostatic effects are expected to be large. Slight
differences are likely due to using a linearized dispersion relation
and a finite-interface. Moreover, the velocity field in Fig. 2 for€ = 1.6
(highly nonhydrostatic) is able to accurately capture the decrease
in magnitude of the velocity vectors away from the internal inter-
face, a phenomena that would not be present in a hydrostatic solver
where the waves would behave like shallow water waves with. The
decay away from the interface can also be seen in the vertical profile
of the horizontal velocity in Fig. 4. This profile, as well as the vertical
velocity profile, match the shape of the linearized eigenfunctions
showninFringer and Street [51]. These results demonstrate that the
model is able to accurately capture the frequency-dispersive nature
and key nonhydrostatic characteristics of the internal seiche.

3.2. Lock exchange flow

The second validation experiment performed was the classic
lock exchange (also called lock release) problem, where two flu-
ids with different densities are initially separated by a wall that is
later released. This test case follows a similar numerical setup to
the three-dimensional direct numerical simulations (DNS) of Har-
tel et al. [52], the two-dimensional simulation of Fringer et al. [25]

using SUNTANS, and the two-dimensional simulation of Lai et al.
[27] using FVCOM-NH. The simulation is performed in a three-
dimensional domain (401 x 6 x101)with atank oflength Ly =0.8 m,
a lateral width of L,=0.01m, and a depth D=0.1 m. Various grid
discretization ratios (Ax/Az) were tested, and the results were not
sensitive to these changes. The model is initialized with zero initial
velocity and more dense fluid on the right side and less dense fluid
on the left side of the domain separated by an interface with a finite
thickness §, where the density field is

A
P, Y,2,t=0) = prin + (1 - erf(g)) , (22)

where §=0.01m is the width of the interface,
Pmin=1025.9525kgm~3 is the initial density on the left side
of the domain, and Ap is the density difference between the two
fluids chosen such that the reduced gravity is equal to [3,52]

Ap

o = 0.01 ms—2. (23)
0

g=g
The model is run with a time step of At=0.01 s for a total of 180s
and free-slip boundary conditions at the walls. This choice of Atwas
made after conducting a sensitivity analysis. With larger values of
At, overturning billows were still observed, but details were more
diffused. The temperature diffusivity is set to zero.

Fig. 5 shows the evolution of the exchange of the two dif-
ferent density fluids. The development and growth of a train of
Kelvin-Helmholtz (KH) billows is evident. These characteristically
nonhydrostatic features and vortical structures, which are not
resolved in hydrostatic models (cf. [3]), develop when the velocity
shear between the two layers exceeds the restoring force of strat-
ification. More formally, these shear instabilities require that the
gradient Richardson number be less than a critical value of 0.25 for
sufficient periods of time.

For comparison with theory and prior studies, the front speed
was calculated by tracking the position of the front over time along
the bottom of the domain (i.e., uf = —dx‘; /dt where xq denotes the
horizontal position of front along the bottom of the domain and
the negative sign accounts for the leftward propagating front, cf.
Hartel et al. [52]). The calculated front speed is compared to the
buoyancy velocity, u, = 1/g’D/2=0.0224ms~!, using the nondi-
mensional Froude number, Fr=ugfuy, [3,52].

The median Froude number over time of our experiment was
equal to 0.7176, which is within 1.0% of the theoretical value of
1/+/2 = 0.7071 originally formulated by Benjamin [53]. Moreover,
this result compares well with the DNS results of Hartel et al. [52]
(Fr=0.675, 4.5% error relative to theory) and the two-dimensional
results of Fringer et al. [3]| (Fr=0.654, 7.5% error relative to theory).
Note that hydrostatic models tend to significantly underestimate
the front speed relative to nonhydrostatic models [3]. Addition-
ally, the Froude number has been shown to vary slightly with the
Reynolds number (or the Grashof number) [52]. Nonetheless, the
GCCOM model results are well within the range of error of other
nonhydrostatic models and accurately capture the nonhydrostatic
overturning billows.

Conservation of energy is also examined by tracking the total
mechanical energy (TE) of the system over time, which is comprised
of the potential energy (PE) and kinetic energy (KE)

Ix/2 Ly D
TE=PE+KE=/ / / pgzdxdydz
~I/2Jo  Jo

/2 ply D4
+/ / / Ep(u2 + 12 +w?)dxdydz. (24)
“2Jo Jo
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Initially, the fluid is at rest so KE|;-o =0 and the TE in the system is
comprised of PE,
2

PE|o = gw %Lny. (25)

Fig. 6 shows the evolution of TE in the system over time, as well
as the partition between KE and PE which are in concordance with
Lai et al. [27]. The total energy is normalized by the initial total
energy in the system at t=0. As the lock is released, the KE increases
from zero and the PE decreases. As the front reaches the sidewalls,
the KE decreases and the PE increases as the return flow devel-
ops. This transfer of energy between KE and PE continues as the
front sloshes back and forth, although with decreasing magnitude.
The total mechanical energy within the system is conserved to first
order, with minimal energy loss due to viscous effects.

3.3. Field-scale internal wave beams

This final test case consists of the generation of internal wave
beams in a continuously stratified fluid from an oscillatory flow
over a Guassian ridge. This field-scale test case follows the exper-
imental setup of Vitousek and Fringer [6]. The simulation is
performed in a domain (128 x6x101) with a length of Ly =3000 m
and a depth of Dg = 1000 m. In the center of the domain is a Gaussian
ridge given by

D = Dg — a, exp(—x?/2LY), (26)

where the sill amplitude is a, =20 m and L, = Lx/100 m.

The numerical simulation is initialized with a constant stratifi-
cation of N=0.007 s~!, where the buoyancy frequency squared is
given by

N? = (~g/po)dp/0z. (27)

This constant stratification corresponds to a linearly varying den-
sity with dp/0z=—0.005 kg m~4. The initial setup is shown in Fig. 7.

At the boundaries, the model is forced with an oscillatory tidal
flow given by

Upe = U sin(wt), (28)

where 1o=0.01ms~!. The model also uses sponge layers (SL) at
the boundaries to minimize internal wave reflection, following the
approach of Vitousek and Fringer [6],

u(x,y, z, t) — upe(x,y, z, t)

SL(x,y,z,t)=— z
S

sl(r), (29)

where sl(r) = exp(—4r/Ly), r is the distance to the domain boundary,
and the damping time scale is ts=100s. This allows the sponge
layer to decay over the distance Ly =Ly/10 [6].

In a fluid with constant stratification, forcing frequency w, and
in the absence of the Coriolis force (i.e., f=0), internal wave beams
will radiate with a constant slope given by the angle

(o/N)’
1- (w/N)?

1

@ =tan~ (30)

When /N « 1, the nonhydrostatic beam angle approaches the
hydrostatic beam angle given by

gn=tan"! (o/N). (31)

In this test case, the forcing frequency w is varied in different runs,
while fixing the buoyancy frequency N such that w/N=0.2, 0.4, 0.6,
and 0.8, respectively, for the various runs.

For all cases, the model is run with a time step of At=0.01s fora
total time of 20 tidal periods (T=2m/w) to enable sufficient spin-up
time for the development of beams and to allow for transients to
decay [6]. The beam angle was determined following Vitousek and
Fringer [6] by finding the vertical location of the maximum of the
root-mean-square velocity over the last ten tidal periods and in a
limited horizontal region of [200, 500] m. A linear least-squares fit
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Fig. 5. Evolution of the lock exchange at different times. Shown is the non-dimensional density field over the three-dimensional domain.

to the x —z location of these maxima was used to determine the
internal wave beam angle.

Fig. 8 shows the horizontal velocity field normalized by the tidal
velocity amplitude (u/ug) for the various w/N values considered.
The flow field is shown after 19.5 tidal periods (t=19.5T), corre-
sponding to when u. =0. Also shown are beam angles predicted
by hydrostatic (Eq. (31)) and nonhydrostatic (Eq. (30)) theory. In
all cases, the model produces internal wave beams that match the
nonhydrostatic theory. This is particularly evident for large w/N
values, where nonhydrostatic effects are strongest. In this case, the
hydrostatic theory predicts smaller angles compared to the nonhy-
drostatic theory and model results.

Fig. 9 shows the internal wave beam angle ¢ as a function
of w|N for the different model runs (as computed using the lin-
ear regression), as well as the angles predicted by hydrostatic
and nonhydrostatic theory. The model is able to accurately cap-
ture the nonhydrostatic beam angle for all w/N values considered.
This test case demonstrates the ability of the model to accu-
rately capture the proper internal wave behavior for this field-scale
model.

4. Conclusions and future directions

GCCOM has previously been validated for idealized homo-
geneous environments, showcasing the advantages of its three-
dimensional curvilinear coordinate system [54,34,35]. The version
of the model described here computes the effects of density strat-
ification by removing the buoyancy term and adding a horizontal
pressure gradient force that arises from the hydrostatic compo-
nent of pressure following Shchepetkin and McWilliams [38]. This
representation more accurately captures gravity-driven flows and
internal waves. The following numerical experiments are per-
formed to demonstrate the abilities of the model: aninternal seiche,
alock exchange (i.e., alock release) in a rectangular tank, and inter-
nal wave beams generated from flow over a seamount. These test
cases have been widely used as benchmarks for assessing the accu-
racy and efficiency of different nonhydrostatic numerical models.

For a small-amplitude internal seiche in a closed rectangular
basin, GCCOM was able to accurately capture the wave speed for
large aspect ratios, where nonhydrostatic effects are expected to
be large, as well as the accurate decay of the velocity field away
from the internal interface [21,3,6]. For the lock exchange experi-
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Fig. 7. Model configuration highlighting the initial density distribution with constant stratification. The Gaussian ridge is shown as solid white near the bottom.

ment, which is one of the most widely used test cases for validation
[3,55,52,27], GCCOM was able to capture the characteristically
nonhydrostatic overturning billows and propagation of the grav-
ity current front. The Froude number of the front calculated from
the GCCOM model showed excellent agreement relative to theory
and other nonhydrostatic models. GCCCOM also displayed the cor-
rect energetics and exchange between potential and kinetic energy
throughout this experiment with minimal total energy loss. The
last experiment considered the generation of internal waves by an
oscillating tidal flow over a ridge in a continuously stratified fluid
(similar to Chalamalla et al. [24], Jalali et al. [56], Kanarska et al. [ 7],
Santilli and Scotti [5], Vitousek and Fringer [6]). GCCOM was able
to accurately capture the nonhydrostatic beam angle predicted by

theory, particularly at large w/N, where nonhydrostatic effects are
most significant.

The vertical coordinate system is often reported as one of the
critical aspects in the design of ocean models (see Vitousek and
Fringer [6] and the references therein, and Haney [57], Berntsen
[58]). One of the advantages of the GCCOM model is its general
curvilinear coordinate system, which is capable of handling curvi-
linear orthogonal and non-orthogonal grids in all three dimensions
(i.e., including the vertical dimension). This allows for the more
accurate simulation of small-scale ocean process along very steep
slopes (e.g., internal wave shoaling on a steep slope), as well as
the flexibility to distribute the grid nodes along the vertical line
in order to reduce the grid-induced errors [20]. General curvi-
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linear coordinates are quite common in industrial and practical
fluid dynamics applications where complex geometries strongly
influence flows [59-61]; however, for ocean applications, rela-
tively little is known about how this coordinate system can reduce
model errors. In future work, the full 3D curvilinear coordinate
system will be implemented, and tests will be conducted on real

bathymetry with nontrivial, realistic topography. Verification that
the baroclinic pressure gradient force remains accurate over steep
bathymetry will be tested, and this will be followed up with field-
scale experiments of internal waves shoaling on a steep shelf. The
realistic field-scale simulations will compared with high-resolution
field measurements of shoarling internal waves for verification
[12,14,15].

Ongoing work with GCCOM includes a GCCOM PETSc-based par-
allel model, which has been re-designed using a data management
distributed array (DMDA) domain decomposition strategy. This
allows the Arakawa three-dimensional mesh to be easily divided
among processors to improve performance. This parallel imple-
mentation was tested for accuracy and performance and some of
the preliminary results can be found in Patel [62]. Future work
will also focus on nesting a high-resolution nonhydrostatic GCCOM
model within a larger-scale hydrostatic model (e.g., ROMS) for more
efficient simulations of multiscale processes (cf. Choboter et al.
[42]). Additionally, while the rigid lid approach for the immediate
application of the modeling of field-scale internal waves is suf-
ficient, future applications may require the implementation of a
free-surface model which is more difficult to implement (e.g., met-
ric terms in coordinate transformation are time-dependent) and
more computationally expensive. With the goal of making GCCOM a
user-friendly community model, a Cyber-infrastructure Web Appli-
cation Framework (CyberWeb) [63,64] is being developed, through
which scientists can run customized simulations, view results, and
download data through a community portal.

Overall this paper presents a three-dimensional nonhydrostatic
model for simulating small-scale processes in stratified flows. The
model uses a fractional step algorithm for the computation of the
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nonhydrostatic pressure, which accurately computes the density
effects by adding a horizontal pressure gradient force. Benchmark
test cases demonstrate that the model is capable of capturing non-
hydrostatic behavior for gravity-driven flows and internal waves
with excellent accuracy. Future studies will utilize the model capa-
bilities for field-scale internal wave simulations.
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Appendix A. Curvilinear coordinates transformation

Prior to the finite-difference discretization, the equations of
motions (Egs. (1)-(9)) are transformed into a uniform curvilinear
grid (i.e., from (x, y, z) to (&, n, ¢), Torres et al. [35]), in order to
give the model the capability to perform calculations on three-
dimensional arbitrarily shaped geometries. In the present work,
all simulations are conducted in sigma coordinates. The following
generalized independent variables are introduced

T=t, gzg(x!y7z! t)v TIZU(Xs,V’Zs t)v CZC(X,%Z, f), (Al)
where the derivatives transform according to
d 0t0 877 0 8;“ 0
ERlr M R M M W (A2)
ﬁ o0& 0 Bn 0 8;“ 0
Gy ~ oy 9 ayan ayac (A3)
ﬁ 0& 0 Bn d 34‘ 0
62" 9206 azom 929 (A4
The Jacobian of the transformation is defined as
o 05 0
ox dy 0z
_|9n 9n Oy
I= ox Oy 0z (A.5)
9 9 %
ox dy 0z

A general rule for the derivatives can be defined as follows:

nx =J (Veze —veze) » &x=J (Vezn —ynze) »

Ny =J (xeze —xczg) &y =] (xn2ze = Xezy)

Nz =] (X;J’g *Xsh) » Gz=] (Xg}’n *Xn}/g‘) .
(A.6)

E =] (ynze —yezn)
&y =] (xezn —x92¢) ,

& =] (xa¥e = Xe¥n) -

Several keys aspects in the curvilinear coordinates transfor-
mation described above are noteworthy. First, the equations are
transformed from the physical grid to a unit cube and the cal-
culation is performed in that domain. Additionally, only the
equations are transferred and not the variables. Finally, central

finite-differences are used to calculate the metrics of transforma-
tion, except at the boundaries, where forward or backward second
order accurate finite-differences are used.

Appendix B. Numerical solution of Navier-Stokes in
curvilinear coordinates

The GCCOM model uses a finite-difference scheme that is second
order accuratein space [54]. For the linear terms, central differences
are employed. The 4th-order accurate Kawamura method is used
for the non-linear terms [47], for example

ou
f) =|(fe)..
( 58%— ik ‘ ( 5)1,],k

where f = uéx + v&y + wé;, and a similar formulation for the other
non-linear terms. This discretization is similar to a central differ-
ence, but it is composed of both a forward and backward scheme,
and its value changes depending on the sign of f;.

Uiojk — 4Uip1jk +O6U_1jk + Uiz jk
458

(B.1)

Appendix C. Nonhydrostatic pressure in curvilinear
coordinates

Calculating the nonhydrostatic pressure (Eq. (9)) requires dis-
cretizing the Laplacian
KR 0 0

b L op p L 9P p
x|y 0z
The Laplacian is expressed in curvilinear coordinates as follows
[36]:

V2p = (C1)

2. _ _ s
Vip=L(p) -Lx) %‘x 85 +nx +§x ]
—L(z) %‘z 8%' +§z :|
where the components L(p), L(x), L(y), L(z) are written as
Pp ap *p p O Fp]
Upl=ages +b55 + oz +2_ ogon " Cacan 9 0Ear
L(x)—a& + b& + c& +2 - 82x Ox O |
=52 "o "o 2 | “aEay T acon " Yoeac | )
Ry Py Py [Py dy . Py
L(y) aa—gz+b8—nz+ca—§2+2 _dagan 3con qasaé_

9%z 822 0%z [ 9%z 9%y 9z ]
L(z)=0+= 98 +b 3 3 +68§2 +2 _d8$8n +€8§8n +q8§8§_
where q, b, ¢, d, q are defined as

a=E+&+&2,
b=nZ+nj+n2,
_ 24722
C=4+8+87, (C4)

d = &nx +yny + &1z,
e = {xlx + &yny + &2z,
q="58Cx+ &8+
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Eq. (C.2) is solved using a cell-centered finite-difference method,
where each term of the equation is discretized as follows:

dp

% (Peis1,j k) — Pei1,j,k))/ 2 A,

0
3*1:7 = (P(ij+1,k) = P(ij—1,k))/ 2Dy (C5)
0
D o Bty — Pk /200,
a
9%p
70 =(p(i+1,j, k) +p(i—1,j, k) - 2p(i, j, k))/ AZ,
9 p ..
g =PI+ 1K)+, 1,10 = 2p(0J, K))/ A (C6)
2
dp . . . 2
3 =(p(i,j, k+1)+p(i,j, k= 1) = 2p(i, j, k))/ A%,
Pp P+ 1+ 1K) +pli—T1,5=1,k) = pli+1,j—1,k)=pi-1,j+1,k)
0y ANy '
?*p Cpli+ 1, k+1)+pli—1,j,k=1)—p(i+1,j,k=1)—p(i—1,j, k+1)
9L IAA;
8°p Cplij+1,k+ 1) +p(i,j—1,k=1)—p(i,j+1,k-1)—p(i,j —1,k+1)
Mo 40, A )

(C.7)

By substituting (C.5)-(C.7) into Egs. (C.2) and (C.3), discretized
curvilinear coordinates for use in the Poisson equation and the
following expression are obtained:

1
_W
+B1(i, J, k) + Ba(i, j, K)lp(i + 1, j, k)
+Ba(i, J, k) = Ba(i,J, K)Ip(i — 1, ], k)
+A1(i, j, k) + Ao (i, j, K)Ip(i, j + 1, k)
+A1(i, J, k) = Az, J, K)lp(, j — 1, k)
(i j, k) + 2,4, K)lp(i, j, k+ 1)

v2p— {4a(i.j. k)p(i.j. k)

+[T1(i7j5 k)_tZ(ivj» k)]p(lv.’5k_1)
oy (i, J, K)p(i+ 1,5 — 1, k)
—Txy(l J’ ) (l+1’j+]7k)

(i

1,j+1,k) (€8)

+Txy(1, J, k)p(i —
=Ty, J, k)p(i—1,j = 1, k)
+Ty (i, 4, K)p(i,j+ 1,k —1)
=Ty (1,7, K)p(i,j+ 1,k + 1)
—Ty (i, 4, K)p(i,j— 1,k —1)
+7y(1,, kK)p(i, j — 1,k + 1)
—Txz(1,J, K)p(i — 1,j,k —1)
+ (i, J, K)p(i = 1,j, k+1)
+Tx(1, J, K)p(i+1,j,k—1)
—T(i, J, K)p(i+1,j, k+ 1)}

where «, B1, B2, A1, A2, T1, T2, Txy, Tyz, Txz are transformation coeffi-
cients found after algebraic manipulation [65]. The corresponding
coefficients are:

i j.ky = (ac(i, j, K)AT AZ + be(i, j, K)AZAZ + cc(i, j, k) AZAF, (C.9)

Buiijp = —2ac(i, j, K)AFAZ, (C.10)
IBZ(i,j,k) = Lxc(ivj» k)iXC(i,j, k) + LyC(ivjv ’C)lyC(l,], k)
+Lzc(i, j, k)ize(i, j, k))(AgA,Z,A?), (C11)
Mij k) = —2bc(i, j, k) (AéA%), (C.12)
A2qij iy = (Lxe(i, J, K)jxc(i, j, k) + Lyc(i, j, k)jyc(i, j, k)
Lacli ], k)ize(i i, k(A A, AD), (C.13)
Ti(ijk = —2cc(i, j, K)(AZAT), (C.14)
Ta(ij k) = (Lxe(i, J, K)kxc(i, j, k) + Lyc(i, J, k)kyc(i, j, k)
+Lze(i, j, K)kze(i, j, ) AF AT AL), (C.15)
TWY(ijh) = Ag Ay AZdc(i, ], k), (C.16)
TZ(ijr) = Af Ay Acec(i,j, k), (€17)
TZ(ij k) = De AR AqC(i, ], k), (C.18)

where Ly, Lyc, and L, represent L(x), L(y), and L(z), respectively, dis-
cretized on the center grid according to (C.3). The terms ac, bc, cc,
dc, qc are the discretized by the metric transformation in Eq. (C.4).
The terms (ixc, iyc, izc), (jxc, jyc, jzc) and (kxc, kyc, kzc) are the cal-
culations of the derivative in the computational space represented
in Eq. (A.6).

Eq. (C.2) is solved by obtaining a linear system of equations in
the more standardized form:

A p =rhs(u) (C.19)

where A p is expressed explicitly in Eq. (C.8), and rhs(u) is the
discretization of the right-hand side of Eq. (9). The matrix A is not
singular, is both large and sparse, and requires a 19-point stencil
with coefficient values based on the chosen mesh shape.

In order to construct our 3D Laplacian operator, the set of points
on the 3D curvilinear mesh are mapped as an ordered numerical
set. This is achieved by imposing an ordering on the grid termed an
imposed lexicographical order of the unknown p(i, j, k). The natural
row ordering at the interior points of the domain is illustrated in
Fig. C.1, starting from bottom-to-top and continuing from left-to-
right.

From here, a large number of algorithms are available for solving
systems of equations with sparse matrices; depending on the given
application, some algorithms perform better than others. Several
methods are regularly used when solving time-dependent, incom-
pressible Navier-Stokes equations, each with their own advantages
and disadvantages. Direct methods based on Gaussian elimination
solve small systems of equations efficiently; however, their work
and memory requirements prohibit them from being used for very
large systems. Conversely, multigrid methods [66] are well suited
for problems featuring large numbers of unknowns. Furthermore,
to lower the computational cost of the nonhydrostatic pressure
in GGCOM, two libraries were integrated: the Aggregation-based
Algebraic Multigrid Library (AGMG [39]) and the Portable Exten-
sible Toolkit for Scientific Computation (PetSC [40]) a comparison
of the efficiency of these libraries in GCCOM is presented in Valera
etal. [41].
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left-to-right. Figure from Garcia [65].
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