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Abstract—The problem of state estimation for unobservable
distribution systems is considered. A deep learning approach to
Bayesian state estimation is proposed for real-time applications.
The proposed technique consists of distribution learning of
stochastic power injection, a Monte Carlo technique for the
training of a deep neural network for state estimation, and a
Bayesian bad-data detection and filtering algorithm. Structural
characteristics of the deep neural networks are investigated. Sim-
ulations illustrate the accuracy of Bayesian state estimation for
unobservable systems and demonstrate the benefit of employing
a deep neural network. Numerical results show the robustness
of Bayesian state estimation against modeling and estimation
errors and the presence of bad and missing data. Comparing
with pseudo-measurement techniques, direct Bayesian state es-
timation via deep learning neural network outperforms existing
benchmarks.

Index Terms—Distribution system state estimation, bad-data
detection, Bayesian inference, deep learning, neural networks,
smart distribution systems.

I. INTRODUCTION

We consider the problem of state estimation for power
systems that have limited measurements. We are motivated by
the need for achieving a higher degree of situation awareness
in distribution systems where the growing presence of dis-
tributed energy resources (DER) creates exciting opportunities
and daunting challenges for system operators. A compelling
case can be made that effective state estimation is essential to
optimize DER in real-time operations [2].

A major obstacle to state estimation in distribution systems
is that such systems are nominally unobservable [3], [4]. By
unobservable it means that there is a manifold of uncountably
many states that correspond to the same measurement. System
unobservability arises when the number of sensors is not
sufficiently large—typical in distribution systems—or sensors
are not well placed in the network. An observable system may
become unobservable when sensors are at fault, sensor data
missing, or data tampered by malicious agents [5].

A direct implication of unobservability is that the class of
state estimators that assume deterministic system state cannot
provide guarantees on the accuracy and consistency of their
estimates. In particular, the popular weighted least-squares
(WLS) estimator and its variants can no longer be used when
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the system is unobservable because a small WLS error in
model fitting does not imply a small error in estimation; large
estimation error may persist even in the absence of noise.

A standard remedy of unobservability is to use the so-called
pseudo measurements based on interpolated observations or
forecasts from historical data. Indeed, the use of pseudo
measurements has been a dominant theme for distribution
system state estimation. These techniques, however, are ad hoc
and do not assure the quality of estimates. More significantly,
historical data are often limited and have a poor temporal
resolution for capturing real-time state dynamics.

The advent of smart meters and advanced metering infras-
tructure provide new sources of measurements. Attempts have
been made to incorporate smart meter data for state estima-
tion [6]-[8]. Not intended for state estimation, smart meters
measure accumulative consumptions. They often arrive at a
much slower timescale, e.g., in 15-minute to hourly intervals,
that is incompatible with the more rapid changes of DER.
Unfortunately, existing techniques rarely address the mismatch
of measurement resolution among the slow timescale smart
meter data, the fast timescale real-time measurements (e.g.,
current magnitudes at feeders and substations), and the need
of fast timescale state estimation.

State estimation for unobservable systems must incorporate
additional properties beyond the measurement model defined
by the power flow equations. To this end, we pursue a
Bayesian inference approach where the system states (voltage
phasors) and measurements are modeled as random variables
endowed with (unknown) joint probability distributions. Given
the highly stochastic nature of the renewable injections, such
a Bayesian model is both natural and appropriate.

The most important benefit of Bayesian inference is that
observability is no longer required. A Bayesian estimator ex-
ploits probabilistic dependencies of the measurement variables
on the system states; it improves the prior distribution of the
states using available measurements, even if there are only a
few such measurements. Unlike the least squares techniques
that minimize modeling error, a Bayesian estimator minimizes
directly the estimation error.

The advantage of Bayesian inference, however, comes
with significant implementation issues. First, the underlying
joint distribution of the system states and measurements is
unknown, and some type of learning is necessary. Second,
even if the relevant probability distribution is known or can
be estimated, computing the actual state estimate is often
intractable analytically and prohibitive computationally.
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A. Summary of results and contributions

As a significant departure from the pseudo-measurement
approach to distribution system state estimation, this paper
presents a novel application of Bayesian state estimation for
possibly unobservable systems where measurements may be
unreliable, missing, or subject to data attack. Specifically, we
develop a machine learning approach to the minimum mean-
squared-error (MMSE) estimation of system states. A pre-
estimation bad-data detection and filtering algorithm based on
the Bayesian model is also proposed.

The main benefit of the proposed Bayesian state estima-
tion is twofold. First, the online computation cost of the
Bayesian estimate is several orders of magnitude lower than
that of the WLS techniques, thanks to the neural network
implementation of the MMSE estimator. Second, the Bayesian
inference framework provides a level of flexibility to assemble
information from a variety of data sources. For instance, smart
meter data are not used directly in state estimation; they
contribute to the learning of the probability distribution of
network states. The issues of incompatible timescales, delayed
measurements, and missing data are mitigated.

The proposed machine learning approach consists of dis-
tribution learning and deep regression learning; the former
uses smart meter data to learn bus injection distributions from
which training samples are drawn. A novel contribution is
learning the distribution of fast timescale power injection from
slow timescale smart meter data. In regression learning, a deep
neural network is trained for the MMSE state estimation. A
key innovation here is the way that the power system model
(the power flow equations) is embedded in the regression
learning.

Numerical results demonstrate several features of the pro-
posed approach. First, we show that the proposed Bayesian
state estimator performs considerably better than the bench-
mark pseudo-measurement techniques, including those gener-
ating pseudo measurements using neural networks. Second,
we show that the proposed method is robust against inaccu-
racies in distribution learning®. Third, our results suggest that
using deep learning seems essential. We observed that neural
networks with five layers or more performed better than flatter
networks, and neural networks with bulging middle sections
performed better than rectangular ones. Finally, simulations
show that the Bayesian bad-data detection and filtering are
considerably more effective than the non-Bayesian pseudo-
measurement techniques.

The proposed technique is of course not without limitations.
Some of these limitations are summarized in Section VI.

B. Related Work

State estimation based on deterministic state models has
been extensively studied. See [3], [4] and references therein.
We henceforth highlight only a subset of the literature with
techniques suitable for distribution systems.

In some of the earliest contributions [9]-[12], it was well
recognized that a critical challenge for distribution system

“In our simulation, we generated test data based on a distribution learned
in a different year.

state estimation is the lack of observability. Different from
the Bayesian solution considered in this paper, most existing
approaches are two-step solutions that produce pseudo mea-
surements to make the system observable followed by applying
WLS and other well-established techniques.

From an estimation theoretic perspective, generating pseudo
measurements can be viewed as one of forecasting the real-
time measurements based on historical data. Thus the pseudo-
measurement techniques are part of the so-called forecasting-
aided state estimation [13], [14]. To this end, machine learning
techniques that have played significant roles in load forecasting
can be tailored to produce pseudo measurements. See, e.g.,
[15]-[25].

Bayesian approaches to state estimation are far less explored
even though the idea was already proposed in the seminal
work of Schweppe [26]. Bayesian state estimation generally
requires the computation of the conditional statistics of the
state variables. An early contribution that modeled explicitly
states as random was made in [27] where load distributions
were used to compute moments of states, although real-time
measurements were used as optimization constraints rather
than as conditioning variables in Bayesian inference. One
approach to calculating conditional statistics is based on a
graphical model of the distribution system from which belief
propagation techniques are used to generate state estimates
[28], [29]. These techniques require a dependency graph of the
system states and explicit forms of probability distributions.
Another approach is based on a linear approximation of the
AC power flow [30].

The approach presented in this paper belongs to the class
of Monte Carlo techniques in which samples are generated
and empirical conditional means computed. In our approach,
instead of using Monte Carlo sampling to calculating the con-
ditional mean directly as in [31], [32], Monte Carlo sampling
is used to train a neural network that, in real-time, computes
the MMSE estimate directly from the measurements.

Bad-data detection and identification has been studied ex-
tensively [3], [4]. Classical methods are post-estimation tech-
niques where states are first estimated and used to compute
the residue error. The presence of bad data is declared if the
residue error exceeds a certain threshold. For such techniques,
system observability is a prerequisite. To identify and remove
bad data, an iterative process is often used where state esti-
mation is performed repeatedly after each positive bad-data
detection and removal. Such techniques often fail to identify
bad data or mistakenly remove good data.

In contrast to post-estimation bad-data detection, the method
proposed in this paper belongs to the less explored class of
pre-estimation detection and filtering techniques. Several such
techniques [33]-[36] are based on exploiting a dynamic model
to predict the current measurement using past measurements,
from which the prediction error becomes test statistics for
bad-data detection. In [37], a neural network trained as an
autoencoder’ is used to test against bad data.

"The authors of [37] did not use the autoencoder concept to explain their
approach.
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II. SYSTEM MODEL AND BAYESIAN STATE ESTIMATION
A. Algebraic and Statistical Models

We adopt a generic static power flow model for an N-
bus three-phase power system. We assume that node 1 is the
slack bus that, for distribution systems, represents the point
of common coupling (PCC), where the distribution network is
connected to the main grid.

The three-phase voltage phasors at bus ¢ is a complex
column vector x; = [z}, 22, x3]T, where the superscripts are
phase indices, and ¥ = V*/0F where V¥ is the voltage
magnitude and 6% is the phase angle for the state variable at
phase k of bus i. The overall system state = [z1,- - ,xn]T
is the column vector consisting of voltage phasors at all buses.

We adopt a static system model defined by a pair of
equations that characterize the relationship among the vector

of (complex) power injections s = [s1,---,sn]|" at network
buses, the system states x, the vector of measurements z =
[21,- -, 2zm]", and measurement noise e:

x=g(s), z=h(x)+e, (1)

where g(-) is the mapping from net injection s to the system
state « and h(x) is the measurement function defined by the
sensor types and the locations in the network. Vector z above
includes standard types of measurements such as branch power
flows, power injections, and current magnitudes. Without loss
of generality, we can treat the variables in (1) as real by
taking either the rectangular or the polar form of the complex
variables and modifying ¢(-) and h(-) in (1) accordingly. The
specific forms and parameters of (1) with different levels of
modeling details can be found in [38]-[40].

Aside from the system model above, Bayesian estimation
requires a probability model that specifies the statistical depen-
dencies of the variables. Here we assume that the probability
space is defined by the joint distribution of measurement noise
e and net power injection s. We assume further that e and s
are statistically independent.

B. Bayesian State Estimation

A state estimator &(-) is a function of measurement z. In
Bayesian estimation, the estimator (z) is defined by the joint
distribution of = and z and the adopted optimization objective.
Here we focus on the minimum mean squared error (MMSE)
estimator* that minimizes the expected squared estimation
error E(||z(2) — z||?) where the (Euclidean) 2-norm is used.

From the standard estimation theory, the MMSE estimator
2*(z) is given by the mean of the state x conditional on the
realization of the observation vector z:

minE(|lr - #(2)[7) = () =E@). @
Note the difference between the MMSE and the least squares
estimators:

s (2) = argmin ||z — h()| .

#The developed technique can be also applied to other Bayesian techniques
such as the robust estimator based on the minimum absolute error (MMAE)
estimator and the maximum aposteriori probability (MAP) estimator.

where the goal of least squares is to minimize the modeling
error.

Simple as (2) may appear, the computation of the con-
ditional mean can be exceedingly complex. For all practi-
cal cases, the functional form of the conditional mean is
unavailable. More importantly, perhaps, the underlying joint
distribution of x and z is unknown or impossible to specify,
which makes the direct computation of &* intractable.

III. BAYESIAN STATE ESTIMATION VIA DEEP LEARNING
A. Overview of Methodology

We present an overview of the proposed methodology using
Fig. 1. Each functional block is explained in section(s) labeled.
All variables are consistent with those used in the paper.
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Fig. 1: Schematic of methodology.

The proposed scheme includes (i) online state estimation in
the upper right of Fig. 1 and (ii) offline learning in the rest of
the figure. This online-offline partition is of course not strict;
the offline learning becomes online if learning continues as
data arrive.

The online state estimation is through a neural-network ap-
proximation of the MMSE estimator as described in Sec III-B.
The offline learning includes distribution and regression learn-
ing modules. Taking (historical) samples of the smart meter
measurement y, the distribution learning module produces
F, that approximates the probability distribution of the net
injection s. The three submodules at the bottom of the figure
are part of the regression learning that produces parameter w of
the neural network. Specifically, the Monte Carlo sampling and
the power flow analysis submodules generate samples from the
estimated net-injection probability distributions F, and convert
them to a set of state-measurement training samples {(z, z)}.
The deep neural network training module sets the neural
network parameter w via an empirical risk minimization.

B. Deep Neural Network Approximation

The MMSE state estimator in (2) can be viewed as a
nonparametric regression with the measurement z as the
regressor. Such a regression is defined on the unknown joint
distribution of measurement z and state x. The corresponding
learning problem is of infinite dimensionality and intractable.

We consider a finite dimensional approximation of (2)
using a deep neural network shown in Fig 2. The neural
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network consists of multiple layers of neurons. Neurons at
each layer produce a vector output for the next layer using
a (parameterized) nonlinear function of the output from the
previous layer. The input-output relation K(-; w) of the neural
network is

2(2) = K(z;w), 3)

where w is the parameter matrix. See [40] for the form of K.

Output Layer
Ty

Input layer

Hidden Layers

Fig. 2: Multi-layer Forward Neural Network.

The universal approximation theorem (see, e.g., [41]) has
established that a neural network with a single hidden layer
is sufficient to approximate an arbitrary continuous function.
This means that with a sufficiently large neural network and
appropriately chosen w, a neural network can well approx-
imate the MMSE state estimator. Under this approximation,
the infinite dimensional learning problem of the conditional
mean becomes a finite dimensional learning problem with
dimensionality being the number of parameters in w.

C. Regression Learning: Training Samples

We now focus on setting the neural network parameter w to
approximate the MMSE state estimator Z*(z) in (2). Standard
deep learning algorithms apply to cases where there is a set of
training samples made of the input-output pairs {(z,2*(2))}.
Such pairs, unfortunately, are not available directly. Nor do
we have samples from which the underlying joint distribution
F, . of state x and measurement z can be learned directly.

The key to obtaining a training set is to incorporate the
underlying physical model characterized by model equation
(1). If we can learn the (marginal) distribution Fy of the
net power injection vector s, drawing an injection sample s
determines the state sample z = g¢(s) from (1). Assuming
that independent measurement noise e has distribution F¢,
s ~ Fy and e ~ F, produce a state sample z = h(g(s)) + e.
Conceptually,

(s,e) ~ Fs x F, (—1)>(:17,z) (€))
Measurement noise distribution F, is assumed to be, say,
zero-mean Gaussian N(0,02). The distribution of the net
power injection, however, depends on a combination of load
and possibly renewable generations. We defer the discussion
of learning F; using data from the smart meter and other
measurement devices to Section III-F.

D. Regression Learning: Training Algorithm
Given the set of training samples
8 = {(x[k], z[k]) | k =1,--- 8]}

generated according to (4), the weight matrix w is chosen to
minimize the empirical risk defined by

L(w;8) = ﬁ Z

k:(z[k],z[k])€S
argmin L(w; 8).

k] — K (2[5 w)] ]2,

w* =
The empirical risk minimization problem above is well studied
for deep learning problems, and an extensive literature exists.
See, e.g., [42]. For the state estimation problem at hand, the
class of stochastic gradient descent algorithms is considered.
The Adam algorithm [43] designed for non-stationary objec-
tives and noisy measurements is particularly suitable.

A characteristic of deep learning is over-fitting, which
means that the number of neural network parameters tends to
be large relative to the training data set. A general approach
to overcoming over-fitting is regularization that constraints
in some way the search process in neural network training.
Standard techniques include L; regularization, dropout, and
early stopping [42]. In the next section we present a regular-
ization technique based on structural constraints on the neural
network.

E. Regression Learning: Neural Network Structure

The performance of state estimation can be affected by the
structure of the neural network. The “shape” of the network
can vary from shallow-and-wide to deep-and-narrow, and it
does not have to be rectangular. Indeed, the shape of the
network plays a role in regularization.

We propose a technique that transforms a rectangular
network to a non-rectangular one based on the statistical
clustering of the output variables at each layer. The intuition is
that, for a feedforward network, if the outputs of two neurons
at the same layer are strongly correlated statistically, they can
be combined. Generalizing beyond two neurons, if the outputs
of a group of neurons are highly correlated, this group of
neurons may be well represented by a single neuron.

As shown in Fig. 3, if neurons at a particular layer are
clustered into three groups for the network in the left panel,
the network on the left panel is reduced to one on the
right, replacing each subgroup of neurons by its single-neuron
representative.

Clustering requires a similarity measure. To this end, we
considered a standard similarity measure px y between ran-
dom variables X and Y defined by

E(XY)

A variety of clustering techniques can be applied once a
similarity measure is chosen. In particular, hierarchical ag-
glomerative clustering [44] allows us to control the number
and the sizes of clusters.

In Section V, we present numerical results on the structure
of the neural network using the above clustering analysis. The
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Fig. 3: A reduction of neurons in a layer through
clustering. Left panel: the right three, the middle
four, and right three form three clusters. Right
panel: each cluster is represented by a single neuron
to form a reduced network.

results from these experiments suggest that a network with a
bulging middle section seems to perform better.

F. Learning Net Injection Distributions

The distribution of net injection needs to be learned to gen-
erate training samples. Distribution learning can be parametric
or non-parametric [45], [46]. By restricting the distribution
class, parametric techniques are well developed. The assump-
tion on the parametric class can be wrong, however, in which
case very little can be said about the performance. This makes
it highly desirable that the Bayesian estimator is robust against
errors in distribution learning.

Because of the historical data for injections are limited,
we estimate the injection distribution based on the parametric
model of Gaussian mixtures commonly used to model load and
renewable generations [47]-[49]. The maximum likelihood
(EM) method is used in the estimation.

If power injection can be measured locally at injection
points, the injection distribution can be estimated locally
without communicating the data to the central location; only
the distribution parameters need to be transmitted. However,
if measurements of net injection are not available, we propose
an alternative technique that uses smart meter data to estimate
the power injection distributions. This is nontrivial because
smart meters typically measure accumulative consumptions,
and smart meter data are collected at a much slower timescale.
In the appendix, we present a time-series based technique
that exploits the underlying structure of the Gaussian mixture
distributions. This technique converts the Gaussian mixture
parameters of the smart meter data distributions to distribution
parameters for the fast timescale power injections.

G. Computation complexity

The computation costs of the proposed Bayesian estimator
include the cost of online calculation of state estimates and that
of offline learning. Specifically, to estimate an N-dimensional
state vector with a neural network of fixed depth requires
roughly O(N?) computations. Special hardware that exploits

massive parallelism can greatly speed up the computation [50].
In contrast, standard second-order techniques for the WLS
estimator have the cost of O(N?) per iteration.

The computation cost of offline training is more difficult to
quantify; it depends on the size of training data set, the algo-
rithm used for training, and the number of iterations required
to achieve some level of accuracy. Note that, for the WLS
method, there is a negligible cost in obtaining a measurement
sample whereas, for the Bayesian state estimation, the cost of
Monte Carlo sampling is nontrivial.

For the proposed algorithm, generating a single sample re-
quires solving the power flow equation. A standard implemen-
tation of Newton Ralphson technique requires the evaluation
of the inverse of the Jacobian matrix with the (per sample) cost
roughly of the order O(N?). It seems necessary that at least
O(N) training samples are generated, the cost of generating
samples is roughly O(N*). For the stochastic gradient descent
algorithm used for training, the computation cost of a neural
network with fixed depth is the cost of evaluating the gradient,
which is roughly O(N?).

In summary, ignoring the cost associated with iteration, we
see that the online computation cost of the proposed Bayesian
state estimation is considerably lower than the WLS methods,
O(N?) vs. O(N?). On the other hand, if the Bayesian ap-
proach is implemented online, the cost is considerably greater
than that of the WLS algorithms, O(N%) vs. O(N?).

IV. BAD-DATA DETECTION AND MITIGATION

State estimation relies on data, and the quality of data
depends on the types of sensors, the quality of the collection
and communications, and the possibility of cyber data attacks
where measurement data are manipulated by an attacker [5],
[51]. Bad-data detection and mitigation are an integral part of
power system state estimation.

We first consider the simpler case of missing data that
may be results of packet drops, communication delays, or
that the data are deemed corrupted and removed. While no
detection is needed in this case, we need to determine what
to use in place of the missing data. Let the measurement
vector be partitioned as z = (Z,z’) where 2’ is the missing
data. The Bayesian estimator with missing 2’ is given by
#'(z) = E(x|z). Given the originally trained neural network
K(z;w) that approximates z*(z) = E(x|z), we have

#(2) = By (B(a]2, 2')) ~ /K((Z,z');w)sz/,

where F,, is the cumulative distribution of z’. Thus the
Bayesian state estimator with missing 2’ is the state estimates
(without missing data) averaged over the missing data, which
can be implemented by resampling missing measurements
and computing the averaged state estimates. The re-sampling,
however, is costly. A simple heuristic is replacing 2’ with
estimated E(z’) obtained in the training process (4).

Next, we consider the problem of detecting and identifying
bad data that may be results of sensor malfunctions or cyber-
attacks. The detected bad data can then be removed, and the
above solution to missing data problem can be applied.
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We treat bad data as outliers. To this end, the Bayesian
formulation offers a direct way to detect and identify bad data.
In contrast to the conventional bad-data detection methods that
are based on residue errors computed after state estimation, we
propose a pre-estimation bad-data detection technique by ex-
ploiting the learned (prior) distributions of the measurements.

We formulate a binary hypothesis testing problem where
hypothesis Hp models measurements without bad data and
‘H1 for measurements with bad data. Consider first the simpler
case when, under H(, measurement Y is Gaussian with mean
1o and variance 03. Under H;, Y has a different distribution
with mean or variance unequal to those under . This is a
composite hypothesis testing problem for which the uniformly
most powerful test may not exist.

A widely used practical scheme is the Wald test [45] that
evaluate the normalized deviation of the measurement away
from po; H1 (bad data) is declared when the deviation exceeds
a certain threshold. Specifically, given Y = y, the size o Wald
test is given by

— Hl
v 2 Ra/2 = Qil(a/2)7
g0 ,HO
where Q(z) = —= [* exp(—u?/2)du is the Gaussian tail

probability function. Typically, the size parameter « is set
at & = 0.05 to ensure that the false alarm (false positive)
probability is no greater than 5%.

For the application at hand, the mean (o and variance o3 of
the measurement under H, (no bad data) used in the Wald test
are learned as a by-product of the training process described in
Sec III. Specifically, the solutions of the power flow equations
give directly samples of the measurements, from which the
mean and variance can be estimated.

Strictly speaking, however, the measurement distributions
are not Gaussian, and an alternative to the Wald test can
be derived by using explicitly the learned distribution. This
appears to be unnecessary from our simulation examples
shown in Section V.

V. SIMULATIONS RESULTS AND DISCUSSIONS

A. Simulation Settings

a) Systems simulated: The simulations were performed
on two systems defined in the MATPOWER toolbox [52]. One
is an 85-bus low voltage system, the other one is the 3120-bus
“Polish network”. The simulation of the larger network was
to demonstrate the scalability of the proposed technique and
its application to mesh networks.

Two types of measurement devices were assumed: (i) Cur-
rent magnitude meters were placed in 20% of the distribution
system branches. (ii) One SCADA meter was placed at the
slack bus to measure complex power to/from the transmission
grid. The additive measurement noise was assumed to be
independent and identically distributed Gaussian with zero
mean and variance set at 1% of the average net consumption
value.

b) Performance measure: The performance of the tested
algorithms was measured by the per-node average squared
error (ASE) defined by

1 A
ASE = mgllx[lﬂ] — k]|, §)

where M is the number of Monte Carlo runs, k the index of
the Monte Carlo run, N the number of nodes, #[k] and z[k]
the estimated and the state vectors, respectively.

c) Neural network specification and training: The inputs
of the neural network were current magnitudes and slack
bus measurements; the outputs were the state estimates. The
ReLU (Rectified Linear Units) activation function was used for
neurons in the hidden layers and linear activation functions in
the output layer.

The Adam algorithm [43] was used to train the neural
network with mini batches of 32 samples. Early stopping was
applied by monitoring validation errors. To select an initial
point for the optimization, He’s normal method [53] was used.

B. Distribution learning

We used data sets from the Pecan Street collection® for
distribution learning. Specifically, a data set covering May 21st
to September 21st of 2015 was used for training, and a data
set covering the same period in 2016 was used for testing. The
data sets included power measurements from 82 households,
from which 55 had solar PV installed. Power consumptions
and solar PV generations were measured separately. Distribu-
tions of active power consumptions and solar generations were
learned from data separately.
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Fig. 4: Estimated cumulative distribution and 95%
confidence interval.

We considered non-parametric (histogram and Kernel) and
parametric distribution estimation techniques. The latter in-
cluded Gaussian, Gaussian mixture, and Weibull models.
Fig. 4 shows the cumulative distribution estimates of con-
sumption and solar generation at 3 p.m. on bus 12 based
on the histogram, 3-component Gaussian mixture, Kernel
Epanechnikov estimators, and the 95% confidence bounds.
All these estimators produced results well within the non-
parametric confidence bounds obtained using the Dvoretzky-
Kiefer-Wolfowitz inequality [45]. For all cases, 100% of the
3-component Gaussian mixture estimates were within the 96%
level confidence bound, and 99.8% of all estimates were within

Shttp://www .pecanstreet. org/
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the 85% level confidence bound. We observed that Gaussian
and Weibull distributions exceeded the 95% confidence inter-
val that captures the true distribution. Our data analysis led
to the adoption of the Gaussian mixture model with three
components in simulations.

C. Simulation Results for an 85-bus radial network

For the 85-bus network, 82 buses were assumed to have
consumptions, and 55 arbitrarily chosen buses had renewable
generations. See [1] for details of network configuration.
Renewable injections and load were generated separately to
produce net injections. We evaluated the ASE performance as
defined in (5), CPU time, and the performance of bad-data
detection/filtering.

a) ASE performance: We compared the proposed
Bayesian state estimation with deep neural network (herein
abbreviated as BSEdnn) with two WLS-based pseudo-
measurement methods in the literature:

1) WLSp: referred to as WLS with pseudo measurements,
WLSp generates injection pseudo measurements by aver-
aging the energy consumption measurement over several
past samples [32];

2) WLSnnp: referred to as WLS with neural-network gen-
erated pseudo measurements, WLSnnp uses a neural
network to generates pseudo-measurements of net in-
jection based on a regression on the historical energy
consumption vectors [18].

Separate neural networks were implemented and trained
for each hour of the day. We generated 10,000 training and
10,000 validation samples. The training of the networks took
on average 500 update iterations.

Fig 5 (left) shows that the ASE performance of the three
state estimators on the test data for the 24 hours period. Across
all hours, BSEdnn performed significantly better than the two
pseudo-measurement-based WLS techniques. Specifically, the
ASE of BSEdnn achieved one to two orders of magnitude
lower ASE than the pseudo-measurement techniques. The
performance gain was attributed to that, although measure-
ment distributions were in some way encoded in the pseudo-
measurements, WLS with pseudo measurements misused this
information.

b) CPU time: The experiments were carried out on a
computer Intel Core 17-8700 with 3.2 GHz processor and
64 GB RAM. For the simulation result presented in Fig. 5,
the computation time of the three algorithms was measured.
Estimating states using WLS with pseudo measurements took
on average 22.515 seconds per Monte Carlo run. In contrast,
calculating state estimate after the neural network had been
trained took on average only 0.16 millisecond per Monte Carlo
run, which was five orders of magnitude faster than the WLS
estimator. The training algorithm was implemented in Python
3.6.5 using Keras v2.2.4 with Tensorflow v 1.12 as the backend
[54]. Training the network with five layers and 2000 neurons
took 23 minutes and 7 seconds.

c) Bad-data detection and filtering: The performance
of bad data-detection and filtering was tested. In a Monte
Carlo simulation with 1,000 runs, bad data were injected to

’
10 10
w [——BSEdnn w
2 |—s—wLsp 2
|—e—wLsnnp
10° 10°
[——BSEdnn - 1]—+—WLSp - 1|—8—WLSnnp - 1
—4—BSEdnn - 2| —*—WLSp - 2| —8—WLSnnp - 2|
| —$—BSEdnn - 3| —+—WLSp - 3| —®—WLSnnp - 3
10°® 10
123456789101112131415161718192021222324 005 01 015 02 025 03 035 04 045 05
Hour Probability of bad data

Fig. 5: ASE performance for three state estimators. Left:
ASE (in absence of bad data) of estimators in
different hours. Right: ASE at hour 17 in the
presence of bad data of different strength; Line 1
shows ASE without bad data, Line 2 shows ASE
with bad data and Line 3 shows the ASE with
bad-data detection and filtering for estimators.

measurements probabilistically; each measurement had prob-
ability 7 to contain bad data. Different strengths of the bad
data were evaluated by varying 7. Note that the way bad
data were introduced deviated from and was significantly
more challenging than the conventional settings where a fixed
number of bad data at specific locations was typically assumed.

For the bad-data model considered in Sec IV, we assumed
that, under hypothesis #H; (bad data), the additive noise was
Gaussian with zero mean and considerably larger standard
deviation o than oo under Ho (no bad data)l. Once bad data
were detected, BSEdnn performed a data filtering procedure
that replaced the bad data with the mean of the measurements
as described in Sec IV. For WLS-p and WLS-nnp, detected
bad data were removed from the WLS procedure.

Fig 5 (right) shows the ASE performance vs. the probability
7 of bad-data occurrence under the bad-data model oy = 100y.
The bad-data detection and filtering algorithms were compared
in three cases. Case 1 (in blue): baseline performance without
bad data; Case 2 (in red): the performance when bad data were
present but not filtered; and Case 3 (in black): performance
with bad-data filtering. It was evident that bad-data detection
and filtering improved the performance of state estimation
considerably, driving the ASE performances closer to those
for the clean data case. It should also be observed that,
even without bad-data filtering, BSEdnn performed better than
pseudo-measurement based WLS estimators.

Additional simulations were conducted to evaluate the per-
formance of bad-data detection. Recall that, in deriving the
threshold used in the Wald test for bad-data detection in
Sec IV, a Gaussian distribution of the measurement under
was assumed, which at best could only be an approximation
given the Gaussian mixture nature of the net injection. To
evaluate the performance of bad detection derived from the
Gaussian model, we provided a comparison with the case
when noise distributions were indeed Gaussian, for which the
theoretical value of false alarm and miss detection probabilities
could be computed analytically.

INote that neither the mean and the standard deviation nor the distribution
of the bad data were assumed known in the bad-data detection and filtering
algorithm.
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Table I shows bad-data detection and filtering performance.
The top two blocks of the table show that the threshold
obtained based on the Gaussian model approximated well the
false alarm and detection probabilities under the Gaussian
mixture models. Also it is shown here that the pseudo-
measurement schemes with WLS did not perform well. The
third, fourth and fifth blocks show the effects of bad data on
the ASE of state estimators. The bad-data filtering algorithm
mitigated the effects of bad data satisfactorily.

H | 0'1:5(7(] (71:10(7(] 0'1:200'(]

False alarm prob. (Gaussian theoretical) 5.00% 5.00% 5.00%

False alarm rate of Wald test 4.60% 4.70% 4.70%

False alarm rate of WLSp+J(x) 4.94% 4.78% 4.91%

False alarm rate of WLSnnp+J(x) 4.94% 4.78% 491%

Detection prob. (Gaussian theoretical) 69.5% 84.5% 92.1%

Detection rate of Wald test 68.14% 84.16% 91.73%
Detection rate of WLSp+J(x) 36.45% 41.75% 57.33%
Detection rate of WLSnnp+J(x) 36.75% 43.37% 58.96%
ASE of BSEdnn without bad data 6.50E-06  6.50E-06 6.50E-06
ASE of WLSp without bad data 5.87E-04  5.87E-04 5.87E-04
ASE of WLSnnp MSE without bad data 5.85E-04  5.85E-04 5.85E-04
ASE of BSEdnn with bad data 1.84E-05  9.01E-05 7.31E-04
ASE of WLSp with bad data 6.97E-04  7.06E-04 7.75E-04
ASE of WLSnnp with bad data 6.98E-04  6.90E-04 7.70E-03
ASE of BSEdnn with bad-data filtering 6.91E-06  6.91E-06 6.86E-06
ASE of WLSp with bad-data filtering 5.82E-04  5.89E-04 5.79E-04
ASE of WLSnnp MSE with bad-data filtering | 5.76E-04  5.82E-04 5.79E-04

TABLE I: Bad-data detection and filtering with
varying strength of bad data. n = 0.3

D. Optimizing the Structure of Deep Neural Network

We examined the effects of choosing different structures of
the neural network on the performance of BSEdnn. To this end,
we considered the two questions: (i) Given a fixed number of
neurons, is there an optimal depth of the neural network that
offers the best performance? (ii) Is there a particular “shape” of
the network that should be favored? We attempted to address
these issues through simulations, knowing that interpretations
presented here apply to the system studied and may not be
conclusive.

a) The depth of deep learning: For total 1000, 2000,
and 3000 neurons, we tested exhaustively different rectangular
neural networks of different depths until a trend was observed.
The ASE performance of BSEdnn using validation data sets
is shown in Fig 6. The results suggested that a neural network
of 4 to 6 layers perform the best.

b) The shape of the deep neural network: Next we
examined whether using an irregular shaped neural network
has an advantage. To this end, we considered a pruning ap-
proach that, starting from a rectangular network, progressively
combining neurons that were highly correlated based on the
clustering technique developed in Sec III. The idea was that,
by combining neurons whose outputs were highly correlated,
the resulting irregular neural network would be regularized
within a particular structure that, potentially, could lead to
faster convergence and better performance.

Table II summarizes the simulation results. First, we eval-
uated the rectangular structure with 400 neurons in each
layer. Second, we used the clustering algorithm to prune
the network, which resulted in a reduction of the number

—&—NN with 1000 neurons
—+#—NN with 2000 neurons
—&8—NN with 3000 neurons

Validation error

10°¢
1 2 3 4 5 6 7 8 9 10

Number of Hidden Layers

Fig. 6: NN Architecture - Total number of neurons fixed.

of neurons at the two ends of the network and improved
test error. The second round of clustering-pruning resulted in
further reduction training, test, and validation errors, and a
shape of the network with the second and third layers having
considerably more neurons than the first and last two layers.
The third round of clustering-pruning resulted in increased
errors, indicating the locally best clustering-pruning procedure
should end at the second iteration.

Rectangular  1st Pruning  2nd Pruning  3rd Pruning
# of Neurons 1st layer 400 399 395 391
# of Neurons 2nd layer 400 400 400 400
# of Neurons 3rd layer 400 400 399 380
# of Neurons 4th layer 400 346 278 173
# of Neurons 5Sth layer 400 154 64 22
Test error 6.23e-06 5.77e-06 4.45e-06 5.11e-06
Validation error 4.73e-06 4.64e-06 3.72e-06 3.85e-06
Training error 4.27e-06 4.13e-06 3.41e-06 3.73e-06

TABLE II: Pruning simulation results with the
threshold = 0.0005

E. Simulation results for a 3120-bus mesh network

To demonstrate that the proposed algorithm can scale com-
putationally for a larger network, and that the developed
scheme also applies to a general mesh network, we applied
our approach on the 3120-bus mesh network. For this "Polish”
network, 2664 of the busses were assumed to have stochastic
consumption, and 348 of the busses having stochastic gener-
ations.

In general, transmission systems are observable. To illustrate
the idea of state estimation in an unobservable system, we
assumed that only 20% of the power injection measurements
are available. A 3-layer network with 1000 neurons in each
layer is trained. Again, the neural network was trained with
data generated from one power injection distribution and tested
with a different power injection distribution. The injection
distributions were the same used in the simulations for the
85-bus network.

We considered three test cases:

1) Normal data: power injection measurements had nominal

measurement noise with standard deviation of 1% of the
average net consumption value.
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2) Bad data: 30% of the measurements contained bad data
modeled as having measurement noise ten times of the
nominal standard deviation.

3) Missing data: 30% of the data were missing.

H ‘ Training Normal  Missing data  Bad data H
ASE 2.569¢-07 8.962e-06 1.082e-05 1.470e-05
Comp. Time | 2 hours and 33 minutes 0.377 ms 0.358 ms 0.350 ms

TABLE III: 3120 bus system simulation results. 40,000
samples were used in training and 20,000
Monte Carlo runs were used in testing.

Table III shows the training and testing errors for the three
scenarios. While standard nonlinear programming routines in
MATLAB failed for the network of this size, the Bayesian
state estimation implemented by a deep neural network per-
formed well. The training and testing errors for the three
cases achieved similar performance as the 85-bus system.
This experiment showed that deep neural network required
only millisecond level time to estimate states of the 3120 bus
system, however, the training took more than 2 hours, which
means that the network needed to be trained offline several
hours ahead of the time of operation.

VI. CONCLUSION

This paper presents a deep learning approach to Bayesian
state estimation for unobservable distribution systems under
a stochastic generation and demand model. The proposed
approach employs two machine learning techniques: distribu-
tion learning of power injection and regression learning of
MMSE estimator. A bad-data detection algorithm developed
that detects and remove bad data prior to state estimation. The
use of deep neural network plays a crucial role in overcoming
computation complexity in Bayesian estimation, making the
online computation significantly lower than the traditional
WLS solutions. Simulation results demonstrate the potential
of the Bayesian state estimation for cases that are otherwise
intractable for conventional WLS-based techniques.

The Bayesian approach presented here has its limitations;
further research and evaluations outside the scope of this
paper are needed. First, because prior distribution plays such
an important role in Bayesian techniques, the estimator is
less capable of adapting to changes in the network such as
line and generation outages. Second, the training of deep
neural networks is an area of research undergoing extensive
investigation. Techniques available are largely ad hoc with
little guarantee of performance. For this reason, while the
Bayesian approach is sound and promising, the performance
reported here are results of careful tuning of some of the design
parameters for the specific systems studied.

Several extensions are possible to improve further the
proposed state estimation and bad-data detection techniques.
Although we focus on SCADA measurements, the approach
developed here also applies to micro-PMU measurements that
are not sufficient to achieve observability. It is also possible
to exploit temporal dependencies and employing convolutional
or recurrent neural networks.

APPENDIX

We present a technique that estimates the distribution of fast
timescale power injections using slow timescale smart meter
data. The main technical challenge is that smart meters mea-
sure the cumulative energy consumption (kWh) at a timescale
slower than that of the SCADA measurements.

For convenience, assume that the fast timescale data
(SCADA) are produced every interval of unit duration whereas
the smart meter measurements are produced once every T’
intervals. Let the sequence of the smart meter measure-
ments be Y;. The tth interval has T fast-time measurements
X, , Xyr. We have

T
Y=Y X (6)
n=1

Here we make the assumption that (X,;) is a stationary process
which makes Y; also stationary.

Empirical studies have suggested that a good model for the
probability density function (PDF) fy of Y; is a Gaussian
mixture, i.e.,

K
fy =Y mN(mi, V),
i=1

where N (m, V?) denotes the Gaussian distribution with mean
m and covariance V2. Such a model has the interpretation
that there are K operating patterns (such as weather or the
time-of-use), each can be modeled by a Gaussian process.
With probability «, the ¢th pattern shows up in the interval
of measurement. Under this interpretation, it is reasonable to
assume that Xj; also follows the same underlying physical
model: the distribution fx of Xy; is also a Gaussian mixture
with the same number of components and the same probability
of appearance, i.e., fx = Zfil 7N (pi, 02). Therefore, we
only need to find p; from m; and o? from V2.

We now fix ¢ and a particular Gaussian mode ¢ to derive
a procedure to compute o2 from V2. To avoid cumbersome
notations, we drop the component index ¢ in the Gaussian
mixture and the subscript ¢, writing Xy, as X,, Vi2 as V2,
and o7 as o2.

From (6), we have immediately p; = %mi. Let C,(k) be
the auto-covariance of X,, with lag k. Then, the variance V2
of Y, satisfies

Vi o=

T
DD Culi=i)=7'e, @)
where

¢ = [C(0),---,Ce(T=1)],

yo= [T,2T —1),2(T —2),---,2]".

Our goal is to obtain 02 = C,(0) from V2,
We now make the assumption that X, is a stationary AR-K
process defined by

Xn - Oéan,1 + -+ aKanK + €n, (8)

where ¢, € N(j,,0?) is the innovation sequence that is IID
Gaussian. With one or more traces of X,,, the AR parameters
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a = (ay,) can be easily estimated using, e.g., the least squares
method.

Knowing «, the auto-covariance functions can be computed
directly from a variation of the Yule-Walker equation:

c=Aqctole, = c=0*1— A) ey,

where e; = [1,0,---,0]", and A, is a matrix made of entries
of «. Substituting ¢ into (7), we obtain
-1
o? = el —Aa) ter o

’VT(I - Aa)_lel
To summarize, from the smart meter data Y;, we obtain first
the Gaussian mixture coefficients {(m;, m;, V;?)}, which gives
the coefficients {(m, p;, 0?)} of the Gaussian mixture of X,.
Specifically,

1 s el - Ag))’lel 2
i = mmi, 0 = Vi, 9
H Tm 7 "yT(I— Aa(i))ilel ( )

where o(” is the coefficients of the AR process associated
with component .
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