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Abstract—The problem of state estimation for unobservable
distribution systems is considered. A deep learning approach to
Bayesian state estimation is proposed for real-time applications.
The proposed technique consists of distribution learning of
stochastic power injection, a Monte Carlo technique for the
training of a deep neural network for state estimation, and a
Bayesian bad-data detection and filtering algorithm. Structural
characteristics of the deep neural networks are investigated. Sim-
ulations illustrate the accuracy of Bayesian state estimation for
unobservable systems and demonstrate the benefit of employing
a deep neural network. Numerical results show the robustness
of Bayesian state estimation against modeling and estimation

errors and the presence of bad and missing data. Comparing
with pseudo-measurement techniques, direct Bayesian state es-
timation via deep learning neural network outperforms existing
benchmarks.
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I. INTRODUCTION

We consider the problem of state estimation for power

systems that have limited measurements. We are motivated by

the need for achieving a higher degree of situation awareness

in distribution systems where the growing presence of dis-

tributed energy resources (DER) creates exciting opportunities

and daunting challenges for system operators. A compelling

case can be made that effective state estimation is essential to

optimize DER in real-time operations [2].

A major obstacle to state estimation in distribution systems

is that such systems are nominally unobservable [3], [4]. By

unobservable it means that there is a manifold of uncountably

many states that correspond to the same measurement. System

unobservability arises when the number of sensors is not

sufficiently large—typical in distribution systems—or sensors

are not well placed in the network. An observable system may

become unobservable when sensors are at fault, sensor data

missing, or data tampered by malicious agents [5].

A direct implication of unobservability is that the class of

state estimators that assume deterministic system state cannot

provide guarantees on the accuracy and consistency of their

estimates. In particular, the popular weighted least-squares

(WLS) estimator and its variants can no longer be used when
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the system is unobservable because a small WLS error in

model fitting does not imply a small error in estimation; large

estimation error may persist even in the absence of noise.

A standard remedy of unobservability is to use the so-called

pseudo measurements based on interpolated observations or

forecasts from historical data. Indeed, the use of pseudo

measurements has been a dominant theme for distribution

system state estimation. These techniques, however, are ad hoc

and do not assure the quality of estimates. More significantly,

historical data are often limited and have a poor temporal

resolution for capturing real-time state dynamics.

The advent of smart meters and advanced metering infras-

tructure provide new sources of measurements. Attempts have

been made to incorporate smart meter data for state estima-

tion [6]–[8]. Not intended for state estimation, smart meters

measure accumulative consumptions. They often arrive at a

much slower timescale, e.g., in 15-minute to hourly intervals,

that is incompatible with the more rapid changes of DER.

Unfortunately, existing techniques rarely address the mismatch

of measurement resolution among the slow timescale smart

meter data, the fast timescale real-time measurements (e.g.,

current magnitudes at feeders and substations), and the need

of fast timescale state estimation.

State estimation for unobservable systems must incorporate

additional properties beyond the measurement model defined

by the power flow equations. To this end, we pursue a

Bayesian inference approach where the system states (voltage

phasors) and measurements are modeled as random variables

endowed with (unknown) joint probability distributions. Given

the highly stochastic nature of the renewable injections, such

a Bayesian model is both natural and appropriate.

The most important benefit of Bayesian inference is that

observability is no longer required. A Bayesian estimator ex-

ploits probabilistic dependencies of the measurement variables

on the system states; it improves the prior distribution of the

states using available measurements, even if there are only a

few such measurements. Unlike the least squares techniques

that minimize modeling error, a Bayesian estimator minimizes

directly the estimation error.

The advantage of Bayesian inference, however, comes

with significant implementation issues. First, the underlying

joint distribution of the system states and measurements is

unknown, and some type of learning is necessary. Second,

even if the relevant probability distribution is known or can

be estimated, computing the actual state estimate is often

intractable analytically and prohibitive computationally.
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A. Summary of results and contributions

As a significant departure from the pseudo-measurement

approach to distribution system state estimation, this paper

presents a novel application of Bayesian state estimation for

possibly unobservable systems where measurements may be

unreliable, missing, or subject to data attack. Specifically, we

develop a machine learning approach to the minimum mean-

squared-error (MMSE) estimation of system states. A pre-

estimation bad-data detection and filtering algorithm based on

the Bayesian model is also proposed.

The main benefit of the proposed Bayesian state estima-

tion is twofold. First, the online computation cost of the

Bayesian estimate is several orders of magnitude lower than

that of the WLS techniques, thanks to the neural network

implementation of the MMSE estimator. Second, the Bayesian

inference framework provides a level of flexibility to assemble

information from a variety of data sources. For instance, smart

meter data are not used directly in state estimation; they

contribute to the learning of the probability distribution of

network states. The issues of incompatible timescales, delayed

measurements, and missing data are mitigated.

The proposed machine learning approach consists of dis-

tribution learning and deep regression learning; the former

uses smart meter data to learn bus injection distributions from

which training samples are drawn. A novel contribution is

learning the distribution of fast timescale power injection from

slow timescale smart meter data. In regression learning, a deep

neural network is trained for the MMSE state estimation. A

key innovation here is the way that the power system model

(the power flow equations) is embedded in the regression

learning.

Numerical results demonstrate several features of the pro-

posed approach. First, we show that the proposed Bayesian

state estimator performs considerably better than the bench-

mark pseudo-measurement techniques, including those gener-

ating pseudo measurements using neural networks. Second,

we show that the proposed method is robust against inaccu-

racies in distribution learning*. Third, our results suggest that

using deep learning seems essential. We observed that neural

networks with five layers or more performed better than flatter

networks, and neural networks with bulging middle sections

performed better than rectangular ones. Finally, simulations

show that the Bayesian bad-data detection and filtering are

considerably more effective than the non-Bayesian pseudo-

measurement techniques.

The proposed technique is of course not without limitations.

Some of these limitations are summarized in Section VI.

B. Related Work

State estimation based on deterministic state models has

been extensively studied. See [3], [4] and references therein.

We henceforth highlight only a subset of the literature with

techniques suitable for distribution systems.

In some of the earliest contributions [9]–[12], it was well

recognized that a critical challenge for distribution system

*In our simulation, we generated test data based on a distribution learned
in a different year.

state estimation is the lack of observability. Different from

the Bayesian solution considered in this paper, most existing

approaches are two-step solutions that produce pseudo mea-

surements to make the system observable followed by applying

WLS and other well-established techniques.

From an estimation theoretic perspective, generating pseudo

measurements can be viewed as one of forecasting the real-

time measurements based on historical data. Thus the pseudo-

measurement techniques are part of the so-called forecasting-

aided state estimation [13], [14]. To this end, machine learning

techniques that have played significant roles in load forecasting

can be tailored to produce pseudo measurements. See, e.g.,

[15]–[25].

Bayesian approaches to state estimation are far less explored

even though the idea was already proposed in the seminal

work of Schweppe [26]. Bayesian state estimation generally

requires the computation of the conditional statistics of the

state variables. An early contribution that modeled explicitly

states as random was made in [27] where load distributions

were used to compute moments of states, although real-time

measurements were used as optimization constraints rather

than as conditioning variables in Bayesian inference. One

approach to calculating conditional statistics is based on a

graphical model of the distribution system from which belief

propagation techniques are used to generate state estimates

[28], [29]. These techniques require a dependency graph of the

system states and explicit forms of probability distributions.

Another approach is based on a linear approximation of the

AC power flow [30].

The approach presented in this paper belongs to the class

of Monte Carlo techniques in which samples are generated

and empirical conditional means computed. In our approach,

instead of using Monte Carlo sampling to calculating the con-

ditional mean directly as in [31], [32], Monte Carlo sampling

is used to train a neural network that, in real-time, computes

the MMSE estimate directly from the measurements.

Bad-data detection and identification has been studied ex-

tensively [3], [4]. Classical methods are post-estimation tech-

niques where states are first estimated and used to compute

the residue error. The presence of bad data is declared if the

residue error exceeds a certain threshold. For such techniques,

system observability is a prerequisite. To identify and remove

bad data, an iterative process is often used where state esti-

mation is performed repeatedly after each positive bad-data

detection and removal. Such techniques often fail to identify

bad data or mistakenly remove good data.

In contrast to post-estimation bad-data detection, the method

proposed in this paper belongs to the less explored class of

pre-estimation detection and filtering techniques. Several such

techniques [33]–[36] are based on exploiting a dynamic model

to predict the current measurement using past measurements,

from which the prediction error becomes test statistics for

bad-data detection. In [37], a neural network trained as an

autoencoder† is used to test against bad data.

†The authors of [37] did not use the autoencoder concept to explain their
approach.



0885-8950 (c) 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TPWRS.2019.2919157, IEEE
Transactions on Power Systems

3

II. SYSTEM MODEL AND BAYESIAN STATE ESTIMATION

A. Algebraic and Statistical Models

We adopt a generic static power flow model for an N -

bus three-phase power system. We assume that node 1 is the

slack bus that, for distribution systems, represents the point

of common coupling (PCC), where the distribution network is

connected to the main grid.

The three-phase voltage phasors at bus i is a complex

column vector xi = [x1
i , x

2
i , x

3
i ]

⊺, where the superscripts are

phase indices, and xk
i = V k

i ∠θki , where V k
i is the voltage

magnitude and θki is the phase angle for the state variable at

phase k of bus i. The overall system state x = [x1, · · · , xN ]⊺

is the column vector consisting of voltage phasors at all buses.

We adopt a static system model defined by a pair of

equations that characterize the relationship among the vector

of (complex) power injections s = [s1, · · · , sN ]T at network

buses, the system states x, the vector of measurements z =
[z1, · · · , zM ]T, and measurement noise e:

x = g(s), z = h(x) + e, (1)

where g(·) is the mapping from net injection s to the system

state x and h(x) is the measurement function defined by the

sensor types and the locations in the network. Vector z above

includes standard types of measurements such as branch power

flows, power injections, and current magnitudes. Without loss

of generality, we can treat the variables in (1) as real by

taking either the rectangular or the polar form of the complex

variables and modifying g(·) and h(·) in (1) accordingly. The

specific forms and parameters of (1) with different levels of

modeling details can be found in [38]–[40].

Aside from the system model above, Bayesian estimation

requires a probability model that specifies the statistical depen-

dencies of the variables. Here we assume that the probability

space is defined by the joint distribution of measurement noise

e and net power injection s. We assume further that e and s
are statistically independent.

B. Bayesian State Estimation

A state estimator x̂(·) is a function of measurement z. In

Bayesian estimation, the estimator x̂(z) is defined by the joint

distribution of x and z and the adopted optimization objective.

Here we focus on the minimum mean squared error (MMSE)

estimator‡ that minimizes the expected squared estimation

error E(||x(z) − x||2) where the (Euclidean) 2-norm is used.

From the standard estimation theory, the MMSE estimator

x̂∗(z) is given by the mean of the state x conditional on the

realization of the observation vector z:

min
x̂(·)

E(||x− x̂(z)||2) ⇒ x̂∗(z) = E(x|z). (2)

Note the difference between the MMSE and the least squares

estimators:

x̂WLS(z) = argmin
x

||z − h(x)||2,

‡The developed technique can be also applied to other Bayesian techniques
such as the robust estimator based on the minimum absolute error (MMAE)
estimator and the maximum aposteriori probability (MAP) estimator.

where the goal of least squares is to minimize the modeling

error.

Simple as (2) may appear, the computation of the con-

ditional mean can be exceedingly complex. For all practi-

cal cases, the functional form of the conditional mean is

unavailable. More importantly, perhaps, the underlying joint

distribution of x and z is unknown or impossible to specify,

which makes the direct computation of x̂∗ intractable.

III. BAYESIAN STATE ESTIMATION VIA DEEP LEARNING

A. Overview of Methodology

We present an overview of the proposed methodology using

Fig. 1. Each functional block is explained in section(s) labeled.

All variables are consistent with those used in the paper.

PSfrag replacements

z
x̂(z)

w

y

F̂s

(s, e)

(x, z)

Fig. 1: Schematic of methodology.

The proposed scheme includes (i) online state estimation in

the upper right of Fig. 1 and (ii) offline learning in the rest of

the figure. This online-offline partition is of course not strict;

the offline learning becomes online if learning continues as

data arrive.

The online state estimation is through a neural-network ap-

proximation of the MMSE estimator as described in Sec III-B.

The offline learning includes distribution and regression learn-

ing modules. Taking (historical) samples of the smart meter

measurement y, the distribution learning module produces

F̂s that approximates the probability distribution of the net

injection s. The three submodules at the bottom of the figure

are part of the regression learning that produces parameter w of

the neural network. Specifically, the Monte Carlo sampling and

the power flow analysis submodules generate samples from the

estimated net-injection probability distributions F̂s and convert

them to a set of state-measurement training samples {(x, z)}.

The deep neural network training module sets the neural

network parameter w via an empirical risk minimization.

B. Deep Neural Network Approximation

The MMSE state estimator in (2) can be viewed as a

nonparametric regression with the measurement z as the

regressor. Such a regression is defined on the unknown joint

distribution of measurement z and state x. The corresponding

learning problem is of infinite dimensionality and intractable.

We consider a finite dimensional approximation of (2)

using a deep neural network shown in Fig 2. The neural
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network consists of multiple layers of neurons. Neurons at

each layer produce a vector output for the next layer using

a (parameterized) nonlinear function of the output from the

previous layer. The input-output relation K(·;w) of the neural

network is

x̂(z) = K(z;w), (3)

where w is the parameter matrix. See [40] for the form of K.

Fig. 2: Multi-layer Forward Neural Network.

The universal approximation theorem (see, e.g., [41]) has

established that a neural network with a single hidden layer

is sufficient to approximate an arbitrary continuous function.

This means that with a sufficiently large neural network and

appropriately chosen w, a neural network can well approx-

imate the MMSE state estimator. Under this approximation,

the infinite dimensional learning problem of the conditional

mean becomes a finite dimensional learning problem with

dimensionality being the number of parameters in w.

C. Regression Learning: Training Samples

We now focus on setting the neural network parameter w to

approximate the MMSE state estimator x̂∗(z) in (2). Standard

deep learning algorithms apply to cases where there is a set of

training samples made of the input-output pairs {(z, x̂∗(z))}.

Such pairs, unfortunately, are not available directly. Nor do

we have samples from which the underlying joint distribution

Fx,z of state x and measurement z can be learned directly.

The key to obtaining a training set is to incorporate the

underlying physical model characterized by model equation

(1). If we can learn the (marginal) distribution Fs of the

net power injection vector s, drawing an injection sample s
determines the state sample x = g(s) from (1). Assuming

that independent measurement noise e has distribution Fe,

s ∼ Fs and e ∼ Fe produce a state sample z = h(g(s)) + e.

Conceptually,

(s, e) ∼ Fs × Fe
(1)
−→ (x, z). (4)

Measurement noise distribution Fe is assumed to be, say,

zero-mean Gaussian N (0, σ2). The distribution of the net

power injection, however, depends on a combination of load

and possibly renewable generations. We defer the discussion

of learning Fs using data from the smart meter and other

measurement devices to Section III-F.

D. Regression Learning: Training Algorithm

Given the set of training samples

S = {(x[k], z[k]) | k = 1, · · · , |S|}

generated according to (4), the weight matrix w is chosen to

minimize the empirical risk defined by

L(w; S) =
1

|S|

∑

k:(x[k],z[k])∈S

||x[k]−K(z[k];w)||2,

w∗ = argmin
w

L(w; S).

The empirical risk minimization problem above is well studied

for deep learning problems, and an extensive literature exists.

See, e.g., [42]. For the state estimation problem at hand, the

class of stochastic gradient descent algorithms is considered.

The Adam algorithm [43] designed for non-stationary objec-

tives and noisy measurements is particularly suitable.

A characteristic of deep learning is over-fitting, which

means that the number of neural network parameters tends to

be large relative to the training data set. A general approach

to overcoming over-fitting is regularization that constraints

in some way the search process in neural network training.

Standard techniques include L1 regularization, dropout, and

early stopping [42]. In the next section we present a regular-

ization technique based on structural constraints on the neural

network.

E. Regression Learning: Neural Network Structure

The performance of state estimation can be affected by the

structure of the neural network. The “shape” of the network

can vary from shallow-and-wide to deep-and-narrow, and it

does not have to be rectangular. Indeed, the shape of the

network plays a role in regularization.

We propose a technique that transforms a rectangular

network to a non-rectangular one based on the statistical

clustering of the output variables at each layer. The intuition is

that, for a feedforward network, if the outputs of two neurons

at the same layer are strongly correlated statistically, they can

be combined. Generalizing beyond two neurons, if the outputs

of a group of neurons are highly correlated, this group of

neurons may be well represented by a single neuron.

As shown in Fig. 3, if neurons at a particular layer are

clustered into three groups for the network in the left panel,

the network on the left panel is reduced to one on the

right, replacing each subgroup of neurons by its single-neuron

representative.

Clustering requires a similarity measure. To this end, we

considered a standard similarity measure ρX,Y between ran-

dom variables X and Y defined by

ρX,Y = 1−
E(XY )

√

E(X2)E(Y 2)
.

A variety of clustering techniques can be applied once a

similarity measure is chosen. In particular, hierarchical ag-

glomerative clustering [44] allows us to control the number

and the sizes of clusters.

In Section V, we present numerical results on the structure

of the neural network using the above clustering analysis. The
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Fig. 3: A reduction of neurons in a layer through
clustering. Left panel: the right three, the middle
four, and right three form three clusters. Right
panel: each cluster is represented by a single neuron
to form a reduced network.

results from these experiments suggest that a network with a

bulging middle section seems to perform better.

F. Learning Net Injection Distributions

The distribution of net injection needs to be learned to gen-

erate training samples. Distribution learning can be parametric

or non-parametric [45], [46]. By restricting the distribution

class, parametric techniques are well developed. The assump-

tion on the parametric class can be wrong, however, in which

case very little can be said about the performance. This makes

it highly desirable that the Bayesian estimator is robust against

errors in distribution learning.

Because of the historical data for injections are limited,

we estimate the injection distribution based on the parametric

model of Gaussian mixtures commonly used to model load and

renewable generations [47]–[49]. The maximum likelihood

(EM) method is used in the estimation.

If power injection can be measured locally at injection

points, the injection distribution can be estimated locally

without communicating the data to the central location; only

the distribution parameters need to be transmitted. However,

if measurements of net injection are not available, we propose

an alternative technique that uses smart meter data to estimate

the power injection distributions. This is nontrivial because

smart meters typically measure accumulative consumptions,

and smart meter data are collected at a much slower timescale.

In the appendix, we present a time-series based technique

that exploits the underlying structure of the Gaussian mixture

distributions. This technique converts the Gaussian mixture

parameters of the smart meter data distributions to distribution

parameters for the fast timescale power injections.

G. Computation complexity

The computation costs of the proposed Bayesian estimator

include the cost of online calculation of state estimates and that

of offline learning. Specifically, to estimate an N -dimensional

state vector with a neural network of fixed depth requires

roughly O(N2) computations. Special hardware that exploits

massive parallelism can greatly speed up the computation [50].

In contrast, standard second-order techniques for the WLS

estimator have the cost of O(N3) per iteration.

The computation cost of offline training is more difficult to

quantify; it depends on the size of training data set, the algo-

rithm used for training, and the number of iterations required

to achieve some level of accuracy. Note that, for the WLS

method, there is a negligible cost in obtaining a measurement

sample whereas, for the Bayesian state estimation, the cost of

Monte Carlo sampling is nontrivial.

For the proposed algorithm, generating a single sample re-

quires solving the power flow equation. A standard implemen-

tation of Newton Ralphson technique requires the evaluation

of the inverse of the Jacobian matrix with the (per sample) cost

roughly of the order O(N3). It seems necessary that at least

O(N) training samples are generated, the cost of generating

samples is roughly O(N4). For the stochastic gradient descent

algorithm used for training, the computation cost of a neural

network with fixed depth is the cost of evaluating the gradient,

which is roughly O(N2).

In summary, ignoring the cost associated with iteration, we

see that the online computation cost of the proposed Bayesian

state estimation is considerably lower than the WLS methods,

O(N2) vs. O(N3). On the other hand, if the Bayesian ap-

proach is implemented online, the cost is considerably greater

than that of the WLS algorithms, O(N4) vs. O(N3).

IV. BAD-DATA DETECTION AND MITIGATION

State estimation relies on data, and the quality of data

depends on the types of sensors, the quality of the collection

and communications, and the possibility of cyber data attacks

where measurement data are manipulated by an attacker [5],

[51]. Bad-data detection and mitigation are an integral part of

power system state estimation.

We first consider the simpler case of missing data that

may be results of packet drops, communication delays, or

that the data are deemed corrupted and removed. While no

detection is needed in this case, we need to determine what

to use in place of the missing data. Let the measurement

vector be partitioned as z = (z̃, z′) where z′ is the missing

data. The Bayesian estimator with missing z′ is given by

x̂′(z) = E(x|z̃). Given the originally trained neural network

K(z;w) that approximates x∗(z) = E(x|z), we have

x̂′(z) = Ez′(E(x|z̃, z′)) ≈

∫

K((z̃, z′);w)dFz′ ,

where Fz′ is the cumulative distribution of z′. Thus the

Bayesian state estimator with missing z′ is the state estimates

(without missing data) averaged over the missing data, which

can be implemented by resampling missing measurements

and computing the averaged state estimates. The re-sampling,

however, is costly. A simple heuristic is replacing z′ with

estimated E(z′) obtained in the training process (4).

Next, we consider the problem of detecting and identifying

bad data that may be results of sensor malfunctions or cyber-

attacks. The detected bad data can then be removed, and the

above solution to missing data problem can be applied.
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We treat bad data as outliers. To this end, the Bayesian

formulation offers a direct way to detect and identify bad data.

In contrast to the conventional bad-data detection methods that

are based on residue errors computed after state estimation, we

propose a pre-estimation bad-data detection technique by ex-

ploiting the learned (prior) distributions of the measurements.

We formulate a binary hypothesis testing problem where

hypothesis H0 models measurements without bad data and

H1 for measurements with bad data. Consider first the simpler

case when, under H0, measurement Y is Gaussian with mean

µ0 and variance σ2
0 . Under H1, Y has a different distribution

with mean or variance unequal to those under H0. This is a

composite hypothesis testing problem for which the uniformly

most powerful test may not exist.

A widely used practical scheme is the Wald test [45] that

evaluate the normalized deviation of the measurement away

from µ0; H1 (bad data) is declared when the deviation exceeds

a certain threshold. Specifically, given Y = y, the size α Wald

test is given by

∣

∣

∣

∣

∣

y − µ0

σ0

∣

∣

∣

∣

∣

H1

≷

H0

zα/2 := Q−1(α/2),

where Q(x) = 1√
2π

∫∞
x exp(−u2/2)du is the Gaussian tail

probability function. Typically, the size parameter α is set

at α = 0.05 to ensure that the false alarm (false positive)

probability is no greater than 5%.

For the application at hand, the mean µ0 and variance σ2
0 of

the measurement under H0 (no bad data) used in the Wald test

are learned as a by-product of the training process described in

Sec III. Specifically, the solutions of the power flow equations

give directly samples of the measurements, from which the

mean and variance can be estimated.

Strictly speaking, however, the measurement distributions

are not Gaussian, and an alternative to the Wald test can

be derived by using explicitly the learned distribution. This

appears to be unnecessary from our simulation examples

shown in Section V.

V. SIMULATIONS RESULTS AND DISCUSSIONS

A. Simulation Settings

a) Systems simulated: The simulations were performed

on two systems defined in the MATPOWER toolbox [52]. One

is an 85-bus low voltage system, the other one is the 3120-bus

“Polish network”. The simulation of the larger network was

to demonstrate the scalability of the proposed technique and

its application to mesh networks.

Two types of measurement devices were assumed: (i) Cur-

rent magnitude meters were placed in 20% of the distribution

system branches. (ii) One SCADA meter was placed at the

slack bus to measure complex power to/from the transmission

grid. The additive measurement noise was assumed to be

independent and identically distributed Gaussian with zero

mean and variance set at 1% of the average net consumption

value.

b) Performance measure: The performance of the tested

algorithms was measured by the per-node average squared

error (ASE) defined by

ASE =
1

MN

∑

k

||x̂[k]− x[k]||2, (5)

where M is the number of Monte Carlo runs, k the index of

the Monte Carlo run, N the number of nodes, x̂[k] and x[k]
the estimated and the state vectors, respectively.

c) Neural network specification and training: The inputs

of the neural network were current magnitudes and slack

bus measurements; the outputs were the state estimates. The

ReLU (Rectified Linear Units) activation function was used for

neurons in the hidden layers and linear activation functions in

the output layer.

The Adam algorithm [43] was used to train the neural

network with mini batches of 32 samples. Early stopping was

applied by monitoring validation errors. To select an initial

point for the optimization, He’s normal method [53] was used.

B. Distribution learning

We used data sets from the Pecan Street collection§ for

distribution learning. Specifically, a data set covering May 21st

to September 21st of 2015 was used for training, and a data

set covering the same period in 2016 was used for testing. The

data sets included power measurements from 82 households,

from which 55 had solar PV installed. Power consumptions

and solar PV generations were measured separately. Distribu-

tions of active power consumptions and solar generations were

learned from data separately.

Fig. 4: Estimated cumulative distribution and 95%
confidence interval.

We considered non-parametric (histogram and Kernel) and

parametric distribution estimation techniques. The latter in-

cluded Gaussian, Gaussian mixture, and Weibull models.

Fig. 4 shows the cumulative distribution estimates of con-

sumption and solar generation at 3 p.m. on bus 12 based

on the histogram, 3-component Gaussian mixture, Kernel

Epanechnikov estimators, and the 95% confidence bounds.

All these estimators produced results well within the non-

parametric confidence bounds obtained using the Dvoretzky-

Kiefer-Wolfowitz inequality [45]. For all cases, 100% of the

3-component Gaussian mixture estimates were within the 96%
level confidence bound, and 99.8% of all estimates were within

§http://www.pecanstreet.org/

http://www.pecanstreet.org/
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the 85% level confidence bound. We observed that Gaussian

and Weibull distributions exceeded the 95% confidence inter-

val that captures the true distribution. Our data analysis led

to the adoption of the Gaussian mixture model with three

components in simulations.

C. Simulation Results for an 85-bus radial network

For the 85-bus network, 82 buses were assumed to have

consumptions, and 55 arbitrarily chosen buses had renewable

generations. See [1] for details of network configuration.

Renewable injections and load were generated separately to

produce net injections. We evaluated the ASE performance as

defined in (5), CPU time, and the performance of bad-data

detection/filtering.

a) ASE performance: We compared the proposed

Bayesian state estimation with deep neural network (herein

abbreviated as BSEdnn) with two WLS-based pseudo-

measurement methods in the literature:

1) WLSp: referred to as WLS with pseudo measurements,

WLSp generates injection pseudo measurements by aver-

aging the energy consumption measurement over several

past samples [32];

2) WLSnnp: referred to as WLS with neural-network gen-

erated pseudo measurements, WLSnnp uses a neural

network to generates pseudo-measurements of net in-

jection based on a regression on the historical energy

consumption vectors [18].

Separate neural networks were implemented and trained

for each hour of the day. We generated 10,000 training and

10,000 validation samples. The training of the networks took

on average 500 update iterations.

Fig 5 (left) shows that the ASE performance of the three

state estimators on the test data for the 24 hours period. Across

all hours, BSEdnn performed significantly better than the two

pseudo-measurement-based WLS techniques. Specifically, the

ASE of BSEdnn achieved one to two orders of magnitude

lower ASE than the pseudo-measurement techniques. The

performance gain was attributed to that, although measure-

ment distributions were in some way encoded in the pseudo-

measurements, WLS with pseudo measurements misused this

information.

b) CPU time: The experiments were carried out on a

computer Intel Core i7-8700 with 3.2 GHz processor and

64 GB RAM. For the simulation result presented in Fig. 5,

the computation time of the three algorithms was measured.

Estimating states using WLS with pseudo measurements took

on average 22.515 seconds per Monte Carlo run. In contrast,

calculating state estimate after the neural network had been

trained took on average only 0.16 millisecond per Monte Carlo

run, which was five orders of magnitude faster than the WLS

estimator. The training algorithm was implemented in Python

3.6.5 using Keras v2.2.4 with Tensorflow v 1.12 as the backend

[54]. Training the network with five layers and 2000 neurons

took 23 minutes and 7 seconds.

c) Bad-data detection and filtering: The performance

of bad data-detection and filtering was tested. In a Monte

Carlo simulation with 1,000 runs, bad data were injected to

Fig. 5: ASE performance for three state estimators. Left:
ASE (in absence of bad data) of estimators in
different hours. Right: ASE at hour 17 in the
presence of bad data of different strength; Line 1
shows ASE without bad data, Line 2 shows ASE
with bad data and Line 3 shows the ASE with
bad-data detection and filtering for estimators.

measurements probabilistically; each measurement had prob-

ability η to contain bad data. Different strengths of the bad

data were evaluated by varying η. Note that the way bad

data were introduced deviated from and was significantly

more challenging than the conventional settings where a fixed

number of bad data at specific locations was typically assumed.

For the bad-data model considered in Sec IV, we assumed

that, under hypothesis H1 (bad data), the additive noise was

Gaussian with zero mean and considerably larger standard

deviation σ1 than σ0 under H0 (no bad data)¶. Once bad data

were detected, BSEdnn performed a data filtering procedure

that replaced the bad data with the mean of the measurements

as described in Sec IV. For WLS-p and WLS-nnp, detected

bad data were removed from the WLS procedure.

Fig 5 (right) shows the ASE performance vs. the probability

η of bad-data occurrence under the bad-data model σ1 = 10σ0.

The bad-data detection and filtering algorithms were compared

in three cases. Case 1 (in blue): baseline performance without

bad data; Case 2 (in red): the performance when bad data were

present but not filtered; and Case 3 (in black): performance

with bad-data filtering. It was evident that bad-data detection

and filtering improved the performance of state estimation

considerably, driving the ASE performances closer to those

for the clean data case. It should also be observed that,

even without bad-data filtering, BSEdnn performed better than

pseudo-measurement based WLS estimators.

Additional simulations were conducted to evaluate the per-

formance of bad-data detection. Recall that, in deriving the

threshold used in the Wald test for bad-data detection in

Sec IV, a Gaussian distribution of the measurement under H0

was assumed, which at best could only be an approximation

given the Gaussian mixture nature of the net injection. To

evaluate the performance of bad detection derived from the

Gaussian model, we provided a comparison with the case

when noise distributions were indeed Gaussian, for which the

theoretical value of false alarm and miss detection probabilities

could be computed analytically.

¶Note that neither the mean and the standard deviation nor the distribution
of the bad data were assumed known in the bad-data detection and filtering
algorithm.
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Table I shows bad-data detection and filtering performance.

The top two blocks of the table show that the threshold

obtained based on the Gaussian model approximated well the

false alarm and detection probabilities under the Gaussian

mixture models. Also it is shown here that the pseudo-

measurement schemes with WLS did not perform well. The

third, fourth and fifth blocks show the effects of bad data on

the ASE of state estimators. The bad-data filtering algorithm

mitigated the effects of bad data satisfactorily.

σ1 = 5σ0 σ1 = 10σ0 σ1 = 20σ0

False alarm prob. (Gaussian theoretical) 5.00% 5.00% 5.00%

False alarm rate of Wald test 4.60% 4.70% 4.70%

False alarm rate of WLSp+J(x) 4.94% 4.78% 4.91%

False alarm rate of WLSnnp+J(x) 4.94% 4.78% 4.91%

Detection prob. (Gaussian theoretical) 69.5% 84.5% 92.1%

Detection rate of Wald test 68.14% 84.16% 91.73%

Detection rate of WLSp+J(x) 36.45% 41.75% 57.33%

Detection rate of WLSnnp+J(x) 36.75% 43.37% 58.96%

ASE of BSEdnn without bad data 6.50E-06 6.50E-06 6.50E-06

ASE of WLSp without bad data 5.87E-04 5.87E-04 5.87E-04

ASE of WLSnnp MSE without bad data 5.85E-04 5.85E-04 5.85E-04

ASE of BSEdnn with bad data 1.84E-05 9.01E-05 7.31E-04

ASE of WLSp with bad data 6.97E-04 7.06E-04 7.75E-04

ASE of WLSnnp with bad data 6.98E-04 6.90E-04 7.70E-03

ASE of BSEdnn with bad-data filtering 6.91E-06 6.91E-06 6.86E-06

ASE of WLSp with bad-data filtering 5.82E-04 5.89E-04 5.79E-04

ASE of WLSnnp MSE with bad-data filtering 5.76E-04 5.82E-04 5.79E-04

TABLE I: Bad-data detection and filtering with

varying strength of bad data. η = 0.3

D. Optimizing the Structure of Deep Neural Network

We examined the effects of choosing different structures of

the neural network on the performance of BSEdnn. To this end,

we considered the two questions: (i) Given a fixed number of

neurons, is there an optimal depth of the neural network that

offers the best performance? (ii) Is there a particular “shape” of

the network that should be favored? We attempted to address

these issues through simulations, knowing that interpretations

presented here apply to the system studied and may not be

conclusive.

a) The depth of deep learning: For total 1000, 2000,

and 3000 neurons, we tested exhaustively different rectangular

neural networks of different depths until a trend was observed.

The ASE performance of BSEdnn using validation data sets

is shown in Fig 6. The results suggested that a neural network

of 4 to 6 layers perform the best.

b) The shape of the deep neural network: Next we

examined whether using an irregular shaped neural network

has an advantage. To this end, we considered a pruning ap-

proach that, starting from a rectangular network, progressively

combining neurons that were highly correlated based on the

clustering technique developed in Sec III. The idea was that,

by combining neurons whose outputs were highly correlated,

the resulting irregular neural network would be regularized

within a particular structure that, potentially, could lead to

faster convergence and better performance.

Table II summarizes the simulation results. First, we eval-

uated the rectangular structure with 400 neurons in each

layer. Second, we used the clustering algorithm to prune

the network, which resulted in a reduction of the number

Fig. 6: NN Architecture - Total number of neurons fixed.

of neurons at the two ends of the network and improved

test error. The second round of clustering-pruning resulted in

further reduction training, test, and validation errors, and a

shape of the network with the second and third layers having

considerably more neurons than the first and last two layers.

The third round of clustering-pruning resulted in increased

errors, indicating the locally best clustering-pruning procedure

should end at the second iteration.

Rectangular 1st Pruning 2nd Pruning 3rd Pruning

# of Neurons 1st layer 400 399 395 391

# of Neurons 2nd layer 400 400 400 400

# of Neurons 3rd layer 400 400 399 380

# of Neurons 4th layer 400 346 278 173

# of Neurons 5th layer 400 154 64 22

Test error 6.23e-06 5.77e-06 4.45e-06 5.11e-06

Validation error 4.73e-06 4.64e-06 3.72e-06 3.85e-06

Training error 4.27e-06 4.13e-06 3.41e-06 3.73e-06

TABLE II: Pruning simulation results with the

threshold = 0.0005

E. Simulation results for a 3120-bus mesh network

To demonstrate that the proposed algorithm can scale com-

putationally for a larger network, and that the developed

scheme also applies to a general mesh network, we applied

our approach on the 3120-bus mesh network. For this ”Polish”

network, 2664 of the busses were assumed to have stochastic

consumption, and 348 of the busses having stochastic gener-

ations.

In general, transmission systems are observable. To illustrate

the idea of state estimation in an unobservable system, we

assumed that only 20% of the power injection measurements

are available. A 3-layer network with 1000 neurons in each

layer is trained. Again, the neural network was trained with

data generated from one power injection distribution and tested

with a different power injection distribution. The injection

distributions were the same used in the simulations for the

85-bus network.

We considered three test cases:

1) Normal data: power injection measurements had nominal

measurement noise with standard deviation of 1% of the

average net consumption value.
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2) Bad data: 30% of the measurements contained bad data

modeled as having measurement noise ten times of the

nominal standard deviation.

3) Missing data: 30% of the data were missing.

Training Normal Missing data Bad data

ASE 2.569e-07 8.962e-06 1.082e-05 1.470e-05

Comp. Time 2 hours and 33 minutes 0.377 ms 0.358 ms 0.350 ms

TABLE III: 3120 bus system simulation results. 40,000
samples were used in training and 20,000
Monte Carlo runs were used in testing.

Table III shows the training and testing errors for the three

scenarios. While standard nonlinear programming routines in

MATLAB failed for the network of this size, the Bayesian

state estimation implemented by a deep neural network per-

formed well. The training and testing errors for the three

cases achieved similar performance as the 85-bus system.

This experiment showed that deep neural network required

only millisecond level time to estimate states of the 3120 bus

system, however, the training took more than 2 hours, which

means that the network needed to be trained offline several

hours ahead of the time of operation.

VI. CONCLUSION

This paper presents a deep learning approach to Bayesian

state estimation for unobservable distribution systems under

a stochastic generation and demand model. The proposed

approach employs two machine learning techniques: distribu-

tion learning of power injection and regression learning of

MMSE estimator. A bad-data detection algorithm developed

that detects and remove bad data prior to state estimation. The

use of deep neural network plays a crucial role in overcoming

computation complexity in Bayesian estimation, making the

online computation significantly lower than the traditional

WLS solutions. Simulation results demonstrate the potential

of the Bayesian state estimation for cases that are otherwise

intractable for conventional WLS-based techniques.

The Bayesian approach presented here has its limitations;

further research and evaluations outside the scope of this

paper are needed. First, because prior distribution plays such

an important role in Bayesian techniques, the estimator is

less capable of adapting to changes in the network such as

line and generation outages. Second, the training of deep

neural networks is an area of research undergoing extensive

investigation. Techniques available are largely ad hoc with

little guarantee of performance. For this reason, while the

Bayesian approach is sound and promising, the performance

reported here are results of careful tuning of some of the design

parameters for the specific systems studied.

Several extensions are possible to improve further the

proposed state estimation and bad-data detection techniques.

Although we focus on SCADA measurements, the approach

developed here also applies to micro-PMU measurements that

are not sufficient to achieve observability. It is also possible

to exploit temporal dependencies and employing convolutional

or recurrent neural networks.

APPENDIX

We present a technique that estimates the distribution of fast

timescale power injections using slow timescale smart meter

data. The main technical challenge is that smart meters mea-

sure the cumulative energy consumption (kWh) at a timescale

slower than that of the SCADA measurements.

For convenience, assume that the fast timescale data

(SCADA) are produced every interval of unit duration whereas

the smart meter measurements are produced once every T
intervals. Let the sequence of the smart meter measure-

ments be Yt. The tth interval has T fast-time measurements

Xt1, · · · , XtT . We have

Yt =
T
∑

n=1

Xtn. (6)

Here we make the assumption that (Xti) is a stationary process

which makes Yt also stationary.

Empirical studies have suggested that a good model for the

probability density function (PDF) fY of Yt is a Gaussian

mixture, i.e.,

fY =
K
∑

i=1

πiN (mi, V
2
i ),

where N (m,V 2) denotes the Gaussian distribution with mean

m and covariance V 2. Such a model has the interpretation

that there are K operating patterns (such as weather or the

time-of-use), each can be modeled by a Gaussian process.

With probability αi, the ith pattern shows up in the interval

of measurement. Under this interpretation, it is reasonable to

assume that Xti also follows the same underlying physical

model: the distribution fX of Xti is also a Gaussian mixture

with the same number of components and the same probability

of appearance, i.e., fX =
∑K

i=1 πiN (µi, σ
2
i ). Therefore, we

only need to find µi from mi and σ2
i from V 2

i .

We now fix t and a particular Gaussian mode i to derive

a procedure to compute σ2
i from V 2

i . To avoid cumbersome

notations, we drop the component index i in the Gaussian

mixture and the subscript t, writing Xtn as Xn, V 2
i as V 2,

and σ2
i as σ2.

From (6), we have immediately µi =
1
T mi. Let Cx(k) be

the auto-covariance of Xn with lag k. Then, the variance V 2

of Yt satisfies

V 2 =

T
∑

i=1

T
∑

j=1

Cx(i − j) = γTc, (7)

where

c := [Cx(0), · · · , Cx(T − 1)]T,

γ := [T, 2(T − 1), 2(T − 2), · · · , 2]T.

Our goal is to obtain σ2 = Cx(0) from V 2.

We now make the assumption that Xn is a stationary AR-K
process defined by

Xn = α1Xn−1 + · · ·+ αKXn−K + ǫn, (8)

where ǫn ∈ N (µǫ, σ
2
ǫ ) is the innovation sequence that is IID

Gaussian. With one or more traces of Xn, the AR parameters
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α = (αk) can be easily estimated using, e.g., the least squares

method.

Knowing α, the auto-covariance functions can be computed

directly from a variation of the Yule-Walker equation:

c = Aαc+ σ2
ǫ e1 ⇒ c = σ2

ǫ (I −Aα)
−1e1,

where e1 = [1, 0, · · · , 0]T, and Aα is a matrix made of entries

of α. Substituting c into (7), we obtain

σ2 =
eT

1(I −Aα)
−1e1

γT(I −Aα)−1e1
V 2.

To summarize, from the smart meter data Yt, we obtain first

the Gaussian mixture coefficients {(πi,mi, V
2
i )}, which gives

the coefficients {(π, µi, σ
2
i )} of the Gaussian mixture of Xtn.

Specifically,

µi =
1

T
mi, σ2

i =
eT

1(I −A
(i)
α )−1e1

γT(I −Aα(i))−1e1
V 2
i , (9)

where α(i) is the coefficients of the AR process associated

with component i.

REFERENCES

[1] K. R. Mestav, J. Luengo-Rozas, and L. Tong, “State estimation for
unobservable distribution systems via deep neural networks,” in 2018

IEEE Power Energy Society General Meeting, July 2018.

[2] S. Lefebvre, J. Prévost, and L. Lenoir, “Distribution state estimation: A
necessary requirement for the smart grid,” in 2014 IEEE PES General

Meeting — Conference Exposition, July 2014, pp. 1–5.

[3] A. Abur and A. G. Expósito, Power System State Estimation: Theory

and Implementation. CRC Press, 2004.

[4] A. Monticelli, State Estimation in Electric Power Systems: A General-

ized Approach, ser. Power Electronics and Power Systems. Springer,
1999.

[5] O. Kosut, L. Jia, R. J. Thomas, and L. Tong, “Malicious data attacks
on the smart grid,” IEEE Transactions on Smart Grid, vol. 2, no. 4, pp.
645–658, Dec 2011.

[6] A. Alimardani, F. Therrien, D. Atanackovic, J. Jatskevich, and E. Vaa-
hedi, “Distribution system state estimation based on nonsynchronized
smart meters,” IEEE Transactions on Smart Grid, vol. 6, no. 6, pp.
2919–2928, Nov 2015.

[7] A. Al-Wakeel, J. Wu, and N. Jenkins, “State estimation of medium
voltage distribution networks using smart meter measurements,” Applied

Energy, vol. 184, pp. 207 – 218, 2016. [Online]. Available: http://
www.sciencedirect.com/science/article/pii/S0306261916314349

[8] Y. Gao and N. Yu, “State estimation for unbalanced electric power
distribution systems using ami data,” in 2017 IEEE Power Energy

Society Innovative Smart Grid Technologies Conference (ISGT), April
2017, pp. 1–5.

[9] I. Roytelman and S. M. Shahidehpour, “State estimation for electric
power distribution systems in quasi real-time conditions,” IEEE Trans-

actions on Power Delivery, vol. 8, no. 4, pp. 2009–2015, Oct 1993.

[10] M. E. Baran and A. W. Kelley, “State estimation for real-time monitoring
of distribution systems,” IEEE Transactions on Power Systems, vol. 9,
no. 3, pp. 1601–1609, Aug 1994.

[11] C. N. Lu, J. H. Teng, and W. . E. Liu, “Distribution system state
estimation,” IEEE Transactions on Power Systems, vol. 10, no. 1, pp.
229–240, Feb 1995.

[12] A. K. Ghosh, D. L. Lubkeman, M. J. Downey, and R. H. Jones,
“Distribution circuit state estimation using a probabilistic approach,”
IEEE Transactions on Power Systems, vol. 12, no. 1, pp. 45–51, Feb
1997.

[13] M. B. D. C. Filho and J. C. S. de Souza, “Forecasting-aided state
estimation—part i: Panorama,” IEEE Transactions on Power Systems,
vol. 24, no. 4, pp. 1667–1677, Nov 2009.

[14] M. B. D. C. Filho, J. C. S. de Souza, and R. S. Freund, “Forecasting-
aided state estimation—part ii: Implementation,” IEEE Transactions on

Power Systems, vol. 24, no. 4, pp. 1678–1685, Nov 2009.

[15] A. Bernieri, C. Liguori, and A. Losi, “Neural networks and pseudo-
measurements for real-time monitoring of distribution systems,” in Pro-

ceedings of 1995 IEEE Instrumentation and Measurement Technology

Conference - IMTC ’95, April 1995, pp. 112–119.

[16] H. S. Hippert, C. E. Pedreira, and R. C. Souza, “Neural networks for
short-term load forecasting: a review and evaluation,” IEEE Transactions

on Power Systems, vol. 16, no. 1, pp. 44–55, Feb 2001.

[17] R. Singh, B. C. Pal, and R. A. Jabr, “Distribution system state estimation
through gaussian mixture model of the load as pseudo-measurement,”
IET Generation, Transmission Distribution, vol. 4, no. 1, pp. 50–59,
January 2010.

[18] E. Manitsas, R. Singh, B. C. Pal, and G. Strbac, “Distribution system
state estimation using an artificial neural network approach for pseudo
measurement modeling,” IEEE Transactions on Power Systems, vol. 27,
no. 4, pp. 1888–1896, Nov 2012.

[19] J. Wu, Y. He, and N. Jenkins, “A robust state estimator for medium
voltage distribution networks,” IEEE Transactions on Power Systems,
2013.

[20] A. Onwuachumba, Y. Wu, and M. Musavi, “Reduced model for power
system state estimation using artificial neural networks,” IEEE Green

Technologies Conference, 2013.

[21] F. Adinolfi, F. D’Agostino, A. Morini, M. Saviozzi, and F. Silvestro,
“Pseudo-measurements modeling using neural network and fourier de-
composition for distribution state estimation,” in IEEE PES Innovative

Smart Grid Technologies, Europe, Oct 2014, pp. 1–6.

[22] A. Abdel-Majeed, C. Kattmann, S. Tenbohlen, and R. Saur, “Usage
of artificial neural networks for pseudo measurement modeling in low
voltage distribution systems,” in 2014 IEEE PES General Meeting —

Conference Exposition, July 2014, pp. 1–5.

[23] H. Wang, J. Ruan, G. Wang, B. Zhou, Y. Liu, X. Fu, and J. Peng, “Deep
learning-based interval state estimation of ac smart grids against sparse
cyber attacks,” IEEE Transactions on Industrial Informatics, vol. 14,
no. 11, pp. 4766–4778, Nov 2018.

[24] A. S. Zamzam, X. Fu, and N. D. Sidiropoulos, “Data-driven learning-
based optimization for distribution system state estimation,” ArXiv

e-prints, 2018. [Online]. Available: https://arxiv.org/abs/1807.01671

[25] L. Zhang, G. Wang, and G. B. Giannakis, “Real-time power system
state estimation and forecasting via deep neural networks,” CoRR, vol.
abs/1811.06146, 2018. [Online]. Available: http://arxiv.org/abs/1811.
06146

[26] F. C. Schweppe, J. Wildes, and D. P. Rom, “Power system static state
estimation, Parts I, II, III,” IEEE Transactions on Power Apparatus and

Systems, vol. PAS-89, pp. 120–135, 1970.

[27] A. K. Ghosh, D. L. Lubkeman, and R. H. Jones, “Load modeling
for distribution circuit state estimation,” IEEE Transactions on Power

Delivery, vol. 12, no. 2, pp. 999–1005, April 1997.

[28] Y. Hu, A. Kuh, T. Yang, and A. Kavcic, “A belief propagation based
power distribution system state estimator,” IEEE Computational Intelli-

gence Magazine, vol. 6, no. 3, pp. 36–46, Aug 2011.

[29] P. Chavali and A. Nehorai, “Distributed power system state estimation
using factor graphs,” IEEE Transactions on Signal Processing, vol. 63,
no. 11, pp. 2864–2876, June 2015.

[30] L. Schenato, G. Barchi, D. Macii, R. Arghandeh, K. Poolla, and
A. V. Meier, “Bayesian linear state estimation using smart meters and
pmus measurements in distribution grids,” in 2014 IEEE International

Conference on Smart Grid Communications (SmartGridComm), Nov
2014, pp. 572–577.

[31] K. Emami, T. Fernando, H. H. Iu, H. Trinh, and K. P. Wong, “Particle
filter approach to dynamic state estimation of generators in power
systems,” IEEE Transactions on Power Systems, vol. 30, no. 5, pp. 2665–
2675, Sep 2015.
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