
A Code Generator for High-Performance Tensor
Contractions on GPUs

Jinsung Kim∗, Aravind Sukumaran-Rajam∗, Vineeth Thumma∗, Sriram Krishnamoorthy†,
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Abstract—Tensor contractions are higher dimensional general-
izations of matrix-matrix multiplication. They form the compute-
intensive core of many applications in computational science
and data science. In this paper, we describe a high-performance
GPU code generator for arbitrary tensor contractions. It exploits
domain-specific properties about data reuse in tensor contrac-
tions to devise an effective code generation schema, coupled with
an effective model-driven search, to determine parameters for
mapping of computation to threads and staging of data through
the GPU memory hierarchy. Experimental evaluation using a
set of tensor contraction benchmarks demonstrates performance
improvement and/or significantly reduced code generation time
over other state-of-the-art tensor contraction libraries and code
generators.

Index Terms—Code Generation, Tensor Contractions, GPU
Computing

I. INTRODUCTION

Tensors, higher dimensional analogs of matrices, represent

a key data abstraction for many applications in computational

science and data science [1]–[7]. Tensor contractions are

higher dimensional analogs of matrix-matrix multiplication.

In comparison to matrix multiplication, a significant chal-

lenge in creating an efficient library for tensor contractions

is the wide range of usage scenarios to be considered. For

matrix-matrix multiplication, library implementations need to

only address four cases: each of the input matrices may

be specified as non-transposed or transposed for the matrix

product. This corresponds to the two possible index positions

for the summation index in the two input tensors: normal

non-transposed matrix multiplication has the summation index

in the second (column) index for the left matrix and the

first (row) index for the right matrix. For contractions of

two 3D tensors, and a single contraction (summation) index,

there are 846 (3! × 3! × 4!) possible cases. If the contraction

has two contraction indices, there are 72 cases. With higher

dimensional tensors, the number of cases grows exponentially.

Tensors of up to six dimensions are commonly encountered

in ab initio quantum chemistry models such as the CCSD(T)

coupled cluster method [8].

Artifact available at: https://doi.org/10.6084/m9.figshare.7403732

The common solution in use today for performing tensor

contractions is to first perform suitable index permutation, i.e.,

layout transformation of one or both input tensors, to move

all contraction indices to the left end or the right end, so

that the needed sums of products for the contraction can be

performed using matrix-matrix multiplication. A further final

index permutation of the result from the matrix multiplication

may also be required. However, as elaborated in the next

section, this approach, referred to as the TTGT (Transpose-

Transpose-GEMM-Transpose), incurs several disadvantages.

In this paper, we present an approach to perform direct

contraction of tensors on GPUs without the creation of any

transposed intermediate matrices. In addition to reducing

memory usage by avoiding the use of intermediate tensors, we

show that this approach results in improved performance. We

employ a code generation strategy that utilizes properties about

reuse directions in the iteration space of a multi-dimensional

tensor contraction to devise an effective strategy for mapping

of computations and orchestration of data movement through

the GPU memory hierarchy. The code generation schema

is designed to address key performance considerations for

GPUs: utilization of significant concurrency to tolerate global

memory access latency, coalesced access to global memory

to maximize achieved bandwidth, and maximization of data

reuse within registers and shared memory. An effective cost

model is developed for the amount of data movement from/to

GPU global memory and is used to rapidly identify mapping

parameters from among a large set of alternatives.

The quality of the generated GPU code is assessed on

the 48 tensor contractions in the TCCG benchmark suite [9],

which has been used in other recent studies. We compare the

achieved performance against TAL SH [10], a state-of-the-art

tensor contraction framework for GPUs that uses the TTGT

approach, and with several recently developed CPU-based

tensor contraction frameworks. We demonstrate significant

performance improvement over available alternatives. On an

Nvidia Volta V100 machine, we achieve up to 5.1× speedup,

with a geometric mean of 1.7×, over the NWChem code

generator for tensor contractions, and up to 19.3× speedup,

with a geometric mean of 4.4×, over TAL SH. On an Nvidia

978-1-7281-1436-1/19/$31.00 c© 2019 IEEE CGO 2019, Washington, DC, USA
Research Papers

85



Pascal P100 machine we achieve up to 4.0× speedup, with

a geometric mean of 1.69×, over NWChem’s code generator,

and up to 13.7× speedup, with a geometric mean of 4.0×,

over TAL SH.

II. BACKGROUND AND MOTIVATION

Consider the following contraction of two 4D tensors to

produce another 4D tensor:

C[a, b, c, d] = A[a, e, b, f ] ∗B[d, f, c, e] (1)

The notation for tensor contractions uses the so-called

Einstein index convention, whereby indices that do not appear

in the left-hand side tensor are all summation (contraction)

indices. So the above contraction represents the computation:

C[a, b, c, d] =
∑

e,f

A[a, e, b, f ] ∗B[d, f, c, e]

Indices e and f are the contraction indices. The remaining

indices (a,b,c,d) appear in the left-hand tensor and are called

the external indices. This computation can be performed by

first creating two temporary tensors TA and TB by performing

index permutation as follows:

TA[a, b, e, f ] = A[a, e, b, f ]; TB[e, f, c, d] = B[d, f, c, e]

Consecutive indexes in a tensor can be logically treated as

a single virtual index with range equal to the product of the

ranges of the original tensor indices. Thus, the 4D tensor

TA[a, b, e, f ] may be equivalently viewed as a 2D matrix

MA[i, j], where the range of index i in the matrix MA is the

product of the ranges of a and b in the tensor TA, and j has a

range equal to the product of the ranges of e and f . Similarly,

TB[e, f, c, d] may be viewed as MB[j, k], where index k in

MB is a virtual index combining c and d in TB. MA and

MB can be efficiently multiplied using a high-performance

library routine to produce MC[i, k], which is equivalent to

TC[a, b, c, d].
The above approach is widely used in practice today and is

often referred to as the TTGT (Transpose-Transpose-GEMM-

Transpose) approach: perform two transposes for the input

tensors, followed by GEMM (GEneral Matrix Multiplication)

and a final transpose of the result. However, it has some

disadvantages:

• Index permutation can incur non-trivial overheads, espe-

cially if done naively by a set of nested loops to perform

the data movement, due to high-stride access to either

source or destination.

• The resulting matrices may be highly rectangular with

one dimension being much smaller than the other. Library

matrix-multiplication routines often achieve much lower

performance for such matrices than with square matrices.

• It requires extra temporary space to hold the transposed

matrices.

We present an approach that address all these challenges.

The tensor contraction in Eq. 1 can be implemented as a

6D nested loop over the indices {a, b, c, d, e, f}. However,

such a direct implementation will suffer from low perfor-

mance because of high-stride access to tensors and insuf-

ficient exploitation of data reuse. Since tensor contractions

represent a sub-class of affine loop computations, polyhedral

optimizing compilers like PPCG (The Polyhedral Parallel

Code Generator) [11] can be used to generate transformed and

optimized code for GPUs. However, the very large number of

possible tiled code configurations and the simplified linear cost

models incorporated in general-purpose polyhedral compilers

makes it infeasible to generate code that achieves very high

performance. The Tensor Comprehensions framework from

Facebook [12] incorporates a powerful polyhedral optimizer

and GPU code generator along with an auto-tuner to perform

extensive search in the huge configuration space of GPU

programs corresponding to different ways of mapping the

elementary arithmetic operations in a tensor contraction onto

GPU threads.

In contrast, our approach to GPU code generation for an

arbitrary tensor contraction exploits a key property that is true

of any arbitrary tensor contraction: each loop index variable

will occur in exactly two out of the three tensors: in the

above example, indices {e, f} occur in the input tensors,

{a, b} occur in A and C, and {c, d} occur in B and C. A

consequence of this property is that each loop index represents

a reuse dimension for exactly one of the three tensors, the

tensor that is not indexed by it. For different iterations of that

loop, exactly the same set of elements of that tensor will be

repeatedly accessed. This key property allows a grouping of an

arbitrary number of loop indices in a high-dimensional tensor

contraction into three groups, based on the tensor for which a

loop index is a reuse direction. As we explain in greater detail

in the rest of the paper, the exploitation of this property enables

the development of a greatly pruned configuration space and

an effective domain-specific work-to-thread mapping strategy.

Further, we develop a cost-model that can quantify needed data

movement in the GPU’s memory hierarchy for any specific

mapping choice, thereby enabling a model-driven pruning of

code configurations. Since the peak floating-point performance

of a GPU is orders of magnitude higher than the peak memory

bandwidth, effective exploitation of data reuse in registers and

shared-memory is essential to achieve the best performance.

For tensors that are much larger than shared-memory and

register capacity, judicious blocking (tiling) of the computation

to work on slices of the multi-dimensional tensor at a time is

necessary. In summary, the GPU tensor contraction problem

can be formulated as follows: Given an arbitrary tensor

contraction, how should the total work be partitioned among

a suitably sized collection of thread blocks and how should

the data movement in the memory hierarchy be orchestrated?

In our experimental evaluation, we contrast the significant

benefits from such a domain-specific code generation strat-

egy to that using a general-purpose polyhedral optimizer in

conjunction with auto-tuning, as done by Facebook’s Tensor

Comprehensions framework [12].
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Fig. 1. Illustration of tiled execution of tensor contraction in Eq. 1

III. GPU KERNEL EXECUTION STRATEGY

In this section, we describe our approach to mapping a

tensor contraction to GPU resources (shared memory, registers,

and thread blocks). We illustrate our approach using the tensor

contraction in Eq. 1. The input to the code generator is

an ordered list of indices for the input and output tensors,

and a representative extent (size) for each index. While the

generated code will execute correctly for any problem size, a

representative problem size is used for performance modeling

that drives specific choice of tilesize/blocksize parameters for

mapping the computation to GPU threads and thread blocks.

Output CUDA code is generated1 with parametric extents for

the tensors.

Fig. 1 illustrates the overall approach to mapping the

computation to the GPU for the tensor contraction example

in Eq. 1. The generated GPU kernel incorporates these four

steps:

1) Load slice of input tensors from global memory (GMEM)

to shared memory (SMEM);

2) Load a subset of input tensor slices from SMEM to

registers (REG);

3) Compute contributions to a slice of the output tensor

in registers, using an outer-product scheme (explained

below)

4) Store the finalized elements of the slice of the output

tensor from REG to GMEM

The first three steps are repeated until all contributions to

a given data slice of the output tensor are completed. Alg. 1

shows the general structure of the GPU kernel code, with some

details of index arithmetic being elided (shown in “...”) to

simplify the pseudo-code.

The definition of each symbol used in the following sections

is provided in Table I.

A. Register Tiling

The trends in GPU architectures point to increasingly large

register files. With current Nvidia GPUs, the total storage

1OpenCL code generation is planned for the future, but is not done at
present.

TABLE I
TERMINOLOGY

Symbol Description

Ni extent of dimension i
Ti tile size along dimension i
TBx, TBy dimensions mapped to thread block X and Y2

TBk product of extent of internal indices
REGx, REGy X and Y dimensions of the 2D register array

Blkx X dimension of grid3

Algorithm 1: Pseudo Code of a Tensor Contraction

Data: g C, g A and g B are global memory for A, B and
C, respectively.

1 global void kernel_tc(g C, g A, g B)
2 shared double s A[Ta × Tb][Te × Tf ];
3 shared double s B[Te × Tf ][Tc × Td];
4 double r A[Tb]; // Tb × 1 column vector
5 double r B[Tc]; // 1× Tc row vector
6 double r C[Tb][Tc]; // Tb × Tc register tile
7 // (Ne ×Nf )/(Te × Tf ) Steps
8 // i is an index used for internal indices
9 for i = 0 to ⌈(Ne ×Nf )/(Te × Tf )⌉ do

10 // (1) Load Inputs from GMEM to SMEM
11 for j = 0 to Tb do
12 s A[—][—] = g A[—];
13 for j = 0 to Tc do
14 s B[i][j] = g B[—];
15 synchronize();
16 for j = 0 to (Te × Tf ) do
17 // (2) Load Inputs from SMEM to REG
18 for k = 0 to Tb do
19 r A[k] = s A[k][—];
20 for k = 0 to Tc do
21 r B[k] = s B[—][k];
22 // (3) Outer-Product
23 for k = 0 to Tb do
24 for l = 0 to Tc do
25 r C[k][l] = r A[k] × r B[l];
26 synchronize();
27 // (4) Store the Output from REG to GMEM
28 for j = 0 to Tb do
29 for k = 0 to Tc do
30 g C[—] = r C[j][k];

capacity available in registers is much larger than the shared

memory in each streaming multiprocessor (SM). Because

accumulating values in registers is faster than read-modify-

writes into shared memory, each thread holds a set of elements

of the output tensor in its registers and uses shared-memory

to buffer slices of the input tensors. Specifically, each thread

block handles a hyper-rectangular slice of the output tensor,

organizing the complete computation as a sequence of tiles in

the tensor contraction’s iteration space.

Let Ni and Ti denote the extent of a dimension i and the

tile size along dimension i, respectively, (1 ≤ Ti ≤ Ni). For

Eq. 1, each thread block computes a portion of C of size∏
Ts, where s ∈ {a, b, c, d}, held in registers. In order to do

so, the thread block requires Ta × Ne × Tb × Nf and Td ×
Nf ×Tc×Ne elements of A and B, respectively. The number
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Fig. 2. Illustration of mapping of elements of result tensor C to threads and
registers for contraction in Eq. 1

of thread blocks to execute the entire contraction is given by∏
⌈Ni/Ti⌉.

B. Mapping to Thread Blocks and Threads

The threads in a thread block are organized into a 2D block

of size TBx × TBy . Threads operate on a logical 2D array

of registers, REGx × REGy . Then, each thread computes

multiple elements, REGx × REGy , through register tiling.

Thus, a thread block deals with (TBx × TBy) × (REGx ×
REGy) elements. For Eq. 1, from the data-space perspective,

a thread block is in charge of Ta × Tb × Tc × Td elements

of C, which should be mapped onto the 2D space of threads

and 2D register tiles. Then, the tile sizes and the mapping of

dimensions to thread blocks and register tiles determines the

size of the thread block and the size of the register tiles.

Fig. 2 illustrates an example of a mapping choice and

tile-sizes, where the mapping is {a} → Tx, {c} → Ty,

{b} → Rx, {d} → Ry, and tile sizes are Ta = Tb = Tc =
Td = 2. Then, the output data space of a thread block will

be 16 elements, where a and c are the fastest varying indices

(FVI) along x-axis and y-axis, respectively. According to the

mapping and the tile sizes, a thread block is composed of 4
threads (Ta×Tc) and each thread is associated with a register

tile of size 2× 2 (Tb × Td).

C. Efficient Data Movement

Coalesced Loading of Input Tensors: For Eq. 1, each

thread block requires slices of both input tensors A (Ta ×
Ne × Tb × Nf ) and B (Td × Nf × Tc × Ne), as shown in

Fig. 1. Because of the limited size of shared memory, instead

of loading a slice of size Ne and Nf , a thread block loads

Ta × Te × Tb × Tf and Td × Tf × Tc × Te elements of A
and B, respectively, at each step. The choice of these tile

sizes determines how much shared memory is required by each

thread block, and the choice must be made in a manner that

balances data reuse and occupancy of SMs.

For example, in Eq. 1, each thread block requires a hyper-

rectangle of A with Ta×Te×Tb×Tf elements, which means

that Ta elements are contiguous in global memory because a
is the fastest varying index (FVI) in A. This leads to coalesced

memory access for A, as shown in Fig. 3. In the figure, we

assume that Na = Ne = Nb = Nf = 16, Ta = 16, Te = 1,

Tb = 4, Tf = 16 and we have 16 × 16 threads in a thread

Thread Block

(16 x 16)

(1) Read Inputs from GMEM

(2) Store Inputs to SMEM

Ta = 16

1 : 16 Continuous Elements in GMEM based on Tile Sizes

, where Ta = 16, Te = 1, Tb = 4 and Tf = 16  in A[a, e, b, f]

16

1
6

…
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=
 6

4
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N
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1
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=16
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e=

1
T b
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…
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Fig. 3. Illustration of mapping of dimensions to thread block and register
tiles

block. Thus 16 contiguous threads (1) load 16 (Ta) contiguous

elements from global memory (g A) and then (2) store them

to shared memory (s t2). In contrast, for tensor B, which

requires Td×Tf ×Tc×Te space, Td elements are contiguous

in global memory because d is the FVI. Based on the above

assumption, 16 contiguous threads (1) load four groups of four

(Td) contiguous elements from global memory(g v2) and then

(2) store them to shared memory(s v2). Global memory access

for B can be expected to be les efficient than the access to A
– the tile sizes along FVI in the input tensors is an important

factor for efficient coalesced global memory access.

Transfer to Registers and Tensor Contraction: After

a thread block loads slices of the input tensors to shared

memory, each thread loads two sub-slices of the data from

shared memory to registers. Specifically, each thread loads a

column-vector of the left input tensor A and a row-vector

of the right input tensor B to perform an outer-product to

contribute additive updates to the elements of the output tensor

assigned to the thread. For example, in Eq. 1, each thread loads

a Tb × 1 column-vector of A and a 1 × Tc row-vector of B
to contribute to Tb × Tc output elements in a register tile, as

shown in Fig. 1.

Coalesced Storing of Output Tensor: After contracting

input tensors along the full extents of the contraction indices

(Ne × Nf ), each thread stores the results from registers to

global memory. For Eq. 1, each thread block stores Ta×Tb×
Tc × Td elements of C in Fig. 1. Furthermore, as shown in

Fig. 2, the mapping {a} → TBx, where a is the FVI in the

output C, indicates that Ta contiguous threads in a thread

block handle Ta contiguous elements of C in global memory.

Thus, the tile size on the FVI along TBx determines the

number of elements of C that are coalesced in the store from

registers to global memory.
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TABLE II
PARAMETERS OF THE GENERATED GPU KERNEL

Name Description

l TBx external indices mapped on TBx

l TBy external indices mapped on TBy

l TBk internal indices mapped on TBk

l Tiles tile sizes of indices

IV. PARAMETRIZED CODE GENERATION AND

OPTIMIZATION

For a given tensor contraction expression and a selected

set of tile sizes and mappings, the code generator creates a

GPU kernel with structure as shown in Algorithm 1. Table II

enumerates the code generator’s kernel parameters. l TBx,

l TBy , and l TBk indicate lists of mappings. l Tiles is a

list of index tile sizes. Specifically, according to the inputs—

a tensor contraction expression and its representative prob-

lem size—the code generator determines the set of kernel

parameters in Table II before generating the CUDA kernel

and its driver codes. A challenge in generating efficient GPU

kernels for tensor contractions is to determine the tile sizes

and mappings, which impact performance by determining

coalesced memory access and occupancy.

A naı̈ve approach to select the kernel parameters would

involve auto-tuning the parameters across the full search

space. Typically, such a search begins by running the kernel

using a selected random configuration to measure the actual

performance. The next configuration to be selected is guided

by an algorithm (e.g., genetic algorithms) or an ensemble

of algorithms that drive the search direction towards the

configuration with the best performance. However, for tensor

contractions, this search space can be very large. For example,

let us assume that there are five choices of tile sizes (e.g.,

{1, 2, 4, 8, 16}) and five dimensions for mapping: TBx, TBy ,

TBk, REGx, and REGy , where TBk is for an internal

index and TBx, TBy , REGx, and REGy are for external

indices. The total number of configurations possible can be

computed as |mapping| × |tilesize|, where |mapping| is the

number of mapping choices and |tilesizes| is the number of

tile-size choices. For Eq. 1, the number of mapping choices

is |mapping| = 44 × 21, because there are four external

indices and two internal indices and they can be mapped

onto several dimensions. The number of tile-size choices is

|tilesize| = 65 for six indices. Then, Eq. 1’s total space

will be (44 × 2) × (65) = 3, 981, 312. The latter does not

even consider the possibility of merging dimensions (helps

to achieve coalescing if the extent of each dimension is

very small), splitting each dimension into multiple dimensions

(helps ensure that there are enough thread blocks), or thread

coarsening; adding these choices will further increase the

search space exponentially.

Instead of executing a large number of code versions and

selecting the best, our approach relies on a cost model that

efficiently rank orders the search space without running the

code. The cost model is based on various factors, such as

total number of memory transactions. First, we enumerate all

possible combinations of kernel parameters that do not violate

any hardware constraints (e.g., using more shared memory

than available) or performance constraints (e.g., very low

parallelism). Such configurations are identified using a set

of rules described in Section IV-A. Each configuration’s cost

is then estimated using a cost model based on DRAM data

movement from inputs and output. The cost model is explained

in detail in Section IV-B.

A. Enumeration with Pruning

The entire search space consists of different tile sizes

and choices. First, we explain the constraints we apply to

choose the tile sizes and mapping to reduce the search space.

Hardware constraints reduce the search space by eliminat-

ing configurations that do not satisfy the hardware limits

and the performance constraints reduce the search space by

eliminating configurations that are expected to achieve low

performance.

1) Hardware Constraints: The tile size choice affects the

amount of shared memory and registers required. Larger tile

sizes allow better reuse; however, they are constrained by

available hardware resources. The shared memory capacity

required for the inputs is (TBx × TBk ×REGx) + (TBy ×
TBk ×REGy) and the register capacity for storing a slice of

the output tensor is (REGx ×REGy). For a configuration to

be valid, the shared memory and registers required should be

less than hardware capacity.

2) Performance Constraints: To maximize reuse, external

indices are preferentially mapped to TBx and TBy . However,

if the fastest varying index (FVI) of either input tensors

corresponds to an internal index, excluding it will lead to

uncoalesced accesses that significantly reduce performance.

Hence, while choosing indices mapped to TBx or TBy , we al-

ways include the FVI of the input tensor. Similarly, for output

coalescing, we also include the output FVI to the dimensions

mapped to shared memory. In addition to coalescing, we

ensure that the number of thread blocks is above a threshold. A

low number of thread blocks adversely affects load balancing.

If the number of thread blocks is too low, then some SMs

may be work starved (low occupancy). For example, consider

a tensor contraction where the size of tensors is small. In

this case, using the maximum possible register tile size will

achieve better reuse. However, higher register tile sizes reduce

the number of thread blocks, potentially resulting in reduced

performance. The shared memory size and number of registers

per thread affects achievable occupancy; hence the tile sizes

are also constrained to ensure good occupancy.

3) Enumeration Algorithm: In order to maintain good occu-

pancy for double precision, the tile size choices for TBx, TBy ,

and TBk are limited to {4, 8, 16} and the choices for REGx

and REGy are limited to {2, 4, 6, 8}. For each combination

of TBx, TBy , TBk, REGx, and REGy , different mapping

and tile-size choices are explored that respect the hardware

and performance constraints.
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In order to determine possible configurations, given a tensor

contraction and a representative problem size, we first explore

different choices of external indices in the input tensor that

is indexed by the output tensor’s FVI, for TBx mappings

and tile sizes of indices mapped onto TBx. We then explore

choices of the other external indices that will be mapped on

REGx. After mapping TBx and TBy , if there exist unmapped

external indices, they will be mapped on Blkx. Similarly, for

the another input tensor, we explore choices of external indices

for Ty and then Ry.

All remaining external indices are mapped to thread blocks

Bx. They are technically mapped on TBx or TBy with tile-

size of 1. Because each thread is responsible for fully pro-

cessing REGx × REGy elements, all the remaining internal

indices are mapped on the serial dimension, TBk. The code

generator ensures that an external index is only mapped to one

dimension.

Algorithm 2 shows the detailed description of TBx mapping

and tile-size choices. Because of the performance constraints,

we first map the output’s FVI on TBx as TBx’s FVI (Line 11

to Line 21). When we map an index to a dimension in Line 10,

we determine its tile-size by using its representative problem

size. So we calculate a candidate for the dimension size in

Line 11. However, the candidate size might exceed the target

TBx dimension size, TB size. Then, we make its tile size as

big as possible in Line 14. These choices are stored in kernel

parameters in Table II. For mapping TBx, we use two kernel

parameters such as l TBx and l Tiles. Indices mapped to TBx

are stored in l TBx and the tile sizes of indices mapped to

TBx are stored in l Tiles.

After mapping an external index to TBx, the candidate size

can be less than the target TBx size, which means that other

external indices can be mapped on TBx. In order to enumerate

all possible cases, we start from the input’s FVI to the Slowest

Varying Index (SVI) (Line 3) using s idx. The other external

indices are handled in two parts: from s idx to the SVI and

from 0 to s idx− 1, in Line 24 and Line 44, respectively.

After determination of TBx, choices for REGx are made

by using unmapped-external indices in the input in Line 47. In

enum X REG(), we enumerate all possible mapping cases for

REGx with different target REGx dimension sizes such as

{2,4,6,8}, based on a specific mapping case for TBx, as deter-

mined in Line 18 or 37, with a specific target TBx dimension

size determined in Line 2. The information composed of the

mappings, TBx, REGx and tile sizes for the indices mapped

on TBx and REGx are stored in l partial config X .

Algorithms to determine the mapping choices for REGx,

TBy , REGy , and TBk are similar to Algorithm 2, except

for handling the output’s FVI. There are three different partial

configurations information such as (1) TBx and REGx, (2)

TBy and REGy , and (3) TBk. All possible configurations

can obtained by taking the Cartesian product of them. Before

running the cost-model for all possible configurations, they are

pruned using our constraints. In the current code generator, for

the benchmarks evaluate, around 97% of the configurations

were pruned

Algorithm 2: Enumerating Mapping and Tile-Sizes for

TBx

Input: A, C, l sizes TB
Output: l partial config

1 def enum_X_TB(l size TB, l size REG, A, C):
2 for TB size in l size TB :
3 for s idx in range(0, A.len) :
4 v TBx = 1
5 v TBx prev = 1
6 l TBx = []
7 l Tiles = []
8 is mapped = False
9 // A is assumed to have Output Tensor’s FVI

10 l TBx.append(C[0])
11 v TBx ∗= C[0].size
12 if v TBx >= TB size :
13 if v TBx > TB size :
14 blk size = TB size / v TBx prev
15 l Tiles.append([C[0].name, blk size])
16 else:
17 l Tiles.append([C[0].name, C[0].size])
18 is mapped = True
19 else:
20 l Tiles.append([C[0].name, C[0].size])
21 v TBx prev ∗= C[0].size
22 if is mapped == False :
23 // from s idx to A.len
24 for t idx in range(s idx, A.len) :
25 if A[t idx] is internal :
26 continue
27 if A[t idx] == C[0] :
28 continue
29 v TBx ∗= A[t idx].size;
30 if v TBx >= TB size :
31 l TBx.append(A[t idx])
32 if v TBx > TB size :
33 blk size = TB size /

v TBx prev;
34 l Tiles.append([A[t idx].name,

blk size]])
35 else:
36 l Tiles.append([A[t idx].name,

A[t idx].size]])
37 is mapped = True
38 break
39 else:
40 l TBx.append(A[t idx])
41 l Tiles.append([A[t idx].name,

A[t idx].size]])
42 v TBx prev ∗= A[t idx].size;
43 // the remaining indices from 0 to s idx
44 for t idx in range(0, s idx) :
45 // Similar from Line 24 to Line 42
46 if is mapped == True :
47 l partial config X =

enum_X_REG(l size REG, A, l TBx,
l Tiles)

48 return l partial config X;

B. Cost Model

The purpose of a cost model is to quickly predict the

performance of a configuration with good accuracy. Even

though pruning helped to reduce the search space, running

each remaining configuration is still expensive. Hence our
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cost model is based on estimated amount of data moved

from/to the global memory (DRAM). The data movement

traffic is calculated using analytical models parametrized by

kernel parameters such as tile sizes and mapping choices for

indices to thread blocks and register tiles. Along with tile size,

the model also considers the mapping choice to determine

the amount of coalesced memory access. The cost predicted

by our analytical model is well co-related with the actual

performance.

The best performing tile sizes and mappings are not only

dependent on the contraction but also on the problem size.

In order to guide tile size selection, the user is expected

to provide a representative problem size as an input. When

the code generator receives a set of representative problem

sizes, it can generate different code versions targeted at each

representative problem size. We note that the code generator

does not require the exact problem size at compile time but

only a representative size, for the purpose of performance

modeling and parameter optimization. Although the kernel is

selected at runtime based on the closest representative for the

performance, generated kernels can support arbitrary problem

sizes.

The cost model includes the number of memory transactions

to load both input tensors and to store the output tensor.

The cost model assumes that the size of each global memory

transaction is 128 bytes (16 double precision elements) and

each transaction is aligned to a 128 byte boundary.

According to kernel parameters such as mappings and tile-

sizes, the input and output data spaces of a thread block

and the number of threads in a thread block. According

to the GPU kernel execution strategy in Section III, when

the generated CUDA kernels load an input tensor, threads

along the x-axis will load elements along an input’s FVI

in order to enable coalesced memory access. The number

of transactions from a row of threads within a thread block

is determined as shown in Algorithm 3. In Line 2, helper

function cal Cont() returns the number of contiguous elements

in a hyper-rectangle of A in global memory. The hyper-

rectangle of A is based on tile sizes of indices in A. In

Line 3, helper function cal Size TBx() returns the number of

threads along the x-axis. Then, min(size Cont, size TBx)
will be the maximum number of contiguous elements in

the hyper-rectangle of A in global memory. Each row of

threads in a thread block reads size TBx elements with

size Tx/min(size Cont, size TBx) = numTransTx
transactions, in Line 8. We can load size Tx × size TBy

elements at once with numTransTBx × size TBy =
numTransTB transactions (Line 9). TBx×TBy×REGx is

equal to a partial slice of a hyper-rectangle of an input tensor,

as per the approach described in Section III. At each step,

we need numTransTB × size REGx = numTransStep
transactions (Line 10). For all contributions, a thread block

requires numTransStep × numSteps (Line 11). Finally,

based on the representative problem size and tile-sizes, we

also calculate the number of thread blocks (Line 7), resulting

in the total number of the estimated transactions for loading an

input tensor (Line 12). Similarly, the number of transactions

to store the output is estimated.

Algorithm 3: Calculating DRAM Transaction Costs

for Tensor A
Input: config: a configuration
Output: numTransTotal: the number of estimated

transactions to load A
1 def calculate_A_cost(A, C, config):
2 size Cont = cal_Cont(A)
3 size TBx = cal_Size_TBx(config, A)
4 size REGx = cal_Size_REGx(config, A)
5 size TBy = cal_Size_TBk(config, A)
6 numSteps = cal_Steps(config)
7 numTBs = cal_Num_TBs(config, C)
8 numTransTx = size TBx / min(size Cont, size TBx)
9 numTransTB = numTransTBx × size TBy

10 numTransStep = numTransTB × size REGx

11 numTransFullStep = numTransStep × numSteps
12 numTransTotal = numTransFullStep × numTBs
13 return numTransTotal

V. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation

of the code generated by the model-driven code generator

(COGENT: COde GENerator for Tensors). The experiments

were carried out on two GPUs: an Nvidia Pascal P100 GPU

(56 Pascal SMs, 64 cores/MP, 16GB global memory) and an

Nvidia V100 GPU (80 Volta SMs, 64 cores/MP, 16GB global

memory). All the codes were compiled using CUDA 9.0 and

GCC 6.2. All benchmarks were run 3 times and the average

is reported.

We used the benchmarks in the TCCG benchmark suite [13]

compiled by Springer et. al [14], using the same problem sizes

as used by them in their paper. The TCCG benchmark suite is

comprised of 48 different tensor contractions, representing a

number of specific contractions that arise in real applications.

It includes several compute-intensive use-cases from quantum

chemistry applications: 18 contractions from the CCSD(T)

method (31st to 48th in Fig. 4 and Fig. 5), 19 contractions

from the CCSD method (12th to 30th in Fig. 4 and Fig. 5), 3

contractions used to transform a set of two-electron integrals

from an atomic orbital basis to a molecular orbital basis (9th

to 11th in Fig. 4 and Fig. 5), and a set of 8 contractions involv-

ing tensor-matrix multiplication, representing computations in

machine learning (1st to 8th in Fig. 4 and Fig. 5).

We compared COGENT with TAL SH [10] and the

code generator used to synthesize GPU kernels for ten-

sor contractions in the production computational chemistry

suite NWChem [15]. TAL SH is based on the TTGT

(Transpose-Transpose-GeMM-Transpose) approach. We con-

figured TAL SH to use CuTT to perform transposition as it

achieved the best performance. NWChem’s code generator is

based on direct tensor contractions on GPUs. The CCSD(T)

implementation in the production NWChem distribution is

generated using this code generator.
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Fig. 4. TCCG Benchmark on P100 (Pascal)
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Fig. 5. TCCG Benchmark on V100 (Volta)

Fig. 4 and Fig. 5 compare performance on an Nvidia Pascal

P100 GPU and a V100 GPU, respectively. For the 18 CCSD(T)

contractions, the time spent to transpose the input tensors

and output tensors slows down TAL SH. Hence, TAL SH

only achieves around 200 GFLOPS and 390 GFLOPS on the

P100 and V100, respectively. The NWChem Code Generator

achieves 520 to 1050 GFLOPS on the P100 and 1100 GFLOPS

to 1900 GFLOPS on the V100. However, due to superior map-

ping and tile size selection, COGENT attains 1050 GFLOPS to

1300 GFLOPS on the P100 and from 1800 GFLOPS to 2100

GFLOPS on the V100. For the 4D = 4D * 4D contractions

(the 12th and 20th to 30th benchmarks), the transposition

time is very much lower than compute time; hence TAL SH

achieves very good performance by using the highly tuned

matrix multiplication primitives provided by cuBLAS [16]. On

the Pascal P100, COGENT generates faster code than TAL SH

for five cases and is competitive in other cases. However, on

the Volta V100, COGENT consistently outperforms TAL SH.

For the remaining cases, COGENT is usually faster than the

NWChem code generator and TAL SH.

Fig. 6 and Fig. 7 compare COGENT with Facebook’s

Tensor Comprehensions (TC) [12] on the P100 and V100,

for the SD2 tensor contractions for the CCSD(T) method, for

single precision. TC uses a polyhedral optimizer for GPU code

generation, in conjunction with an auto-tuner using genetic

algorithms. We present results with only a small subset of

the TCCG benchmarks since the time taken to tune the TC

code for each benchmark ranged between several hours to

several days. We also could not compare double precision

results since TC could not generate the corresponding code.

All TC experiments were run with the population size set to

100 and the generation size set to 20. COGENT’s model-

driven code consistently and often significantly outperforms

the extensively auto-tuned code from TC. Fig. 8 shows the

performance trend (in GFLOPS) as a function of the number

of auto-tuning iterations with TC, for the SD2 1 (bcdef-

gdab-efgc) benchmark. The blue and green lines show the

performances without tuning and with tuning, respectively.

Without any tuning TC achieves less than 1 GFLOP on both

P100 and V100. With tuning, TC achieves between 400 to

1000 GFLOPS on the P100 and between 900 to 1500 GFLOPS

on the V100. The total tuning time was ≈ 8514 seconds.
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Fig. 6. TCCG Benchmark
(40th - 48th) on P100 (Pascal)
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(40th - 48th) on V100 (Volta)
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VI. RELATED WORK

Several other efforts have addressed the problem of effi-

cient tensor contractions on multicore CPUs. The state-of-the-

art techniques can be broadly grouped into two classes: 1)

the TTGT (Transpose-Transpose-GEMM-Transpose) approach

based and 2) direct contraction based (without explicit trans-

position).

TTGT: Quantum chemistry codes that implement any mem-

bers of the coupled cluster family of models require tensor

contractions, which dominate their execution time. These

codes typically use the TTGT approach, relying on the

availability of efficient matrix-multiplication routines on all

platforms. Although the number of arithmetic operations for

performing the matrix-multiplication is generally much larger

than the number of data elements moved for the transpose

operations, the time for the latter can be very significant due to

the much lower memory bandwidth relative to computational

peak, as well as the inefficiency of high-stride data access.

Therefore, several efforts have targeted the development of

efficient tensor transposition routines for multicore CPUs [17],

[18] as well as GPUs [10], [18], [19]. HPTT [17] is an

optimized tensor transposition library for multi-core CPUs.

TTC [18] is a compiler that can generate high-performance

transpose routines for both GPUS as well as multicore pro-

cessors. TAL SH [10] is a software framework for efficient

tensor contraction on GPUs that uses the TTGT approach. It

links with the cuTT library [19], [20] for efficient GPU tensor

transposition. In our experimental evaluation, we perform

comparisons with TAL SH on GPUs. We also benchmark

achievable performance for TTGT using HPTT on a multicore

CPU.

Direct Contraction: While the TTGT approach has the benefit

of leveraging efficient vendor matrix multiplication libraries,

the extra transposition imposes both space and time overheads.

So several efforts have developed implementations for tensor

contractions that avoid the use of transpose. Two recent efforts

have independently developed such an approach for multicore

CPUs. TBLIS [21] uses the BLIS (BLAS-like Instantiation

Software [22]) framework to implement arbitrary tensor con-

tractions by essentially fusing transposition of slices of tensors

on-the-fly and invoking BLIS kernels for efficient matrix-

matrix multiplication. GETT [14] implements the operations

for an arbitrary tensor contraction as a loop over slices that

are computed using a highly tuned “macro kernel” whose

operands reside in a certain level of the cache hierarchy.

GETT has been distributed as part of the TCCG (Tensor

Contraction Code Generator) [13] framework, which includes

several alternatives for performing tensor contractions, includ-

ing TTGT, GETT, a loop-over-GEMM approach (LoG) and a

direct nested-loop implementation for tensor contractions. Ma

et al. [15], [23] developed a code generator for implementing

direct tensor contractions for GPUs, with a special focus

on the most expensive triples computation for the CCSD(T)

method in the NWChem computational chemistry suite. In

our experimental evaluation, we present performance for the

publicly available options: TTCG and GETT. Shi et al. [24]

use a new strided batched BLAS functionality in Nvidia’s

cuBLAS as a means of implementing direct tensor contractions

for a set of contractions of significance for machine learning.

Tensor Comprehensions (TC) [12] is a high level domain-

specific language to express tensor operations. The high level

expression is then converted to a polyhedral representation,

and is subject to a set of polyhedral transformations. The

framework is capable of producing both CPU and GPU code.

It offers a JIT based autotuner that uses a genetic algorithm

to prune the search space. The framework allows specification

of a representative problem size, which is used to evaluate the

quality of the generated code during auto-tuning.

Parameter Search Optimization: Tensors are core data

structures used in machine learning (ML) applications. Until

recently, much of the work in optimizing tensor computations

for machine learning was done via manual implementation of

libraries such as Nvidia’s cuDNN. A recent effort [25] has

sought to automate the optimization of tensor computations in

ML by developing a learning framework that learns to choose

among the options in a space of transformed configurations for

the code. As pointed out by the authors, they focus on effective

search among the possible configurations in a pre-defined

space, and the choice of that space is beyond the scope of the

learning strategy for selection. We believe that model-driven

frameworks like the one proposed here complement learning-
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based optimizers by defining an effective configuration space

of high-performance configurations from which the best ones

are to be selected. While we have only model-driven selection

of a set of configurations and auto-tuned across a selected

set of configurations, our model-driven approach could be

enhanced by using a learning-based approach to perform the

selection among the top set of candidate configurations based

on our analytical modeling.

VII. CONCLUSIONS

This paper has presented a CUDA code generator for

arbitrary tensor contractions. It uses a code generation schema

based on domain-specific properties about data reuse in tensor

contractions, along with a model-driven pruning strategy for

rapid determination of parameters for mapping of computation

to threads and staging of data through the GPU memory hierar-

chy. Experimental results demonstrate significant performance

gains over state-of-the-art tensor contraction code generators

and libraries over a range of benchmarks.

APPENDIX

ARTIFACT APPENDIX

A. Abstract

The artifact contains all the programs required to re-

produce the experimental results in the CGO 2019 pa-

per “A Code Generator for High-Performance Tensor Con-

tractions on GPUs”. The artifact is publicly available for

download from https://doi.org/10.6084/m9.figshare.7403732.

The latest version is available on the git repository:

http://gitlab.hpcrl.cse.ohio-state.edu/jinsung/COGENT.

The downloaded package comes with

– The source code for COGENT

– The scripts to run benchmarks on all the compared

frameworks

– Expected output in the form of text files

– A very detailed README file which contains detailed

instructions to build and troubleshoot installation of all

frameworks.

B. Artifact Check-List (Meta-Information)

• Program: (1) COGENT (COde GENerator for Tensor contrac-
tions), (2) NVIDIA CUDA kernels generated by NWChem’s
code generator, (3) TAL-SH benchmark, and (4) Tensor Com-
prehensions benchmark.

• Compilation: Detailed instructions to compile and scripts to
run each framework is provided below and in the README.md.

• Transformations: The code generator accepts a tensor con-
traction expression and generates corresponding cuda kernels.

• Binary: Makefile is included in the package to generate the
executable.

• Data set: 48 Tensor Contractions in TCCG Benchmark.
• Software: Linux version 3.10.0 (tested), CPU code: g++ with

C++11 support (GCC 6.3.0 tested) and python (3.5 tested); GPU
code: NVCC (9.0 tested).

• Hardware: Linux platform such as Ubuntu, and a GPU device
with compute capability ≥ 6.0. The benchmarks reported on the
paper were ran on an Nvidia Tesla P100 machine and an Nvidia
Tesla V100 machine.

• Output: Text files containing the execution time and GFLOPS
used for the Figure 4 - 8.

• Publicly available?: Yes.

C. Description

1) How Delivered: Our artifact is available on
both https://doi.org/10.6084/m9.figshare.7403732 and
http://gitlab.hpcrl.cse.ohio-state.edu/jinsung/COGENT. All the
files in the repository are licensed to The Ohio State University.

2) Hardware Dependencies: The generated code can be
executed on any Nvidia device with compute capability ≥ 6.0. For
reproducing the results reported in the paper, we suggest using Tesla
P100 and Tesla V100 devices.

3) Software Dependencies: COGENT requires Python 3.5.
CUDA kernels generated by COGENT and NWChem require GCC
version (≥ 6.3.0) with C++11 support and NVCC version (≥ 9.0).
TAL-SH requires cuTT (instructions to build cuTT are provided)
and BLAS library. TC require conda.

4) Data Sets: The benchmark is based on 48 tensor contractions
in TCCG benchmark. Since each framework accepts different
formats, framework specific representation of benchmarks are
provided in each each framework’s directory.

For COGENT, expressions of TCCG benchmark are provided
in ./cogent/input strings/tccg directory. Source codes generated by
NWChem’s code generator are provided in NWChem directory. For
TAL-SH, we provide ./tal-sh/test.cpp which includes all the TCCG
benchmark. Finally, for TC, we provide python codes to evaluate the
benchmarks.

D. Installation

After cloning the repository— http://gitlab.hpcrl.cse.ohio-
state.edu/jinsung/COGENT, TAL-SH and TC should be built before
evaluation (see README.md for detailed instructions). COGENT
and NWChem can be installed using the Makefile provided.

1) TAL-SH: As TAL-SH is dependent on cuTT, install cuTT
from the git-repository: https://github.com/ap-hynninen/cutt before
building TAL-SH (https://github.com/DmitryLyakh/TAL SH)

2) Tensor Comprehensions (TC): TC requires
conda, build anaconda3 by following the instructions on
https://conda.io/docs/index.html. TC can then be installed as
follows:

$ conda install -y -c pytorch -c tensorcomp tensor comprehensions

E. Experiment Workflow

Scripts are provided to run different frameworks.

1) COGENT:
To run the benchmark for Fig. 4 and 5:
$ cd cogent
$ bash ./bench tccg.sh

To run the benchmark for Fig. 6 and 7:
$ cd cogent
$ bash ./cogent/bench fb.sh

2) NWChem:
To run the benchmark for Fig. 4 and 5:
$ cd nwchem-tccg
$ bash ./bench tccg.sh
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3) TAL-SH:
To run the benchmark for Fig. 4 and 5:
(In the directory where you have built TAL-SH,)
$ bash ./test talsh.x

4) Tensor Comprehensions:
For TC with tuning, to run the benchmark for Fig. 6, 7 and 8:
$ cd fb-tc/fb-w-tuning/
$ bash ./bench fb w tuning.sh

For TC without tuning, to run the benchmark for Fig. 6 and 7:
$ cd fb-tc/fb-wo-tuning
$ bash ./bench fb wo tunning.sh

F. Evaluation and Expected Result

We expect the performance results to be close to those reported in
the paper (Fig. 4 - 8). The results of the benchmark will be printed
out in text files.
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