A Code Generator for High-Performance

Tensor

Contractions on GPUs

Jinsung Kim*, Aravind Sukumaran-Rajam*, Vineeth Thumma®*, Sriram KrishnamoorthyT,
Ajay Panyala®, Louis-Noél Pouchet!, Atanas Rountev*, P. Sadayappan*
*The Ohio State University, Ohio, USA
{kim.4232, sukumaranrajam.l, thumma.6, rountev.1, sadayappan.1}@osu.edu
TPacific Northwest National Laboratory, Washington, USA
{sriram, ajay.panyala} @pnnl.gov
fColorado State University, Colorado, USA
pouchet@colostate.edu

Abstract—Tensor contractions are higher dimensional general-
izations of matrix-matrix multiplication. They form the compute-
intensive core of many applications in computational science
and data science. In this paper, we describe a high-performance
GPU code generator for arbitrary tensor contractions. It exploits
domain-specific properties about data reuse in tensor contrac-
tions to devise an effective code generation schema, coupled with
an effective model-driven search, to determine parameters for
mapping of computation to threads and staging of data through
the GPU memory hierarchy. Experimental evaluation using a
set of tensor contraction benchmarks demonstrates performance
improvement and/or significantly reduced code generation time
over other state-of-the-art tensor contraction libraries and code
generators.

Index Terms—Code Generation, Tensor Contractions, GPU
Computing

I. INTRODUCTION

Tensors, higher dimensional analogs of matrices, represent
a key data abstraction for many applications in computational
science and data science [1]-[7]. Tensor contractions are
higher dimensional analogs of matrix-matrix multiplication.
In comparison to matrix multiplication, a significant chal-
lenge in creating an efficient library for tensor contractions
is the wide range of usage scenarios to be considered. For
matrix-matrix multiplication, library implementations need to
only address four cases: each of the input matrices may
be specified as non-transposed or transposed for the matrix
product. This corresponds to the two possible index positions
for the summation index in the two input tensors: normal
non-transposed matrix multiplication has the summation index
in the second (column) index for the left matrix and the
first (row) index for the right matrix. For contractions of
two 3D tensors, and a single contraction (summation) index,
there are 846 (3! x 3! x 4!) possible cases. If the contraction
has two contraction indices, there are 72 cases. With higher
dimensional tensors, the number of cases grows exponentially.
Tensors of up to six dimensions are commonly encountered
in ab initio quantum chemistry models such as the CCSD(T)
coupled cluster method [8].

Artifact available at: https://doi.org/10.6084/m9.figshare.7403732

978-1-7281-1436-1/19/$31.00 © 2019 IEEE

85

The common solution in use today for performing tensor
contractions is to first perform suitable index permutation, i.e.,
layout transformation of one or both input tensors, to move
all contraction indices to the left end or the right end, so
that the needed sums of products for the contraction can be
performed using matrix-matrix multiplication. A further final
index permutation of the result from the matrix multiplication
may also be required. However, as elaborated in the next
section, this approach, referred to as the TTGT (Transpose-
Transpose-GEMM-Transpose), incurs several disadvantages.

In this paper, we present an approach to perform direct
contraction of tensors on GPUs without the creation of any
transposed intermediate matrices. In addition to reducing
memory usage by avoiding the use of intermediate tensors, we
show that this approach results in improved performance. We
employ a code generation strategy that utilizes properties about
reuse directions in the iteration space of a multi-dimensional
tensor contraction to devise an effective strategy for mapping
of computations and orchestration of data movement through
the GPU memory hierarchy. The code generation schema
is designed to address key performance considerations for
GPUs: utilization of significant concurrency to tolerate global
memory access latency, coalesced access to global memory
to maximize achieved bandwidth, and maximization of data
reuse within registers and shared memory. An effective cost
model is developed for the amount of data movement from/to
GPU global memory and is used to rapidly identify mapping
parameters from among a large set of alternatives.

The quality of the generated GPU code is assessed on
the 48 tensor contractions in the TCCG benchmark suite [9],
which has been used in other recent studies. We compare the
achieved performance against TAL_SH [10], a state-of-the-art
tensor contraction framework for GPUs that uses the TTGT
approach, and with several recently developed CPU-based
tensor contraction frameworks. We demonstrate significant
performance improvement over available alternatives. On an
Nvidia Volta V100 machine, we achieve up to 5.1x speedup,
with a geometric mean of 1.7x, over the NWChem code
generator for tensor contractions, and up to 19.3x speedup,
with a geometric mean of 4.4x, over TAL_SH. On an Nvidia

CGO 2019, Washington, DC, USA
Research Papers

Pascal P100 machine we achieve up to 4.0x speedup, with
a geometric mean of 1.69x, over NWChem’s code generator,
and up to 13.7x speedup, with a geometric mean of 4.0x,
over TAL_SH.

II. BACKGROUND AND MOTIVATION

Consider the following contraction of two 4D tensors to
produce another 4D tensor:

Cla,b,c,d) = Ala, e, b, f] * Bld, f,c, €] (D

The notation for tensor contractions uses the so-called
Einstein index convention, whereby indices that do not appear
in the left-hand side tensor are all summation (contraction)
indices. So the above contraction represents the computation:

Cla,b,e,d] = ZA[a,e,b, f1* B[d, f,c,€]
e, f

Indices e and f are the contraction indices. The remaining
indices (a,b,c,d) appear in the left-hand tensor and are called
the external indices. This computation can be performed by
first creating two temporary tensors TA and TB by performing
index permutation as follows:

TAla,b,e, f] = Ala, e, b, f]; TBle, f,c,d] = B[d, f,c, €]

Consecutive indexes in a tensor can be logically treated as
a single virtual index with range equal to the product of the
ranges of the original tensor indices. Thus, the 4D tensor
TAla,b,e, f] may be equivalently viewed as a 2D matrix
M Ali, §], where the range of index ¢ in the matrix M A is the
product of the ranges of ¢ and b in the tensor T'A, and j has a
range equal to the product of the ranges of e and f. Similarly,
TBle, f,c,d] may be viewed as M B[j, k|, where index k in
M B is a virtual index combining ¢ and d in TB. M A and
M B can be efficiently multiplied using a high-performance
library routine to produce M Ci, k], which is equivalent to
TCla,b,c,d].

The above approach is widely used in practice today and is
often referred to as the TTGT (Transpose-Transpose-GEMM-
Transpose) approach: perform two transposes for the input
tensors, followed by GEMM (GEneral Matrix Multiplication)
and a final transpose of the result. However, it has some
disadvantages:

o Index permutation can incur non-trivial overheads, espe-
cially if done naively by a set of nested loops to perform
the data movement, due to high-stride access to either
source or destination.
The resulting matrices may be highly rectangular with
one dimension being much smaller than the other. Library
matrix-multiplication routines often achieve much lower
performance for such matrices than with square matrices.
It requires extra temporary space to hold the transposed
matrices.

We present an approach that address all these challenges.
The tensor contraction in Eq. 1 can be implemented as a
6D nested loop over the indices {a,b,c,d, e, f}. However,

86

such a direct implementation will suffer from low perfor-
mance because of high-stride access to tensors and insuf-
ficient exploitation of data reuse. Since tensor contractions
represent a sub-class of affine loop computations, polyhedral
optimizing compilers like PPCG (The Polyhedral Parallel
Code Generator) [11] can be used to generate transformed and
optimized code for GPUs. However, the very large number of
possible tiled code configurations and the simplified linear cost
models incorporated in general-purpose polyhedral compilers
makes it infeasible to generate code that achieves very high
performance. The Tensor Comprehensions framework from
Facebook [12] incorporates a powerful polyhedral optimizer
and GPU code generator along with an auto-tuner to perform
extensive search in the huge configuration space of GPU
programs corresponding to different ways of mapping the
elementary arithmetic operations in a tensor contraction onto
GPU threads.

In contrast, our approach to GPU code generation for an
arbitrary tensor contraction exploits a key property that is true
of any arbitrary tensor contraction: each loop index variable
will occur in exactly two out of the three tensors: in the
above example, indices {e, f} occur in the input tensors,
{a,b} occur in A and C, and {c,d} occur in B and C. A
consequence of this property is that each loop index represents
a reuse dimension for exactly one of the three tensors, the
tensor that is not indexed by it. For different iterations of that
loop, exactly the same set of elements of that tensor will be
repeatedly accessed. This key property allows a grouping of an
arbitrary number of loop indices in a high-dimensional tensor
contraction into three groups, based on the tensor for which a
loop index is a reuse direction. As we explain in greater detail
in the rest of the paper, the exploitation of this property enables
the development of a greatly pruned configuration space and
an effective domain-specific work-to-thread mapping strategy.
Further, we develop a cost-model that can quantify needed data
movement in the GPU’s memory hierarchy for any specific
mapping choice, thereby enabling a model-driven pruning of
code configurations. Since the peak floating-point performance
of a GPU is orders of magnitude higher than the peak memory
bandwidth, effective exploitation of data reuse in registers and
shared-memory is essential to achieve the best performance.

For tensors that are much larger than shared-memory and
register capacity, judicious blocking (tiling) of the computation
to work on slices of the multi-dimensional tensor at a time is
necessary. In summary, the GPU tensor contraction problem
can be formulated as follows: Given an arbitrary tensor
contraction, how should the total work be partitioned among
a suitably sized collection of thread blocks and how should
the data movement in the memory hierarchy be orchestrated?

In our experimental evaluation, we contrast the significant
benefits from such a domain-specific code generation strat-
egy to that using a general-purpose polyhedral optimizer in
conjunction with auto-tuning, as done by Facebook’s Tensor
Comprehensions framework [12].

Ngx N,
()
s_B (SMEM)
- .
. TyxT, =
T X
TeXTf [4(1) 2\
g_B
Nox N (GMEM)
e f
()
T,x1, ©
= ®
= T XTyp| | (1), }TaXTb
X
= s AGSMEM) / g.C(REG) P
gA e g¢
(GMEM) 9-A (REG) (GMEM)

Fig. 1. Illustration of tiled execution of tensor contraction in Eq. 1

III. GPU KERNEL EXECUTION STRATEGY

In this section, we describe our approach to mapping a
tensor contraction to GPU resources (shared memory, registers,
and thread blocks). We illustrate our approach using the tensor
contraction in Eq. 1. The input to the code generator is
an ordered list of indices for the input and output tensors,
and a representative extent (size) for each index. While the
generated code will execute correctly for any problem size, a
representative problem size is used for performance modeling
that drives specific choice of tilesize/blocksize parameters for
mapping the computation to GPU threads and thread blocks.
Output CUDA code is generated' with parametric extents for
the tensors.

Fig. 1 illustrates the overall approach to mapping the
computation to the GPU for the tensor contraction example
in Eq. 1. The generated GPU kernel incorporates these four
steps:

1) Load slice of input tensors from global memory (GMEM)

to shared memory (SMEM);

2) Load a subset of input tensor slices from SMEM to
registers (REG);

3) Compute contributions to a slice of the output tensor
in registers, using an outer-product scheme (explained
below)

4) Store the finalized elements of the slice of the output
tensor from REG to GMEM

The first three steps are repeated until all contributions to
a given data slice of the output tensor are completed. Alg. 1
shows the general structure of the GPU kernel code, with some
details of index arithmetic being elided (shown in “..”) to
simplify the pseudo-code.

The definition of each symbol used in the following sections
is provided in Table I.

A. Register Tiling
The trends in GPU architectures point to increasingly large
register files. With current Nvidia GPUs, the total storage

'OpenCL code generation is planned for the future, but is not done at
present.

87

TABLE I

TERMINOLOGY
Symbol Description
N; extent of dimension %
T; tile size along dimension ¢
TB;, TBy dimensions mapped to thread block X and Y*
T By, product of extent of internal indices
REG;, REG, X and Y dimensions of the 2D register array
Blk, X dimension of grid®

Algorithm 1: Pseudo Code of a Tensor Contraction

Data: g_C, g_A and g_B are global memory for A, B and
C, respectively.

__global__ void kernel_tc(g_C, g_A, g_B)

_ shared__ double s_A[T, X Ty][Te x T];

__shared__ double s_B[T. x Tf][Tc x Tql;

double r_A[T3]; // T X 1 column vector

double r_B[T%]; // 1 x T. row vector

double r_C[Tu1[T¢]; // Ty x T, register tile

/] (Ne X Np)J(T. % Ty) Steps

// i is an index used for internal indices

for i =0to [(Ne x Ng)/(Te x Ty)] do

// (1) Load Inputs from GMEM to SMEM

11 for j = 0 to T}, do

12 | s_A[—][—]=

13 for j = 0 to 7. do

14 | s_B[il[j] = g B[—I;

15 __synchronize();

16 for j = 0 to (T x Ty) do

17 // (2) Load Inputs from SMEM to REG

18 for k = 0 to T}, do

19 | r_A[k] = s_A[k][—]:

20 for k = 0 to T.. do

21 | r_B[k] = s_B[—][k];

2 // (3) Outer-Product

23 for k = 0 to T3 do

24 for / = 0 to T. do

25 | r_ClkI[I] = r_A[k] x r_B[I];

26 __synchronize();

27 // (&) Store the Output from REG to GMEM

28 for j = 0 to T}, do

29 for k = 0 to 1. do

30 | & C[—] =r_C[jllk];

e N A R W N -

_A[—;

capacity available in registers is much larger than the shared
memory in each streaming multiprocessor (SM). Because
accumulating values in registers is faster than read-modify-
writes into shared memory, each thread holds a set of elements
of the output tensor in its registers and uses shared-memory
to buffer slices of the input tensors. Specifically, each thread
block handles a hyper-rectangular slice of the output tensor,
organizing the complete computation as a sequence of tiles in
the tensor contraction’s iteration space.

Let N; and T; denote the extent of a dimension ¢ and the
tile size along dimension ¢, respectively, (1 < T; < N;). For
Eq. 1, each thread block computes a portion of C of size
[17s, where s € {a,b,c,d}, held in registers. In order to do
so, the thread block requires T, X N, x T, X Ny and Ty x
Ny x T, x N, elements of A and B, respectively. The number

a, b {a} > Tx,{c} > Ty
¢ d T xTy {b} > Rx,{d} » Ry
< T, .~
& 4| 5 6|7 —
[1 | Te T " Register Tile
12 13 [14| 15
Data Space T, Thread Block

Fig. 2. Illustration of mapping of elements of result tensor C' to threads and
registers for contraction in Eq. 1

of thread blocks to execute the entire contraction is given by

[T1N:/T5].
B. Mapping to Thread Blocks and Threads

The threads in a thread block are organized into a 2D block
of size T'B, x T'B,. Threads operate on a logical 2D array
of registers, REG, x REG,. Then, each thread computes
multiple elements, REG, x REG,, through register tiling.
Thus, a thread block deals with (I'B, x T'By) x (REG, x
REG,) elements. For Eq. 1, from the data-space perspective,
a thread block is in charge of T, x Ty x T, x Ty elements
of C, which should be mapped onto the 2D space of threads
and 2D register tiles. Then, the tile sizes and the mapping of
dimensions to thread blocks and register tiles determines the
size of the thread block and the size of the register tiles.

Fig. 2 illustrates an example of a mapping choice and
tile-sizes, where the mapping is {a} — Tz, {c¢} — Ty,
{b} — Rz, {d} — Ry, and tile sizes are T, = T, = T, =
Ty = 2. Then, the output data space of a thread block will
be 16 elements, where a and c are the fastest varying indices
(FVI) along z-axis and y-axis, respectively. According to the
mapping and the tile sizes, a thread block is composed of 4
threads (T, x T,) and each thread is associated with a register
tile of size 2 x 2 (T, x T}y).

C. Efficient Data Movement

Coalesced Loading of Input Tensors: For Eq. 1, each
thread block requires slices of both input tensors A (T, x
Ne x Ty x Ny) and B (Ty x Ny x T, x N.), as shown in
Fig. 1. Because of the limited size of shared memory, instead
of loading a slice of size N. and Ny, a thread block loads
To x Te x Ty x Ty and Ty x Ty x T, x T, elements of A
and B, respectively, at each step. The choice of these tile
sizes determines how much shared memory is required by each
thread block, and the choice must be made in a manner that
balances data reuse and occupancy of SMs.

For example, in Eq. 1, each thread block requires a hyper-
rectangle of A with T}, x T, x T x T¢ elements, which means
that T}, elements are contiguous in global memory because a
is the fastest varying index (FVI) in A. This leads to coalesced
memory access for A, as shown in Fig. 3. In the figure, we
assume that N, = N, = N = Ny =16, T, = 16, T, = 1,
Ty, = 4, Ty = 16 and we have 16 x 16 threads in a thread

88

T,= 16
—
1CEZZZZZ] : 16 Continuous Elements in GMEM based on Tile Sizes
,where T, =16, T, = 1, T,= 4 and Ty = 16 in A[a, e, b, f]

(2) Store Inputs to SMEM

(1) Read Inputs from GMEM

o T,-N,=16 1
é‘/} — 4 -«
&qb =8 ﬁ
: =
iF ' 2
° = g8 =
i, I
z 16 g
Thread Block : s_A
(16 x 16) : (SMEM)
| —
T.x Ty= 16

gA
(GMEM) D Nere

Fig. 3.
tiles

Tlustration of mapping of dimensions to thread block and register

block. Thus 16 contiguous threads (1) load 16 (7;) contiguous
elements from global memory (g_A) and then (2) store them
to shared memory (s_t2). In contrast, for tensor B, which
requires Ty X T x T, x T, space, T; elements are contiguous
in global memory because d is the FVI. Based on the above
assumption, 16 contiguous threads (1) load four groups of four
(T};) contiguous elements from global memory(g_v2) and then
(2) store them to shared memory(s_v2). Global memory access
for B can be expected to be les efficient than the access to A
— the tile sizes along FVI in the input tensors is an important
factor for efficient coalesced global memory access.

Transfer to Registers and Tensor Contraction: After
a thread block loads slices of the input tensors to shared
memory, each thread loads two sub-slices of the data from
shared memory to registers. Specifically, each thread loads a
column-vector of the left input tensor A and a row-vector
of the right input tensor B to perform an outer-product to
contribute additive updates to the elements of the output tensor
assigned to the thread. For example, in Eq. 1, each thread loads
a Ty x 1 column-vector of A and a 1 x T, row-vector of B
to contribute to 73 x T, output elements in a register tile, as
shown in Fig. 1.

Coalesced Storing of Output Tensor: After contracting
input tensors along the full extents of the contraction indices
(N, x N f), each thread stores the results from registers to
global memory. For Eq. 1, each thread block stores T, x T x
T. x Ty elements of C' in Fig. 1. Furthermore, as shown in
Fig. 2, the mapping {a} — T B,, where a is the FVI in the
output C, indicates that 7T, contiguous threads in a thread
block handle 77, contiguous elements of C' in global memory.
Thus, the tile size on the FVI along T'B, determines the
number of elements of C' that are coalesced in the store from
registers to global memory.

TABLE II
PARAMETERS OF THE GENERATED GPU KERNEL

Name Description

1. TB, external indices mapped on 1B,
1L.TB, external indices mapped on 1B,
1. TB) internal indices mapped on 7' B
I_Tiles tile sizes of indices

IV. PARAMETRIZED CODE GENERATION AND
OPTIMIZATION

For a given tensor contraction expression and a selected
set of tile sizes and mappings, the code generator creates a
GPU kernel with structure as shown in Algorithm 1. Table II
enumerates the code generator’s kernel parameters. 1_T'B,,
1_.TBy, and 1_TB;, indicate lists of mappings. I_Tiles is a
list of index tile sizes. Specifically, according to the inputs—
a tensor contraction expression and its representative prob-
lem size—the code generator determines the set of kernel
parameters in Table II before generating the CUDA kernel
and its driver codes. A challenge in generating efficient GPU
kernels for tensor contractions is to determine the tile sizes
and mappings, which impact performance by determining
coalesced memory access and occupancy.

A naive approach to select the kernel parameters would
involve auto-tuning the parameters across the full search
space. Typically, such a search begins by running the kernel
using a selected random configuration to measure the actual
performance. The next configuration to be selected is guided
by an algorithm (e.g., genetic algorithms) or an ensemble
of algorithms that drive the search direction towards the
configuration with the best performance. However, for tensor
contractions, this search space can be very large. For example,
let us assume that there are five choices of tile sizes (e.g.,
{1,2,4,8,16}) and five dimensions for mapping: T'B,, T B,,
TBy, REG,, and REG,, where T B is for an internal
index and T'B,, T B,, REG,, and REG, are for external
indices. The total number of configurations possible can be
computed as |mapping| x |tilesize|, where |mapping| is the
number of mapping choices and |tilesizes| is the number of
tile-size choices. For Eq. 1, the number of mapping choices
is |mapping] = 4* x 2!, because there are four external
indices and two internal indices and they can be mapped
onto several dimensions. The number of tile-size choices is
|tilesize] = 6° for six indices. Then, Eq. 1’s total space
will be (4* x 2) x (65) = 3,981,312. The latter does not
even consider the possibility of merging dimensions (helps
to achieve coalescing if the extent of each dimension is
very small), splitting each dimension into multiple dimensions
(helps ensure that there are enough thread blocks), or thread
coarsening; adding these choices will further increase the
search space exponentially.

Instead of executing a large number of code versions and
selecting the best, our approach relies on a cost model that
efficiently rank orders the search space without running the

&9

code. The cost model is based on various factors, such as
total number of memory transactions. First, we enumerate all
possible combinations of kernel parameters that do not violate
any hardware constraints (e.g., using more shared memory
than available) or performance constraints (e.g., very low
parallelism). Such configurations are identified using a set
of rules described in Section IV-A. Each configuration’s cost
is then estimated using a cost model based on DRAM data
movement from inputs and output. The cost model is explained
in detail in Section IV-B.

A. Enumeration with Pruning

The entire search space consists of different tile sizes
and choices. First, we explain the constraints we apply to
choose the tile sizes and mapping to reduce the search space.
Hardware constraints reduce the search space by eliminat-
ing configurations that do not satisfy the hardware limits
and the performance constraints reduce the search space by
eliminating configurations that are expected to achieve low
performance.

1) Hardware Constraints: The tile size choice affects the
amount of shared memory and registers required. Larger tile
sizes allow better reuse; however, they are constrained by
available hardware resources. The shared memory capacity
required for the inputs is (T'B, x T By, x REG,) + (T By x
TBj x REG,) and the register capacity for storing a slice of
the output tensor is (REG, x REG,). For a configuration to
be valid, the shared memory and registers required should be
less than hardware capacity.

2) Performance Constraints: To maximize reuse, external
indices are preferentially mapped to T'B,, and T'B,,. However,
if the fastest varying index (FVI) of either input tensors
corresponds to an internal index, excluding it will lead to
uncoalesced accesses that significantly reduce performance.
Hence, while choosing indices mapped to T'B,, or T'B,,, we al-
ways include the FVI of the input tensor. Similarly, for output
coalescing, we also include the output FVI to the dimensions
mapped to shared memory. In addition to coalescing, we
ensure that the number of thread blocks is above a threshold. A
low number of thread blocks adversely affects load balancing.
If the number of thread blocks is too low, then some SMs
may be work starved (low occupancy). For example, consider
a tensor contraction where the size of tensors is small. In
this case, using the maximum possible register tile size will
achieve better reuse. However, higher register tile sizes reduce
the number of thread blocks, potentially resulting in reduced
performance. The shared memory size and number of registers
per thread affects achievable occupancy; hence the tile sizes
are also constrained to ensure good occupancy.

3) Enumeration Algorithm: In order to maintain good occu-
pancy for double precision, the tile size choices for T'B,, T'B,,
and T' By, are limited to {4, 8,16} and the choices for REG,
and REG, are limited to {2,4,6,8}. For each combination
of TB,, TB,, TBy, REG,, and REG,, different mapping
and tile-size choices are explored that respect the hardware
and performance constraints.

In order to determine possible configurations, given a tensor
contraction and a representative problem size, we first explore
different choices of external indices in the input tensor that
is indexed by the output tensor’s FVI, for T'B, mappings
and tile sizes of indices mapped onto 7'B,. We then explore
choices of the other external indices that will be mapped on
REG,. After mapping T'B,, and T'B,, if there exist unmapped
external indices, they will be mapped on Blk,. Similarly, for
the another input tensor, we explore choices of external indices
for Ty and then Ry.

All remaining external indices are mapped to thread blocks
Bx. They are technically mapped on T'B, or T'B, with tile-
size of 1. Because each thread is responsible for fully pro-
cessing REG, x REG, elements, all the remaining internal
indices are mapped on the serial dimension, 7' Bjy. The code
generator ensures that an external index is only mapped to one
dimension.

Algorithm 2 shows the detailed description of T'B, mapping
and tile-size choices. Because of the performance constraints,
we first map the output’s FVI on T'B,, as T'B,’s FVI (Line 11
to Line 21). When we map an index to a dimension in Line 10,
we determine its tile-size by using its representative problem
size. So we calculate a candidate for the dimension size in
Line 11. However, the candidate size might exceed the target
T B, dimension size, 1T'B_size. Then, we make its tile size as
big as possible in Line 14. These choices are stored in kernel
parameters in Table II. For mapping T B,,, we use two kernel
parameters such as I_T'B, and 1_Tiles. Indices mapped to T'B,,
are stored in 1_T'B, and the tile sizes of indices mapped to
TB, are stored in 1_Tiles.

After mapping an external index to T'B,, the candidate size
can be less than the target T'B, size, which means that other
external indices can be mapped on 7'B,,. In order to enumerate
all possible cases, we start from the input’s FVI to the Slowest
Varying Index (SVI) (Line 3) using s_idx. The other external
indices are handled in two parts: from s_idx to the SVI and
from O to s_idz — 1, in Line 24 and Line 44, respectively.

After determination of T'B,, choices for REG, are made
by using unmapped-external indices in the input in Line 47. In
enum_X_REG(), we enumerate all possible mapping cases for
REG, with different target REG, dimension sizes such as
{2,4,6,8}, based on a specific mapping case for T'B,, as deter-
mined in Line 18 or 37, with a specific target T'B, dimension
size determined in Line 2. The information composed of the
mappings, T'B,, REG, and tile sizes for the indices mapped
on T'B, and REG, are stored in [_partial_config_X.

Algorithms to determine the mapping choices for REG,,
TBy, REG,, and TB), are similar to Algorithm 2, except
for handling the output’s FVI. There are three different partial
configurations information such as (1) TB,, and REG,, (2)
TBy and REG,, and (3) TB;,. All possible configurations
can obtained by taking the Cartesian product of them. Before
running the cost-model for all possible configurations, they are
pruned using our constraints. In the current code generator, for
the benchmarks evaluate, around 97% of the configurations
were pruned

Algorithm 2: Enumerating Mapping and Tile-Sizes for
TB,

Input: A, C, [_sizes_TB

Output: [_partial_config
1 def enum_X_TB ([_size_TB, |_size_REG, A, C):

2 for TB_size in [_size_TB :
3 for s_idx in range(0, A.len) :
4 v.TB, =1
5 v_TB,_prev = 1
6 1_.TB, =1]
7 1_Tiles = []
8 is_mapped = False
9 // A is assumed to have Output Tensor’s FVI
10 1_T B, .append(C[0])
11 v_TB, x= C[0].size
12 if v._TB, >= TB_size :
13 if v_T'B, > TB_size :
14 blk_size = TB_size / v_T'B,_prev
15 1_Tiles.append([C[0].name, blk_size])
16 else:
17 | 1_Tiles.append([C[0].name, C[0].size])
18 is_mapped = True
19 else:
20 ‘ 1_Tiles.append([C[0].name, C[0].size])
21 v_TB,_prev x= C[0].size
22 if is_mapped == False :
23 // from s_idx to A.len
24 for ¢_idx in range(s_idx, A.len) :
25 if Aft_idx] is internal :
26 | continue
27 if Alt_idx] == C[0] :
28 | continue
29 v_TB, x= A[t_idzx].size;
30 if v_T' B, >= TB_size :
31 1_T B.append(A[t_idx])
32 if v_T' B, > TB_size :
33 blk_size = TB_size /
v_TB,_prev;
34 1_Tiles.append([A[t_idx].name,
blk_size]])
35 else:
36 1_Tiles.append([A[¢{_idx].name,
Alt_idz].size]])
37 is_mapped = True
38 break
39 else:
40 1_T B, .append(A[t_idx])
41 1_Tiles.append([A[t_idz].name,
A[t_idx].size]])
42 v_TB,_prev = A[t_idx].size;
43 // the remaining indices from 0 to s_idx
4 for t_idx in range(0, s_idx) :
45 | // Similar from Line 24 to Line 42
46 if is_mapped == True :
47 I_partial_config_X =
enum_X_REG ([_size_REG, A, |_TB,,
I_Tiles)
48 return [_partial_config_X;

B. Cost Model

The purpose of a cost model is to quickly predict the
performance of a configuration with good accuracy. Even
though pruning helped to reduce the search space, running
each remaining configuration is still expensive. Hence our

90

cost model is based on estimated amount of data moved
from/to the global memory (DRAM). The data movement
traffic is calculated using analytical models parametrized by
kernel parameters such as tile sizes and mapping choices for
indices to thread blocks and register tiles. Along with tile size,
the model also considers the mapping choice to determine
the amount of coalesced memory access. The cost predicted
by our analytical model is well co-related with the actual
performance.

The best performing tile sizes and mappings are not only
dependent on the contraction but also on the problem size.
In order to guide tile size selection, the user is expected
to provide a representative problem size as an input. When
the code generator receives a set of representative problem
sizes, it can generate different code versions targeted at each
representative problem size. We note that the code generator
does not require the exact problem size at compile time but
only a representative size, for the purpose of performance
modeling and parameter optimization. Although the kernel is
selected at runtime based on the closest representative for the
performance, generated kernels can support arbitrary problem
sizes.

The cost model includes the number of memory transactions
to load both input tensors and to store the output tensor.
The cost model assumes that the size of each global memory
transaction is 128 bytes (16 double precision elements) and
each transaction is aligned to a 128 byte boundary.

According to kernel parameters such as mappings and tile-
sizes, the input and output data spaces of a thread block
and the number of threads in a thread block. According
to the GPU kernel execution strategy in Section III, when
the generated CUDA kernels load an input tensor, threads
along the x-axis will load elements along an input’s FVI
in order to enable coalesced memory access. The number
of transactions from a row of threads within a thread block
is determined as shown in Algorithm 3. In Line 2, helper
function cal_Cont() returns the number of contiguous elements
in a hyper-rectangle of A in global memory. The hyper-
rectangle of A is based on tile sizes of indices in A. In
Line 3, helper function cal_Size_T B, () returns the number of
threads along the x-axis. Then, min(size_Cont, size_T B,)
will be the maximum number of contiguous elements in
the hyper-rectangle of A in global memory. Each row of
threads in a thread block reads size_T'B, elements with
size_Tx/min(size_Cont, size_TBy) numIransTx
transactions, in Line 8. We can load size_Tx X size_T'DB,
elements at once with numTransTB, x size_TB,
numI'ransT' B transactions (Line 9). T'B, xT By, x REG,, is
equal to a partial slice of a hyper-rectangle of an input tensor,
as per the approach described in Section III. At each step,
we need numTransT B X size_ REG, = numTransStep
transactions (Line 10). For all contributions, a thread block
requires numTransStep x numSteps (Line 11). Finally,
based on the representative problem size and tile-sizes, we
also calculate the number of thread blocks (Line 7), resulting
in the total number of the estimated transactions for loading an

91

input tensor (Line 12). Similarly, the number of transactions
to store the output is estimated.

Algorithm 3: Calculating DRAM Transaction Costs
for Tensor A

Input: config: a configuration

Output: numTransTotal: the number of estimated

transactions to load A

def calculate_A_cost (A, C, config):
size_Cont = cal_Cont (A)
size_T B, = cal_Size_T B, (config, A)
size_ REG, = cal_Size_REG, (config, A)
size_T'B, = cal_Size_T DBy (config, A)
numSteps = cal_Steps (config)
numTBs = cal_Num_TBs (config, C)
numTransTx = size_T B, / min(size_Cont, size_T'B,)
numTransTB = numTransT B, X size_T'B,
numTransStep = numTransTB x size_ REG
numTransFullStep = numTransStep X numSteps
numTransTotal = numTransFullStep X numTBs
return numTransTotal

1
2
3
4
5
6
7
8
9

10
11
12
13

V. EXPERIMENTAL RESULTS

In this section, we present an experimental evaluation
of the code generated by the model-driven code generator
(COGENT: COde GENerator for Tensors). The experiments
were carried out on two GPUs: an Nvidia Pascal P100 GPU
(56 Pascal SMs, 64 cores/MP, 16GB global memory) and an
Nvidia V100 GPU (80 Volta SMs, 64 cores/MP, 16GB global
memory). All the codes were compiled using CUDA 9.0 and
GCC 6.2. All benchmarks were run 3 times and the average
is reported.

We used the benchmarks in the TCCG benchmark suite [13]
compiled by Springer et. al [14], using the same problem sizes
as used by them in their paper. The TCCG benchmark suite is
comprised of 48 different tensor contractions, representing a
number of specific contractions that arise in real applications.
It includes several compute-intensive use-cases from quantum
chemistry applications: 18 contractions from the CCSD(T)
method (31st to 48th in Fig. 4 and Fig. 5), 19 contractions
from the CCSD method (12th to 30th in Fig. 4 and Fig. 5), 3
contractions used to transform a set of two-electron integrals
from an atomic orbital basis to a molecular orbital basis (9th
to 11th in Fig. 4 and Fig. 5), and a set of 8 contractions involv-
ing tensor-matrix multiplication, representing computations in
machine learning (1st to 8th in Fig. 4 and Fig. 5).

We compared COGENT with TAL_SH [10] and the
code generator used to synthesize GPU kernels for ten-
sor contractions in the production computational chemistry
suite. NWChem [15]. TAL_SH is based on the TTGT
(Transpose-Transpose-GeMM-Transpose) approach. We con-
figured TAL_SH to use CuTT to perform transposition as it
achieved the best performance. NWChem’s code generator is
based on direct tensor contractions on GPUs. The CCSD(T)
implementation in the production NWChem distribution is
generated using this code generator.

3000 T T T 1 T 1T 1T T T T T T T T T T —T7
COGENT —e—
7,/9\9/6\ NWChem —&—
SH —a—
2000 TAL-SH i
7]
2 v
o
-
& a .
. E W \:/-) :
A —A—b—A—ap—b—p 54
0.;“““ Il I S My |
O T O 0 O % T B T T T £ 00 09 0T 9T ©®© O OT ®© O OT O O O O OO O OO O OO OO 6 o c oo
T O 002 0 9%« 2 00000 O0OTT LT L O OT 0O 0O 00T 0O S CA T EO 08 CEODODODODDOD DD
£ A 8 e O 8T Q2 0O M T T L O L N 05 T R 098 2 T 0T KL EHES 00 0T T T Y R Y E S S 00 0
S 8 8 8T g€ g o @ © &1L LT L OO0 1 T v Qi 2% ¢ ww Q5 029290 g0g00? @93 T T g g T
B0 2908 88 PV T BV T QT T T O o & b ol o b 5635 @ odbdobadsaooldosbbdsddil
20 28 22920 g9 o0l 08P E 6O 00 0oTITeLEBLIFZG/THgTeLo0omaoggI3T gL e oo
6 68T 202900 9 P OGg T QHH 60T LLLLILBLLT TR 9o L2222 P2cvT O oo 888
223338 LLTTE 882CERII 232200 v esl23300288029202022295
§488588%8%8¢% 838838388388 8228832382888y
© © © @ ®@ © @ © @ © @ © © © O © O O 0O 0O 0O 0O 0O 0O 0O O 0O O 0O O O O
2 8 80008089 9580808889%884828
© ®©@ @ © © © © @© @© (U @© @©@ © © © © © ©
Fig. 4. TCCG Benchmark on P100 (Pascal)
5000 T 1 1 T 1T T T T T T —T7
ﬂ COGENT —e—
4000 NWChem —&— |
/‘k\ TAL-SH ——
7]
2 3000
o
z
& 2000 &
1000
A A s
o i b b I S S E— l 0]
U'UOQQ”G'US'U'U'U.QO.Q.QO'O.Q'UOOd.)ﬁd.)OU'UOOOOO.QOU.QOO.QO.QNO.QNO.QN
'U.Dﬂ.)-n?.".'.00OO-QO'U'U.Q'U.DUQ'Ud)00DOQUODNNDNNDNNGUU’UGUUUU’
G b G DT ET LA FT T LAY 0585252888585 502 00TV 5552088
EE @ O & ® R - R b e N2 R2EENT RN PP 000000 ? P9 DTD
B 0 208 3 a9 1 & & T T OT T T Qo b bt b b b 5B b O & b o & & bbb OaHdb o s & &
QT 2 228 & 08 820408 GCEE 68 PA A 00T T & ke e 5558820 680 07 g o a2 9o C
S 6T T QT OB QO DG E O L AL L LT OO OO QO C QR & ® D990 0D S S s &8 8
D D L A 1 ||000UNNmNm“mNammo@ﬂ)@n—u—n—;—g—q—ﬁﬁﬁ@@@»—n—u—
S8 2 8238283828388 S8R0 o0 BV BBV VL2222
8888884%¢ 8388888388888 8232252583853 8383%
© © ®© @ @ @ @ @ @ ©@ @ @©@ © © O O O O 0O 0 0 0 0O 0 0O 0O 0O 0 0 O O ©
29 0 0 0 09 00909 0 0 Q090 0 0 Q90 0000
© ®©@ @ @ ©@ @ © (T © U T @© © ®© © © © ©
Fig. 5. TCCG Benchmark on V100 (Volta)

Fig. 4 and Fig. 5 compare performance on an Nvidia Pascal
P100 GPU and a V100 GPU, respectively. For the 18 CCSD(T)
contractions, the time spent to transpose the input tensors
and output tensors slows down TAL_SH. Hence, TAL_SH
only achieves around 200 GFLOPS and 390 GFLOPS on the
P100 and V100, respectively. The NWChem Code Generator
achieves 520 to 1050 GFLOPS on the P100 and 1100 GFLOPS
to 1900 GFLOPS on the V100. However, due to superior map-
ping and tile size selection, COGENT attains 1050 GFLOPS to
1300 GFLOPS on the P100 and from 1800 GFLOPS to 2100
GFLOPS on the V100. For the 4D = 4D * 4D contractions
(the 12th and 20th to 30th benchmarks), the transposition
time is very much lower than compute time; hence TAL_SH
achieves very good performance by using the highly tuned
matrix multiplication primitives provided by cuBLAS [16]. On
the Pascal P100, COGENT generates faster code than TAL_SH
for five cases and is competitive in other cases. However, on
the Volta V100, COGENT consistently outperforms TAL_SH.
For the remaining cases, COGENT is usually faster than the
NWChem code generator and TAL_SH.

Fig. 6 and Fig. 7 compare COGENT with Facebook’s
Tensor Comprehensions (TC) [12] on the P100 and V100,

92

for the SD2 tensor contractions for the CCSD(T) method, for
single precision. TC uses a polyhedral optimizer for GPU code
generation, in conjunction with an auto-tuner using genetic
algorithms. We present results with only a small subset of
the TCCG benchmarks since the time taken to tune the TC
code for each benchmark ranged between several hours to
several days. We also could not compare double precision
results since TC could not generate the corresponding code.
All TC experiments were run with the population size set to
100 and the generation size set to 20. COGENT’s model-
driven code consistently and often significantly outperforms
the extensively auto-tuned code from TC. Fig. 8 shows the
performance trend (in GFLOPS) as a function of the number
of auto-tuning iterations with TC, for the SD2_1 (bcdef-
gdab-efgc) benchmark. The blue and green lines show the
performances without tuning and with tuning, respectively.
Without any tuning TC achieves less than 1 GFLOP on both
P100 and V100. With tuning, TC achieves between 400 to
1000 GFLOPS on the P100 and between 900 to 1500 GFLOPS
on the V100. The total tuning time was ~ 8514 seconds.

3000

FB’s TC w/o tuning —e—
FB’s TC w/ tuning —=—
COGEN —y—

FB’s TC w/o tuning —e—
FB’s TC w/ tuning —#—
COGEN —v—

N]

\ /
%

1400 -

2500 [

1200

2000

1000

1500

GFLOPS

:

GFLOPS

1000

\

500

igb ¢
ga ¢
gc ¢
gb ¢
ga ¢

g

gb ¢
ga
gc ¢
gb ¢
ga

-gfab-degc ¢
-gfbc-dega

-gdac-ef
-gdbc-ef
-geab-df
-geac-df
-gebe-d
-gfab-degc ¢
-gfac-degb ¢
-gfbc-dega
-gdab-ef
-gdac-ef

abcdef-gdbc-e
abcdef-geab-d
abcdef-gebce-d
abcdef-gfac-degb ¢

abcdef-geac-d

abcded
abcde
abcdef
abcde
abcde
abcdef
abcded
abcde
abcdef
abcdef
abcdef
abcdef

Fig. 6. TCCG Benchmark
(40th - 48th) on P100 (Pascal)

Fig. 7. TCCG Benchmark
(40th - 48th) on V100 (Volta)

1200 T T
e —

]

—I

1000

800

600

GFLOPS

400

|

200

600 800 1000 1200
Iterations

400

Fig. 8. GFLOPS vs number of code versions for tensor comprehensions on
V100 (Volta) for SD2_1 (abcdef-gdab-efgc)

VI. RELATED WORK

Several other efforts have addressed the problem of effi-
cient tensor contractions on multicore CPUs. The state-of-the-
art techniques can be broadly grouped into two classes: 1)
the TTGT (Transpose-Transpose-GEMM-Transpose) approach
based and 2) direct contraction based (without explicit trans-
position).

TTGT: Quantum chemistry codes that implement any mem-
bers of the coupled cluster family of models require tensor
contractions, which dominate their execution time. These
codes typically use the TTGT approach, relying on the
availability of efficient matrix-multiplication routines on all
platforms. Although the number of arithmetic operations for
performing the matrix-multiplication is generally much larger
than the number of data elements moved for the transpose
operations, the time for the latter can be very significant due to
the much lower memory bandwidth relative to computational
peak, as well as the inefficiency of high-stride data access.
Therefore, several efforts have targeted the development of
efficient tensor transposition routines for multicore CPUs [17],
[18] as well as GPUs [10], [18], [19]. HPTT [17] is an
optimized tensor transposition library for multi-core CPUs.
TTC [18] is a compiler that can generate high-performance
transpose routines for both GPUS as well as multicore pro-
cessors. TAL_SH [10] is a software framework for efficient

93

tensor contraction on GPUs that uses the TTGT approach. It
links with the cuTT library [19], [20] for efficient GPU tensor
transposition. In our experimental evaluation, we perform
comparisons with TAL_SH on GPUs. We also benchmark
achievable performance for TTGT using HPTT on a multicore
CPU.

Direct Contraction: While the TTGT approach has the benefit
of leveraging efficient vendor matrix multiplication libraries,
the extra transposition imposes both space and time overheads.
So several efforts have developed implementations for tensor
contractions that avoid the use of transpose. Two recent efforts
have independently developed such an approach for multicore
CPUs. TBLIS [21] uses the BLIS (BLAS-like Instantiation
Software [22]) framework to implement arbitrary tensor con-
tractions by essentially fusing transposition of slices of tensors
on-the-fly and invoking BLIS kernels for efficient matrix-
matrix multiplication. GETT [14] implements the operations
for an arbitrary tensor contraction as a loop over slices that
are computed using a highly tuned “macro kernel” whose
operands reside in a certain level of the cache hierarchy.
GETT has been distributed as part of the TCCG (Tensor
Contraction Code Generator) [13] framework, which includes
several alternatives for performing tensor contractions, includ-
ing TTGT, GETT, a loop-over-GEMM approach (LoG) and a
direct nested-loop implementation for tensor contractions. Ma
et al. [15], [23] developed a code generator for implementing
direct tensor contractions for GPUs, with a special focus
on the most expensive triples computation for the CCSD(T)
method in the NWChem computational chemistry suite. In
our experimental evaluation, we present performance for the
publicly available options: TTCG and GETT. Shi et al. [24]
use a new strided batched BLAS functionality in Nvidia’s
cuBLAS as a means of implementing direct tensor contractions
for a set of contractions of significance for machine learning.
Tensor Comprehensions (TC) [12] is a high level domain-
specific language to express tensor operations. The high level
expression is then converted to a polyhedral representation,
and is subject to a set of polyhedral transformations. The
framework is capable of producing both CPU and GPU code.
It offers a JIT based autotuner that uses a genetic algorithm
to prune the search space. The framework allows specification
of a representative problem size, which is used to evaluate the
quality of the generated code during auto-tuning.

Parameter Search Optimization: Tensors are core data
structures used in machine learning (ML) applications. Until
recently, much of the work in optimizing tensor computations
for machine learning was done via manual implementation of
libraries such as Nvidia’s cuDNN. A recent effort [25] has
sought to automate the optimization of tensor computations in
ML by developing a learning framework that learns to choose
among the options in a space of transformed configurations for
the code. As pointed out by the authors, they focus on effective
search among the possible configurations in a pre-defined
space, and the choice of that space is beyond the scope of the
learning strategy for selection. We believe that model-driven
frameworks like the one proposed here complement learning-

based optimizers by defining an effective configuration space
of high-performance configurations from which the best ones
are to be selected. While we have only model-driven selection
of a set of configurations and auto-tuned across a selected
set of configurations, our model-driven approach could be
enhanced by using a learning-based approach to perform the
selection among the top set of candidate configurations based
on our analytical modeling.

VII. CONCLUSIONS

This paper has presented a CUDA code generator for
arbitrary tensor contractions. It uses a code generation schema
based on domain-specific properties about data reuse in tensor
contractions, along with a model-driven pruning strategy for
rapid determination of parameters for mapping of computation
to threads and staging of data through the GPU memory hierar-
chy. Experimental results demonstrate significant performance
gains over state-of-the-art tensor contraction code generators
and libraries over a range of benchmarks.

APPENDIX
ARTIFACT APPENDIX

A. Abstract

The artifact contains all the programs required to re-
produce the experimental results in the CGO 2019 pa-
per “A Code Generator for High-Performance Tensor Con-
tractions on GPUs”. The artifact is publicly available for
download from https://doi.org/10.6084/m9.figshare.7403732.
The latest version is available on the git repository:
http://gitlab.hpcrl.cse.ohio-state.edu/jinsung/COGENT.

The downloaded package comes with

The source code for COGENT

The scripts to run benchmarks on all the compared
frameworks

Expected output in the form of text files

A very detailed README file which contains detailed
instructions to build and troubleshoot installation of all
frameworks.

Artifact Check-List (Meta-Information)

Program: (1) COGENT (COde GENerator for Tensor contrac-
tions), (2) NVIDIA CUDA kernels generated by NWChem’s
code generator, (3) TAL-SH benchmark, and (4) Tensor Com-
prehensions benchmark.

Compilation: Detailed instructions to compile and scripts to
run each framework is provided below and in the README.md.
Transformations: The code generator accepts a tensor con-
traction expression and generates corresponding cuda kernels.
Binary: Makefile is included in the package to generate the
executable.

Data set: 48 Tensor Contractions in TCCG Benchmark.
Software: Linux version 3.10.0 (tested), CPU code: g++ with
C++11 support (GCC 6.3.0 tested) and python (3.5 tested); GPU
code: NVCC (9.0 tested).

Hardware: Linux platform such as Ubuntu, and a GPU device
with compute capability > 6.0. The benchmarks reported on the
paper were ran on an Nvidia Tesla P100 machine and an Nvidia
Tesla V100 machine.

94

o Output: Text files containing the execution time and GFLOPS
used for the Figure 4 - 8.
o Publicly available?: Yes.

C. Description

1) How Delivered: Our artifact is available on
both https://doi.org/10.6084/m9.figshare.7403732 and
http://gitlab.hpcrl.cse.ohio-state.edu/jinsung/COGENT. ~ All the

files in the repository are licensed to The Ohio State University.

2) Hardware Dependencies: The generated code can be
executed on any Nvidia device with compute capability > 6.0. For
reproducing the results reported in the paper, we suggest using Tesla
P100 and Tesla V100 devices.

3) Software Dependencies: COGENT requires Python 3.5.
CUDA kernels generated by COGENT and NWChem require GCC
version (> 6.3.0) with C++11 support and NVCC version (> 9.0).
TAL-SH requires cuTT (instructions to build cuTT are provided)
and BLAS library. TC require conda.

4) Data Sets: The benchmark is based on 48 tensor contractions
in TCCG benchmark. Since each framework accepts different
formats, framework specific representation of benchmarks are
provided in each each framework’s directory.

For COGENT, expressions of TCCG benchmark are provided
in ./cogent/input_strings/tccg directory. Source codes generated by
NWChem’s code generator are provided in NWChem directory. For
TAL-SH, we provide ./tal-sh/test.cpp which includes all the TCCG
benchmark. Finally, for TC, we provide python codes to evaluate the
benchmarks.

D. Installation

After cloning the repository— http://gitlab.hpcrl.cse.ohio-
state.edu/jinsung/COGENT, TAL-SH and TC should be built before
evaluation (see README.md for detailed instructions). COGENT
and NWChem can be installed using the Makefile provided.

1) TAL-SH: As TAL-SH is dependent on cuTT, install cuTT
from the git-repository: https://github.com/ap-hynninen/cutt before
building TAL-SH (https://github.com/DmitryLyakh/TAL_SH)

2) Tensor Comprehensions (TC): TC requires
conda, build anaconda3 by following the instructions on
https://conda.io/docs/index.html. TC can then be installed as
follows:

$ conda install -y -c pytorch -c tensorcomp tensor_comprehensions

E. Experiment Workflow

Scripts are provided to run different frameworks.

1) COGENT:

To run the benchmark for Fig. 4 and 5:
$ cd cogent

$ bash ./bench_tccg.sh

To run the benchmark for Fig. 6 and 7:
$ cd cogent
$ bash ./cogent/bench_fb.sh

2) NWChem:

To run the benchmark for Fig. 4 and 5:
$ cd nwchem-tecg

$ bash ./bench_tccg.sh

3) TAL-SH:

To run the benchmark for Fig. 4 and 5:

(In the directory where you have built TAL-SH,)
$ bash ./test_talsh.x

4) Tensor Comprehensions:

For TC with tuning, to run the benchmark for Fig. 6, 7 and 8:
$ cd fb-te/fb-w-tuning/

$ bash ./bench_fb_w_tuning.sh

For TC without tuning, to run the benchmark for Fig. 6 and 7:
$ cd fb-te/fb-wo-tuning
$ bash ./bench_fb_wo_tunning.sh

F. Evaluation and Expected Result

We expect the performance results to be close to those reported in
the paper (Fig. 4 - 8). The results of the benchmark will be printed
out in text files.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their feedback and sug-
gestions that helped improve the paper. We are grateful to the
Ohio Supercomputer Center for use of their hardware resources.
This work was supported in part by the U.S. National Science
Foundation (NSF) through awards 1440749, 1513120 and 1816793,
by the U.S. Department of Energy, Office of Science, Office of
Advanced Scientific Computing Research under awards 71648 and
DE-SC0014135, and by the Exascale Computing Project (17-SC-20-
SC), a collaborative effort of the U.S. Department of Energy Office
of Science and the National Nuclear Security Administration. Pacific
Northwest National Laboratory is operated by Battelle for DOE under
Contract DE-AC05-76RL01830.

REFERENCES

[1] C.Kavaklioglu and A. T. Cemgil, “Optimal contraction order of multiple
tensors,” in 2013 21st Signal Processing and Communications Applica-
tions Conference (SIU), April 2013, pp. 1-4.

N. A. Rink, I. Huismann, A. Susungi, J. Castrillon, J. Stiller,
J. Frohlich, and C. Tadonki, “Cfdlang: High-level code generation for
high-order methods in fluid dynamics,” in Proceedings of the Real
World Domain Specific Languages Workshop 2018, ser. RWDSL2018.
New York, NY, USA: ACM, 2018, pp. 5:1-5:10. [Online]. Available:
http://doi.acm.org/10.1145/3183895.3183900

R. Poya, A. J. Gil, and R. Ortigosa, “A high performance data
parallel tensor contraction framework: Application to coupled electro-
mechanics,” Computer Physics Communications, vol. 216, pp. 35 — 52,
2017. [Online]. Available: http://www.sciencedirect.com/science/article/
pii/S0010465517300681

A. A. Auer, G. Baumgartner, D. E. Bernholdt, A. Bibireata,
V. Choppella, D. Cociorva, X. Gao, R. Harrison, S. Krishnamoorthy,
S. Krishnan, C.-C. Lam, Q. Lu, M. Nooijen, R. Pitzer, J. Ramanujam,
P. Sadayappan, and A. Sibiryakov, “Automatic code generation for
many-body electronic structure methods: the tensor contraction engine,”
Molecular Physics, vol. 104, no. 2, pp. 211-228, 2006. [Online].
Available: https://doi.org/10.1080/00268970500275780

F. Huang, U. N. Niranjan, M. U. Hakeem, P. Verma, and
A. Anandkumar, “Fast detection of overlapping communities via online
tensor methods on gpus,” CoRR, vol. abs/1309.0787, 2013. [Online].
Available: http://arxiv.org/abs/1309.0787

[2]

[4]

[5]

95

[6] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S.
Corrado, A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow,
A. Harp, G. Irving, M. Isard, Y. Jia, R. Jozefowicz, L. Kaiser,
M. Kudlur, J. Levenberg, D. Mané, R. Monga, S. Moore, D. Murray,
C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Talwar,
P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals,
P. Warden, M. Wattenberg, M. Wicke, Y. Yu, and X. Zheng,
“TensorFlow: Large-scale machine learning on heterogeneous systems,”
2015, software available from tensorflow.org. [Online]. Available:

https://www.tensorflow.org/
A. Anandkumar, R. Ge, D. J. Hsu, S. M. Kakade, and M. Telgarsky,

“Tensor decompositions for learning latent variable models,” Journal
of Machine Learning Research, vol. 15, no. 1, pp. 2773-2832, 2014.
[Online]. Available: http://dl.acm.org/citation.cfm?id=2697055

T. Crawford and H. Schaefer III, “An Introduction to Coupled Cluster
Theory for Computational Chemists,” in Reviews in Computational
Chemistry. John Wiley & Sons, Inc., 2000, vol. 14, pp. 33-136.

P. Springer and P. Bientinesi. Tensor contraction benchmark vO0.1.
[Online]. Available: https://github.com/HPAC/tccg/

D. 1. Lyakh, “Talsh,” 2014. [Online]. Available: https://github.com/
DmitryLyakh/TAL_SH

S. Verdoolaege, J. C. Juega, A. Cohen, J. I. Gémez, C. Tenllado, and
F. Catthoor, “Polyhedral parallel code generation for cuda,” ACM Trans.
Archit. Code Optim., vol. 9, no. 4, pp. 54:1-54:23, Jan. 2013.

N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S.
Moses, S. Verdoolaege, A. Adams, and A. Cohen, “Tensor comprehen-
sions: Framework-agnostic high-performance machine learning abstrac-
tions,” arXiv preprint arXiv:1802.04730, 2018.

P. Springer and P. Bientinesi, “Tccg,” 2018. [Online]. Available:
https://github.com/HPAC/tccg

P. Springer and P. Bientinesi, “Design of a high-performance gemm-
like tensor—tensor multiplication,” ACM Transactions on Mathematical
Software (TOMS), vol. 44, no. 3, p. 28, 2018.

W. Ma, S. Krishnamoorthy, O. Villa, K. Kowalski, and G. Agrawal, “Op-
timizing tensor contraction expressions for hybrid cpu-gpu execution,”
Cluster computing, vol. 16, no. 1, pp. 131-155, 2013.

C. Nvidia, “Cublas library,” NVIDIA Corporation, Santa Clara, Califor-
nia, vol. 15, no. 27, p. 31, 2008.

P. Springer, T. Su, and P. Bientinesi, “Hptt: a high-performance tensor
transposition c++ library,” in Proceedings of the 4th ACM SIGPLAN
International Workshop on Libraries, Languages, and Compilers for
Array Programming. ACM, 2017, pp. 56-62.

P. Springer, A. Sankaran, and P. Bientinesi, “Ttc: a tensor transposition
compiler for multiple architectures,” in Proceedings of the 3rd ACM SIG-
PLAN International Workshop on Libraries, Languages, and Compilers
for Array Programming. ACM, 2016, pp. 41-46.

A.-P. Hynninen and D. I. Lyakh, “cutt: A high-performance ten-
sor transpose library for cuda compatible gpus,” arXiv preprint
arXiv:1705.01598, 2017.

D. L. Lyakh, “An efficient tensor transpose algorithm for multicore cpu,
intel xeon phi, and nvidia tesla gpu,” Computer Physics Communica-
tions, vol. 189, pp. 84-91, 2015.

D. A. Matthews, “High-performance tensor contraction without trans-
position,” SIAM Journal on Scientific Computing, vol. 40, no. 1, pp.
C1-C24, 2018.

F. G. Van Zee and R. A. Van De Geijn, “Blis: A framework for rapidly
instantiating blas functionality,” ACM Transactions on Mathematical
Software (TOMS), vol. 41, no. 3, p. 14, 2015.

W. Ma, S. Krishnamoorthy, O. Villay, and K. Kowalski, “Acceleration
of streamed tensor contraction expressions on gpgpu-based clusters,” in
Cluster Computing (CLUSTER), 2010 IEEE International Conference
on. IEEE, 2010, pp. 207-216.

Y. Shi, U. N. Niranjan, A. Anandkumar, and C. Cecka, “Tensor con-
tractions with extended blas kernels on cpu and gpu,” arXiv preprint
arXiv:1606.05696, 2016.

T. Chen, L. Zheng, E. Yan, Z. Jiang, T. Moreau, L. Ceze, C. Guestrin,
and A. Krishnamurthy, “Learning to optimize tensor programs,” arXiv
preprint arXiv:1805.08166, 2018.

[7]

[8]

[9]
[10]

[11]

[12]

[13]

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

