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Abstract

Deformable image registration and regression are important tasks in medical image analysis. However, they are com-
putationally expensive, especially when analyzing large-scale datasets that contain thousands of images. Hence, cluster
computing is typically used, making the approaches dependent on such computational infrastructure. Even larger compu-
tational resources are required as study sizes increase. This limits the use of deformable image registration and regression
for clinical applications and as component algorithms for other image analysis approaches. We therefore propose using
a fast predictive approach to perform image registrations. In particular, we employ these fast registration predictions to
approximate a simplified geodesic regression model to capture longitudinal brain changes. The resulting method is orders
of magnitude faster than the standard optimization-based regression model and hence facilitates large-scale analysis on
a single graphics processing unit (GPU). We evaluate our results on 3D brain magnetic resonance images (MRI) from
the ADNI datasets.
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1. Introduction

Longitudinal image data provides us with a wealth
of information to study aging processes, brain develop-
ment and disease progression. Such studies, for example
ADNI (Jack et al., 2015) and the Rotterdam study (Ikram
et al., 2015), involve analyzing thousands of images. In
fact, even larger studies will be available in the near future.
For example, the UK Biobank (bio) targets on the order of
100,000 images once completed. With the number of im-
ages increasing, large-scale image analysis typically resorts
to using compute clusters for parallel processing. While
this is, in principle, a viable solution, increasingly larger
compute clusters will become necessary for such studies.
Alternatively, more efficient algorithms can reduce compu-
tational requirements, which then facilitates computations
on individual computers or much smaller compute clusters,
interactive (e.g., clinical) applications, efficient algorithm
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development, and use of these efficient algorithms as com-
ponents in more sophisticated analysis approaches (which
may use them as part of iterative processes).

Image registration is a key task in medical image analy-
sis to study deformations between images. Building on im-
age registration approaches, image regression models (Ni-
ethammer et al., 2011; Hong et al., 2012b,a; Singh et al.,
2013; Fletcher, 2013; Hong et al., 2014b; Singh and Ni-
ethammer, 2014; Hong et al., 2014a; Singh et al., 2015;
Hong et al., 2016) have been developed to analyze de-
formation trends in longitudinal imaging studies. One
such approach is geodesic regression (GR) (Niethammer
et al., 2011; Singh et al., 2013; Fletcher, 2013) which
(for images) builds on the large displacement diffeomor-
phic metric mapping model (LDDMM) (Beg et al., 2005).
In general, GR generalizes linear regression to Rieman-
nian manifolds. When applied to longitudinal image data,
it can compactly express spatial image transformations
over time. However, the solution to the underlying op-
timization problem is computationally expensive. Hence,
a simplified, approximate, GR approach has been pro-
posed (Hong et al., 2012c) (SGR) to decouple the computa-
tion of the regression geodesic into pairwise image registra-
tions. However, even such a simplified GR approach would
require months of computation time on a single graphics
processing unit (GPU) to process thousands of 3D im-
age registrations for large-scale imaging studies such as
ADNI (Jack et al., 2015). The primary computational bot-
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tleneck for SGR is the optimization required to compute
pair-wise registrations.

Recently, efficient approaches have been proposed for
deformable image registration (Cao et al., 2017; Miao
et al., 2016; Sokooti et al., 2017; Yang et al., 2016, 2017;
Zhang et al., 2017). In particular, for LDDMM, which is
the basis of GR approaches for images, registrations can
be dramatically sped up, by either working with finite-
dimensional Lie algebras (Zhang and Fletcher, 2015) and
frequency diffeomorphisms (Zhang et al., 2017), or by fast
predictive image registration (FPIR) (Yang et al., 2016,
2017). FPIR predicts the initial conditions (specifically,
the initial momentum) of LDDMM, which fully charac-
terize the geodesic and the spatial transformation using a
learned patch-based deep regression model. Because nu-
merical optimization of standard LDDMM registration is
replaced by a single prediction step, followed by optional
correction steps (Yang et al., 2017), FPIR is dramatically
faster than optimization-based LDDMM without compro-
mising registration accuracy, as measured on several reg-
istration benchmarks (Klein et al., 2009).

Besides FPIR, other predictive image registration ap-
proaches have been proposed. Dosovitskiy et al. (Doso-
vitskiy et al., 2015) use a convolutional neural network
(CNN) to directly predict optical flow. Liu et al. (Liu
et al., 2017) use an encoder-decoder network to synthesize
video frames. Schuster et al. (Schuster et al., 2016) inves-
tigate strategies to improve optical flow prediction via a
CNN. Cao et al. (Cao et al., 2017) use a sampling strategy
and CNN regression to directly learn the mapping from
moving and target image pairs to the final deformation
field. Miao et al. (Miao et al., 2016) use CNN regres-
sion for 2D/3D rigid registration. Sokooti et al.(Sokooti
et al., 2017) use CNNs to directly predict a 3D displace-
ment vector field from input image pairs. An end-to-end
approach for image registration was proposed by de Vos et
al. (de Vos et al., 2017); here, the loss function is the image
similarity measure between images themselves and a defor-
mation is parameterized via a spatial transformer (which
essentially amounts to a parameterized model of deforma-
tion in image registration) which generates the sought-for
displacement vector field. Hong et al. (2017) employ a low-
dimensional band-limited representation of velocity fields
in Fourier space (Zhang and Fletcher, 2015) to speed up
SGR (Hong et al., 2012c) for population-based image anal-
ysis.

In this work, we will build on FPIR, as it is a desir-
able approach for brain image registration for the follow-
ing reasons: First, FPIR predicts the initial momentum of
LDDMM and therefore inherits the theoretical properties
of LDDMM. Consequently, FPIR results in diffeomorphic
transformations and a geodesic path, even though predic-
tions are computed in a patch-by-patch manner; this can
not be guaranteed by most other prediction methods. Sec-
ond, patch-wise prediction allows for training of the pre-

diction models based on a very small number of images,
containing a large number of patches. Third, by using a
patch-wise approach, even high-resolution image volumes
can be processed without running into memory issues on
a GPU. Fourth, none of the existing predictive methods
address longitudinal data. However, as both FPIR and
SGR are based on LDDMM, they naturally integrate and
hence result in our proposed fast predictive simple geodesic
regression (FPSGR) approach.

Our contributions can be summarized as follows:

Predictive geodesic regression We use a fast predic-
tive registration approach for image geodesic regres-
sion. Different from (Yang et al., 2017), we specifi-
cally validate that our approach can indeed capture
the frequently subtle deformation trends of longitu-
dinal image data.

Large-scale dataset capability Our predictive regres-
sion approach (FPSGR) facilitates large-scale image
regression within a short amount of time on a single
GPU, instead of requiring months of computation
time for standard optimization-based methods on a
single computer, or the use of a compute cluster.

Accuracy We assess the accuracy of FPSGR by (1)
studying linear models of atrophy scores (which are
derived from the nonlinear SGR model) over time, as
well as (2) correlations between atrophy scores and
various diagnostic groups.

Validation We demonstrate the performance of FPSGR
by analyzing > 6, 000 images of the ADNI-1 / ADNI-2
datasets. For comparison, we also perform SGR
using numerical optimization for the registrations,
again on the complete ADNI-1 / ADNI-2 datasets.
Due to imaging protocol differences in ADNI-1 and
ADNI-2, we separately analyze these two datasets.

This work is an extension of a recent conference pa-
per (Ding et al., 2017). All our experiments are now
in 3D. We also added significantly more results to fur-
ther explore the behavior of FPSGR in comparison to
optimization-based SGR. In particular, we added (a) a
comparison with pairwise registration (Sec. 4.2); (b) a
more in-depth analysis of atrophy scores correlated with
clinical variables (Sec. 4.2); (c) correlations within diag-
nostic groups (Sec. 4.2); (d) an example to visualize the
performance of regression models and associated quanti-
tative comparisons (Sec. 4.3); (e) experiments on extrap-
olation on unseen data (Sec. 4.4, Sec. 4.3) ; (f) and more
detailed atrophy assessments (Sec. 4.5).

Organization. The remainder of this article is orga-
nized as follows: Sec. 2 describes FPSGR, Sec. 3 discusses
the experimental setup and the training of the prediction
models. In Sec. 4, we present experimental results for 3D
MR brain images. The paper concludes with a summary
and an outlook on future work.
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Figure 1: Principle of fast predictive simple geodesic regression (FPSGR). In the encoder-decoder network (middle), the inputs are patches
from the moving image and the target image at the same spatial location; the outputs are the predicted initial momenta (i.e., m1, . . . ,mn)
of the corresponding patches. Conv: Convolutional layer; ConvT : transpose of convolutional layer. In the simple geodesic regression (SGR)
part, all the pairwise initial momenta are averaged according to Eq. (3) to produce the initial momentum of the regression geodesic (marked
red).

2. Fast predictive simple geodesic regression

Our fast predictive simple geodesic regression approach
is a combination of two methods: First, fast predictive im-
age registration (FPIR) and, second, integration of FPIR
with simple geodesic regression (SGR). Both FPIR and
SGR are based on the shooting variant of LDDMM (Singh
et al., 2013); Fig. 1 illustrates our overall approach. The
individual components are described in the following.

2.1. LDDMM

Shooting-based LDDMM and geodesic regression min-
imize

E(I0,m0) =
1

2
⟨m0,Km0⟩+

1

σ2

∑
i

d2(I(ti), Y
i), (1)

s.t. mt + ad∗vm = 0, It +∇IT v = 0,m− Lv = 0,

m(t0) = m0, I(t0) = I0, (2)

where I0 is the initial image (known for image-to-image
registration and to be determined for geodesic regression),
m0 is the initial momentum, K is a smoothing operator
that connects velocity v and momentum m as v = Km
and m = Lv with K = L−1, σ > 0 is a weight, Y i is
the measured image at time ti (there will be only one
such image for image-to-image registration at t = 1), and
d2(I1, I2) denotes the image similarity measure between I1
and I2 (for example L2 or geodesic distance); ad∗ is the
dual of the negative Jacobi-Lie bracket of vector fields:
advw = −[v, w] = Dvw − Dwv and D denotes the Jaco-
bian. The deformation of the source image I0 ◦ Φ−1 can
be computed by solving Φ−1

t +DΦ−1v = 0, Φ−1(t0) = id,
where id denotes the identity map.

2.2. FPIR

Fast predictive image registration (Yang et al., 2016,
2017) aims at predicting the initial momentum, m0, be-
tween a source and a target image patch-by-patch. Specif-
ically, we use a deep encoder-decoder network to predict
the patch-wise momentum. As shown in Fig. 1, in 3D
the inputs are two layers of 15 × 15 × 15 image patches
(15× 15 in 2D), where the two layers are from the source
and target images respectively. Two patches are taken
at the same position by two parallel encoders, which learn
features independently. The learned features are then con-
catenated to form the input to the decoder. The output
is the predicted initial momentum in the x, y and z direc-
tions (obtained by numerical optimization on the training
samples). We use an l1 loss to train the network. Basi-
cally, the network is split into an encoder and a decoder
part. An encoder consists of 2 blocks of three 3 × 3 ×
3 convolutional layers with PReLU activations, followed
by another 2 × 2 × 2 convolution+PReLU with a stride
of two, serving as a “pooling” operation. The number of
features in the first convolutional layer is 64 and increases
to 128 in the second. In the decoder, three parallel de-
coders share the same input generated from the encoder.
Each decoder is the inverse of the encoder except for us-
ing 3D transposed convolution layers with a stride of two
to perform “unpooling”, and no non-linearity at the end.
To speed up computations, we use patch pruning (i.e., for
brain imaging, e.g., patches outside the brain are not pre-
dicted as the momentum is expected to be zero there) and
a large pixel stride (e.g., 14 for 15 × 15 × 15 patches) for
the sliding window of the predicted patches.
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Figure 2: Architecture of the prediction + correction network. Here, we use 2D images and the momentum in the x-direction for illustration.
All images are 3D in our experiments. (1) Predict the initial momentum mp and the corresponding backward deformation, Φ; (2) Predict
a correction of the initial momentum, mc, based on the difference between the moving image and the warped-back target image. The final
momentum is m = mp + mc. The correction network is trained based on the moving images and the warped-back target images of the
training dataset.

2.3. Correction network

We follow Yang et al. (2017) and use a two-step ap-
proach to improve overall prediction accuracy. An addi-
tional correction step, i.e., a correction network, corrects
the prediction of the initial prediction network. Fig. 2
illustrates this two-step approach graphically. The cor-
rection network has the same structure as the prediction
network. Only the inputs and outputs differ. For the pre-
diction network, the inputs are the original moving image
and the original target image; output is the predicted ini-
tial momentum. For the correction network, the inputs
are the original moving image and the warped target im-
age; the output is the momentum difference. Quantitative
statistical results about deformation errors for such net-
works (with and without correction) can be found in Yang
et al. (2017). Specifically, comparisons between deforma-
tions from the prediction models and the ones derived via
optimization showed good performance of the prediction
models for diffeomorphic image registration on four differ-
ent datasets.

2.4. SGR

Determining the initial image, I0, and the initial mo-
mentum, m0, of Eq. (1) is computationally costly. How-
ever, in simple geodesic regression, the initial image is fixed
to the first image of a subject’s longitudinal image set (left-
most part of Fig. 1). Furthermore, the similarity measure
d(·, ·) is chosen as the geodesic distance between images
and approximated so that the geodesic regression problem
can be solved by computing pair-wise image registrations
with respect to the first image. The approximated optimal
m0 of the energy functional in Eq. (1) for a fixed I0 is then

m ≈
∑

i(ti − t0)
2mi∑

i(ti − t0)2
=

∑
i(ti − t0)m̃i∑
i(ti − t0)2

, (3)

where m̃i is obtained by registering I0 to Y i in unit time
followed by a rescaling of the momentum to account for
the original time duration: mi =

1
ti−t0

m̃i. See Appendix
A for details.

3. Setup / Training

All experiments use 3D images from the ADNI dataset1

which consists of 6,471 3D MR brain images of size 220×
220×220 voxels (a voxel is of size 1 mm×1 mm×1 mm).
In particular, ADNI-1 contains 3,479 images from 833 sub-
jects and ADNI-2 contains 2,992 images from 823 sub-
jects. Images belong to various types of diagnostic cat-
egories which we will discuss later. We preprocessed all
images. Specifically, images are a) brain extracted using
ROBEX (Iglesias et al., 2011) and b) affinely registered
using FSL-FLIRT (Jenkinson et al., 2002; Jenkinson and
Smith, 2001; Greve and Fischl, 2009) to a common atlas
(ICBM brain template (Mazziotta et al., 1995)). Further,
their c) intensities are normalized to a mean intensity of 1.0
within the brain. Since the patients in ADNI-1 / ADNI-2

were imaged at different time points (see Appendix B for
details) and acquired with different acquisition protocols,
we treat them as two separate datasets. Consequently, we
evaluate them separately in what follows.

In particular, we perform two types of studies:

Registration We assess our hypothesis that training
FPIR on longitudinal data for longitudinal registra-
tions is preferred over training using cross-subject
data. Vice versa, training FPIR on cross-subject
data for cross-subject registrations is preferred over
training using longitudinal data. Comparisons are
with respect to registration results obtained by nu-
merical optimization (i.e., LDDMM).

1Data used in the preparation of this article were obtained from
the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). ADNI was launched in 2003 as a public-private
partnership, led by Principal Investigator Michael W. Weiner, MD.
The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET),
other biological markers, and clinical and neuropsychological assess-
ment can be combined to measure the progression of mild cognitive
impairment (MCI) and early Alzheimer’s disease (AD).
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Regression For regression, we compare linear models fit-
ted to atrophy scores over time, where scores are
either obtained from FPSGR or optimization-based
SGR. Additionally, we study correlations between
atrophy scores and diagnostic groups. Our hypothe-
sis is that FPSGR is accurate enough to achieve com-
parable performance to optimization-based SGR, at
much lower computational cost, in both situations.

3.1. Training of the prediction models

We use a randomly selected set of 120 patients’ MRI
images from ADNI for training the prediction models and
to test the performance of FPIR. We use all of the ADNI

data for our regression experiments.

Training for registration. We randomly selected 120
subjects from ADNI-1 and registered their baseline images
to their 24 month follow-up images. We used the first 100
subjects for training and the remaining 20 subjects for
testing. For longitudinal training, we registered the base-
line image of a subject to the subject’s 24-month image.
For cross-subject training, we registered a subject’s base-
line image to another subject’s 24-month image. To assess
the performance of prediction models trained on these two
types of paired data, we (1) perform the same type of
registrations on the held-out 20 subjects and (2) compare
the 2-norm of the deformation error computed from the
output of the prediction models with respect to the result
obtained by numerical optimization of LDDMM2 (which
serves as the “ground-truth”).

Training for regression. The ADNI-1 dataset contains
228 normal controls, 257 subjects with mild cognitive im-
pairment (MCI), 149 with late mild cognitive impairment
(LMCI), as well as 199 subjects suffering from Alzheimer’s
disease (AD). We randomly picked roughly 1/6 of patients
from each diagnostic category to form a set of 139 subjects
for training in ADNI-1, i.e., 38 normal controls, 43 MCI,
25 LMCI, as well as 33 AD subjects. The baseline images
of each subject were registered to all the later time-points
within the same subject. To maintain the diagnostic ratio,
we randomly picked (out of all registrations) 45 registra-
tions from the normal group, 50 registrations from the
MCI group, 30 registrations from the LMCI group, and 40
registrations from the AD group, resulting in 165 longitu-
dinal registration cases for training.

The same strategy was applied to ADNI-2. In detail,
ADNI-2 contains 200 normal controls, 111 subjects with
significant memory complaint (SMC), 182 subjects with
early mild cognitive impairment (EMCI), 175 with late
mild cognitive impairment (LMCI), and 155 subjects with
Alzheimer’s disease (AD). We randomly picked 150 sub-
jects and 140 longitudinal registrations, consisting of 35

2LDDMM results are generated using a vector momentum formu-
lation: https://bitbucket.org/scicompanat/vectormomentum

registrations from the control group, 20 registrations from
the SMC group, 30 registrations from the EMCI group, 30
registrations from the LMCI group, and 25 registrations
from the AD group. Note that there are fewer registra-
tions than subjects (140 vs. 150) in this setup, as our
priority is to maintain the overall diagnostic ratio.

For both, ADNI-1 and ADNI-2, the remaining 5/6 of the
data is used for testing. Training sets within ADNI-1 and
ADNI-2, resp., were not overlapping. We trained four pre-
diction models (i.e., two prediction models for each dataset
in a two-fold cross-validation setup; denoted as Pred-1/2,
respectively) and their four corresponding correction mod-
els, leading to eight prediction models overall (Table 1).

ADNI-1 Pred-1 Model v1 (no corr.)
ADNI-1 Pred+Corr-1 Model v1 +1x corr. step

ADNI-1 Pred-2 Model v2 (no corr.)
ADNI-1 Pred+Corr-2 Model v2 +1x corr. step

ADNI-2 Pred-1 Model v1 (no corr.)
ADNI-2 Pred+Corr-1 Model v1 +1x corr. step

ADNI-2 Pred-2 Model v2 (no corr.)
ADNI-2 Pred+Corr-2 Model v2 +1x corr. step

Table 1: Overview of the trained prediction models.

For our experiments, we created 10 different (dataset
/ registration approach) combinations, each combination
specifically designed to assess certain properties of our pro-
posed method. The combinations are as follows:

1) All subjects from the ADNI-1 dataset in combination
with optimization-based LDDMM (to which we refer
as SGR LDDMM when used for regression).

2) Two subgroups of ADNI-1 (i.e., different cross-
validation folds) in combination with FPSGR with-
out a correction network. Denoted as SGR Pred or
Pred in short.

3) The same two subgroups as in 2), but in combination
with FPSGR with a correction network. Denoted as
SGR Pred+Corr or Pred+Corr in short.

4) The same five groups of 1-3, but for ADNI-2.

With an additional correction network, the results are
generally better than using the prediction network alone.
Hence, to simplify the presentation of our results, we
only show the prediction + correction results in the main
manuscript. Selected results obtained when using the pre-
diction network only (combination 2 above) can be found
in the supplementary material.

3.2. Parameter selection

We use the regularization kernel

K = L−1 = (−a∇2 − b∇(∇·) + c)−2

5
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Figure 3: Region of Interest (ROI) significantly associated with atrophy in AD used to compute atrophy scores.

with [a, b, c] set to [1, 0, 0.1]. The parameter σ, from equa-
tion (1), is set to 0.1. We train our network using ADAM

(Kingma and Ba, 2014) over 10 epochs with a learning rate
of 0.0001. Additional training and convergence details can
be found in the supplementary material.

3.3. Efficiency

Once trained, the prediction models allow fast compu-
tations of registrations. We use a Nvidia TITAN X (Pas-
cal) GPU and PyTorch3 for our implementation of FPIR.
For the 3D ADNI-1 dataset (220× 220× 220 MR images),
FPSGR took about one day to predict 2,646 pairwise reg-
istrations (i.e., 25 [s]/prediction) and to compute the re-
gression result. SGR LDDMM4 would require ≈ 40 days
of runtime. Runtime for FPIR on ADNI-2 is identical to
ADNI-1 as the images have the same spatial dimension.

Compared to the recent fast geodesic regression model
by Hong et al. (2017), FPSGR is approximately twice as
fast, though this comparison is only qualitative as FPSGR
is implemented and run on a GPU, whereas Hong et al.
(2017) used a CPU compute cluster. We therefore base
our qualitative comparisons on the obtained speed-ups.
Specifically, the model by Hong et al. (2017) achieves ≈ 16
times speed-up compared with optimization-based SGR
for the same CPU setting (parallel computing with the
same number of cores). In our case, we achieve more than
40 times speed-up compared with SGR for the same GPU
setting (using a single Nvidia GTX1080 Ti GPU). Note
also that an interesting future direction could be to com-
bine the approach by Hong et al. (2017) with our pre-
diction approach. This would likely yield extremely fast
prediction methods for registration and regression. Ad-
ditional details on computation times for trainining and
testing can be found in the supplementary material.

4. Experimental results for 3D ADNI data

Our general hypothesis is that the prediction models
(for ADNI-1/2) show similar performance to SGR LDDMM

3http://pytorch.org
4Here, we used 300 fixed iterations for each registration. Empir-

ically, 300 iterations were sufficient for convergence. Note that the
optimization-based LDDMM also uses a GPU implementation.

and that using the correction network for the predictions
improves results. As using a correction network indeed
improved results only these results are presented in the
main document. See the supplementary material for re-
sults when not using the correction network. To assess dif-
ferences, we compare differences in deformations. Specif-
ically, for every deformation produced by the different
approaches, we compute its local Jacobian determinants
(JD). The JDs are then warped to a common coordinate
system for the entire ADNI dataset using existing deforma-
tions from Fleishman and Thompson (2017b,a) obtained
via LDDMM registration. Each such spatially normalized
JD is then averaged within a region where the rate of at-
rophy is significantly associated with Alzheimer’s disease
(AD), i.e., within a statistical region of interest (stat-ROI)
(see Fig. 3). This region was determined in Fleishman and
Thompson (2017b) and Fleishman and Thompson (2017a)
using a training dataset of AD subjects and controls and
optimization-based LDDMM registration5. Only voxels
whose atrophy measurements were significantly associated
with the AD disease group (vs. controls) after a Bonfer-
roni correction on the number of voxels, were retained.
We prefer this data-driven approach to defining the area
impacted by AD to using anatomical boundaries. As can
be seen from Fig. 3, our statistically derived ROI reas-
suringly overlaps with the hippocampus and surrounding
grey matter. There are likely deformations over time out-
side this region, either due to local tissue loss or elastic
deformation from non-local tissue loss, but we (conserva-
tively) only study voxels that passed our statistical test.
Specifically, we quantify atrophy as

s(ϕ) :=

(
1− 1

|ω|

∫
ω

det(Dϕ(x)) dx

)
× 100 , (4)

where det(·) denotes the determinant and | · | the cardi-
nality/size of a set; ω is the stat-ROI region described
above. The resulting scalar value is an estimate of the rel-
ative volume change experienced by that region between

5Less than 5% of the images of the ADNI-1 dataset were used to
define this statistical region of interest. This may result in some
analysis bias for the ADNI-1 dataset. The ADNI-2 results are not
subject to this possible analysis bias as we use the same ADNI-1-
derived stat-ROI for the analysis of the ADNI-2 data.

6

http://pytorch.org


the baseline and a follow-up image. Hence, its sign is pos-
itive when the region has lost volume over time and is
negative if the region has gained volume over time. To es-
timate atrophy trends for longitudinal data, we compute
atrophy measurements according to Eq. (4) at all measure-
ment timepoints and then fit them via a linear regression
model. For the regression formulations the measurements
are the ones based on the deformations of the regression
geodesic at these timepoints. Instead, for pairwise regis-
trations (LDDMM), atrophy measurements are computed
independently for each timepoint.

We limited our experiments to the applications
in Hua et al. (2013, 2016), wherein nonlinear registra-
tion/regression is used to quantify atrophy within regions
known to be associated to varying degrees with AD (2),
mild cognitive impairment (MCI) (1) (including LMCI6),
and normal ageing (NC: normal control) (0) in an elderly
population. These are the diagnostic groups for ADNI-1.
For ADNI-2, we use the following three diagnostic cate-
gories7: normal ageing (0) (including SMC), mild cogni-
tive impairment (including EMCI and LMCI) (1), and AD
(2).

Specifically, we investigate the following five aspects:

S1 Prediction Models for Longitudinal Data (Sec. 4.1)

Can we learn models for longitudinal image data
which predict optimization-based registration results
to high accuracy?

We show that this is possible. Hence it is appropri-
ate to use our training and prediction strategy as a
component of SGR.

S2 Quantitative Validation (Sec. 4.2)

(a) Are regression results more stable and hence
capture trends better than pairwise registra-
tions?

(b) Are FPSGR atrophy measurements consistent
with those derived from deformations via nu-
merical optimization (SGR LDDMM) which
produced the training dataset?

Our experiments show that SGR is indeed more sta-
ble than pairwise registration and FPSGR results

6We combine MCI and LMCI mainly because (a) the diagnostic
changes available on the IDA website (https://ida.loni.usc.edu/
login.jsp) only provide these three diagnostic groups; (b) to be
consistent with the experiments conducted by Hua et al. (2013),
where only Normal, MCI and AD were used as labels to classify
ADNI-1. Hereafter, in all discussions of ADNI-1, MCI is a combination
of MCI and LMCI of ADNI-1

7Similar to ADNI-1, a detailed diagnosis for ADNI-2 is only avail-
able for the baseline images; MR images at later time points are only
labeled as NC, MCI, and AD. Thus, we combine SMC and NC, as
well as EMCI and LMCI to be consistent with the diagnostic changes
in the ADNI Diagnosis Summary available on the IDA website. Here-
after, in all discussions of ADNI-2, NC includes NC and SMC and
MCI includes EMCI and LMCI.

are consistent with results obtained via numerical
optimization. Hence, our prediction approach can
reliable replace costly numerical optimization.

S3 Visual Validation (Sec. 4.3)

Can the prediction models for regression visually
capture similar trends to the regression model ob-
tained by numerical optimization?

Our visual results show that FPSGR approximates
longitudinal image data well, providing visual confir-
mation for our quantitative validation results (S2).

S4 Forecasting (Sec. 4.4)

Is the predictive power of the regression models
strong enough to forecast deformations for unseen
future timepoints?

We show that FPSGR can capture correlation trends
for future (unseen) images. This is evidence that
FPSGR captures trends which allow for extrapola-
tion in time.

S5 Atrophy Assessment via Transitivity Analysis and
Sample Size Estimates (Sec. 4.5)

Does transitivity hold for our atrophy regression re-
sults, i.e., do regression results from A → C agree
with results obtained by regressing from A → B
and B → C? Furthermore, what sample sizes are
required to show differences based on the regressed
atrophy measures?

Our results show that FPSGR a) shows limited sat-
uration effects when analyzing transitivity, and b)
shows consistent sample size estimates with SGR
LDDMM.

Aspects S1-S5 justify the use of FPSGR. In turn, the
substantially improved computational efficiency of FPSGR
justifies its use for large-scale imaging studies. Appendix
B shows the distributions of the prediction cases per time-
point and the diagnostic groups in ADNI-1/ADNI-2, respec-
tively.

4.1. S1: Prediction Models for Longitudinal Data

A key aspect to the success of FPSGR for the analysis
of longitudinal imaging data is to verify that the predic-
tive registration component of FPSGR can reliably predict
longitudinal registration results. In particular, this ques-
tion also relates to how one should go about training such
longitudinal models. Our hypothesis, based on the prior
work in Yang et al. (2017), was that highly accurate predic-
tion models can be obtained. Going beyond these results,
we further hypothesized that training a prediction model
on longitudinal data yields higher accuracies than train-
ing on cross-subject data, as the models can then become
more data-specific, because they are trained on deforma-
tions that are expected for longitudinal registrations. To
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test these hypotheses, we trained two different prediction
models and tested them on longitudinal and cross-subject
registration tasks. Our training strategy for the differ-
ent prediction models is detailed in Sec. 3.1. In brief, we
trained our prediction models on data of 100 subjects of
the ADNI-1 dataset and tested on 20. We trained models
only using longitudinal pairs between baseline and the 24
month follow-up images, as well as using the same time-
points but across subjects. Testing was done on data for a
separate set of 20 subjects and compared with respect to
results obtained via numerical optimization of LDDMM.

Table 2 shows the resulting deformation errors and
confirms our hypotheses. Results with respect to
optimization-based LDDMM are highly accurate with a
median deformation error substantially below a millimeter
for the longitudinal registration task which is relevant for
SGR/FPSGR. Furthermore, training on longitudinal im-
age registration pairs is clearly beneficial. Hence, we con-
clude that a prediction model trained on longitudinal data
works well while allowing much faster computations than
optimization-based LDDMM. Hence, we use such models
for all our following experiments.

3D Longitudinal Test Case Deformation Error [mm]
Data Percentile 0.3% 5% 25% 50% 75% 95% 99.7%

Longitudinal Training 0.0156 0.0407 0.0761 0.1098 0.1559 0.2681 0.3238
Cross-subject Training 0.0544 0.1424 0.2641 0.3723 0.5067 0.7502 0.8425

3D Cross-subject Test Case Deformation Error [mm]
Data Percentile 0.3% 5% 25% 50% 75% 95% 99.7%

Longitudinal Training 0.1694 0.4802 1.0765 1.7649 2.7630 4.8060 5.6826
Cross-subject Training 0.1123 0.3024 0.5863 0.8737 1.2743 2.2659 2.7836

Table 2: Deformation error of longitudinal and cross-subject models
tested on longitudinal and cross-subject data. 2-norm deformation
errors in millimeters w.r.t. the ground truth deformation obtained
by numerical optimization for LDDMM. A prediction model trained
with longitudinal registration performs better for longitudinal regis-
trations. Conversely, a model trained based on cross-subject regis-
tration is preferred for cross-subject registrations.

4.2. S2: Quantitative Validation

Now that we justified that highly accurate prediction
models for longitudinal data can be trained (see Sec. 4.1),
it is important to validate the performance of FPSGR.
Specifically, we investigate if (1) regression is beneficial
for the analysis of longitudinal data with more than two
timepoints and (2) if FPSGR can perform as well as SGR
LDDMM (i.e., simple geodesic regression via numerical
optimization).

For simple geodesic regression to be a useful model
it should outperform pairwise image registration. The
main conceptual difference is that the regression model
will recover an average trend based on multiple image
time-points, i.e., the resulting regression geodesic will be
a compromise between all the measurements. In contrast,
for pairwise image registration (which can be considered
a trivial case of geodesic regression with two images only)
the deformation will in general be able to match the tar-
get image better. However, just as in linear regression,
this may accentuate the effects of noise.

ADNI-1 Slope Intercept C.I. Length #data

NC-NC

SGR LDDMM-1 [0.62, 0.70, 0.78] [-0.25,-0.08, 0.09] 0.2941
154

SGR Pred+Corr-1 [0.61, 0.68, 0.75] [-0.15, -0.01, 0.13] 0.2478
Pairwise Pred+Corr-1 [0.46, 0.55, 0.63] [0.07, 0.24, 0.40] 0.2899

SGR LDDMM-2 [0.57, 0.66, 0.75] [-0.21, -0.04, 0.14] 0.3137
156

SGR Pred+Corr-2 [0.51, 0.58, 0.65] [-0.12, 0.01, 0.15] 0.2421
Pairwise Pred+Corr-2 [0.49, 0.56, 0.64] [-0.10, 0.05, 0.20] 0.2632

NC-MCI

SGR LDDMM-1 [0.72, 0.94, 1.16] [-0.45, -0.03, 0.39] 0.7363
24

SGR Pred+Corr-1 [0.71, 0.90, 1.10] [-0.40, -0.01, 0.37] 0.6737
Pairwise Pred+Corr-1 [0.60, 0.88, 1.15] [-0.15, 0.38, 0.92] 0.9373

SGR LDDMM-2 [0.88, 1.19, 1.50] [-0.65, -0.05, 0.55] 1.0657
22

SGR Pred+Corr-2 [0.80, 1.07, 1.34] [-0.66, -0.14, 0.38] 0.9236
Pairwise Pred+Corr-2 [0.65, 0.91, 1.17] [-0.39, 0.11, 0.61] 0.8875

MCI-MCI

SGR LDDMM-1 [0.97, 1.17, 1.38] [-0.28, 0.05, 0.39] 0.6683
146

SGR Pred+Corr-1 [0.92, 1.09, 1.26] [-0.14, 0.14, 0.42] 0.5612
Pairwise Pred+Corr-1 [0.75, 0.91, 1.08] [0.08, 0.35, 0.63] 0.5416

SGR LDDMM-2 [0.83, 1.00, 1.17] [-0.21, 0.06, 0.33] 0.5365
148

SGR Pred+Corr-2 [0.77, 0.90, 1.04] [-0.15, 0.07, 0.29] 0.4406
Pairwise Pred+Corr-2 [0.78, 0.94, 1.11] [-0.11, 0.16, 0.42] 0.5332

MCI-NC

SGR LDDMM-1 [0.48, 0.72, 0.96] [-0.85, -0.42, 0.01] 0.7873
16

SGR Pred+Corr-1 [0.51, 0.68, 0.86] [-0.52, -0.20, 0.13] 0.5951
Pairwise Pred+Corr-1 [0.27, 0.52, 0.76] [-0.18, 0.27, 0.71] 0.8187

SGR LDDMM-2 [0.54, 0.79, 1.03] [-0.79, -0.36, 0.07] 0.8087
17

SGR Pred+Corr-2 [0.49, 0.70, 0.91] [-0.59, -0.21, 0.17] 0.7020
Pairwise Pred+Corr-2 [0.28, 0.54, 0.80] [-0.39, 0.07, 0.53] 0.8577

MCI-AD

SGR LDDMM-1 [1.94, 2.10, 2.27] [-0.28, 0.02, 0.31] 0.5484
148

SGR Pred+Corr-1 [1.70, 1.84, 1.98] [-0.17, 0.08, 0.33] 0.4601
Pairwise Pred+Corr-1 [1.46, 1.60, 1.74] [0.18, 0.43, 0.67] 0.4516

SGR LDDMM-2 [1.75, 1.92, 2.09] [-0.16, 0.14, 0.44] 0.5595
147

SGR Pred+Corr-2 [1.49, 1.64, 1.78] [-0.08, 0.17, 0.43] 0.4708
Pairwise Pred+Corr-2 [1.50, 1.64, 1.77] [0.00, 0.24, 0.48] 0.4415

AD-AD

SGR LDDMM-1 [1.97, 2.33, 2.69] [-0.17, 0.27, 0.70] 0.8878
143

SGR Pred+Corr-1 [1.74, 2.05, 2.35] [-0.04, 0.33, 0.70] 0.7486
Pairwise Pred+Corr-1 [1.62, 1.91, 2.21] [0.15, 0.51, 0.87] 0.7328

SGR LDDMM-2 [1.92, 2.28, 2.65] [-0.20, 0.24, 0.68] 0.9067
140

SGR Pred+Corr-2 [1.65, 1.95, 2.24] [-0.10, 0.25, 0.60] 0.7244
Pairwise Pred+Corr-2 [1.70, 1.99, 2.27] [-0.03, 0.32, 0.66] 0.7030

ADNI-2 Slope Intercept

NC-NC

SGR LDDMM-1 [0.55, 0.65, 0.75] [-0.08, 0.03, 0.13] 0.2635
170

SGR Pred+Corr-1 [0.50, 0.57, 0.65] [-0.04, 0.05, 0.13] 0.2040
Pairwise Pred+Corr-1 [0.37, 0.46, 0.54] [0.10, 0.19, 0.29] 0.2259

SGR LDDMM-2 [0.51, 0.62, 0.72] [-0.10, 0.01, 0.12] 0.2700
175

SGR Pred+Corr-2 [0.35, 0.44, 0.52] [-0.09, -0.00, 0.08] 0.2134
Pairwise Pred+Corr-2 [0.35, 0.44, 0.53] [-0.09, 0.00, 0.10] 0.2357

NC-MCI

SGR LDDMM-1 [0.56, 0.79, 1.02] [-0.22, 0.01, 0.25] 0.4624
16

SGR Pred+Corr-1 [0.63, 0.80, 0.97] [-0.16, 0.02, 0.19] 0.3431
Pairwise Pred+Corr-1 [0.59, 0.82, 1.05] [-0.20, 0.04, 0.27] 0.4620

SGR LDDMM-2 [0.62, 0.90, 1.18] [-0.32, -0.02, 0.28] 0.5691
17

SGR Pred+Corr-2 [0.46, 0.68, 0.91] [-0.25, -0.02, 0.22] 0.4554
Pairwise Pred+Corr-2 [0.53, 0.77, 1.02] [-0.40, -0.15, 0.10] 0.4927

MCI-MCI

SGR LDDMM-1 [0.71, 0.83, 0.94] [-0.13, -0.00, 0.12] 0.3008
184

SGR Pred+Corr-1 [0.64, 0.73, 0.82] [-0.08, 0.02, 0.11] 0.2384
Pairwise Pred+Corr-1 [0.59, 0.69, 0.79] [-0.01, 0.09, 0.20] 0.2577

SGR LDDMM-2 [0.71, 0.82, 0.92] [-0.14, -0.02, 0.09] 0.2844
183

SGR Pred+Corr-2 [0.50, 0.59, 0.67] [-0.12, -0.02, 0.07] 0.2253
Pairwise Pred+Corr-2 [0.59, 0.69, 0.78] [-0.23, -0.13, -0.02] 0.2559

MCI-NC

SGR LDDMM-1 [0.03, 0.39, 0.74] [-0.38, 0.05, 0.47] 0.9551
16

SGR Pred+Corr-1 [0.08, 0.36, 0.64] [-0.28, 0.05, 0.38] 0.7421
Pairwise Pred+Corr-1 [0.00, 0.25, 0.51] [-0.11, 0.18, 0.48] 0.6702

SGR LDDMM-2 [0.14, 0.40, 0.67] [-0.28, 0.04, 0.35] 0.7109
21

SGR Pred+Corr-2 [0.05, 0.26, 0.48] [-0.22, 0.03, 0.29] 0.5744
Pairwise Pred+Corr-2 [-0.04, 0.23, 0.50] [-0.32, -0.01, 0.31] 0.7148

MCI-AD

SGR LDDMM-1 [1.65, 1.95, 2.25] [-0.21, 0.13, 0.47] 0.7908
70

SGR Pred+Corr-1 [1.39, 1.62, 1.85] [-0.15, 0.11, 0.37] 0.6060
Pairwise Pred+Corr-1 [1.25, 1.48, 1.72] [0.09, 0.35, 0.60] 0.6122

SGR LDDMM-2 [1.59, 1.91, 2.23] [-0.16, 0.19, 0.53] 0.8447
65

SGR Pred+Corr-2 [1.20, 1.45, 1.69] [-0.13, 0.14, 0.41] 0.6498
Pairwise Pred+Corr-2 [1.27, 1.50, 1.74] [-0.14, 0.12, 0.38] 0.6193

AD-AD

SGR LDDMM-1 [2.49, 2.76, 3.04] [-0.15, 0.07, 0.30] 0.5128
101

SGR Pred+Corr-1 [2.14, 2.34, 2.54] [-0.09, 0.08, 0.24] 0.3810
Pairwise Pred+Corr-1 [2.12, 2.34, 2.57] [-0.02, 0.17, 0.35] 0.4223

SGR LDDMM-2 [2.72, 2.99, 3.27] [-0.15, 0.07, 0.29] 0.5124
103

SGR Pred+Corr-2 [2.16, 2.36, 2.56] [-0.15, 0.02, 0.18] 0.3796
Pairwise Pred+Corr-2 [2.14, 2.37, 2.59] [-0.24, -0.05, 0.13] 0.4226

Table 3: Slope and intercept values for linear regression of vol-
ume change over time. Our notation for slope and intercept indi-
cate [lower bound of 95% C.I., point estimate, upper bound of
95% C.I.]. The interval of intercept estimates all contain zero. The
slope changes between the different diagnostic groups. C.I. Length
is the average 95% confidence interval length of this linear regression
over time. The #data column lists the number of data points ana-
lyzed. Green indicates that the intercept is closer to zero (also, zero
is within the 95% confidence interval) for SGR Pred+Corr model;
Yellow indicates that the intercept is closer to zero for pairwise
Pred+Corr model; Red indicates that the point estimate is either bi-
ased to overestimate or underestimate volume change. FPSGR (SGR
Pred+Corr) model performs better than the pairwise Pred+Corr
model.

We assess the performance of our models by evaluating
bias of regressed atrophy scores and strength of correla-
tion with respect to clinical measures. A successful model
should not exhibit bias and is expected to result in high
correlations comparable to the correlation levels achieved
via numerical optimization.

Bias. Estimates of atrophy are susceptible to bias
(Yushkevich et al., 2010; Fox et al., 2011). We use two
bias measures: regression intercept of the atrophy score
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and the transitivity of the regression results. In this sec-
tion, we only assess bias via the atrophy regression inter-
cept, as it is a direct assessment of bias when there is no
expected change. We leave the more detailed transitivity
analysis and sample size estimates for Sec. 4.5. To quanti-
tatively assess this potential bias, we separately considered
different diagnostic groups. Specifically, we considered six
diagnostic change groups in our experiments: (1) NC for
all time points (NC-NC), (2) starting with NC and chang-
ing to MCI or AD at a later time point (NC-MCI)8, (3)
MCI for all time points (MCI-MCI), (4) starting with MCI
and reverting to NC at later time points (MCI-NC), (5)
starting with MCI and changing to AD at later time points
(MCI-AD), and (6) AD for all the time points (AD-AD)9.
In particular, we follow Hua et al. (2013) and fit a straight
line (i.e., linear regression) through all atrophy measure-
ments over time, conditioned on each diagnostic change
category. The intercept term is an estimate of the atrophy
one would measure when registering two scans acquired
on the same day; hence it should be near zero and its
95% confidence interval should contain zero. Quantita-
tively, Table 3 lists the slopes, intercepts, and 95% confi-
dence intervals for optimization and prediction results on
ADNI-1 and ADNI-2, respectively. Specifically, it shows
linear regression results of atrophy measures over time as
obtained via (1) FPSGR (i.e., using an FPSGR fit over
all time-points followed by atrophy computations based
on the deformations of the regression geodesic) compared
with atrophy measures obtained by (2) pairwise predictive
registration and (3) SGR LDDMM. The different cross-
validation testing folds are indicated with suffix -1 and -2,
e.g., SGR LDDMM-1 and SGR LDDMM-2. Comparisons
between approaches should therefore be within folds.

As shown in Table 3, FPSGR (i.e., SGR Pred+Corr-
1/2) outperforms the pairwise registration approach in
two aspects: (1) the estimated intercept of FPSGR is
generally closer to zero than for the pairwise method
and the intercept 95% confidence interval is narrower;
(2) 8 out of 24 of the 95% confidence intervals of the
pairwise methods show bias to either overestimate or
underestimate volume change. None of the FPSGR
results show such significant bias. Both SGR LDDMM
and FPSGR show intercepts that are near zero relative
to the range of changes observed and both intercept
confidence intervals contain zero. For all diagnostic
change groups, FPSGR results are more stable than the
results for the SGR LDDMM method, as indicated by
the tighter confidence intervals. A possible explanation
for the tighter confidence intervals is that the predic-
tion method at the core of FPSGR learns a relatively
conservative mapping from images to initial momentum.
Hence, it will avoid, for example, large outliers (as also

8Very few cases convert from NC to AD in the imaged time-frame.
9In ADNI-1/ADNI-2, there are two patients who revert from AD

to MCI. We omitted these cases in our experiments, because the
number of such cases is too small.

observed in the original Quicksilver work of Yang et al.
(2017) for image-to-image registration). Methods based
on optimization-based image registration (such as SGR
LDDMM) are more sensitive to misregistrations and
imperfections in image pre-processing (e.g., imperfect
brain extraction results, which can be tolerated much
more gracefully by a deep-learning-based registration
approach; see Yang et al. (2017)). Appendix E visually
shows linear regression results for the estimated atrophy
scores in ADNI-1/2 for the Pred+Corr-1 model. Both
the data points themselves (i.e., the atrophy scores),
as well as kernel density estimates for the linear trends
for each subject are shown. Additional discussions
about disease severity and the linear regression slope
as well as a more in-depth analysis of the estimation
bias can be found in the supplementary material. We
conclude that (1) neither SGR LDDMM optimization
nor FPSGR produced deformations with significant bias
to overestimate or underestimate volume change; (2) the
pairwise prediction model suffers from bias while the
regression prediction model (FPSGR) shows little bias.
Hence, from the perspective of bias, S2 has been validated.

Correlation. Atrophy estimates are shown to correlate10

with clinical variables (Fleishman and Thompson, 2017b).
To quantify this effect, we computed the Spearman rank-
order correlation11 between our atrophy estimates and the
diagnostic groups (NC = 0, MCI = 1, AD = 2), and also
between our atrophy estimates and the scores of the mini-
mental state exam (MMSE). We computed these mea-
sures for FPSGR (SGR Pred+Corr-1/2), for optimization-
based SGR (SGR LDDMM-1/2) and for pairwise predicted
registrations (Pairwise Pred+Corr-1/2). We applied the
Benjamini-Hochberg procedure (Benjamini and Hochberg,
1995) for all the correlation results to account for multi-
ple comparisons. The overall false discovery rate was set
to 0.01, which resulted in an effective significance level of
α ≈ 0.0093. Detailed results can be found in Table 4.
FPSGR performs better than the pairwise approach in

10The true correlation between ideal noiseless atrophy measures
and clinical variables is unknown. Validation of dense volumetric
image registration is known to be a challenging task. In segmen-
tation, automatic segmentations are often compared to manual seg-
mentations. However, obtaining a manual gold standard for dense
volumetric registration is infeasible. Alternatively, segmentations are
frequently used as an indirect way of validating registration accuracy.
When assessing atrophy over time in a region of interest, manual and
automated segmentation errors are often comparable in magnitude
to the expected atrophy (Shen et al., 2010). For example, expected
annual tissue loss in the hippocampus for an AD subject is around
6%, which can be produced by shifting the hippocampal segment
boundary by only a few voxels along its extent. Hence, segment
boundaries are not reliable forms of ground truth in this setting ei-
ther. In the absence of reliable alternatives, we therefore hypothesize
that tissue loss will correlate with disease severity and then trust the
measurements that clinicians utilize to measure disease severity, such
as cognitive scores.

11We used Spearman rank-order correlation instead of Pearson cor-
relation, because the diagnostic groups imply an ordering only.
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ADNI-1 MMSE p-value DX p-value #data

6mo

SGR LDDMM-1 -0.4957 5.17e-39 0.5140 2.66e-42
608SGR Pred+Corr-1 -0.5104 1.22e-41 0.5259 1.53e-44

Pairwise Pred+Corr-1 -0.3216 4.28e-16 0.2695 1.42e-11
SGR LDDMM-2 -0.4667 4.17e-34 0.4814 1.75e-36

606SGR Pred+Corr-2 -0.4734 3.54e-35 0.4890 9.67e-38
Pairwise Pred+Corr-2 -0.3289 9.34e-17 0.3041 1.97e-14

12mo

SGR LDDMM-1 -0.5749 5.23e-51 0.5313 1.81e-42
565SGR Pred+Corr-1 -0.5799 4.39e-52 0.5406 3.44e-44

Pairwise Pred+Corr-1 -0.4605 5.22e-31 0.3773 1.49e-20
SGR LDDMM-2 -0.5301 6.81e-42 0.5055 1.17e-37

560SGR Pred+Corr-2 -0.5374 3.73e-43 0.5155 2.89e-39
Pairwise Pred+Corr-2 -0.4377 1.46e-27 0.3602 1.44e-18

18mo

SGR LDDMM-1 -0.4939 4.86e-16 0.4776 5.76e-15
238SGR Pred+Corr-1 -0.4924 6.16e-16 0.4643 3.98e-14

Pairwise Pred+Corr-1 -0.4324 2.90e-12 0.3851 7.82e-10
SGR LDDMM-2 -0.4385 9.50e-13 0.4000 1.12e-10

241SGR Pred+Corr-2 -0.4384 9.75e-13 0.3790 1.19e-9
Pairwise Pred+Corr-2 -0.4057 5.79e-11 0.3191 4.16e-7

24mo

SGR LDDMM-1 -0.6064 5.01e-45 0.5978 1.69e-43
435SGR Pred+Corr-1 -0.6001 6.55e-44 0.5943 6.82e-43

Pairwise Pred+Corr-1 -0.6005 5.57e-44 0.5445 6.12e-35
SGR LDDMM-2 -0.5822 4.11e-40 0.5534 1.24e-35

427SGR Pred+Corr-2 -0.5898 2.28e-41 0.5709 2.65e-38
Pairwise Pred+Corr-2 -0.5881 4.36e-41 0.5443 2.64e-34

36mo

SGR LDDMM-1 -0.5142 4.29e-20 0.5300 1.81e-21
277SGR Pred+Corr-1 -0.5069 1.71e-19 0.5296 1.99e-21

Pairwise Pred+Corr-1 -0.4759 4.61e-17 0.4726 8.13e-17
SGR LDDMM-2 -0.4334 3.79e-13 0.4815 2.93e-16

256SGR Pred+Corr-2 -0.4393 1.67e-13 0.4863 1.34e-16
Pairwise Pred+Corr-2 -0.4526 2.49e-14 0.4801 3.64e-16

48mo

SGR LDDMM-1 -0.7456 2.01e-13 0.6635 5.20e-10
69SGR Pred+Corr-1 -0.7443 2.30e-13 0.6575 8.43e-10

Pairwise Pred+Corr-1 -0.7124 6.65e-12 0.6592 7.34e-10
SGR LDDMM-2 -0.6889 2.25e-10 0.5927 1.98e-7

65SGR Pred+Corr-2 -0.7005 8.31e-11 0.6067 8.49e-8
Pairwise Pred+Corr-2 -0.6686 1.16e-9 0.5840 3.28e-7

ADNI-2 MMSE p-value DX p-value #data

3mo

SGR LDDMM-1 N/A N/A 0.4254 2.34e-24
522SGR Pred+Corr-1 N/A N/A 0.4353 1.52e-25

Pairwise Pred+Corr-1 N/A N/A 0.1915 1.06e-5
SGR LDDMM-2 N/A N/A 0.4409 2.77e-26

523SGR Pred+Corr-2 N/A N/A 0.4445 9.64e-27
Pairwise Pred+Corr-2 N/A N/A 0.1951 7.01e-6

6mo

SGR LDDMM-1 -0.4989 8.01e-31 0.4688 6.09e-27
468SGR Pred+Corr-1 -0.5128 9.64e-33 0.4846 6.19e-29

Pairwise Pred+Corr-1 -0.3721 8.20e-17 0.2830 4.58e-10
SGR LDDMM-2 -0.5072 4.29e-32 0.4883 1.58e-29

470SGR Pred+Corr-2 -0.5066 5.25e-32 0.4913 6.33e-30
Pairwise Pred+Corr-2 -0.3890 1.97e-18 0.3273 3.37e-13

12mo

SGR LDDMM-1 -0.4756 1.43e-27 0.4859 7.22e-29
464SGR Pred+Corr-1 -0.4908 1.67e-29 0.5064 1.37e-31

Pairwise Pred+Corr-1 -0.4623 5.98e-26 0.4762 1.22e-27
SGR LDDMM-2 -0.4937 1.07e-29 0.5026 7.05e-31

461SGR Pred+Corr-2 -0.4987 2.35e-30 0.5149 1.44e-32
Pairwise Pred+Corr-2 -0.4647 5.04e-26 0.4780 1.22e-27

24mo

SGR LDDMM-1 -0.4120 9.53e-15 0.4476 2.06e-17
325SGR Pred+Corr-1 -0.4109 1.15e-14 0.4632 1.09e-18

Pairwise Pred+Corr-1 -0.4178 3.66e-15 0.4796 4.22e-20
SGR LDDMM-2 -0.4095 2.09e-14 0.4375 1.93e-16

321SGR Pred+Corr-2 -0.3943 2.20e-13 0.4336 3.79e-16
Pairwise Pred+Corr-2 -0.4045 4.60e-14 0.4607 2.85e-18

36mo

SGR LDDMM-1 -0.2474 0.55 0.2869 0.49
8SGR Pred+Corr-1 -0.2474 0.55 0.2869 0.49

Pairwise Pred+Corr-1 -0.2887 0.49 0.4434 0.27
SGR LDDMM-2 0.0935 0.83 0.1695 0.69

8SGR Pred+Corr-2 0.0935 0.83 0.1695 0.69
Pairwise Pred+Corr-2 0.3429 0.41 0.1956 0.64

Table 4: SGR prediction models (FPSGR and SGR LDDMM) com-
pared with pairwise prediction model. Results show correlations with
clinical variables. The #data column lists the number of data points
analyzed. Green indicates a stronger correlation for the FPSGR
(SGR prediction+correction) method; Yellow indicates a stronger
correlation for the pairwise prediction+correlation model. The p-
value column lists p-values for the null-hypothesis that there is no
correlation. The Benjamini-Hochberg procedure was employed to re-
duce the false discovery rate (FDR). The Purple highlight indicates
statistically significant results after correction for multiple compar-
isons. In general, FPSGR performs better than the pairwise predic-
tion+correction model demonstrating that regression stabilizes the
correlation results. ADNI-2 36mo only has 8 data points and the
p-value is greater than 0.1, thus we ignore this timepoint in our com-
parison.

14 out of 18 cases for MMSE and in 17 out of 20 cases
for the diagnostic category. Furthermore, when the pair-
wise method is better than FPSGR, the difference is much
smaller compared to the differences observed for the cases
where FPSGR is better than the pairwise method. Also

note that the pairwise method shows better performance
in later months compared to earlier months. This could,
for example, be because the deformations are larger for
later time-points and hence the registration result becomes
more stable, or because FPSGR is also heavily influenced
by the last time-point. Furthermore, FPSGR shows statis-
tically significant improved (higher in magnitude) correla-
tions over the pairwise approach. Specifically, we tested
if the two approaches show different means based on the
correlations reported in Table 4. Details on the statistical
tests can be found in the Appendix C.

We observe median correlations for all four FPSGR
prediction + correction models (ADNI1/2 Pred+Corr-
1/2) in the range of −0.40 to −0.75 for MMSE and 0.36
to 0.65 for diagnostic category. Previous studies reported
Pearson correlations between comparable atrophy esti-
mates and clinical variables as high as −0.7 for MMSE
and 0.5 for diagnostic category for 100 subjects (Fleish-
man and Thompson, 2017b,a). Our two SGR LDDMM
results achieve median correlations ranging from −0.40 to
−0.76 for MMSE and 0.40 to 0.66 for diagnostic category,
which is very similar to the SGR prediction+correction
models.

In fact, FPSGR with correction network shows sim-
ilar correlations between atrophy and MMSE/DX to
optimization-based SGR (SGR LDDMM), justifying the
use of FPSGR. Statistical testing details are given in Ap-
pendix D.

In summary, based on the discussions above, FPSGR
shows excellent performance. It shows negligible bias,
works better than the pair-wise approach, shows strong
correlations with clinical variables, and works as well, or
better, than simple geodesic regression via numerical op-
timization (SGR LDDMM).

4.3. S3: Visual Validation

Sec. 4.1 quantitatively assessed the ability of FPIR to
predict longitudinal deformations. Sec. 4.2 quantitatively
demonstrated the good performance of FPSGR in relation
to a pair-wise prediction approach and SGR via numerical
optimization. Here, we qualitatively illustrate the behav-
ior of FPSGR via the visualization of intensity differences
(for completeness these are also quantified in Table 5) and
Jacobian determinants (JD) for some example image data.

Intensity. Fig. 4 shows an example regression result. In
this specific case, large changes can be observed around the
ventricles. To illustrate differences between the methods,
Fig. 4 visualizes regression results based on optimization-
based SGR LDDMM and for FPSGR with a correction net-
work. Both methods successfully capture the expanding
ventricles and generally capture the image changes. The
difference between SGR LDDMM and FPSGR is barely
noticeable in the 5th row of Fig. 4. To further illustrate
the regression results, we compute the overlay error be-
tween measured images and the images on the geodesic
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Figure 4: Example regression result: one subject with 6 follow-up images from the ADNI-1 dataset. Image intensity range is [0, 2.49].
Top row: Axial slices extracted from the 3D MR images at the same axial location for different months. Original: intensity differences
between the baseline image and its 6-month, 12-month, etc. follow-up images. SGR LDDMM: intensity differences between the acquired
images in the top row and optimization-based regression results at each follow-up month(s). Pred+Corr-1: intensity differences between the
acquired images in the top row and the Pred+Corr-1 regression results at each follow-up month(s). Difference: intensity differences between
SGR LDDMM and Pred+Corr-1 at each follow-up month(s). Rectangles mark areas of major structural changes. Intensity differences
are dramatically reduced, e.g., around the ventricles, demonstrating that these structural changes are captured by all three methods. The
prediction model (Pred+Corr-1) give very similar results to the regression results obtained by numerical optimization (SGR LDDMM).

Eoverlay(I0 ◦ Φ−1
ti , Yi)

Measured Images I6mo I12mo I18mo I24mo I36mo I48mo

Original 0.0770 ± 0.0212 0.0764 ± 0.0207 0.0890 ± 0.0220 0.0810 ± 0.0223 0.0899 ± 0.0341 0.0940 ± 0.0415
SGR LDDMM 0.0750 ± 0.0194 0.0686 ± 0.0176 0.0734 ± 0.0190 0.0609 ± 0.0168 0.0628 ± 0.0177 0.0663 ± 0.0221

SGR Pred+Corr-1 0.0754 ± 0.0211 0.0691 ± 0.0182 0.0734 ± 0.0192 0.0615 ± 0.0166 0.0642 ± 0.0188 0.0688 ± 0.0235

Table 5: Mean+standard deviation of the overlay errors, see Eq. (5), over 100 patients in ADNI-1 dataset. Prediction + correction model
exhibits performance comparable to optimization-based regression results (SGR LDDMM).

as

Eoverlay(I0 ◦ Φ−1
ti , Yi) =

1

|Ω|
∥I0 ◦ Φ−1

ti − Yi∥L1
(5)

where Ω is the brain area, I0 ◦Φ−1
ti is the regressed image

at time ti and Yi is the measured image at time ti. Tab. 5
shows the overlay error for a randomly selected population
of 100 subjects of the ADNI-1 dataset. This random set
includes all diagnostic groups. FPSGR obtains results
comparable with optimization-based SGR LDDMM. This

justifies the use of the proposed method.

Jacobian Determinant (JD). The average JD images
qualitatively agree with prior results (Hua et al., 2013,
2016): severity of volume change increases with severity of
diagnosis and time. Change is most substantial in the tem-
poral lobes near the hippocampus. In Fig. 5, 6 month to
48 month are existing data points; 60 month to 84 month
are forecasting results (i.e., results obtained via extrapo-
lation of the estimated regression geodesic; see upcoming
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Figure 5: Average Jacobian determinant over time and diagnostic
category for ADNI-1 Prediction+Correction-1 (experiments in ADNI-2

show similar results). A value < 1 indicates shrinkage and value > 1
indicates expansion. The 60 month - 84 month results contained in
the purple rectangle are forecasts using the data from 6 month - 48
month. Results show consistent volume loss over time near the tem-
poral lobes and expansion over time near the ventricles/cerebrospinal
fluid.

Sec. 4.4 for a detailed discussion on how these forecast-
ing results were computed). Blue indicates volume loss.
Red indicates expansion. Results are consistent with ex-
pectations: volume loss increases with time and severity
of diagnosis in temporal lobes; volume expansion increases
with respect to time and severity of diagnosis around the
ventricles / cerebrospinal fluid. The forecast results cap-
ture visually sensible volume loss or expansion over time,
qualitatively illustrating the performance of our method.

ADNI-1 MMSE p-value DX p-value #data

60mo Forecast

SGR LDDMM-1 -0.5242 1.34e-13 0.5157 3.85e-13
173

SGR Pred+Corr-1 -0.5193 2.48e-13 0.5240 1.38e-13
SGR LDDMM-2 -0.4501 2.32e-10 0.4761 1.43e-11

180
SGR Pred+Corr-2 -0.4582 9.97e-11 0.4652 4.73e-11

72mo
Forecast

SGR LDDMM-1 -0.4607 1.60e-10 0.4507 4.37e-10
174

SGR Pred+Corr-1 -0.4615 1.47e-10 0.4667 8.52e-11
SGR LDDMM-2 -0.3662 3.18e-7 0.4233 2.15e-9

184
SGR Pred+Corr-2 -0.3793 1.09e-7 0.4259 1.67e-9

84mo
Forecast

SGR LDDMM-1 -0.3986 1.40e-6 0.4108 6.17e-7
137

SGR Pred+Corr-1 -0.3946 1.83e-6 0.4211 2.98e-7
SGR LDDMM-2 -0.3293 4.65e-5 0.3622 6.53e-6

147
SGR Pred+Corr-2 -0.3187 8.35e-5 0.3609 7.12e-6

Table 6: Correlations of forecasting results. The #data column lists
the number of data points analyzed. Green indicates that FPSGR
using the prediction+correction network shows the strongest corre-
lations; Red indicates that SGR LDDMM shows the strongest corre-
lations. The Benjamini-Hochberg procedure was employed to reduce
the false discovery rate (FDR). The Purple highlight indicates statis-
tically significant results after correction for multiple comparisons.

ADNI-1 MMSE p-value DX p-value #data

36mo

All months
SGR LDDMM-1 -0.5142 4.29e-20 0.5300 1.81e-21

277
SGR Pred+Corr-1 -0.5069 1.71e-19 0.5296 1.99e-21

Forecast SGR Pred+Corr-1 -0.4708 1.42e-16 0.4980 1.21e-18
Replace SGR Pred+Corr-1 -0.5097 1.37e-19 0.5375 5.47e-22

All months
SGR LDDMM-2 -0.4334 3.79e-13 0.4815 2.93e-16

256
SGR Pred+Corr-2 -0.4393 1.67e-13 0.4863 1.34e-16

Forecast SGR Pred+Corr-2 -0.4005 3.34e-11 0.4301 7.40e-13
Replace SGR Pred+Corr-2 -0.4164 4.51e-12 0.4582 1.38e-14

48mo

All months
SGR LDDMM-1 -0.7456 2.01e-13 0.6635 5.20e-10

69
SGR Pred+Corr-1 -0.7443 2.30e-13 0.6575 8.43e-10

Forecast SGR Pred+Corr-1 -0.6541 1.10e-9 0.6317 5.86e-9
Replace SGR Pred+Corr-1 -0.6668 3.98e-10 0.6800 1.31e-10

All months
SGR LDDMM-2 -0.6889 2.25e-10 0.5927 1.98e-7

65
SGR Pred+Corr-2 -0.7005 8.31e-11 0.6067 8.49e-8

Forecast SGR Pred+Corr-2 -0.6403 9.25e-9 0.5460 2.55e-6
Replace SGR Pred+Corr-2 -0.6307 1.79e-8 0.5973 1.50e-7

Table 7: Forecast results which are based on the 6mo and 24mo im-
ages compared with results obtained when using all available time-
points. The #data column lists the number of data points analyzed.
The Benjamini-Hochberg procedure was employed to reduce the false
discovery rate (FDR). Purple highlight indicates statistically signif-
icant results after correcting for multiple comparisons. Forecast re-
sults are calculated by using SGR, excluding 36mo and 48mo data
points, and then predicting 36mo and 48mo correlations. Results are
compared based on the same dataset.

4.4. S4: Forecasting

Another interesting question for SGR and geodesic re-
gression in general is if SGR is able to forecast unseen
future time-points. Specifically we consider two scenarios:

Q1) Extrapolate-clinical: Can we extrapolate the
SGR results into the future (to time-points that do
not exist in the ADNI image dataset, but for the clin-
ical data) while maintaining strong correlations.

Q2) Extrapolate-image: How well can correlations be-
tween atrophy and clinical measures be predicted for
time-points when we do or do not use image data at
that very time-point. We artificially leave out image
measurements so that we can compare prediction re-
sults to results when we have access to the image
measurement.

We use different forecasting approaches for the two sce-
narios. In the first approach (Forecast) we simply com-
pute SGR results with the available image time-points and
then extrapolate using the resulting regression geodesic to
the desired time-point in the future. In the second ap-
proach (Replace), we artificially impute the missing im-
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age time-points by simply replacing them by the image at
the closest measured time-point. For example, if we have
images at 6, 12, and 18 month, but we want to forecast
at 24 month, we use the 18 month image as the imputed
24 month image and then perform SGR on the 6, 12, 18,
and the imputed 24 month images. We then obtain the
deformation at 24 months from the SGR result.

ad Q1. Table 6 shows correlations between atrophy
and the clinical measures for the Forecast results for 60
month, 72 month and 84 month.The resulting correlations
of atrophy with diagnostic category are all above 0.3 (or
below -0.3). Furthermore, the Forecast correlations show
a downward trend with respect to time, which means that
the prediction of “far-away“ points is not as accurate as
for the “near” future. This indicates that relative volume
change within the ROI may not be accurately described
by a regression geodesic for later time points. Note that
SGR using the 6 month to 48 month time points only re-
sults in correlations around -0.5 for MMSE and 0.5 for
DX on average. The correlations for the 60 months fore-
cast in Table 6 show similar magnitudes. This suggests
that the model successfully predicts into the near-future.
Overall, our prediction+correction network performs as
well as and sometimes even slightly better than SGR us-
ing optimization-based LDDMM. Fig. 5 shows that these
forecasting results capture the trends of the changes in the
temporal lobes near the hippocampus and changes in the
ventricles.

ad Q2. Table 7 shows Forecast and Replace results
for correlations between atrophy and clinical measures in
comparison to using all images. Specifically, for the Fore-
cast and Replace results we did not use the available
images at 36 and 48 month so we could compare against
the results obtained when using these images. If FPSGR
is a good model, it should result in correlations close to
the correlations when using all images. The Forecast
correlations are only slightly weaker (0.02 to 0.05 lower
in absolute values) than the original correlations using all
images illustrating that FPSGR can approximately fore-
cast future changes. The overall correlations in Table 7
show that the Replace approach performs better than the
Forecast approach. Thus, both Extrapolate-clinical
and Extrapolate-image experiments justify the use of
FPSGR in predicting near future longitudinal trends. Be-
sides, Fig. 5 shows the forecast results for 60 month, 72
month and 84 month. Results illustrate a clear trend ex-
tending the existing 6 month to 48 month deformations.

4.5. S5: Atrophy Assessment via Transitivitiy Analysis
and Sample Size Estimates

Sec. 4.2 used atrophy score regression results to es-
tablish that FPSGR does not produce deformations with
significant bias to overestimate or underestimate volume
change in the analyzed ADNI data. In the following, we
investigate bias in more detail via a transitivity analysis.
We also provide sample size estimates.

Figure 6: Violin plot of the transitivity analysis.

Transitivity analysis (Fox et al., 2011) is a common
approach to test registration bias for atrophy measures
derived from images. As our work is concerned with im-
age regression for multiple time-points, rather than pair-
wise image registration, we modify the approach of Fox
et al. (2011) for transitivity analysis. Specifically, in Fox
et al. (2011) three sequential scans A, B, and C are used.
Transitivity is then assessed by measuring atrophy when
directly registering A → C versus composing the two reg-
istration results for A → B and B → C. Instead, to assess
transitivity effects for regression, we selected a group of
115 patients from ADNI-1 with longitudinal data for five
time-points: I0, I1, I2, I3 and I4, with t0 < t1 < t2 < t3 <
t4. We then perform three different regressions all using
FPSGR with a correction network: (1) full FPSGR over
all images, G : I0 → I1 → I2 → I3 → I4; (2) FPSGR
only over the first three images, F1 : I0 → I1 → I2; and
(3) FPSGR over the last three images F2 : I2 → I3 → I4.
To compare with the result of FPSGR over all time-points
we compose the transformations obtained from F1 and F2

to obtain atrophy measures over the entire time range.
We assess atrophy with respect to the baseline at the last
timepoint, t4. Fig. 6 shows the resulting atrophy differ-
ences. Specifically, we calculated a relative atrophy score
difference sF2◦F1−sG

sG
. Results are mostly centered at zero

with a slight shift (a median value of -7.4% 12 in the vi-
olin plot) observable towards negative values, suggesting
saturation effects with time. Overall, the mean shift and
hence the transitivity errors of the approach are relatively
small. This shift might be mitigated by exploring more
advanced regression models in the future (for example, a
time-warped variant of FPSGR as discussed in the future
work section 5). Next, we illustrate with a simple toy ex-
ample why saturations may cause such a negative shift.

Fig. 7 illustrates our toy atrophy example. Here, at-
rophy is large at the beginning and then starts to satu-

12The atrophy values range from -4.06 to 18.31 with a median
difference value of -0.3932.
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Figure 7: Toy example to illustrate the transitivity analysis results
of Fig. 6. The green line illustrate the two separate regression results
(F1, F2) which are composed to obtain the deformation and from it
the atrophy measure at the last timepoint. The yellow line indicates
the regression results when using all timepoints at once (G). Because
the deformation is fast at the beginning and slows down later, G will
overestimate atrophy at the last timepoint.

rate. Consequentially, from the perspective of a transitiv-
ity check, regressing over all timepoints will overestimate
atrophy at the last timepoint (where saturation has al-
ready set in). Breaking the regression into two parts will
result in a model that is more faithful to the data and can
better model the saturation. Hence, the atrophy measure
at the last timepoint will be smaller. Consequentially a
negative relative atrophy error will result, consistent with
what we observed for real data in Fig. 6.

As suggested by Fox et al. (2011); Fleishman and
Thompson (2017b), sample size is a good measure to as-
sess the distribution of atrophy scores within diagnostic
groups. Specifically, we used N80 sample size. N80 sam-
ple size is the estimated number of individuals required to
detect a 25% reduction in the mean rate of atrophy, with
80% power, and with 95% confidence in the result. The
formula to calculate N80 is as follows:

N80 =
2σ2(z1−0.05/2 + z0.8)

2

(0.25µ)2
. (6)

Here, µ is the average atrophy score for a prediction, σ is
the standard deviation, and zα is the value at which the cu-
mulative standard normal distribution equals α. Numeri-
cally evaluating zα results in N80 ≈ 250.88× (σ/µ)2. Ta-
ble 8 shows the results for the ADNI-1 and ADNI-2 datasets
for the three diagnostic categories: NC, MCI, and AD. A
lower N80 score indicates a lower variance of the atrophy
score, a higher average atrophy score or both. The more
severe the disease (NC < MCI < AD), the lower the sam-
ple size estimation. Table 8 shows that in general FPSGR
(with correction network) has either similar or lower N80
sample size estimates than optimization-based SGR LD-
DMM. This is likely due to the lower variance of FPSGR

as supported by the tighter confidence intervals of FPSGR
shown in Sec. 4.2.

Our results for regression of atrophy score, transitivity
analysis, and sample size estimates indicate that FPSGR
is an effective method to learn a general mapping from im-
ages to the initial momentum of an approximate geodesic.

SGR LDDMM-1 6mo 12mo 18mo 24mo 36mo 48mo
NC 758 246 204 197 140
MCI 203 161 154 146 138 86
AD 125 101 101

ADNI-1 Pred+Corr-1 6mo 12mo 18mo 24mo 36mo 48mo
NC 783 222 198 185 120
MCI 207 162 153 145 137 84
AD 127 104 101

SGR LDDMM-2 3mo 6mo 12mo 24mo 36mo
NC 844 418 310 253 87
MCI 418 336 304 282 82
AD 98 60 68 27

ADNI-2 Pred+Corr-1 6mo 12mo 18mo 24mo 36mo
NC 688 361 271 231 67
MCI 384 311 288 268 80
AD 92 59 67 30

Table 8: Estimated N80 sample size for ADNI-1 and ADNI-2. Results
for ADNI-1 Pred+Corr-2 and ADNI-2 Pred+Corr-2 are similar and are
omitted here for brevity. FPSGR shows similar and for ADNI-2 often
smaller sample size estimates compared to optimization-based SGR
LDDMM.

5. Conclusion & Future work

We proposed a fast approach for geodesic regression
(FPSGR) to study longitudinal image data. FPSGR in-
corporates the recently proposed FPIR (Yang et al., 2016,
2017) into the SGR (Hong et al., 2012c) framework, thus
leading to a computationally efficient solution to geodesic
regression. Since FPSGR replaces the computationally
intensive intermediate step of computing pairwise initial
momenta via a deep-learning prediction method, it is or-
ders of magnitude faster than existing approaches (Hong
et al., 2012c, 2017), without compromising accuracy. Con-
sequently, FPSGR facilitates the analysis of large-scale
imaging studies. Experiments on the ADNI-1 and ADNI-2

datasets demonstrate that FPSGR captures expected at-
rophy trends of normal aging, MCI and AD. It further
(1) exhibits negligible bias towards volume changes within
stat-ROIs, (2) shows high correlations with clinical vari-
ables (MMSE and diagnosis) and (3) produces consistent
forecasting results on unseen data.

Several limitations should be acknowledged:

Firstly, the model is relatively simple and attempts to
model longitudinal changes via an approximated geodesic,
combined with a linear regression model on the estimated
atrophy scores. While such simple models are a desirable
first step (as they simplify estimations) they, of course,
may be too simplistic to model, for example, atrophies
saturating over time (where large changes can initially be
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observed, but changes diminish later on). Such saturation
effects may explain decreases in correlations for predicted
months when predicting further ahead (see Table 6). Ad-
ditional evidence for such saturation effects is given by
Table 7, where the correlations of the Replace approach
are higher than for the Forecast approach, indicating that
stat-ROI deformations show less change between later time
points than between earlier time points.

Secondly, correlations with clinical variables are mod-
erate. This could, for example, be the case because the
stat-ROI we choose only provides a very spatially limited
view of the development of AD, or because the specific
clinical variables we test are not strongly correlated with
this particular stat-ROI. Though previous studies (Fleish-
man and Thompson, 2017b,a; Hua et al., 2013, 2016) have
shown the usefulness of such a statistically determined ROI
and the studied clinical variables, it would be interesting
to expand our study to other areas within the brain and
to additional clinical variables.

Thirdly, the proposed framework requires the train-
ing of a deep neural network. Hence, what it captures
will depend on the training data. Specifically, the testing
images are required to have the same characteristics as
the ones during training. Encouraging results have been
obtained in Yang et al. (2017) for cross-dataset applica-
tions of models (using image intensity normalization), but
our work only investigated dataset-specific models. Fur-
thermore, changing registration parameters would require
re-training the network. Note however that the trained
model in some sense goes beyond the original registration
model: it captures the statistics of all the registrations
in the training set and hence becomes, for example, less
susceptible to outliers.

There are several possible avenues for future work. To
address the possible saturation effects, it would be in-
teresting to explore alternative models and extensions to
FPSGR. A straightforward and easy to compute extension
would be to develop an FPSGR variant to allow for dy-
namic time-warping, similar to what has been proposed
in Hong et al. (2014b); Durrleman et al. (2013). As the
underlying registrations for FPSGR can be computed very
fast, such a time-warped variant could likely also be opti-
mized very quickly and could address saturations while
keeping model complexity at a minimum. More ambi-
tiously, FPSGR could be extended to a hierarchical model
(in the spirit of Singh et al. (2016)) to jointly model longi-
tudinal data across patients. The resulting model would be
significantly more complex than FPSGR or its envisioned
time-warped variant, but would be expected to also greatly
benefit computationally from replacing costly numerical
optimizations to compute registration by approximate re-
gression models. Combinations with spline models (Singh
et al., 2015) to capture an overall population trend are also
conceivable, though significantly more complex.

Finally, as we currently use separate models for ADNI-1

and ADNI-2 (as these datasets use different image acqui-
sition protocols), it would also be interesting to explore
more generic models that are trained on a set of different
datasets and hence can be applied across a wider range
of datasets without retraining them. As registration set-
tings influence the registration results, it would also be of
great interest to investigate approaches that allow estimat-
ing these parameters from data. Furthermore, end-to-end
prediction of averaged initial momenta would be an inter-
esting future direction, as this would allow learning repre-
sentations that characterize the geodesic path across mul-
tiple time-points, instead of focusing on pair-wise image
registrations, as done in FPIR (Yang et al., 2016, 2017).
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Overview of Appendix

The following sections provide additional analysis re-
sults and explanations for our proposed method. Specif-
ically, Appendix A provides details on the mathematical
formulation of FPSGR. Appendix B details the data dis-
tributions in ADNI-1 and ADNI-2. Sec. C shows statistical
testing results for the differences in correlation strength
between atrophy measures with clinical variables between
SGR and pairwise registration. Appendix D lists the cor-
responding statistical results when comparing SGR LD-
DMM and FPSGR (SGR Prediction+Correction). Lastly,
Appendix E contains additional visualizations for the es-
timated linear regressions for the atrophy scores and high-
lights their consistency with disease severity.

Appendix A Estimating the initial momentum
of FPSGR

This section describes the mathematical formulation of
simple geodesic regression and how it is used for FPSGR.
We start by defining the quadratic distance d2 in Eq. (1)
between two images A and B as

d2(A,B) =
1

2

∫ 1

0

∥v∗∥2Ldt, (A.1)

where v∗ = argmin
v

1

2

∫ 1

0

∥v∥2Ldt+
1

σ2
∥Q(1)−B∥22,

s.t. Qt +∇QT v = 0, and Q(0) = A .

Assume we have an image I(t0) at time t0 as well as two
images A(ti) and B(ti). Further, assume that the spatial
transformation ΦA maps A(ti) to I(t0) and ΦB maps B(ti)
to I0. Then A(ti) = I(t0) ◦ Φ−1

A and B(ti) = I(t0) ◦ Φ−1
B .

Furthermore, assume that Φ maps A(ti) to B(ti), i.e.,
B(ti) = A(ti) ◦ Φ−1. Then Φ = ΦB ◦ Φ−1

A . Assuming
that the geodesic between I(t0) and A(ti) is parameter-
ized by the initial velocity vA and between I(t0) and B(ti)
by the initial velocity vB and that we travel between I(t0)
and A(ti) in time ti − t0 (and similarly for B(ti)) we can
rewrite the map between A(ti) and B(ti) based on the
exponential map as

Φ = ExpId((ti − t0)v
B) ◦ ExpId(−(ti − t0)v

A), (A.2)

which can be approximated to first order as

Φ ≈ ExpId((ti − t0)(v
B − vA)). (A.3)

Hence, the squared geodesic distance between the two im-
ages can be approximated as

d2(A(ti), B(ti)) ≈
1

2
(ti − t0)

2⟨K(mB −mA),mB −mA⟩,
(A.4)

where vA = KmA and vB = KmB . Hence, Eq. (1) be-
comes

E(I,m) =
1

2
⟨m,Km⟩

+
1

2σ2

∑
i

(ti − t0)
2⟨K(m−mi),m−mi⟩, (A.5)

where m is the sought-for initial momentum of the regres-
sion geodesic and mi are the initial momenta correspond-
ing to the geodesic connecting I (the starting image of the
geodesic) and the measurements Yi in time ti − t0. Differ-
entiating Eq. (A.5) w.r.t. m results in

∇mE = K[m+
1

σ2

∑
i

(ti − t0)
2(m−mi)]

!
= 0. (A.6)

Thus,

m =

∑
i(ti − t0)

2mi

σ2 +
∑

i(ti − t0)2
. (A.7)

In practice, σ2 is very small and can thus be omitted. Fur-
thermore, mi is obtained by either registering I to Y i in
unit time or, as in our FPSGR approach, by predicting the
momenta mi via FPIR, denoted as m̃i. As Equation A.7
was derived assuming that images are transformed into
each other in time ti−t0 instead of unit time, the obtained
unit-time predicted momenta m̃i correspond in fact to the
approximation m̃i ≈ (ti−t0)mi. Finally, we obtain the ap-
proximated optimal m of the energy functional in Eq. (1),
for a fixed I = I0 as

m ≈
∑

i(ti − t0)m̃i∑
i(ti − t0)2

. (A.8)

Appendix B Distribution of diagnostic groups in
ADNI-1/2 for predictions

For completeness and to be able to better appreciate
the data we used, this section details the distributions of
the diagnostic groups we used for our prediction experi-
ments. Tab. B.1 and B.2 show these distributions for the
ADNI-1 and the ADNI-2 datasets respectively. Diagnostic
groups are based on the information on the ADNI web-
site adni.loni.usc.edu. We combine MCI and LMCI
in ADNI-1, Normal and SMC in ADNI-2, and EMCI and
LMCI in ADNI-2, because such detailed diagnoses are only
available for the baseline images. Images at later time
points are only labeled as NC, MCI, and AD. This has
already been noticed in Sec. 4. Each case is reflected as a
blue point in the visualizations of Appendix E.
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Distribution of prediction cases in ADNI-1

Pred-1 6mo 12mo 18mo 24mo 36mo 48mo
NC 182 172 8 151 128 38
MCI∗ 274 221 165 122 80 11
AD 153 173 66 163 69 20

Total 609 566 239 436 277 69

Pred-2 6mo 12mo 18mo 24mo 36mo 48mo
NC 182 168 9 144 119 33
MCI∗ 272 224 169 124 70 10
AD 152 168 64 160 67 22

Total 606 560 242 428 256 65

Table B.1: Distribution of Pred/Corr-1 and Pred/Corr-2 cases in
ADNI-1. MCI∗ is the combination of the MCI and LMCI diagnostic
groups.

Distribution of prediction cases in ADNI-2

Pred-1 3mo 6mo 12mo 24mo 36mo
NC∗ 173 141 153 119 3
MCI∗ 256 232 207 142 4
AD 93 95 105 66 1

Total 522 468 465 327 8

Pred-2 3mo 6mo 12mo 24mo 36mo
NC∗ 172 142 159 122 3
MCI∗ 257 230 202 149 4
AD 94 98 101 52 1

Total 523 470 462 323 8

Table B.2: Distribution of Pred/Corr-1 and Pred/Corr-2 cases in
ADNI-2. Normal∗ denotes the combination of the Normal and SMC
diagnostic groups; MCI∗ denotes the combination of the EMCI and
LMCI diagnostic groups. Only a small number of images is available
for the 36 months time point.

Appendix C Statistical correlation difference
between the regression model
(FPSGR) and the pairwise model.

This section relates to Sec. 4.2 and provides statisti-
cal testing details to show that FPSGR shows stronger
correlations than a pairwise registration approach for the
clinical measures MMSE and DX. The statistical results
are based on the correlations reported in Table 4 and tests
are for differences in mean. Specifically, we first checked
the normality of the distribution using a Shapiro-Wilk nor-
mality test. As can be seen from Tab. C.1 normality can
be rejected at a significance level of 5%. Hence, using a
paired t-test would be inappropriate. We therefore used a
paired Wilcoxon signed-rank test to compare these correla-
tions. Results are statistically significant at a significance
level of 5% suggesting that FPSGR indeed improves cor-
relation measures over pairwise registrations.

Shapiro-Wilk normality test Wilcoxon signed-rank test
MMSE 0.03425 0.0007959
DX 0.03596 0.0001951

Table C.1: One-sided p-values for a Shapiro-Wilk normality test
and Wilcoxon signed-rank test on MMSE and DX correlations be-
tween the FPSGR model and the pairwise prediction model. The
null-hypothesis for the Shapiro-Wilk normality test is that the dif-
ference of two methods is normally distributed (at a significance level
of 5%). The null-hypothesis for the Wilcoxon signed-rank test is that
the correlation of pairwise prediction method is greater than that of
FPSGR, i.e. the pairwise prediction method is statistically better
than the FPSGR prediction method (at a significance level of 5%).

Appendix D Statistical correlation differences
between optimization-based SGR
and FPSGR

This section relates to Sec. 4.2 and shows statistical
testing results for differences in correlations obtained via
optimization-based SGR (i.e., SGR LDDMM) and FPSGR
(i.e., SGR Pred+Corr). Specifically, we use a paired t-test
to compare the correlations between atrophy and clinical
variables for all the months for the ADNI-1 and ADNI-2

datasets in Table 4. Table D.1 shows the resulting p-
values. Note that a t-test was appropriate based on the
results of a Shapiro-Wilk normality test. We conclude that
FPSGR using the correction approach works as well as, or
better than, SGR via LDDMM optimization. This justifies
the use of FPSGR for image regression.

Shapiro-Wilk normality test Paired t-test
MMSE 0.5361 0.0530827
DX 0.2356 0.0186418

Table D.1: Results of a Shapiro-Wilk normality test and a
paired t-test on MMSE and DX correlations among SGR LDDMM,
and FPSGR with correction network. The null-hypothesis for the
Shapiro-Wilk normality test is that the difference between the two
methods is normally distributed (at a significance level of 5%). The
null-hypothesis for the paired t-test is that the correlation of SGR
LDDMM is greater than that of FPSGR, i.e. the optimization based
SGR method is statistically better than the FPSGR method (at a
significance level 5%).

Appendix E Linear regression of atrophy scores

Here, we show graphical illustrations of the linear re-
gression results over the atrophy scores as presented in Ta-
ble 3 of Sec. 4.2. Specifically, Fig. E.1 visually shows the
linear regression results of the atrophy scores in ADNI-1

Pred+Corr-1 and ADNI-2 Pred+Corr-1. The slopes of the
linear regressions are consistent with disease severity, i.e.
NC-NC < NC-MCI, MCI-NC < MCI-MCI < MCI-AD,
and NC-NC < MCI-MCI < AD-AD. All 95 % confidence
intervals contain zero, which indicates that FPSGR with
correction did not produce deformations with significant
bias to over- or underestimate volume changes.
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Figure E.1: Linear regression of atrophy scores with respect to time for different diagnostic changes of ADNI-1 Pred+Corr-1 and ADNI-2

Pred+Corr-1. Red line is the estimated regression line. green curves are the lower and upper bounds of the 95% confidence interval. Blue dots
indicate actual data points. Bright white / purple images indicate kernel density estimations for all real data points illustrating dominant
longitudinal trends in the data.
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