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Abstract

Motivation: Identifying variants, both discrete and continuous, that are associated with quantitative
traits, or QTs, is the primary focus of quantitative genetics. Most current methods are limited to iden-
tifying mean effects, or associations between genotype or covariates and the mean value of a quanti-
tative trait. It is possible, however, that a variant may affect the variance of the quantitative trait in
lieu of, or in addition to, affecting the trait mean. Here, we develop a general methodology to identify
covariates with variance effects on a quantitative trait using a Bayesian heteroskedastic linear regres-
sion model (BTH). We compare BTH with existing methods to detect variance effects across a large
range of simulations drawn from scenarios common to the analysis of quantitative traits.

Results: We find that BTH and a double generalized linear model (dglm) outperform classical tests
used for detecting variance effects in recent genomic studies. We show BTH and dglm are less like-
ly to generate spurious discoveries through simulations and application to identifying methylation
variance QTs and expression variance QTs. We identify four variance effects of sex in the
Cardiovascular and Pharmacogenetics study. Our work is the first to offer a comprehensive view of
variance identifying methodology. We identify shortcomings in previously used methodology and
provide a more conservative and robust alternative. We extend variance effect analysis to a wide
array of covariates that enables a new statistical dimension in the study of sex and age specific
quantitative trait effects.

Availability and implementation: https:/github.com/b2du/bth.

Contact: bee@princeton.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Identifying covariates in a population that are associated with com-
plex quantitative traits (QTs) is central to the study of statistical
genetics (Stranger et al., 2007; Zeggini et al., 2007). Quantitative
trait loci (QTLs) are genetic variants that are associated with differ-
ences in mean phenotype values within a population. Recently, vari-
ance QTLs (vQTLs), or genetic variants associated with differences
in the variance of a quantitative trait, have been observed in genetic
studies (Ayroles et al., 2015; Brown et al., 2014; Metzger et al.,
2015; Paré et al., 2010; Yang et al., 2012). These studies include

©The Author(s) 2018. Published by Oxford University Press.

diverse quantitative phenotypes, including left-right turning ten-
dency in the fruit fly Drosophila melanogaster (Ayroles et al., 2015),
coat color in the rock pocket mice Chaetodipus intermedius
(Nachman et al., 2003), and thermotolerance (Queitsch ez al., 2002)
and flowering time (Salomé ez al., 2011) in the plant Arabidopsis
thaliana.

These variance-associated covariates have wide ranging implica-
tions in phenotypic variance. Phenotypic variability offers an adap-
tive evolutionary solution to changing environments (Gibson and
Wagner, 2000; Queitsch ef al., 2002), and indicates the presence of
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other complex effects such as epistasis (Brown et al., 2014; Paré
et al., 2010) or canalization (Gibson and Wagner, 2000). In medical
genetics, where disease states often emerge beyond a phenotypic
threshold (Wang ez al., 2017), controlling phenotypic variability
allows control over the proportion of individuals that exceed that
threshold while population means are preserved (Ayroles et al.,
2015). Robust statistical methods to identify variance effects are
therefore essential to characterize the role that population covariates
with variance effects on quantitative traits, or vQTCs, play in the
regulation of complex traits, including disease risk.

Methodologically, detecting vQTCs is performed using statistical
tests for heteroskedasticity. Heteroskedasticity refers to the circum-
stance in which the variance of a response variable—here, a quanti-
tative trait—is unequal across the range of values of a covariate such
as genotype or age (Fig. 1). In the case of vQTCs, the quantitative
traits can be gene expression levels, methylation levels, or hip-to-
waist ratio. Here, we develop and validate a robust statistical test
for variance effects. More broadly, we extend this approach to ac-
count for both continuous and discrete non-genetic covariates such
as sex, age and BMI. While some of these covariates, such as sex
and genotype, will by definition have a causal relationship with the
QT, others such as BMI may not have a causal effect on the variance
of a QT despite their correlation; while we use the language of ‘vari-
ance effects” throughout, this does not imply causation for non-
causal covariates.

Three methods widely used in the genetics literature (Ayroles
et al., 2015; Brown et al., 2014; Metzger et al., 2015; Paré et al.,
2010; Yang et al., 2012) to identify vQTCs are the Levene and
Brown-Forysthe tests (Brown and Forsythe, 1974; Schultz, 1985),
and the correlation least squares (CLS) test (Brown et al., 2014).
The Levene and Brown-Forsythe tests for heteroskedasticity across k
groups come from a similar family of ANOVA-based statistics,
where the within-group variance is compared to the across-group
variance. The null hypothesis for these tests is that all groups have
the same variance. The two tests differ in that the Levene test uses
mean statistics to compute variance whereas Brown-Forsythe uses
median statistics to compute variance. The Bartlett test (Bartlett,
1937) has also been used in genomic contexts (Yang et al., 2012).
The Bartlett test relies on the computation of pooled variances, or
weighted average of the groups, which are used to approximate an
F-distribution, and assumes the groups come from normal distribu-
tions. While similar to the Levene test, the Bartlett test is more
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Fig. 1. Example of heteroskedasticity for biallelic variation. The x-axis is geno-
types represented as the number of copies of the minor allele. The y-axis is
the quantitative trait values across individuals sampled from a population.
Panel A: Homoskedasticity, where each trait distribution from three geno-
types have equal variance. Panel B: Heteroskedasticity, where each trait distri-
bution from three genotypes have different variances. The data were
simulated with n=1000 with minor allele frequency n,,s = 0.2; each geno-
type group was plotted with x-axis jitter to show data density

sensitive to departures from normality, which makes it less useful
for genomic analyses (Supplementary Methods).

The CLS test first fits a linear regression model to the trait and
the covariate, then tests for a correlation between the covariate and
the squared residual errors of the fitted linear model using Spearman
rank correlation (Brown et al., 2014). The test statistic is the corre-
sponding Spearman’s rank correlation coefficient. Related two stage
tests include likelihood ratio-based tests such as dglm (Dunn and
Smyth, 2012; Ronnegard and Valdar, 2011) or famLRTV (Cao
et al., 2015). As famLRTV performs similarly to the Levene test
(Cao et al., 2014), we did not include it in our analysis.

While the Levene, Brown-Forsythe and CLS tests are standard in
various research areas, they each have drawbacks when applied to
genomic data. The Levene and Brown-Forsythe tests both require
categorical covariates, preventing the use of continuous covariates
such as imputed genetic variants, age or methylation levels. These
methods sacrifice statistical power by avoiding assumptions about
the functional form of the heteroskedastic effects, allowing the vari-
ance across the covariate-defined groups to change in a non-
monotone way. CLS addresses both of these drawbacks by using a
standard linear model; however, because the test is performed in
two stages—neither of which incorporate uncertainty explicitly—
CLS is prone to overfitting.

Less common in genomics research, dglm is a parametric ap-
proach that models variance explicitly and cycles over two stages
until convergence (Verbyla and Smyth, 1998). First, it fits a linear
predictor of the variance by taking the estimated squared residuals
from the fit of a weighted linear model. Second, it uses the fit of a
generalized linear model (GLM) with variance as its response to up-
date the weighted linear model of the first step. This approach is ef-
fective because it uses a GLM framework to capture the possible
heteroskedasticity in the data; as with CLS, it does not incorporate
uncertainty in the point estimate from the first stage. However, the
main drawback of dglm is its numerical instability, which makes it
difficult to apply to large genomic data. This numerical instability
often arises in the context of low minor allele frequency, which
makes the method challenging to apply from a practitioner’s point
of view.

In this study, we propose a flexible Bayesian strategy for detect-
ing genotypic loci and covariates with effects on phenotypic vari-
ance. Our method can incorporate both discrete and continuous
covariates, and leads to stable, effective inference. We show through
extensive simulations that it outperforms similar tests that are rou-
tinely used in genomic studies. On real data, where alternative meth-
ods generate hundreds of hits, this fact has important implications,
suggesting not only that our test is robust and conservative, but that
alternative tests are poorly calibrated and lead to spurious results.

2 Approach

2.1 A Bayesian test for heteroskedasticity

The Bayesian test for heteroskedasticity (BTH) models a continuous
trait across 7 samples, y € R”, with a Gaussian distribution, where
both the mean and variance parameters are functions of the covari-
ate x € R, y; ~ N(By + pxi,0%a ). Here, fo ox 1 is the y-axis
intercept, f ~ N(0, ') is the regression coefficient (or the mean
effect size), 6* ~ InvGa(0y,0,) is the residual variance, and o is
the heteroskedastic effect with a prior loga ~ Cauchy(0,v).
When o=1, the variance of the response is not a function of the
covariate, whereas when o # 1, the variance term is associated with
the covariate. We put priors on each of these parameters in order to
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incorporate biologically appropriate and computationally tractable
forms of uncertainty in the test (Supplemental Materials).

Using this model, we computed Bayes factors (Kass and Raftery,
1995) (BFs) to compare the likelihood of the data under the null hy-
pothesis (Hy, «=1) with the likelihood of the data under the alter-
native hypothesis (H,, a# 1). In particular, for each application of
the model (e.g. one covariate x and one quantitative trait y across 7
individuals), the BF has the form

Pr(y|x, (Ha, o # 1))
PEO) = ey, (o= 1)) W
We compute this BF by marginalizing over the mean effect size f§
and evaluating the resulting multivariate integral using a multivari-
ate Laplace approximation similar to the integrated nested Laplace
approximation (INLA) method (Rue et al., 2009; Ruiz-Cardenas
etal.,2012) (Supplemental Materials).

The BFs provide a measure of the heteroskedasticity of the asso-
ciation between a covariate and a phenotype of interest under cer-
tain assumptions, which we examine carefully in the simulations. To
quantify the global false discovery rate (FDR) of the quantified BFs,
we designed and performed permutations of the covariate-trait pair
such that any mean effects are maintained but variance effects are
removed (Methods, below). Furthermore, we generated a distribu-
tion of BF,,,,, corresponding to data in which the variance of the
phenotype is independent of the covariate. Thus, we compute FDR
by considering, for any BF threshold #,

[{BEperm|BEperm > t}]|
[{BF|BE > t}|

FDR(t) = 2)
which approximates the ratio of the number false positives versus
the number of false positives and true positives across all tests for BF
threshold ¢z. We used the FDR-calibrated BF thresholds to discover
heteroskedastic associations in our data, and we compared our dis-
coveries to the discoveries from existing tests for heteroskedasticity.

2.2 Available tests of heteroskedasticity

We compared results from our BTH against four tests for heteroske-
dasticity: i) the Brown-Forsythe test (Brown and Forsythe, 1974); ii)
the Levene test (Schultz, 1985; Shen et al., 2012; Struchalin et al.,
2012); iii) the correlation least squares (CLS) test (Brown et al.,
2014); and iv) the double generalized linear model (dglm) test.

Each of these statistical tests makes assumptions about the
underlying data by design. The Levene test, which has been used in a
number of biological studies (Ayroles et al., 2015; Paré et al., 2010;
Soave and Sun, 2017; Yang et al., 2012), assumes that, in the data:
i) the noise is symmetric; ii) the groups are balanced; iii) the covari-
ate is a categorical variable; and iv) the categories are unordered, so
arbitrary functions are tested. By using median statistics instead of
mean statistics, the Brown-Forsythe test overcomes the assumption
of symmetric noise (Brown and Forsythe, 1974). The CLS test
assumes i) continuous or ordered covariates; ii) linear dosage effects
of the covariate; iii) sufficient minor allele frequency (MAF). When
MAF is low, as is often the case for functional variants (Nelson
et al., 2012), the maximum likelihood estimates from CLS will have
large standard error.

Our model for BTH makes the following assumptions: i) the
noise has a Gaussian distribution; ii) the covariate is a continuous or
ordered value; and iii) the functional form of the heteroskedasticity
is dosage or variant dependent, with monotone effects on the vari-
ance. We make these assumptions to gain statistical power in identi-
fying heteroskedastic effects in genomic studies, and to avoid

spurious results. Assumption iii) is illustrated through modelling the

25~% which is monotone with

variance as an exponential function ¢
respect to the variant x;. This assumption becomes particularly
meaningful in the case where the variants considered are non-binary,
such as age. The dglm approach makes the same assumptions as
BTH. In contrast to the above methods, including dglm, our test
incorporates estimates of uncertainty, integrating over all possible
mean effects in both the null and the alternative hypothesis.

We show the value of BTH with respect to these related
approaches in extensive simulations and in three genomic data
applications. In the simulations, for data that violate the model
assumptions, we provide prescriptive tests and transformations to
enable a well-powered application of BTH. We then apply BTH to
methylation QTLs, gene expression QTLs and gene expression data
versus biological covariates to illustrate the promise of BTH for
identifying variance effects in diverse genomic data.

To compare results from BTH with state-of-the-art tests for vari-
ance QTLs, we simulated data across a range of possible scenarios
in genomic studies. We account for discrete and continuous covari-
ates, different parameter settings and a number of distributions of
the quantitative trait.

2.3 Simulating quantitative trait data

For discrete covariates, each simulated biallelic, diploid variant x; €
{0, 1, 2} from individual i = {1, ... 7} is sampled as two independ-
ent draws from a Bernoulli distribution with bias equal to the minor
allele frequency (7,4 X; ~ Bin(2, ). For imputed covariates,
for each individual i={1,...n}, discrete values z; € {0, 1, 2}
are sampled from a Bernoulli distribution: z; ~ Bin(2,m,,/).
Continuous data resembling imputed genotypes are then simulated
from a modified mixture of normal distributions: x; =
Ty—0 - lco| + L1 - ¢1 + L2 - (2 = |c2|), where ¢o,c2 ~ N(0,0.5)
and ¢; ~ N (1,0.5), and 1. is the indicator function. This process
ensures that the simulated imputed genotypes are bounded by 0 and
2, and they represent the expected value of the genotype, which is a
standard representation (Howie et al., 2009).

Then, given intercept fo, effect size f, and variance
parameters o2, o, we simulated the quantitative trait y; for
individual i from a Gaussian distribution, using a linear model:
yi ~ N (By + Bxi, 6>¢~). This is an ideal situation, with the hetero-
skedastic functional form matching that of our test. Across simula-
tions, we sampled covariates and quantitative traits across various
parameter settings: 7z = {300, 500,1000} samples, minor allele fre-
quencies 7,,,s = {0.05,0.2,0.3}, mean effect size f = {0,0.2,0.5,1},
the level of heteroskedasticity loga = {—0.2,—-0.1,0,0.1,0.2}, inter-
cept iy ={0,1}, and a fixed variance parameter ¢ = 1.0. These
simulations correspond well to current eQTL studies in sample size
(GTEx Consortium, 2017; Battle et al., 2014), minor allele frequen-
cies (Nelson et al., 2012) and effects (GTEx Consortium, 2017;
Savolainen et al., 2013).

For each parameter configuration, we generated 1000 simulated
datasets of covariates x and corresponding traits y. For each simula-
tion with heteroskedasticity, we performed a single permutation of
the quantitative trait sample labels and included for comparison this
null simulation with identical MAF and trait distribution (see
Online Methods). Thus, each simulation result contains 2000 tests,
half of which are from a null distribution constructed using permu-
tations, and the other of which are simulated to have variance
effects.
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3. Results

3.1 Simulation results: ideal model, discrete covariates
For discrete genotypes, we compared results from BTH against
results from the Brown-Forsythe test (Brown and Forsythe, 1974),
the Levene test (Levene, 1961), the correlation least square test
(CLS) (Brown et al., 2014) and the double generalized linear model
dglm. We compared performance using precision-recall curves,
which quantify the proportion of true associations discovered
(x-axis: recall or statistical power) versus the proportion of discov-
eries that are truly associated (y-axis: precision, or 1-FDR). When
the curves are close to precision = 0.5 across most values of recall,
this means that the method cannot differentiate between
non-associations and true associations in this scenario with equal
numbers of true and null associations. The closer the curves are to
precision = 1 across values of recall, the greater the area under the
curve (AUC) is (with a maximum of one), and the better the per-
formance of that method.

In the results of the simulations we found that, as the variance
effects in the simulated data grow, it becomes easier for the tests to
identify these effects (Fig. 2B—ii, iii); moreover, the permutation
appears to generate a true null (Fig. 2B—i) under these ideal simula-
tion assumptions. Here, the benefits of BTH and dglm are illus-
trated: when variance effect log (x) = —0.2, we see at high levels of
recall as much as a 10% improvement in precision (Fig. 2B—iii).
Considering mean effects, across most recall values BTH and dglm
show consistently higher AUC than other methods (Fig. 2A). For
BTH, this trend illustrates the fact that a Gaussian prior on the
mean effect is robust as mean effects increase (O’Hagan, 1979).

Low MAF and small sample sizes affect the AUC of all methods
similarly (Fig. 2C—i, D—i). As MAF and sample size increase, the
AUC improves and BTH and dglm have a greater AUC relative to
the other methods (Fig. 2C—i, ii, iii, D—i, ii, iii). We note that CLS,
across these ideal simulations, appears to have generally worse
performance than Levene, Brown-Forsythe, BTH and dglm. In par-
ticular, the AUC for BTH and dglm are significantly greater than ei-
ther Levene, Brown-Forsythe or CLS (Mann-Whitney U-test:
P <2.2x107' for all three, Fig. 2D—i), with an average precision
5% higher. Similarly, for higher mean effects (Fig. 2A—i, ii, iii) and
large sample sizes (Fig. 2D—i, ii, iii), the relative performance of
CLS deteriorates, with the AUC of CLS < 0.036 smaller than the
AUC of either Levene or Brown-Forsythe, and < 0.12 smaller than
the AUC of BTH and dglm (Fig. 2B—i).

3.2 Simulation results: ideal model, continuous
covariates
When the covariate is continuous—such as age, BMI or the expected
number of minor alleles for imputed genotypes—the Levene and
Brown-Forsythe tests are no longer appropriate, as they assume cat-
egorical covariates. In this case, we compared our method with the
CLS method, which allows a general covariate in the original linear
regression and subsequent correlation test. We also applied Brown-
Forsythe and Levene tests to the simulated data by rounding the
continuous covariates to their nearest integer value. For imputed
genotypes, this rounding process corresponds to setting the value of
the variant to the most likely number of copies of the minor allele.
This is an idealized imputation scenario (results on imputed geno-
types below are much less straightforward), and we discourage this
rounding approach with real data (Marchini and Howie, 2010).

The results on the continuous covariate simulations echo the dis-
crete simulation results. In particular, both BTH and dglm show uni-
form improvement in AUC across all of the simulations, considering

increasing mean effects (Supplementary Fig. S1A), increasing vari-
ance effects (Supplementary Fig. S1B), increasing minor allele fre-
quency (Supplementary Fig. S1C) and increasing sample size
(Supplementary Fig. S1D). We note that, despite rounding the (ideal-
ized) imputed genotypes, Levene and Brown-Forsythe continue to
perform better than CLS across the simulations.

3.3 Simulation results: non-ideal model, discrete
covariates

Next, we explored quantitative traits simulated from four non-ideal
heteroskedastic models with discrete covariates that are motivated
by residual distributions often found in genomic analyses.

1. Additive variance term: a Gaussian distribution with an additive
form of heteroskedasticity:y; ~ N'(By + px;, 6> + o - x;). We gen-
erated data with additive variance effects to ensure that our test
is able to identify different functional forms of heteroskedastic-
ity. Note that, in this scenario, the null hypothesis corresponds
to a = 0; parameters in this category of simulation reflect this
different null.

2. Log Gaussian: the log of the trait follows a Gaussian distribu-
tion: y; ~ exp {N(By + Bx;,0?a~*)}. Microarray data are
believed to have a log Gaussian distribution within gene, which
motivates log transformations to those data (Irizarry et al.,
2003). Untransformed log normal data, however, will naturally
appear heteroskedastic because of the correlation of mean and
variance in the log Gaussian distribution.

3. Gamma distributed data: traits are generated from a gamma
generalized linear model: y; ~ Gamma(p;, 1), w; = m While
the exponential distribution is the continuous form of the
Poisson distribution, the gamma distribution may be considered
the continuous form of the negative binomial distribution, which
is a discrete distribution with an additional variance parameter
above the discrete Poisson distribution. Hence, we generate con-
tinuous data from the gamma distribution to simulate the con-
tinuous trait form of overdispersed Poisson counts, as might be
found in mapped RNA-sequencing data (Marioni et al., 2008;
Pickrell et al., 2010).

4. Mixture of Gaussians: traits are generated from a mixture
of two Gaussian components, one heteroskedastic and
one homoskedastic, with mixture parameter i = 0.4:
yi ~ N (10,1) + (1 = )N (By + Bxi,a*a). We expect bi-
modal Gaussian traits when, for example, there is an epistatic
GxG or GXE interaction The presence of an epistatic term will
correspond to a new mode in the distribution of the quantitative
trait. For a binary interaction term this will correspond to a mix-
ture of two distributions. For example, if there is a mean effect
for female samples at a locus, but no corresponding mean effect
for male samples, the quantitative trait will appear bimodal
within genotype. We contrast this with the signature from a truly
heteroskedastic effect, where we see an association with the vari-
ance of the trait distribution but do not see a mixture of
distributions.

We quantified the relative performance of the tests using precision-
recall curves as above; however, caution must be used here in inter-
preting the relative AUC. We consider four possibilities for the simu-
lated mean and variance effects with respect to the statistical test we
perform perform (Table 1):

*  Strong null: the simulated mean effects f = 0 and the simulated
variance effects log («) = 0
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Fig. 2. Precision-recall curves comparing performance of BTH versus three other methods and example plots of underlying discrete simulated data. Panel A:

increasing mean effect size: 7m,. = 0.2, n=300, f¢€{0,0.2,1}, log(z) =0.1; Panel

increasing the variance effects:

Tmat = 0.2, n=300,

p=0.5, log(2) € {0,-0.1,-0.2}; Panel C: increasing minor allele frequency: nm,r € {0.05,0.2,0.3}, n=300, f = 0.5, log(2) = 0.1; Panel D: increasing sample size:

Tmar = 0.2, n € {300,500, 1000}, § = 0.5, log(2) = 0.1

* Strong alternative: the simulated mean effects f # 0 and the

*  Weak null: the simulated mean effects f # 0 and the simulated
variance effects log () = 0;

simulated variance effects log () # 0.

*  Weak alternative: the simulated mean effects f = 0 and the simu- These definitions become important when discussing the log

lated variance effects log () # 0;

Gaussian and gamma simulations: for both, the variance is a
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Table 1. Different hypotheses tested in various data scenarios

Hypothesis strong weak

Null f=0andlog (x) =0
B # 0 and log (x) # 0

f# 0 and log (2) =0
B =0and log (x) # 0

Alternative

Note: The BTH model integrates over the mean effect size, 3, testing the
union of the weak and strong alternative hypotheses against the union of the
weak and strong null hypotheses.

function of the mean, inducing an explicit relationship between the
two. In other words, when there are mean effects, f# 0, this will
present as variance effects in these tests. The BTH model integrates
over the mean effect size, f3, testing the union of the weak and strong
alternative hypotheses against the union of the weak and strong null
hypotheses. Moreover, in the permutations, we specifically remove
variance effects while maintaining mean effects. These design deci-
sions lead to different behavior of the test on these simulations from
non-ideal scenarios.

For the non-ideal simulations, we simulated data both from the
strong alternative (f#0, log () # 0; Supplementary Fig. S2, first
column) and the weak null (f#£0, log («) = 0; Supplementary Fig.
S2, second column). The weak null simulation ideally will look like
the null simulations; however, for the log Gaussian and gamma sim-
ulations, the tests differentiate the weak null and the strong null as
an artifact of the data distribution. This phenomenon may be seen in
the results by comparing the AUC of the strong alternative simula-
tions with the weak alternative simulations: for the gamma simula-
tions, the four tests have nearly identical AUCs regardless of the true
value of the variance effects o.. This suggests that the performance in
the strong alternative simulations is due to mean effects. We verified
this by considering simulations from the weak alternative [i.e. log
(@) # 0, B=0], finding that all of the tests fail to detect signs of het-
eroskedasticity in the gamma simulations (Supplementary Fig. S2C).
Similarly, in the untransformed log Gaussian simulations, test per-
formance on the weak alternative scenario is close to that for the
strong null (Supplementary Fig. S2B).

For the additive variance effects simulations and the bimodal dis-
tributed simulations, we find that the weak null simulations are ap-
propriately unable to differentiate the weak null from the true null
simulations (Supplementary Fig. S2—A i-iv; D i—iv). Moreover, for
the bimodal distributed simulations, BTH and dglm had the most
substantial gains in AUC relative to the other three methods, all of
which had noticeably worse performance than in the ideal unimodal
simulations. We further study departures from the ideal distribu-
tions below in the genomics applications.

To address the problem of distributional misspecification of the
model, we developed a statistical classifier that takes as input the x
and y vectors (covariates and traits, respectively) and returns the
probability of each of seven distributions within and across groups
for discrete covariates and across values for continuous covariates
(Supplementary Figs S11, S12 and Tables S5-S6). Given a distribu-
tion classification for a particular covariate-trait test, we then sug-
gest a specific data transformation to encourage a 0.5 recall for the
weak null simulations (i.e. mean effects but no explicit variance
effects). In particular, when the data appear to have a log Gaussian
distribution, we suggest a log transformation (Supplementary Fig.
S2B); when the data appear Gamma distributed, we suggest a mean-
centered square root transformation (Supplementary Fig. S2C). We
compared the transformed strong alternative simulations (f # 0,
log (o) # 0; Supplementary Fig. S2, third column), and found that
BTH and dglm uniformly had the largest AUC across the five

methods. We also compared results on the transformed weak null
simulations (f # 0, log () = 0; Supplementary Fig. S2, fourth col-
umn). The transformation eliminates the mean effect discoveries in
all but the gamma simulations (Supplementary Fig. S2C); in gamma
simulations, variance effects are nearly removed across the five
methods. We explore gamma-distributed data in the methylation
analysis below.

3.4 1000 Genomes Project methylation study data

We applied BTH and the alternative tests for variance effects to a
genome scale differential DNA methylation study (Heyn et al.,
2013) to find variance methylation QTLs (meQTLs). These data
consist of DNA methylation levels at 485 577 CpG sites across
the human genome using the Infinium HumanMethylation450
BeadChip platform (Illumina) in lymphoblastoid cell lines (LCLs)
from 288 individuals—96 American with Northern and Western
European ancestry, 96 Han Chinese and 96 Yoruban.

Following previous work, we removed CpG probes of poor qual-
ity or with common mutations. We used the f values from the
methylation arrays at 406 021 CpG sites for analysis. Genotype in-
formation for these individuals are available from HumanHap3550k
and HumanHap650k genotype arrays (Illumina) at the GEO
accession numbers GSE24260 (192 individuals) and GSE24274 (96
individuals). We removed eight individuals that did not have methy-
lation data, and combined the genotypes from 280 individuals with
170 063 SNPs common to both genotype platforms and without
missing data.

For each CpG site, we tested for association with cis-variants,
defined as variants within 10KB of the CpG site. We evaluated the
global FDR of our association results using a single permutation of
the methylation data. Significance was assessed using a global FDR
and FDR stratified by MAF. Using our distribution classifier, we
found that most of the methylation level traits were gamma distrib-
uted (Supplementary Tables S2 and S3).

BTH does not find any significant variant-mediated associations
between genetic variants and methylation levels at CpG sites at
a global FDR of 0.05 and a MAF-stratified FDR of 0.05
(Supplementary Table S1).

In contrast, dglm identified three significant associations, CLS
identified 549 significant associations, and the Levene test identified
878 significant associations (global FDR < 0.05, Supplementary
Table S1). However, in these discoveries, a large majority of the dis-
tribution of methylation levels were found to be either bimodal or
multimodal, with unimodal traits making up 8.95% of the discov-
eries from CLS and 0.38% of the discoveries from the Levene test
(Supplementary Figs S3-S6). We hypothesize that the general bi-
modal distribution of methylation values with respect to genotype is
due to ubiquitous epistatic effects. BTH and dglm, on the other
hand, are robust to bimodal deviations from the unimodal Gaussian
distribution, and do not detect these candidates for epistatic effects
at an FDR < 0.05.

We tested for variance meQTLs without transforming the
methylation data under the assumption that a single variant will not
have both mean and variance effects on methylation levels at a single
CpG site. BTH detected no variance associations, meaning that false
positives due to confounding effects were not apparent in the data.
Had there been discoveries for BTH, we would have repeated the
test with the appropriately transformed data using a square root
transform.
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3.5 Cardiovascular and Pharmacogenetics (CAP) study
We applied BTH to test for variance effects between imputed geno-
types and gene expression levels from the Cardiovascular and
Pharmacogenetics (CAP) study.

Gene expression values for 10 195 genes in lymphoblastoid cell
lines (LCLs) from 480 Caucasian individuals were assayed on
human microarray platforms. Genotypes were assayed using geno-
typing arrays and subsequently imputed using IMPUTE2 to yield 33
386 856 total markers across the 22 autosomal chromosomes. We
removed variants with MAF below 0.05.

The preprocessing of gene expression data for testing of variance
eQTLs is somewhat different than the preprocessing for mean effect
eQTLs. To test for variance eQTLs, we log transform the microarray
gene expression data so they do not have a log normal distribution,
we control for outliers, and we control for known (directly measured)
and unknown (inferred) confounders (Methods). After preprocessing
the genotype and gene expression data, we performed association
mapping between each gene and the cis-SNPs local to that gene; here,
cis-SNPs are defined to be < 200 Kb from the gene transcription start
or end site. There were 9862 genes with at least one cis-SNP in these
data, and, on average, each gene had 847 cis-SNPs. We computed the
test statistic for the putative association between each cis-SNP gene
pair with these processed gene expression data.

As in the methylation study data, BTH finds no significant associa-
tions in our permutation-based testing method. While the dglm and
CLS tests report P-values for each association (it is therefore possible
to assign a P-value cutoff to identify significant results for each
method), we chose to base the significance of the dglm and CLS tests
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on our previously described FDR method using permutations. We
calibrate the FDR for each test according to this same permutation
strategy for consistency. When subsetting the statistical tests by MAF
range, BTH uncovers six associations, including a locus regulating
variance of the gene DIS3L, recently identified as a possible risk factor
for myocardial infarction (Lee et al., 2017), and a locus regulating the
variance of the gene MAP2K1, involved in cardiac signaling (Krysiak
et al., 2018; Sheikh ez al., 2008) (Supplementary Table S4, Fig. S8).

3.6 Variance effects of CAP study covariates

Next, we applied BTH to test for a heteroskedastic relationship be-
tween gene expression levels and known covariates collected on the
individuals enrolled in the CAP study. In particular, we considered
sample age, sex, BMI and smoking status. For non-binary covariates
(age and BMI), we normalized the values—dividing each covariate
by its maximum such that each covariate had a maximum value of
one—for stability of parameter estimation; this does not change the
interpretation of our results. Both sex and smoking status are binary
covariates, so the application of BTH is equivalent to testing for dif-
ferential variance across the binary covariate. Overall, these data
contain 46% females and 87% non-smokers.

In these data, we found four associations using BTH, six associ-
ations using dglm and 17 associations using CLS (FDR < 0.035; 3,
Supplementary Table S3). All four BTH associations corresponded
to sex specific variance control. Four of the five dglm associations
corresponded to age specific variance control, and one to BMI spe-
cific variance control. CLS identified 15 significant age associa-
tions and two significant sex associations (Fig. 3). In particular,
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Fig. 3. Variance controlling covariates uncovered by BTH and related tests in the CAP data (FDR < 0.05). Panels A-D: genes with sex-dependent significant vari-
ance association according to BTH; Panels E, F: genes with significant age-dependent variance association according to CLS; Panel G: top gene with age-depend-
ent variance association according to BTH; Panels H-K: genes with significant age-dependent variance association according to dg/m; Panel L: gene with

significant BMI-dependent variance association according to dg/m
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BTH discovers variance effects of sex in transmembrane protein
TMEM14B and in the protein coding genes DC2 (or OSTC),
Cl4orf166 and FRGI1. Among these, of interest is the gene
C14o0rf166 which is involved in viral replication in the case of in-
fection with influenza virus A (Rodriguez et al., 2011). Similarly,
CLS discovers variance effects of age in the genes FERMT2 and
GALC. The gene FERMT?2 or Kindlin-2 is particularly known to
interact with beta catenin and is associated with the integrin sig-
naling pathway, cell adhesion and mutagenesis (Meller ez al.,
2015). Lastly, the genes discovered by dglm are protein coding
genes, among which ATOX1 is a known copper metallochaperone
protein, and B3GNTLI1 is involved in transferase activity and in
the transfer of glycosyl groups. While further research is needed to
validate the role of these genes, their discovery is unsurprising
given the existing evidence across various species for genetic con-
trol of phenotypic variation in the context of the obesity, metabolic
or immune functions of evolutionary conserved targets (Ansel
et al., 2008; Hill and Mulder, 2010; Queitsch et al., 2002; Yang
etal., 2012).

4 Materials and methods

4.1 Bayesian test for heteroskedasticity (BTH)
The observed data are two vectors, y € R” (quantitative trait) and x
€ R" (covariate). For each sample i = {1,...n}, we model the quan-
titative trait as y; ~ o + px; + N(0, 2o, with appropriate priors
(Results). We set the hyperparameters of the heteroskedastic
parameter as follows: xg = 0, centering the Cauchy distribution at 0,
v=2350,=1,0,=2andy = 1.

BTH computes the likelihood of the alternative hypothesis versus
the likelihood of the null hypothesis (Kass and Raftery, 1995):

® H,, the null hypothesis where o = 1 or, equivalently, log (o) = 0;
* H,, the alternative hypothesis where o # 1 or, equivalently, log

(o) # 0.

BFs are computed by integrating over uncertainty in each of the
model parameters fiy, 6> and o after computing a closed-form inte-
gral over the effect size ff using multivariate Laplace approximations
(Rue et al., 2009) (Supplementary Methods). As is common in
Bayesian analysis of genomic studies, we report the log;o trans-
formed BFs (Stephens and Balding, 2009).

4.2 FDR calibration

Global false discovery rate (FDR) of the log BFs was quantified
using permutations. To do this, we developed a permutation that
preserved the mean effects but removed any variance effects. In par-
ticular, for trait y € W’, we computed a mean-effect-preserving
transformation as follows. We fit a linear regression model using
generalized least squares and computed residuals 7; = y; — f,.x; for
each sample 7. We then randomly permuted the sample indices on 7;,
7x(i)> checking that the mean effects of 7, versus x; are not statistic-
ally different than zero. Finally, we set the permuted value
5/1' = Bglsxi + Tr(i)-

Global FDR calibration was performed after computing
the unpermuted and permuted BFs, BF® = BF(x,y) and
BF™ = BF(x,y). For a BF threshold d, true positives (TP) and false
positives (FP) are estimated using these BFs as TP = #{j: |BF;O)\ > d}
and 1513(01) + Ff(d) =#{j: |BF;”)\ > d} respectively. Thus, the esti-

mated FDR at threshold d is computed as FDR (d)= P Fora
TP (d)+FP(d)

specific FDR threshold, the calibrated threshold dppg is computed
from the data, and the pairs (x, y) with BF(x,y) > dgpr are reported.

4.3 Levene, Brown-Forsythe, CLS and dg/m

The Levene, Brown-Forsythe, dglm and CLS tests were implemented
and applied for comparison with BTH. The Brown-Forsythe and
Levene tests both belong to the general Levene family of tests for
equality of variance across k subgroups. For # samples correspond-
ing to categorical covariate x € {1,2,...k}", the trait y € R” is
modeled as y; ~ N(B, +ﬁxi,0§,). The null hypothesis Hy corre-
sponds to equal variances across subgroups aiz =g? for all
j. £ €{1,2,... k}. The alternative hypothesis H4 corresponds to un-
equal variances across subgroups 01-2 # a7 for at least one pair
j# L j.0e{l,2,...,k}. For each subgroup t € {1,2,... k}, let n,
be the number of samples in x. The corresponding vectors
o € R, o = {yi|xi = t}, are a partition of the trait values y. For
each #, let wy(s) be entry s of the ® vector. The mean of the trait val-
ues within group # is the mean of the entries ,(s), s € {1,2,...,n,},
which we denote by @;. Then,

k = =\2
wo  (=BYL @@= 5

(k= 1) 35 S0 (s — )

where zis = |w,(s) — @y, 7 = %2?:1 s is the mean over the values

2, and 2 = %ij > 2 is the overall mean over the entries of
the vector trait y. When each @; is the median of w,(s) values instead

of their mean, this becomes the Brown-Forsythe test. Significance
and global FDR were computed based on permutations as with
BTH, replacing BFs with P-values.

The CLS test was implemented by computing residuals
ri=yi— Eo — Bx;, where //§0 and B were fit using generalized least
squares, modeling the trait y; conditional on the genotype x; for each
individual 7 using linear regression. The Spearman rank correlation
test between the squared residuals, 7 = (y; — (Bo + Eixi))z and the
genotypes, x;, correspond to a test for variance QTLs. This imple-
mentation of CLS followed the description in prior work (Brown
etal.,2014).

Finally, dglm is a statistical test in which both the mean and the
variance are estimated as generalized linear models (Dunn and
Smyth, 2012; Verbyla and Smyth, 1998), where the dispersion or
variance parameter is generally modeled through a gamma regres-
sion. The estimation of the mean and variance parameters is per-
formed iteratively, and P-values are computed using a y-square test
using R package dglm (Dunn and Smyth, 2012). Significance and
global FDR were computed using P-values based on permutations as
with the other methods. In particular, we applied dglm with appro-
priate overdispersion options and links from Gaussian and gamma
tamilies when appropriate (gamma simulation). While dglm per-
forms similarly to BTH in simulation, its reliance on glm results in
convergence problems of the iteratively reweighted least squares
procedure, thus making it unreliable when scaling to large
applications.

4.4 Regression distribution classifier

We trained a random forest classifier [RandomForest in scikit-learn
(Pedregosa et al., 2011), version 0.16.1] to distinguish between six
possible departures from the ideal heteroskedastic model. For each
distribution class (the BTH model, additive variance model, expo-
nential mean model, exponential residual model, log Gaussian,
gamma and bimodal models; see Supplemental Methods for descrip-
tions) and for four parameter configurations (scenarios « # 0 and p
# 0,0 # 0andfp = 0,0 = 0and f # 0,and o = 0 and f = 0),
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we generated 50 samples of observed data from those six models.
We computed one-sided Kolmogorov-Smirnov (KS) statistics be-
tween each of these samples and 100 samples, with matched sample
sizes, generated from 79 distinct probability density functions with
matched mean and variance. Thus, every sample is represented as a
point in a 79-dimensional feature space. Performance of the RF clas-
sifier was evaluated using five-fold cross validation. The perform-
ance of the classifier was quantified using a precision recall curve on
cross-validated simulation data (Supplementary Fig. S11-S12).

4.5 HapMap phase 2 methylation study data

Genotype information for the HapMap phase 2 methylation study
data are available from HumanHap550k and HumanHap650k
genotype arrays (Illumina) at the GEO accession numbers
GSE24260 (Kalari e al., 2010) (192 individuals) and GSE24274
(Niu et al., 2010) (96 individuals). We removed eight individuals
that did not have methylation data, and combined the genotypes
from 280 individuals with 170 063 variants common to both geno-
type platforms and without missing data. For each CpG site, we
tested for association with cis-variants, defined as variants within
10Kb of the CpG site (Bell ez al., 2011; Heyn et al., 2013). We eval-
uated the global FDR of our association results using a single permu-
tation of the methylation data. Significance was assessed using a
global FDR and FDR stratified by MAF (Sun et al., 2006)
(Supplementary Table S1). Using our distribution classifier, we
found that most of the methylation level traits were gamma distrib-
uted (Supplementary Tables S2 and S3).

Processed DNA methylation data wusing the Infinium
HumanMethylation450 BeadChip platform were downloaded from
the Gene Expression Omnibus (GEO), accession number GSE36369
(Heyn et al., 2013) on August 6, 2015. We used methylation data
for 280 individuals for whom genotypes were available. Genotypes
spanning 166 947 common genetic variants were obtained from
DNA array Human Variation Panel studies (Kalari et al., 2010; Niu
et al., 2010), accession numbers GSE24260 and GSE24274, which
assayed genotypes using Illumina 550K and Illumina 650K arrays,
respectively. We filtered poor quality CpG probes by removing
methylation sites where 90% of the samples at that site are hypo- or
hyper-methylated (<0.02 or >0.98 methylated, respectively). From
a total of 54 750 total CpG probes, we filter 2112 probes to yield 52
638 probes for association tests with genotypes.

4.6 Cardiovascular and Pharmacogenetics (CAP) study

Gene expression levels from 10 195 genes in lymphoblastoid cell
lines (LCLs) created from 480 genotyped individuals were down-
loaded from the Gene Expression Omnibus (GSE36868). Genotypes
for 387 514 variants and eight other covariates were available
through dbGaP (Study Accession phs000481.v1.p1) (Mangravite
etal.,2013). We processed the raw gene expression data as follows.

1. Log transform: A log , transformation was applied to each entry
of the gene expression matrix;

2. Control for latent population structure: We computed the first
two principal components xpci, Xpca of the genotype matrix via
singular value decomposition (SVD).

3. Control for known covariates; mean center: For each vector y; in
matrix Y, corresponding to single gene j across all # samples, a
linear model  y; = 20 + Aage - Xage + Asex - Xsex + Abatch * Xbatch
+Apc1 - Xpc1 + Apca - xpcr was fitted to account for variation in
gene expression due to sample age, sex, batch, two PCs from the
gene expression matrix, and two genotype PCs, using general-
ized least squares. Mean-centered residuals 7; = y; —10 —z,,ge

Xage — ;{sex * Xsex — zlmzch * Xbatch — ;.L\PC1 *Xpc1 — //{PCZ s Xpc2 were
computed. Concatenating the 7; vectors gives us the normalized
expression matrix.

4. Control for unknown covariates: We computed the first two PCs
of the normalized expression matrix using SVD. We used linear
regression as in the previous step to control for the linear effects
of these two PCs in the normalized gene expression matrix.

The resulting matrix is the processed gene expression matrix. After
empirical quantile normalization (Brown et al., 2014), each gene has
exactly the same distribution across all samples, and a visual ana-
lysis of a QQ-Plot confirms the empirical distribution deviates little
from a normal distribution (Supplementary Fig. S7).

After preprocessing the genotype and gene expression data, we
performed association mapping between each gene and the cis-
variants local to that gene; here, cis-variants are defined to be <200
Kb from the gene transcription start or end site (Pickrell et al.,
2010). There were 9862 genes with at least one cis-variant in these
data, and, on average, each gene had 847 cis-variants. We computed
the test statistic for the putative association between each cis-variant
gene pair with these processed gene expression data (Pickrell ez al.,
2010).

5 Discussion

We presented a Bayesian test for heteroskedasticity (BTH) that
allows for continuous covariates and incorporates uncertainty in
estimates of mean and variance effects of covariates to robustly test
for variance QTLs and QTCs. We evaluated our approach and com-
pared it to state-of-the-art methods on extensive simulated datasets
conforming to, and in violation of, the assumptions in our model.
We described a prescriptive procedure to ensure a well-powered ap-
plication of our model to diverse genomic and epigenetic study data.
Although we are mainly focused on variance effects of genotype on
quantitative traits, this approach may be used broadly in testing for
heteroskedastic associations, and we show this application by dis-
covering meaningful associations between non-genetic covariates
and gene expression data.

In the Results, we note that BTH and dglm are more conserva-
tive and less sensitive to multi-modal distributions than both CLS
and the Levene test, as we showed in the multi-modal simulation
studies and through spurious results from CLS and the Levene test
in the methylation data. In scenarios where the data are close in dis-
tributional form to the modeling assumptions, as in the gene expres-
sion data, BTH finds similar numbers of associations as CLS. While
our findings show that dglm outperforms the Levene, Brown-
Forsythe and CLS tests in multiple simulation settings, its iterative
approach to fitting often fails to converge because of sensitivity to
step size. This shortcoming makes dglm cumbersome for genome-
wide variance eQTL analysis, and we recommend BTH as a more re-
liable alternative. While BTH is three times slower than dglm, which
often converges in under 1s on a machine with Intel Core running at
2.2 GHz, BTH is easily parallelized for genome-wide associations.

The lack of results from BTH in the methylation data raise an
important discussion point. In particular, the signature of gene x
gene or gene X environment epistatic interactions may show up as a
bimodal distribution of the trait: consider the distribution of a trait
that has an eQTL with mean effect in women but not in men. We
note that our statistical test was robust to deviations from unimodal-
ity, but CLS and Levene were not, making the purpose of these tests
somewhat orthogonal. Thus, to identify candidate epistatic associa-
tions, CLS and Levene are the appropriate methods to use; on the
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other hand, to identify variance effects, our method is superior in
terms of statistical power. We also hypothesize that the permuta-
tions that are used for these tests, while appropriate, lead to conser-
vative estimates of FDR, which impacted all of the statistical tests
calibrated using permutations.

The lack of power in the variance QTL studies was clear: unlike
mean effects, we found no variance effects of genetic variants on
methylation, and six significant variance effects on gene expression
levels. We note that, if 7 samples are well powered to detect mean
effects of a certain size, to detect comparable variance effects at the
same precision, a sample of O(n?) is needed; thus additional samples
will facilitate finding these effects. We also propose that these meas-
urements of cellular traits are inappropriate candidates for variance
QTLs because the variance effects will not be across individuals but
instead across cells within an individual, as shown in previous stud-
ies (Wills et al., 2013). In particular, a variance QTL impacts the
variability of gene expression or methylation levels across the sam-
ple cells. The bulk measurement of these cellular traits, however, are
performed on tens of thousands of cells, and quantify the average
expression levels across those cells. Thus, in order to identify vari-
ance QTLs, different types of data must be considered such as single
cell RNA-sequencing data (Wills e al., 2013) or resampled RNA-
sequencing data to estimate within-sample variance (Auer and
Doerge, 2010).

Our BTH framework improves on existing methods with a flex-
ible modeling framework, integrating over uncertainty, and fast ro-
bust statistical inference, leading to improved power to detect
heteroskedastic associations. Identifying heteroskedastic associa-
tions in quantitative traits will augment our catalog of quantitative
trait regulation and lead to an improved understanding of the mech-
anisms of genetic control over phenotypes.
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