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Strongly correlated materials are expected to feature unconventional transport properties,
such that charge, spin, and heat conduction are potentially independent probes of the
dynamics. In contrast to charge transport, themeasurement of spin transport in suchmaterials
is highly challenging.We observed spin conduction and diffusion in a system of ultracold
fermionic atoms that realizes the half-filled Fermi-Hubbard model. For strong interactions, spin
diffusion is driven by super-exchange and doublon-hole–assisted tunneling, and strongly
violates the quantum limit of charge diffusion.The technique developed in this work can be
extended to finite doping, which can shed light on the complex interplay between spin and
charge in the Hubbard model.

I
n materials, electrons are the elementary
carriers of both spin and charge, and one
might thus expect that the properties of spin
and charge conduction are always closely
related. However, strong electron corre-

lations can lead to the separation of charge
and spin degrees of freedom, such as in one-
dimensional systems (1–3). The unusual trans-
port properties of the cuprate high-temperature
superconductors in the normal state have been
proposed to arise from decoupled spin and
charge transport (4, 5). The simplest model
believed to capture the essential features of
the cuprate phase diagram, the Fermi-Hubbard
model, features spin-charge separation in one
dimension (6). In two dimensions, relevant for
the cuprates, strong correlations render calcu-
lations of transport properties highly challenging
(7–13). Simultaneous measurements of trans-
port in both the charge and spin sectors would
thus be of great relevance. However, in the cup-
rates, creating and manipulating spin currents
is difficult.
Cold-atom quantum simulators can be used to

experimentally study the Fermi-Hubbard model
in a pristine, isolated environment, with full con-
trol of all Hubbard parameters (14). The advent
of quantum gasmicroscopes for fermionic atoms
(15–20), with their single-atom, single-lattice site
resolution, has enabled precision measurements
of the equation of state (21, 22) and of spin and
charge correlations (23–25) of the two-dimensional
(2D) Fermi-Hubbard model. These microscopes
are poised for the study of transport, as already
demonstrated with bosonic atoms (26–31). Previ-

ous measurements of fermionic charge transport
were performed without the aid of single-atom
resolution (32–34). However, it has proven dif-
ficult to directly connect the observed dynamics
of lattice systems to the transport coefficients
of the underlying Hamiltonian. Recently, the
optical charge conductivity of a dilute, harmon-
ically trapped 3D Fermi-Hubbard system has
been measured (35), as well as the charge con-
ductance through a mesoscopic lattice in a wire
geometry (36).
Here, we explored spin transport in the re-

pulsive 2D Fermi-Hubbard model using ultra-
cold fermionic 40K atoms on a square lattice
confined by a uniform box potential. A natural
region in the Hubbard phase diagram where
spin and charge transport could differ is near
the Mott insulator at half-filling, where charge
transport is strongly suppressed, whereas spin
transport can occur via super-exchange. Previous
experiments have studied spin transport in
strongly interacting Fermi gases without a lattice,
both in three dimensions (37–40) and in two
dimensions (41, 42). In those studies, spin dif-
fusion was observed to attain the quantum
limit of ~ħ/m, where ħ is Planck’s constant h
divided by 2p andm is the particle mass. Here,
we measure both the spin diffusion coefficient
DS and the spin conductivity sS. These trans-
port coefficients dictate the response of the
system to a spin-dependent force and are related
through the Einstein relation, sS = DSc, where c
is the uniform spin susceptibility, which can be
measured independently.
The 2D Fermi-Hubbard model is realized by

evaporatively cooling 40K atoms to quantum de-
generacy and preparing them in an equal mixture
of the hyperfine states |↑i ≡ |F = 9/2, mF = –3/2i
and |↓i ≡ |F = 9/2,mF = 1/2i in a single layer of
a highly oblate optical dipole trap (43). A sam-
plewith uniform filling is produced by projecting
a repulsive optical potential through the micro-
scope objective (Fig. 1A), which isolates a uni-
form 22 × 22 site region of the system (44). The
sample is subsequently prepared adiabatically

in a square optical lattice, where it is described
by the single-band Hubbard Hamiltonian
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Here, t and U denote the nearest-neighbor tun-
neling amplitude and on-site interaction energy,
respectively; hi, ji represents nearest-neighbor
sites i and j; m↑ (m↓) is the chemical potential
of atoms in state |↑i (|↓i); ix represents the
x-coordinate of lattice site i; andD↑ (D↓) represents
a possible spin-dependent tilt of the potential
along the x-direction for state |↑i (|↓i). The
operators ĉ†s;iðĉs;iÞ are the fermion creation (an-
nihilation) operators for spin s = ↑, ↓ on lattice
site i, and n̂s;i ¼ ĉ†s;i ĉs;i is the number operator
on site i. To measure the spin transport co-
efficients sS and DS at half-filling, we apply a
spin-dependent force derived from a magnetic
gradient along �x̂ (Fig. 1A). The magnetic gra-
dient gives rise to a linear tilt in the potential
energy ofD↑/h= 41.1 (±0.8)Hz per site andD↓/h=
15.4 (±0.3) Hz per site. This tilt has the same sign
for atoms of both spins but differs in magnitude.
The Hubbard parameters t and U have typical
values given by t/h ~ 100 Hz and U/h ~ 1 kHz,
and their ratio is varied using the depth of the
optical lattice.
We first measure the spin diffusion coefficient

by preparing the sample adiabatically in the
presence of the magnetic gradient. The equilib-
rium density profile can be understood through
the local density approximation (LDA). Under
LDA, the local chemical potential ms, j decreases
linearly along the x-direction with slope Ds, for
s = ↑, ↓. For a weakly interacting system, one
expects the densities of both spins to decrease
monotonically along x̂ . This is observed in
fluorescence images of samples below and above
half-filling, shown in Fig. 1, B and D, respectively.
In Fig. 1D, doubly occupied sites appear as holes
because of light-assisted collisions during the
imaging process (45), so that the left side of the
box region, where the density is highest, appears
empty. At half-filling, however, the large charge
gap of order U present in the Mott-insulating
regime suppresses the formation of double oc-
cupancies as long as D↑,↓ << U, so that the
average density remains homogeneous through-
out the sample (Fig. 1, C and E). This directly
demonstrates the incompressibility of the Mott-
insulating state, which, in an isolated system,
suppresses the transport of charge. Spin transport,
on the other hand, is not impeded, as spins are
free to move.
Indeed, although the total density is insen-

sitive to position, the individual spin densities
reveal the effect of the gradient. As shown in Fig.
1E, as well as through images of the individual
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spin states in Fig. 1, F to H, we observe that |↑i
spins accumulate toward �x̂ , whereas |↓i spins
accumulate toward þx̂ (46). The incompress-
ibility of the Mott insulator forces |↓i spins to
occupy the right half of the sample at the
expense of an increase in potential energy due
to the tilt. The thermodynamic properties, in-

cluding individual spin densities and double
occupancies, of such a tilted fermionic Hubbard
system have been studied theoretically using
determinant quantum Monte Carlo (DQMC) for
weak to intermediate interactions (0.08 < t/U < 1)
and gradient strengths comparable to those used
in the present work (47). Experimentally, we use

this separation of the individual spin densities to
measure the entropy of the sample; that is, from
the equilibrated total spin density profile hŜz; ji ¼
ð1=2Þhn̂↑; j � n̂↓; ji in the tilted potential (we retain
only the site index along x̂), we can obtain the
uniform spin susceptibilityc ¼ @hŜz; ji=@Dm, where
Dm = m↑ – m↓, of the unperturbed system in linear
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Fig. 1. Creating spin textures in a homogeneous Fermi-Hubbard system.
(A) A diagramof the optical potentials used to confine the atoms, and the tilted
lattice potential experienced by the two spin states |↑i (red) and |↓i (blue)
in the presence of a magnetic field gradient. (B toD) Raw fluorescence images
of the parity-projected total density n̂tots for total densities hn̂i < 1, hn̂i ¼ 1, and
hn̂i > 1, respectively, which have been prepared adiabatically in the presence
of the magnetic gradient; t/U = 0.114 (±0.007), 0.067 (±0.004), and 0.114
(±0.007) for (B), (C), and (D), respectively. (E) The average singles

densities, hn̂tot; js i (gold), hn̂↑; js i (red), and hn̂↓; js i (blue) over four independent
realizations at t/U = 0.026 (±0.002), averaged along the y-direction from
the reconstructed detected site occupations. Error bars represent 1s sta-
tistical uncertainty. The average singles densities shown have not been
corrected for finite detection fidelity. (F) A single raw image of n̂↑

s at
t/U = 0.067 (±0.004). (G) Fluorescence of |↑i minus fluorescence of |↓i
averaged over six images for the same configuration as (F). (H) A single
image of n̂↓

s for the same configuration as (F).

Fig. 2. Observation of spin relaxation after sudden gradient removal.
(A to F) Time evolution of the average singles densities hn̂↑; j

s ðtÞi (red) and
hn̂↓; js ðtÞi(blue) (upper panels), and of the spin densityhŜz; jðtÞi(lower panels),
after removing the magnetic field gradient for t/U = 0.23 (±0.01) at times
t/(ħ/t) = 0, 17, and 88. (G) Imbalance I(t) for t/U = 0.059 (±0.005), t/U =
0.17 (±0.01), and t/U = 0.23 (±0.01) and exponential fits to the data. All error
bars in (A) to (G) represent 1s statistical uncertainty. (H) Spin current JS at j=0

as a function of the spatial gradient in hŜz; jðtÞi at j = 0 for t/U = 0.135 (±0.009),
t/U = 0.20 (±0.01), and t/U = 0.23 (±0.01) and corresponding linear fits to the
data.The error bars along the horizontal axis represent 1s statistical uncertainty

in the measurement of the spatial gradient in hŜz; jðtÞi. Vertical error bars are
representative for each curve, derived from the uncertainty in the exponential fit to
the imbalance I(t), and are proportional to the magnitude of the spin current.
The data in (A) to (H) have not been corrected for finite detection fidelity.
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response (44). By comparing themeasured values of
cwith calculations from the numerical linked-
cluster expansion (NLCE) technique (48), we can
determine the entropy per particle S/kBN (where
kB is theBoltzmann constant).We find an entropy
per particle of S/kBN = 1.1 (±0.1), a regime where
NLCE is expected to converge at half-filling over
the range of t/U explored here (23, 49, 50).
The equilibrated samples with a spin density

gradient provide the starting point for subsequent
measurements. Because the initial spin density
gradient is small, it acts as a small perturbation
to the untilted scenario, ensuring that we are
probing properties of the homogeneous system
in linear response. After the sample has been
prepared at a fixed value of t/U, the magnetic
gradient is suddenly switched off. Following this
quench, the systembegins to relax back to equilib-
rium, where hŜz; ji ¼ 0 everywhere. Figure 2, A
to F, shows the decay of the spin density gradient
after the quench for t/U = 0.23 (±0.01). This
relaxation implies that a spin current JS must be
present. To obtain JS from the measured spin
profiles, we define the spin density imbalance,
I (t), at time t after the quench as

IðtÞ ¼
X

L

hŜ z; jðtÞi �
X

R

hŜ z; jðtÞi ð2Þ

where
P

L,R denotes summation over the left and
right halves of the box. Using the continuity
equation for the spin density, one can relate I(t)
to the spin current JS at the center of the box
( j = 0) via JS(t) = –(a/2)(d/dt)I(t)|t, where a is
the lattice spacing.
Figure 2G shows I (t) measured for several

values of t/U. For all values of t/U explored, I (t)
decays to zero. We have verified that the effects
of lattice heating during this decay are negligible
relative to the experimental uncertainty in the
measurement (44). I (t) is then fitted to an ex-
ponential curve, and the spin current JS is ob-
tained through the time derivative of the fit. To
connect JS with the spin transport coefficients,
we first examine the dependence of JS on the
spin density gradient at the center of the box,
∇hŜz; j¼0i. By extracting both quantities for a fixed
t/U at various times t, we have access to the
dependence of JS on∇hŜz; j¼0iover a large range
of values (Fig. 2H). We find that to within ex-
perimental error, JS is linearly proportional to
∇hŜz; j¼0i. This implies that the spin dynamics are
diffusive, so that JS ¼ DS∇hŜz; j¼0i, where DS is
the spin diffusion coefficient. The diffusive nature
of the dynamics is also independently probed by a
measurement of the power-law dependence of
the decay time of I(t), at a fixed value of t/U,
on the system size L (44).
Figure 3 shows the measured spin diffusion

coefficient DS of the half-filled, homogeneous
Hubbard model as a function of t/U, in units
of the quantum scale for mass diffusion D0 =
ħ/m, where m = ħ2/ta2 is the effective mass in
the tight-binding limit. For all data in the strongly
interacting regime (t/U ≤ 0.125), the spin diffusion
coefficient lies below the scale of quantum-limited
mass diffusion D0. In this range, the dependence
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Fig. 3. Spin diffusion coefficient of the half-filled Fermi-Hubbard system versus t/U.The
experimentallymeasured spin diffusion coefficient ħDS/ta

2 ≡DS/D0 at half-filling (black circles) versus the
Hubbard parameters t/U, and a linear fit to data points with t/U<0.09 (black dot-dashed line).The vertical
error bars represent the 1s statistical error in the measurement; the horizontal error bars represent the
1s statistical error in the calibrated value of t/U. The blue solid line represents isentropic results for
DS/D0 obtained from NLCE calculations of the real-time spin current-current correlation function for the
Hubbard model (44), with an entropy per particle of 1.1kB.With a finite temporal cutoff of ~ħ/t for the
real-time correlation functions, theNLCE theory is expected to provide a lower bound to the true diffusivity.
For comparison, a prediction for the spin diffusion coefficient of the 2D Heisenberg model at high
temperatures, kBT >> Jex, where T is the temperature, is shown (dashed red line) (8, 51, 52).
Inset: A close-up view of the spin diffusion coefficient at half-filling for t/U < 0.09, where it
is expected to scale approximately linearly with t2/U.

Fig. 4. Spin conductivity of the half-filled Fermi-Hubbard system versus t/U.The measured spin
conductivity at half-filling from the initial spin current in an applied magnetic gradient (red squares)
and from the measured spin diffusion coefficient using the Einstein relation sS = DSc (black circles).
A linear fit to data points with t/U < 0.09 is represented by the black dot-dashed line. The vertical
error bars represent the 1s statistical uncertainty of the measurements; the horizontal error bars
represent the 1s statistical error in the calibrated value of t/U. The data have been corrected for finite
detection fidelity associated with the imaging process of the two spin states (44). The blue solid
line is the result obtained for ħsS at constant entropy using an NLCE calculation of the real-time spin
current-current correlation function for the Hubbard model, with an entropy per particle of 1.1kB (44).
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of DS/D0 on t/U is linear, implying DS º t2/U.
From a linear fit constrained to go to zero dif-
fusion at t/U = 0 (Fig. 3), we obtain ħDS = 6.2
(±0.5) × a2t2/U. This t2/U scaling can be par-
tially understood by considering the Heisenberg
limit of the half-filled Fermi-Hubbard model,
where spins interact with an exchange coupling
Jex = 4t2/U called the super-exchange energy.
Because Jex sets the energy scale in this limit,
the effective spin mass is given bymS ~ ħ2/Jexa2 ~
mU/t (29). Spin excitations are thus paramet-
rically more massive than m. For quantum-
limited transport, the spin diffusion coefficient
DS is given by ħ/mS, giving rise to the t2/U scal-
ing. Although this argument gives the correct
scaling, the Heisenberg prediction for the spin
diffusion coefficient at temperatures much larger
than Jex is

ħDS ¼ 4
ffiffiffiffiffiffiffiffiffiffi
p=20

p
a2t2

U
≈
1:6a2t2

U
ð3Þ

(8, 51, 52), lower than experimentally observed
(Fig. 3). This is not surprising, as the Heisenberg
model does not capture quantum or thermal
doublon-hole fluctuations of the Fermi-Hubbard
model, which arise from states with energies
greater than U (9). Doublon-hole fluctuations
can increase spin diffusion because spins can
move directly from occupied to empty sites, or
can trade places with doublons; both processes
occur at a rate set by t. Because doublon-hole
fluctuations are admixed into the wave function
of the system with an amplitude proportional to
t/U in the strongly interacting regime, the overall
scaling of this mechanism is again proportional
to t2/U. As shown in Fig. 3, for weaker inter-
action strengths (t/U > 0.125), the diffusivity DS /
D0 increases faster with t/U than what is given by
this initial linear slope.
To gain further insight, we developed amethod

to calculate the spin conductivity and diffusivity
through real-time current-current correlation
functions within the NLCE technique (44). This
method avoids the ill-posed problem of analytic
continuation from imaginary time, as required
in DQMC, and is immune to finite-size effects.
These calculations thus give unbiased estimates
of transport coefficients in the thermodynamic
limit. When comparing the experimental data to
the calculations, the only fixed parameter is the
entropy per particle, which is independently de-
termined from the measured uniform spin sus-
ceptibility. As shown in Fig. 3, the theoretical
estimate of the spin diffusivity (blue curve) cap-
tures the essential behavior of the experimental
data as a function of t/U. However, the theoretical
calculations systematically underestimate the
experimental diffusion coefficient. One possible
source of this discrepancy arises from limited
access to real-time correlation functions for times
longer than ~ħ/t. In practice, a cutoff on the order
of ~ħ/t is usedwhen calculating the direct current
(DC) transport coefficients, which can lead to
systematic errors. For example, in the Heisenberg
limit, one expects real-time correlations to extend
out to times ~ħ/Jex, which can be much longer

than ħ/t. It is therefore notable that even with
access to real-time correlations only up to times
~ħ/t, the NLCE estimates agree qualitatively with
the experimental data, and also quantitatively to
within a factor of ~2. Although it is difficult to
estimate the magnitude of the systematic error,
we expect the NLCE estimates to provide a lower
bound for DS (44).
In addition to the spin diffusion coefficientDS,

we also independently measure the spin conduc-
tivity sS. To do this, we first prepare an equi-
librated system at half-filling without a potential
tilt. We then switch on the tilt suddenly, which
induces a spin current in the system. Because
∇hŜz; ji ¼ 0 at time t = 0, the diffusive contribu-
tion to the spin current is negligible initially; in
analogy with Ohm’s law, which relates a charge
current to an applied electric field using the
charge conductivity, the initial spin current JS
(t = 0) is directly proportional to the applied
spin-dependent force, �ð1=aÞðD↑ � D↓Þx̂ , where
the spin conductivity sS is the constant of
proportionality. Therefore, by measuring the
spin current at the center of the box under the
known spin-dependent tilt, the spin conductivity
can be obtained. Themeasured spin conductivities
at various interaction strengths t/U are shown in
Fig. 4. A second way to obtain the conductivity is
through the Einstein relation sS = DSc, where the
spin diffusion coefficient DS and the uniform spin
susceptibility c are both obtained from the data
used in Fig. 3. The values of ħsS obtained in this
way are also shown in Fig. 4. We find that these
two independent methods of measuring the spin
conductivity agree with each other to within ex-
perimental uncertainty.
We observe that the spin conductivity is linear

with t/U in the strongly interacting regime (t/U ≤
0.125), and find that sS = 0.28 (±0.02) × t/Uħ
from a linear fit constrained to yield zero con-
ductivity at t/U = 0 (Fig. 4). The measured spin
conductivities drop far below theMott-Ioffe-Regel
limit for charge in a metal (53, 54), s0 = ne2t/m =
e2/ħ, derived for a scattering rate t−1 = EF/ħ given
by the Fermi energy EF, where the elementary
charge of our system is e = 1. It therefore appears
once again as if the effectivemass of the carriers of
spin ismS ~mU/t. A breakdown of theMott-Ioffe-
Regel limit is naturally expected in our regime
where quasiparticles are ill-defined and Drude-
Boltzmann theory does not apply. As t/U in-
creases, the observed spin conductivity grows
beyond the initial linear scaling with t/U, in
analogy with the diffusion coefficient. NLCE
predictions for ħsS at half-filling (blue curve
in Fig. 4) capture the behavior of the spin
conductivity with t/U qualitatively, but are
systematically lower than the experimental
data, for the same potential reasons discussed
previously in the context of the diffusion co-
efficient. Given the substantial challenges asso-
ciated with calculating the DC limit of the
spin conductivity, the experimental data pro-
vide a valuable benchmark for future theoretical
calculations.
Our study of spin transport can be readily ex-

tended in many ways. For example, one can

explore the temperature dependence of the
spin resistivity, which could display linear
behavior reminiscent of charge transport in
bad metals. One can also investigate the effect of
doping away from half-filling (e.g., at optimal
doping), where superconducting fluctuations
or a strange metal phase could be present in
experimentally attainable conditions. Through
simultaneous measurements of both the spin
and charge dynamics, such experiments could
elucidate the intricate interplay between these
two degrees of freedom in the Fermi-Hubbard
model.
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