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Abstract

Spin squeezing is a form of entanglement that can improve the stability of quantum sensors operating
with multiple particles, by inducing inter-particle correlations that redistribute the quantum
projection noise. Previous analyses of potential metrological gain when using spin squeezing were
performed on theoretically ideal states, without incorporating experimental imperfections or inherent
limitations which result in non-unitary quantum state evolution. Here, we show that potential gains in
clock stability are substantially reduced when the spin squeezing is non-unitary, and derive analytic
formulas for the clock performance as a function of squeezing, excess spin noise, and interferometer
contrast. Our results highlight the importance of creating and employing nearly pure entangled states
for improving atomic clocks.

1. Introduction

Spin squeezed states (SSSs) [1] offer a path toward entanglement-enhanced quantum sensors by reducing the
variance of one spin quadrature. Typically, this potential improvement is quantified in terms of the metrological
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quadrature of the state, S is the maximum possible length of the spin vector, and Cis the contrast of the complete
Ramsey sequence. In this picture of quantum enhanced Ramsey spectroscopy, spin squeezing reduces the

Ramsey squeezing parameter {g [2], defined as & = in 18 the smallest variance of any spin
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measurement noise variance by a factor of compared to the standard quantum limit (SQL) that can be

attained in the absence of entanglement using a coherent spin state (CSS), while the - -z termaccounts for the
reduction in squared signal due to interferometer contrast loss. However, the expression for £g does not account
for other downsides in using SSSs in Ramsey spectroscopy, such as the increase in quantum noise
(antisqueezing) in the conjugate spin direction [3].

Single-particle decoherence, i.e. uncorrelated noise between the particles, due to atom loss or spontaneous
emission, typically has a more deleterious effect on SSSs than on uncorrelated collective atomic states. In
particular, if the coherence properties of an atomic clock are limited by single-particle decoherence, squeezing is
found to offer at best a small, and constant with atom number, improvement in ultimate clock stability [4, 5].
However, in state-of-the-art optical atomic clocks [6—9], the dominant noise is not single-particle decoherence
but rather phase noise in the local oscillator (LO) laser used to interrogate the narrow atomic transition. Even as
LO laser technology improves [ 10], there are many increasingly narrow atomic clock transitions [11-15] that
would still leave LO stability as the primary limit to Ramsey time, and hence precision, in atomic clocks.

In an atomic clock, the atomic phase is used to stabilize the LO phase. While dephasing of the LO does not
destroy the quantum correlations between the atoms, it invalidates the assumption that the antisqueezing does
not affect the measurement precision [3]. The mechanism by which this happens is illustrated in figure 1(a). Due
to the curvature of the Bloch sphere, part of the antisqueezed quadrature enters into the final S, measurement
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Figure 1. (a) Illustration of a Ramsey sequence using a spin squeezed state. A collective spin state pointing along x is prepared with a
quadrature reduced variance ASf = %52 and an increased variance AS? = %xz. If the phase deviation ¢ is non-zero, the final readout

of S, becomes sensitive to the antisqueezing . (b) and (c) S, distributions, as a function of ¢ for a clock with N = 107 spins, usinga
coherent state and a pure spin squeezed state with £2 = =2 = —20 dB, respectively. Note that the S, distributions are vertically offset
by the average clock signal S sin ¢. The S, distribution is narrowed by squeezing only when || is small.

when the phase deviation ¢ between the atoms and the LO is non-zero, as in this case the final g rotation of the
Ramsey sequence places the SSS away from the equator of the Bloch sphere. Therefore, to avoid this leakage of
antisqueezing into the final S, measurement, a squeezed clock must operate in a reduced range of |#|, limiting the
Ramsey time 7 in the presence of LO dephasing to a smaller value than what would be necessary to merely avoid
27 phase errors. On the other hand, the frequency stability of atomic clocks improves with longer Ramsey time
asT 'fora single measurement, andas 7~ 12 for repeated measurements over a fixed total duration. Therefore, a
conflict exists between obtaining the greatest phase noise suppression by using a short Ramsey time, and
maximizing clock frequency stability with a long Ramsey time. Note that this effect does not harm sensors that
operate in a fixed bandwidth, such as atomic magnetometers, accelerometers, and gyroscopes.

In recent years, many experiments have realized metrologically relevant entanglement using trapped ions
[16-19], Bose—Einstein condensates [20-24], and room-temperature [25] and ultracold thermal atomic
ensembles [26—30]. Experimental realizations of spin squeezing are imperfect, and always produce states with
more antisqueezing than squeezing (x> > £~2), especially in low-density experiments suitable for clock
operation [27-30]. Although this excess antisqueezing has been noted experimentally, it has not been taken into
account in previous studies of entanglement-enhanced clock stability [3, 31, 32].

Here, we extend the model of [3] to derive analytical expressions including non-unitary squeezing, and
determine the impact on potential gains in the stability of atomic clocks. We find that for typical states realized so
far in experiments with dilute atomic ensembles amenable to clock applications [26—30], the impact can be
severe, potentially wiping out any metrological gain from squeezing. We also analyze the effect of contrast loss,
and find that the system is more robust to contrast loss during the squeezing than to contrast loss during the
Ramsey time. We conclude that experimental efforts should be in part directed toward reducing excess
antisqueezing, since moderate near-unitary squeezing can yield better clock stability than larger non-unitary
squeezing.
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2. Antisqueezing and measurement precision

We consider an atomic clock based on a SSS consisting of N = 2§ spin-1/2 atoms, with phase variance squeezed
by a factor of €2 < 1and population variance increased by a factor x> > £2.In terms of spin operator variances
as shown in figure 1, this is equivalent to an initial phase squeezed state pointing along S,, with (AS,)* = ;5 2

and (AS,)? = % x?. We quantify the imperfection of the squeezing process through the excess antisqueezing

factor A = £2y? > 1, with equality corresponding to unitary squeezing (at contrast C = 1). After the Ramsey
time 7, the atomic state is displaced in phase relative to the LO by the phase deviation angle ¢ due to LO noise.
Contrast loss during state preparation or the Ramsey sequence arising from single-particle decoherence is
neglected for the time being (but is discussed in figure 5 and appendix C). The final 77/2 rotation in figure 1(a)
results in a distribution for S, that depends on the accumulated phase ¢, as shown in figures 1(b) and (). Ina
clock, the final measurement of S, is used to estimate ¢, and thereby apply feedback to stabilize the LO phase. For
squeezed states, we note that for ¢ = 0, the banana-like shape of the state wrapping around the Bloch sphere
causes a leakage of the antisqueezed variance ; x? into the final measurement of S, and therefore a deterioration
in the ability to extract the true value of ¢ [3]. To determine the clock stability, we first calculate the variance
(A¢)* of the phase measurement as a function of the squeezing &, antisqueezing , and phase deviation ¢. We
then use the derived analytical relation to determine the optimum Ramsey time 7and best attainable clock
frequency stability.

The process by which ¢ is estimated is as follows. Given our knowledge of the initial quantum state, we
calculate the conditional probability distribution P (S,|¢) for each value of the true phase deviation ¢. With no
prior knowledge about ¢, the Bayesian estimate of ¢, given a particular measured value S, ; of the S, operator at
the conclusion of the Ramsey sequence, will be given by the conditional distribution P (¢|S; ¢). In the limit

where Pis Gaussian with respect to S, and ¢, the two distributions P (S,|¢) and P (¢|S,) are directly related to
a;f;g ) , found from the mean signal produced by the clock sequence,
(S25) (@) = Ssin(¢). Note that this last expression is only approximate for squeezed states, but remains
sufficiently accurate for all ¢ of interest, as can be seen by comparing figures 1(b) and (c).

For the initial state in the Ramsey sequence, we already defined (AS, )* = gf Zand (AS,)? = % X2. The only

one another through the signal slope

remaining variance to compute is (AS, )?. Using the Holstein—Primakoff approximation (see appendix A), we
find

2 22
(AS,)? = (X—X), (1)
8
The variance of the final S, projection after the Ramsey sequence has two components: the initial S, variance,
with weight cos?(¢), and the leaking in of (AS, )? into S,, with weight sin?(¢). Putting these together gives
2 22
(887" = T cos'() + XD sint(9), @

The expected variance (A$)* of the estimate for ¢ at the end of the Ramsey sequence is simply the variance of the
final S, measurement given by (2), normalized by the slope of ¢ as a function of Sz

—2
(Ag)? = (%) X (AS, )% Substituting (2) gives

2 —2y2
oy =~ + X L an(o), 3

Note that (3) is only valid when |¢| < /2, since that is the phase range in which the clock signal (S, ¢) (¢) is
invertible. Moreover, (3) predicts a divergence of the phase error when || = /2, which is an unphysical
artifact of using a locally linearized model.

To estimate the maximum possible phase error ¢, near || = /2, we note that if we measure a value of S,
near the top (or bottom) of the Ramsey fringe, there is a finite range of ¢ which could have produced this value of
S.. The variance of S, at |¢| = 7 /2 is givenby (AS, )*(¢ = 7/2) = M Therefore, the largest possible

phase error A¢ . must satisfy %(1 — c0s(A¢,. ) = AS, (¢ = m/2), which gives, for AS, ; < N/2,

o2 - x
=) o

To complete the picture, we need to estimate the phase error for |¢| > 7 /2. In this case, the inversion
function ¢ (S, s) will give aresult in the range || < /2, with an error approximately equal to 4(|¢| — 7/2).
To make the result continuous with the error in the vicinity of |¢| = 7/2, we approximate the phase error as

3
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(AP (Il > 7/2) = 49| — 7/2)* + (A (©)

The complete dependence of the phase estimation error (A¢)” on ¢ can be obtained by stitching together
(3)—(5) for different values of ¢. To validate this approximate analytical formula, we perform a complete
numerical simulation of the process of estimating a phase in a Ramsey sequence using states with different levels
of squeezing, described in appendix B. We find excellent agreement between these analytical approximations
and the results of the full numerical simulation, especially around ¢ ~ 0 where the phase estimation error is low,
the crucial region for predicting optimal clock performance.

3. Impact on clock stability

Armed with an analytical model for the dependence of the phase estimation error A¢ on the phase difference ¢
between the LO and atomic ensemble given by (3), we can now tackle the main question: how much can the
frequency stability of a clock be improved by spin squeezing, in the limit where LO dephasing is the dominant
noise source?

To quantify the precision of our clock, we need to evaluate the RMS difference between the true LO phase
and the estimate of the LO phase we obtain using Ramsey spectroscopy of the atomic ensemble. We divide the
total measurement time T'into T/ 7 intervals of duration 7, corresponding to the individual Ramsey sequences of
the experiment. The overall variance of the LO phase estimate after a time T'is T/ multiplied by the expected
phase error variance after a single measurement,

o3 = = [ 4o P&, DAO @) ©
T Y-

with corresponding frequency stability (or Allan deviation) givenby o, = T~ %03.

The probability distribution P(¢, T) of the LO having a phase deviation ¢ after Ramsey time 7 depends on the
linewidth and lineshape of the LO. As a simple example, we approximate the phase evolution of the LO as a
Gaussian process, following the model of [3]. For a free-running LO linewidth (or equivalently a dephasing rate)
of =y, this model gives a Gaussian distribution for the phase deviation ¢, with variance o1 o (7) = 77:

1 ¢?
P(p, 1) = o exp[ 202 ] @

Using this probability distribution, we calculate the phase estimation error (A¢)? and corresponding clock
stability in several instructive cases, as shown in figure 2.

First, we consider a clock operating without excess antisqueezing. The corresponding phase estimation
errors are shown in figure 2(a). We see that as the squeezing increases, the ability to resolve small rotations
around ¢ = 0improves: (A¢(0))? = £2/N.However, this comes at a price: the range of phase deviations ¢ for
which the measurement is better than the SQL is reduced. In terms of clock precision, as shown in figure 2(b),
this effect manifests itself in a reduction of the optimal Ramsey time. As a result, the best possible clock stability
increases with squeezing until an optimum is reached near £2 = N~!/3, worsening again for larger values of
squeezing, as found in [3] for unitary squeezing.

Next, we consider the effect of non-unitary squeezing, where the excess antisqueezing is a factor of
A% = 3% invariance. We fix £2 = — 15 dB and vary the antisqueezing y = A/&. The error in the phase
measurement is shown in figure 2(c). As expected, excess antisqueezing has no effect on the measurement
precision near ¢ = 0, but makes the error A¢ significantly worse for larger |¢|. Turning to the clock stability in
figure 2(d), we see that squeezed states with excess antisqueezing lead to clocks with the same stability for short
Ramsey times, but the stability saturates at much smaller values of y7. As a result, when the state area exceeds
A? = 15 dB (for N = 10" atoms), the best attainable long-term stability of the squeezed clock is worse than if we
had simply used a CSS.

Figure 3 shows clock stability for an optimized Ramsey time 7, as a function of squeezing £* and excess
antisqueezing A”. There are two distinct regions in the plot, delineated by which term in (3) is greater. When
A*¢ON~! < 1,i.e. when &2 > N~!/3 and the antisqueezing is moderate, the antisqueezing term in (3) is small
forall|¢| < m/2.In this regime, the antisqueezing plays no role in determining the optimal Ramsey time or
clock stability, with the latter improving in direct proportion to &, independently of A: 05) (v™H = €Nl Inthe
other limit, A*¢~®N~! >> 1, the optimal Ramsey time becomes shorter, with 7., = 7~ 'WVN&A72, yieldinga
clock stability of o}, (y~!) = A2{~'N~3/2. Note that in this regime, the clock performance deteriorates with
increasing squeezing. Numerically, we find the boundary of the two regions to lie near A*¢~°N~! = 5,in
agreement with the result €2 oc N~!/3 for optimum unitary squeezing (A = 1) found in [3].

Using this approach, we can analyze the potential gains in clock stability that could be obtained using SSSs
that have been experimentally realized. As shown in figure 4, better squeezing £ does not necessarily lead to

4
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Figure 2. Phase estimation error and clock stability for squeezed states. (a) Phase estimation error (A¢)* after one Ramsey experiment
for different amounts of unitary squeezing £ in a clock with N = 10* atoms, as a function of the phase deviation ¢. (b) Corresponding
clock stability after a time T = ~ ', as a function of the Ramsey time 7 (in units of v ). (c) Same as (a), fixing the squeezing at

&% = —15 dB, and varying the state area A and accordingly the antisqueezing xy = A/£. (d) Corresponding clock stability. Note that

the steps in (A¢)” near l;rﬂ ~ L area consequence of transitioning between two regimes of approximating (A¢)? by (3) and (4), and

are not present in a full numerical simulation (shown in figure B1).

-40 -30 -20 -10 0
Squeezing, §2 [dB]

Figure 3. Clock performance in the presence of excess antisqueezing. Best possible clock stability, in units of dB of clock phase variance
compared to a clock at the SQL, as a function of the squeezing ¢” and excess antisqueezing A, for N = 10* atoms. The green line at
A*¢~° = 5N indicates the transition between the regimes where clock performance improves or deteriorates with increasing
squeezing.

greater clock stability, especially if it is achieved at the expense of excess antisqueezing. Experiments where the
4
parameter o = E?_N is less than one, such as [20-22, 27], would be able to employ the full amount of generated

squeezing in improving an atomic clock. On the other hand, experiments with o > 1, including those with the
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Figure 4. Potentially realizable clock stability gain using experimentally generated squeezed states after subtraction of detection noise,
compared to a clock at the SQL. Each point reflects the reported squeezing assuming perfect state detection and Ramsey contrast

C = 1. Circles, squares, and triangles correspond to squeezing via collective interactions in trapped ions, Bose—Einstein condensates,
and ultracold atomic ensembles, respectively, while stars correspond to measurement-based squeezing with ultracold atomic
ensembles. Dashed lines extrapolate the results of [29, 30], assuming a squeezing-independent state area A, as is typical for
measurement-based squeezing experiments. Numerical labels indicate the value of o« = A*¢~°N~! for each experimental result.
When « > 1, the state has too much squeezing or excess antisqueezing, preventing the full utilization of available squeezing in
boosting clock performance.

largest observed squeezing[19, 29, 30], produce a situation where this squeezing cannot be used in such an
efficient manner. Itis interesting to note that [20-22, 27] all employ collective interactions to generate squeezing,
while [29, 30] use QND measurements for entangling the atoms. In measurement-based squeezing, any
undetected photons produce excess antisqueezing; to minimize the latter, one needs to maximize the quantum
efficiency of light detection and optimally use the available information in the probe light. This suggests that
even though measurement-based squeezing has been used to create smaller spin variances, collective atom—
atom interactions [33—35] may offer better performance for spin squeezed clocks.

In practice, Ramsey contrast in clocks is usually below unity, due to atom loss or technical imperfections. By
combining the effects of antisqueezing and Ramsey contrast decay, we can readily determine parameter regions
of SSSs that can enhance atomic clocks, as discussed in appendix C. The total Ramsey contrast C = C; x C, has
two components. The first, Cy, is the reduction in contrast acquired during the preparation of the SSS, which will
be present in optically induced spin squeezing due to the inevitable scattering of probe photons by the atoms
during state preparation. The second factor, C,, is contrast loss during the Ramsey time itself.

An example of the effect of contrast loss is shown in figure 5, where we analyze the experiment of [30], which
reported the creation of a state with £ = —20.1 dB, A> = 19 dB,and C = 0.962for N = 5 x 10° atoms. For
these parameters, a change in clock stability ranging between an improvement by 2.7 dB and a deterioration by
0.6 dB could be expected, as compared to a clock operating with a CSS, depending on where in the Ramsey
sequence the contrast loss originates. We see that contrast loss during spin squeezing, shown in figure 5(a), is
relatively benign in terms of clock stability compared to contrast loss during the Ramsey time, as shown in
figure 5(b); this is also noted in [26] and further discussed in appendix C. For the SSS of [30], if the excess
antisqueezing could be reduced to A*> < 7 dB while maintaining C; > 0.7, C, > 0.96, then the clock could be
operated 10 dB below the SQL. Thus, practical atomic clocks must control both excess antisqueezing and
contrast loss at a tight level to profit from spin squeezing.

4. Conclusion

We have analyzed the effect of non-unitary squeezing and derived simple expressions for potential
improvements in clock stability in the presence of LO noise, as a function of the squeezing and antisqueezing.
We find that for a state with N atoms, the squeezed state offers no metrological gain over a CSS if the excess
antisqueezing variance exceeds N~ /2, and that highly squeezed states with large excess antisqueezing can lead to
worse clock performance than moderately squeezed states with less antisqueezing. Therefore, experiments
aiming for ultimate clock stability will benefit from operating close to the fundamental limit of unitary
squeezing, by squeezing with collective atom—atom interactions, or by reducing light loss in measurement-based
squeezing.
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Figure 5. Effect of contrast loss on clock performance. Possible stability improvement (in units of dB) of a spin squeezed clock over a
coherent spin state clock, as a function of excess antisqueezing A” and (a) squeezed state generation contrast C; and (b) Ramsey time
contrast C,. We consider a squeezed state with N = 5 x 10> atoms and squeezing £2 = —20.1 dB as realized in [30]. The star
indicates the experimentally observed values of A* and C. In both plots, we assume unity state preparation contrast C; = 1 for the
CSS. In (b), we vary C, for both the CSS and SSS clocks, since contrast loss during the Ramsey time is unaffected by the squeezing
process and should be equal for coherent and spin squeezed states.

We emphasize that these results apply to atomic clocks but not to sensors that require signal readout after an
externally-imposed Ramsey interrogation time, such as those used to measure a time-dependent signal. In this
case, for short interrogation times, it is the spin squeezing alone that determines the sensor performance.

We would also like to note that schemes to extract the full metrological gain from squeezed states in the
presence of LO noise have been proposed, by using ensembles of clocks [31], or by measurement and active
feedback onto the atomic state [32]. It remains to be analyzed how much these approaches can enhance the
stability of clocks in the presence of non-unitary spin squeezing and other experimental imperfections.
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Appendix A. Derivation of expression for AS?

In the Holstein—Primakoff approximation [36] of an N-particle Bloch sphere as a tangent plane perpendicular to
the +2% direction, we have the following mapping between harmonic oscillator operators a, a” and spin
operators:

N
Sy = > a'a
S, = ﬂ (@ —a)
21
=Nt a) (AD
The harmonic oscillator ground state | 0) corresponds to an atomic coherent state pointing in the +£ direction:
[+2)°% = |0).
The squeezing and displacement operators are defined in the usual way:
1
SO\ = exp(E(X"a2 — /\aTZ)), (A2)
D(a) = exp (aa’ — o*a). (A3)

When \is real, the state S(\)|0) is squeezed in the S, quadrature with variance ge*A and antisqueezed in the S,

. . s
quadrature with variance Ee’\.

A non-unitary squeezed state with antisqueezing variance x> and squeezing variance & can be decomposed
as a statistical mixture of unitary squeezed states with squeezing f(z) = x %, displaced in the S, direction with a

7
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Figure B1. Expected error (A¢)” in the estimate of the LO phase ¢ as a function of ¢ for different amounts of squeezing & and no excess
antisqueezing, for N = 10” spins. Dashed lines are the analytical formula built from (3)~(5), while the solid lines are the result of a
numerical simulation.

Gaussian probability density of variance £2 — & . For a squeezed state |1)) = D () S())|0), we find the
following expectation values for the number operator n = a'a:

(n) = sinh?()\) + |of?

(n?) = (n)? + 2sinh?(\)cosh?()\)
+ |a]*(sinh?()\) + cosh?()\))
+ (a? + a*?)sinh(M\)cosh(\).

A displacement operator in the S, direction corresponds to a purely imaginary value for a.. Therefore,
(AS)? = (n?) — (n)?equals

(ez,\ _ 672)\)2

(ASi(a, N)* = + laf’.

Evaluating the expectation value over the o distribution and substituting x and ¢ gives the final result:

(AS(, )yt = X=X

s +&-x2 (A4)

For any squeezed state, we have 0 < &2 — =2 < 1, which will have negligible impact on the phase estimate
precision A¢. Therefore, we can simplify (A4) to give

(AS,)? = w (A5)

Appendix B. Numerical validation of phase variance formulas

Here, we describe the procedure for validating the analytical formulas (3)—(5) through a numerical simulation
and generating the results in figure B1. For each value of unitary squeezing £ and LO-atom phase deviation ¢, we
calculate the probability distribution P(S,, ¢, &) of obtaining a particular value of S, during the projective
measurement at the end of the Ramsey sequence. From this probability distribution, we determine the estimate
for ¢ with the smallest root-mean-square error, given a particular observed value for S,, assuming a uniform
Bayesian prior for ¢ in the interval (—7 /2, 7/2). This estimate is given by

[ d¢ P(S., 6, €) x &

—7/2

I, 46 PGS,y 6, )

¢est(sz’ 5) =

Next, for each true value of ¢ (which can lie outside the (—/2, 7/2) range), we evaluate the expected error in the
¢ estimate:
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Figure C1. Ramsey sequence including the effect of contrast loss due to imperfection in spin squeezing generation (C,;) and single-
particle decay into the ground state (C,).

Z?Z/:Z_N/QP(SZ’ ¢’ g) X (¢est(sz’ f) - ¢)2

(B1)
S P 60

(Ag(¢))? =

This is the function plotted in figure B1. The effects of contrast loss and excess antisqueezing can be introduced
by the appropriate modification of the function P(S,, ¢, &) to yield similarly good agreement with the analytical
estimates of (A¢)? derived above.

Appendix C. Effect of contrast loss

The model we use can also be extended to include the effects of contrast loss, as shown in figure C1. We model
contrast loss during the SSS preparation by combining a SSS comprised of NC; atoms with two equally
populated sub-ensembles, one with %(1 — () atoms in the ground state, and the other with the same number
of atoms in the excited state, giving a total Ramsey contrast of C;. The orientation of the SSSrelative to the S, = 0
plane depends on the method by which squeezing is produced—measurement-based squeezing [28—30] gives

0 = 0while feedback-based squeezing [27, 33, 34] has § = arcsin(1/ ).

During the Ramsey sequence, additional contrast loss by a factor C, may occur when some of the atoms
decay from the excited clock state. We model this effect by a population transfer to a CSS containing N (1 — C,)
atoms in the ground state. The net Ramsey contrast of the entire sequence equals C = C; x C,, as only the
atoms remaining in the SSS are still contributing to the signal.

Contrast loss adversely affects the clock performance by reducing the magnitude of the signal by a factor C,
and by adding additional noise in the final S, measurement:

(AS,c55)? = M(l ~ cos(¢)cost(6))
+ NO-G) 4_ &) (C1)

with the first term arising from contrast loss during squeezing preparation, and the second term from contrast
loss during the Ramsey sequence. In typical situations where 6 and ¢ are small, the second term is greater,
reflecting the fact that contrast loss during the Ramsey sequence is a more severe problem than contrast loss
during the squeezing preparation. These noise terms are added to the noise arising from the SSS itself, giving

(AS,f)*=C x [%52 cos*(¢) + w sinz((b)]
+ % x [1 — C — Cy(1 — G)cos?(¢)cos(0)]. (C2)

The mean signal produced by the clock sequenceis (S, ) (¢) = C x S sin(¢), giving the full expression for
(Ag)
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Figure C2. (a) Phase error (A¢)* in a clock with N = 10* for different preparation contrast C;, no squeezing, and no contrast loss
during the Ramsey sequence, as a function of the phase deviation ¢. (b) Corresponding clock stability after a time T = . (c) Same as
(), but with perfect state preparation contrast C; = 1, and varying amounts of contrast C;. (d) Corresponding clock stability.

@0y = g+ DX g

‘N 2CN?
1 — 1 —
+ CZNC sec?(¢) — %cosz(ﬁ). (C3)
Similarly, the maximum phase estimation error becomes
_ /4
[Lod=x»  1-c]
Ag . = [z G e | (C4)

By replacing (3) and (4) with (C3) and (C4), we can evaluate the performance of clocks in the presence of
contrast loss and potentially non-unitary squeezing.

As an example, consider a clock operating without any squeezing, for different amounts of remaining
contrast C after the Ramsey time 7. This contrast loss may occur during the state preparation (C; < 1,C, = 1)
or during the Ramsey sequence itself (C; = 1, C, < 1). The errors in estimating the LO phase for these two
situations are shown in figures C2(a) and (c). When C = 1, the error in phase estimation is always at the SQL for
N = 10*atoms: (A¢)> = 10~* = 1/N. Asthe contrast becomes worse, two mechanisms cause (A¢)* to
grow. For ¢ = 0and C, = 1, the imperfect contrast C, leads to a smaller signal with measurement noise
corresponding to only NC, atoms, so (A¢(0))> = 1/(NG) in this case. However, when C, < 1, all Natoms
contribute to the S, measurement noise, giving (A¢(0))> = 1/(NC}). As|¢| increases, Ap becomes equal for
both situations because the N (1 — ;) atoms decohered during state preparation are rotated toward the
equator and contribute their projection noise to the final S, measurement. The corresponding clock stabilities
are shown in figures C2(b) and (d), where we see that the best Ramsey time remains near y7 = 0.5 and the
optimum clock performance scales as aé x C; 'and aé o Cy %, justlike (A ¢ (0))2.

Finally, we focus on the potential gain in clock stability, optimizing over the Ramsey time 7. Figure C3 shows
the effect of contrast loss on the performance of a squeezed clock with N = 10* atoms. The colors and contours
are in units of dB, normalized to the SQL: a clock with no squeezing and perfect contrast (top-right corner of
these plots). As expected, contrast loss C, during the Ramsey time has a much more severe effect on ultimate
clock stability than imperfections in the initial state C;. We can see that if the former contrast falls below

10
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Figure C3. Plot of the best possible clock performance, in units of dB of clock phase variance, compared to a clock with no squeezing
and perfect contrast for N = 10* atoms, as a function of the amount of squeezing { and (a) preparation contrast C; and (b) Ramsey
time contrast C,. We assume no excess antisqueezing, {x = 1, the usage of measurement squeezing (¢ = 0), and unity fixed contrast
C, = land C; = lin(a)and (b), respectively.

C, = 0.7, the clock performance will always be worse than a clock without squeezing and unity contrast. More
interestingly, as C, becomes smaller, the potential improvement from squeezing also decreases—for C, = 1, we
can gain as much as —13.7 dB in clock stability by squeezing, but for C, = 0.4, this decreases to only —1.7 dB.
This finding is consistent with the results of [4, 5]: when single-particle loss limits the Ramsey time, squeezing is
unable to significantly improve clock stability.
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