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1. Introduction

The continuous improvement in the performance and process-
ing power of current computing devices has been mainly driven
by the increase in the number of transistors that can be placed in a
computer chip. In 1970, Intel co-founder Gordon Moore observed
that this increase follows an exponential trend, such that the
density of transistors per chip is doubled approximately every two
years (Moore, 1965, 1975). However, this exponential tendency
is unlikely to remain indefinitely. Several studies have suggested
that the miniaturization of transistors will soon face technological
and physical limitations and challenges (Waldrop, 2016). In addi-
tion to this, the architecture of current computing devices suffers
from what is known as the von Neumann bottleneck problem, a
limitation in the data transfer rate due to the physical separation
between the memory and the processing units. This configuration
results in reduced computational power and high energy con-
sumption.

These two limiting factors and the continuously increasing
demand for higher computational power by today’s Big Data re-
quire different and unconventional computing architectures and
approaches. One such example is neuromorphic systems, a com-
puting approach inspired by the information processing charac-
teristics of complex biological brains (Aleksander & Morton, 1989;
Mead, 1990).
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In contrast to modern computers, the massively interconnected
architecture of the human brain allows it to reach far better per-
formance thanks to the parallel interaction of thousands of neu-
rons involved in a computation. Furthermore, there is no distance
between memory and processing in the human brain; these two
processes are equivalent and occur at a local level in the synaptic
connections between neurons. This entails a more efficient storage
and recall since the information exchange is direct and continuous,
as opposed to the inherent latency in current von Neumann archi-
tectures.

By emulating the parallel architecture and network dynam-
ics exhibited in biological neural circuits, neuromorphic systems
demonstrate properties such as high compactness, robustness to
noise, fault tolerance and computational and energy efficiency sim-
ilar to those observed in biological systems (Aleksander & Morton,
1989; Jo et al., 2010; Mead, 1990; Mead & Ismail, 2012; Morabito,
Andreou, & Chicca, 2013).

Recent advances in nanoelectronics have made possible the
fabrication of devices that exhibit memristor-like characteristics.
A memristor has been proposed as the fourth fundamental circuit
element, after the resistor, the inductor and the capacitor (Chua,
1971).1t was first theorized by Leon Chua based on symmetry prin-
ciples. Essentially, a memristor is a two-terminal electronic device
whose conductance can be incrementally modified according to
the magnitude and direction of the applied voltage across or cur-
rent through the device. Memristors can also work as non-volatile
memories, which means they can store their resistance value even
in the absence of a power source (Dongale et al., 2016; Kim et al.,
2012). Given their adaptive behavior, memory storage capability,
and nanoscale dimensions, these new memristive devices are ideal
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for the emulation of synapses in ultra-high-density and compact
artificial neuromorphic architectures (Jo et al., 2010; Snider, 2007,
2008).

Even though memristors have characteristics that make them
ideal for the emulation of synaptic connections in neuromorphic
hardware, their implementation has been hindered by the high
device variability, mainly due to the internal conduction mech-
anisms of the device, such as filament formation and oxidation
processes, as well as variability introduced during the manufactur-
ing process. This is the case for systems whose operation depends
on the training of the connections. For this reason, the practical
use of memristors in neuromorphic systems requires a type of
learning and network architecture that are highly tolerant to de-
vice imperfections and naturally embrace variability in memristor
processing (Biirger & Teuscher, 2013; Goudarzi, Lakin, Stefanovic,
& Teuscher, 2014). One such framework is the reservoir computing
(RC) architecture (Jaeger, 2001; Maass, Natschlager, & Markram,
2002).

In the RC architecture, a temporal signal is projected into a
high-dimensional space by a nonlinear dynamical system, or reser-
voir, that consists of a random, recurrent network of nonlinear
units, which acts as a short-term memory for the signal, and thus
contains information about past and present inputs. At the final
stage, a memoryless linear classifier is trained on the output of
the reservoir. Therefore, the connections within the reservoir are
not trained; rather, the performance of the reservoir mainly de-
pends on its global dynamical properties, and not on the individual
properties of any device. These characteristics make the reservoir
computing framework ideal for recurrent memristive networks.

To demonstrate the potential of this approach, this paper
presents the simulation results of a novel recurrent, memristive
neuromorphic architecture: the MN?® (Memristive Nanofiber Neu-
ral Network), and its use for temporal pattern recognition within
the framework of reservoir computing. This architecture is de-
scribed in a recent patent by the authors, details of which can be
found in Nino and Kendall (2017). Briefly, the system proposed in
Nino and Kendall (2017) consists of a mat of electrospun memris-
tive nanofibers, which can be spatially arranged to form an arti-
ficial neural network architecture that exhibits random, recurrent
connections in a highly dense and compact structure, all features
of biological neural networks. Given its recurrent and dynamic
connectivity, the architecture proposed is expected to exhibit the
requisite properties for the efficient reservoir design in the field
of reservoir computing. By dynamic connectivity we refer here to
the modifiable nature of the conduction strength of the memristive
connections. However, the presence or absence of a connection is
always fixed.

Acquiring a thorough theoretical understanding of the pro-
posed neuromorphic hardware architecture (MN?) is essential for
evaluating its potential as a neuromorphic processor. Valuable
insight into the behavior and dynamics of the network can be
gained via numerical simulations. Addressing this need, we have
developed a simulation tool in Python that can construct various
instances of the proposed memristive neuromorphic architecture,
simulate their dynamics, and evaluate their computational prop-
erties.

Prior studies focusing on networks of memristors designed
to operate under the RC approach have been reported in the
literature (Avizienis et al., 2012; Konkoli & Wendin, 2013a, b;
Kulkarni & Teuscher, 2012; Oskoee & Sahimi, 2011; Sillin et al.,
2013). However, most of them focused on the theoretical electrical
characterization of these networks, and few of them explored their
computational capabilities in the performance of real-world tasks.
The efforts of the present work are thus emphasized on both
providing details about the modeling and simulation of the MN3
architecture, and the exploration of its computational capabilities

in a speech recognition task by considering the operating princi-
ples of the reservoir computing (RC) framework. In addition, the
modeling approach implemented in the present work introduces
the effects of component mismatches and temporal sources of
variability, which are critical in real memristive devices.

One of the first reported attempts to model and simulate a
network of memristors was made by Oskoee and Sahimi (2011).
They carried out numerical simulations of electrical currents in a
two-terminal, square lattice of memristors and resistors that emu-
lates a large size, two-phase material with memristive properties.
The memristor model used in Oskoee and Sahimi (2011) is the
moving-wall model proposed by Strukov in Strukov, Snider, Stew-
art, and Williams (2008), but they included a nonlinear window
function in order to account for nonlinearities at the boundaries of
the insulated layer. Simulation results showed various interesting
behaviors: weak and strong memristive regimes, a possible first-
order transition at the percolation threshold, nonlinear dynamics
evidenced by the generation of second harmonics in the strong
memristive regime, and dependence of the network’s strength
on the frequency. One of the limitations of that work was the
restricted type of connectivity of the network, which constrained
the maximum number of edges per node to four.

Some of the results obtained by Oskoee and Sahimi in Oskoee
and Sahimi (2011), such as the manifestation of a soft and a hard
switching regime and the generation of higher harmonics, were
further confirmed in a later work by Sillin et al. (2013). In that
work, a network of atomic switches, which contains elements of
a nearest-neighbor, random network, was simulated. In contrast
to Oskoee and Sahimi’s work, the number of edges per node of
the network proposed in Sillin et al. (2013) was not constrained
to a certain number. Interestingly, in order to model the atomic
switches, Sillin et al. used a memristor model similar to the one
proposed by Oskoee and Sahimi in Oskoee and Sahimi (2011), but
they included a dissolution and a stochastic term in the derivative
of the state variable, which accounted for the breakdown and the
variability of the conductive pathways, respectively. Additionally,
Sillin et al. showed that the atomic switch network could poten-
tially serve as a reservoir in the context of RC by demonstrating its
performance in a waveform generation task (Sillin et al., 2013).

Another reported attempt to simulate a network of memris-
tors is the work of Kulkarni and Teuscher (2012). They built
a software framework that allowed them to create memristor
networks, to simulate and evaluate them in NgSpice, a mixed-
level/mixed-signal circuit simulator. As Sillin et al. (2013), Kulkarni
and Teuscher suggested that the random network of memristors
could be used as a reservoir in the context of RC, and success-
fully demonstrated its performance in a pattern recognition and
associative memory tasks using synthetic signals, and a genetic
algorithm to train the readout module.

There is also the work proposed by Konkoli and Wendin
(2013a). They created a generic software tool for the simulation of
the dynamics of sparse multi-terminal memristive networks, and
they implemented the threshold memristor model initially pro-
posed in Pershin and Di Ventra (2010). This software tool was used
in a later work by the authors to evaluate the computational capa-
bilities of a network of memristors in the context of RC (Konkoli &
Wendin, 2013b). They proposed the hypothesis that if the nonlin-
ear frequency response of the reservoir cannot be approximated
by a linear combination of delayed inputs, then the quality of
the reservoir is good. For testing this hypothesis, they proposed a
dissimilarity measure in the frequency domain between the real
output voltage at the internal nodes of the network, and the output
produced by the linear combination of the delayed inputs. The
more dissimilar these two signals are, the better is the quality of
the reservoir. They used the same dissimilarity measure for the
conductance and the voltage between internal nodes, and found
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Fig. 1. Electrospun memristive nanofiber neural network architecture MN3. (a) Detailed view of a connection between a memristive nanofiber and an external electrode. (b)
Schematic of the network of memristive nanofibers. (c) Detailed view of a connection between two memristive nanofibers; each nanofiber consists of an internal conductive
core coated with a memristive shell. (d) The connection between an electrode and a nanofiber is modeled as a single memristor. (e) SEM image of the electrospun memristive
nanofiber with depicted electrodes. (f) The connection between two memristive nanofibers is modeled as a single memristor. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

that these two variables present higher dissimilarity measures
than the voltage at the internal nodes (Konkoli & Wendin, 2013b).

One of the most recent works on the application of memristive
networks using the RC architecture was the one proposed by
Kudithipudi, Saleh, Merkel, Thesing, and Wysocki (2016). They de-
veloped a software-based neuromemristive RC architecture, with
doubly twisted toroidal structure, and they showed the applica-
bility of this architecture for biosignal processing applications.
Kudithipudi et al.’s work will be later used as a benchmark for the
performance of the MN? architecture here presented.

In order to better contrast the current work with prior efforts,
the structure of this paper is as follows: first, we provide a de-
scription of the MN? architecture, followed by details about the
modeling and the simulation of the network. Next, we evaluate
the computational capabilities of the network by assessing its
performance in a speech recognition task under the paradigm of
reservoir computing. Finally, we report our conclusions regarding
the computational capabilities of the architecture proposed and
provide a guidance to continue exploring and harnessing the dy-
namics of memristive networks in future work.

2. Materials and methods

This section presents a detailed description of the system, as
well as the considerations and assumptions that were taken into
account for the modeling and simulation of the network.

2.1. The architecture

The MN? architecture consists of a mat of electrospun memris-
tive nanofibers, which can be spatially arranged to form an arti-
ficial neural network architecture that exhibits random, recurrent
connections, in a highly dense and compact structure.

A schematic of the MN? architecture is shown in Fig. 1. The
detailed views illustrate the cross section of a single fiber, as
well as the configuration of the connection between two fibers
at an intersection (c), and the connection between a fiber and an
electrode (a). Each fiber (blue lines in b and e) is made up of a

conductive core coated with a memristive shell. It is worth noting
that the connections at the intersection of two nanofibers (Fig. 1(c))
could have also been modeled as 2 memristors in series with dif-
ferent polarities. We did build a preliminary model of the network
taking into account this assumption. Since results did not present
observable changes in terms of prediction performance (not shown
in this work), we decided to work with the simplified version of the
model (i.e., assuming that connections at the intersection of two
nanofibers can be modeled as a single memristor), which resulted
to be less computationally expensive.

While this architecture is a physical embodiment, it can also
be conceived as an electrical circuit that, at a higher level of ab-
straction, represents the concept of an artificial neural network
in the context of machine-learning. Fig. 2 provides a detailed
sketch of the three different representations for the proposed MN3
architecture.

2.2. Modeling the system as a graph

For modeling and simulation purposes, the electrical circuit
representation of Fig. 2(b) was used. We adopted a graph-based
approach to model the circuit as a network of memristive links
that connect an array of external (controllable) and internal (non-
controllable) nodes. The set of external nodes may either represent
an electrode connected to a driving source or a ground; and the
set of internal nodes may represent an accessible electrode, or the
conductive core of a fiber (non-accessible nodes). The total set of
nodes is denoted by N. The set of links of the network, denoted by
£, represent physical memristors that connect pairs of nodes.

2.3. Modeling connectivity

The connectivity of the network is defined by an N x N adjacency
matrix. The i, jth element of this matrix is 1 if there is a memristive
connection between the pair of nodes i, j, otherwise the i, jth ele-
ment is zero. The assignment of the connections was determined
by a random variable that follows a Bernoulli distribution with
parameter p, where p approximates the average probability of two
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Fig. 3. General structure of the node-to-node adjacency (connectivity) matrix for

the MN? architecture. Internal nodes can either be: accessible (A) or non-accessible
(NA); external nodes can either be a source (S) or a ground (GR).

fibers being in direct contact when arbitrarily arranged in space
during the electrospinning process. Given the physical architecture
of the MN?® network (Figs. 1 and 2), the connectivity matrix would
have the form depicted in Fig. 3.

2.4. The algorithm

The algorithm used for the temporal evolution of the network
under an external applied voltage is a simplified version of the

one proposed in Konkoli and Wendin (2013a), and is summarized
below:

1. Random initialization of the conductance/resistance values
of the memristive connections.

2. For fixed conductance/resistance values, determine the volt-
age at the internal nodes using Kirchhoff's Current Law
(KCL).

3. Determine the voltage across each memristive connection
using the results obtained in step 2.

4. Using Euler’s method, for a short delta of time (dt = 1 x
10~ s), update the value of the conductance/resistance of
each memristive connection using the voltages obtained in
step 3.

5. Go back to step 2 until the end of the external applied
voltage.

This algorithm was implemented in Python.
2.5. The memristor model

Several physical and chemical mechanisms have been found
to be responsible for the behavior of memristors and memristive
devices. Some of these are: nanomechanical effects, molecular
switching effects, electrostatic/electronic effects, electrochemical
metallization effects, valence change effects, thermochemical ef-
fects, phase-change effects, magnetoresistive effects and ferro-
electric tunneling effects. A detailed review on these mechanisms
is provided in Waser, Dittmann, Staikov, and Szot (2009). Based
on these mechanisms, several memristor models can be found in
the literature (Abdalla & Pickett, 2011; Berdan, 2013; Chang et
al., 2011; Laiho, Lehtonen, Russel, & Dudek, 2010; Linn, Siemon,
Waser, & Menzel, 2014; Nugent & Molter, 2014; Pershin & Di Ven-
tra, 2010; Pickett et al., 2009; Vourkas & Sirakoulis, 2013; Williams,
Pickett, & Strachan, 2013; Yakopcic, Taha, Subramanyam, & Pino,
2013).
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In Nugent and Molter (2014), authors proposed a generalized
memristive device model capable of accurately reproducing the
empirical behavior of several memristive devices including the Ag-
chalcogenide, AIST, GST, and WO, devices. Given its versatility,
we used this model for simulation purposes. This semi-empirical
model assumes that the current through the device comes from
both a memory-dependent current component, I,, and a Schottky
current, I in parallel:

I'=¢ln(V.) + (1 -9) L (V), (1)

where ¢ € [0, 1].

The Schottky component, I (V), represents the Schottky barrier
that many memristive devices contain and that is formed at the
metal-semiconductor junction. On the other hand, the memory
component, I, comes from the notion that memristors can be
represented as a collection of conducting channels that switch
between states with a different resistance value. The resistance of
the device can be modified through the application of an external
voltage that causes the channels to transition between low and
high conducting states. Thus, each conducting channel can be
treated as a metastable switch (MSS), and the conductance of the
device is defined by a collection of these MSSs that capture the
memory effect of the memristor.

In this model, the low and high conducting states of each
channel are separated by a potential barrier. If we let the barrier
potential be the reference potential V = 0, then the probability
that the MSS transitions from the B state to the A state is given by:

1
YT e pvn

And the probability that the MSS transitions from the A state to
the B state is given by: P; = a (1 — I" (V, —Vp)). Here, 8 = = =
(Vr)~!, where V7 is the thermal voltage, o« = % is the ratio of the
time step period At to the characteristic time ‘scale of the device
t., and V is the voltage across the switch.

The intrinsic electrical conductance of each MSS is given by G4
and Gp. The total memristor conductance is given by the sum over
each MSS:

Py = =al (V,Vs). (2)

Gm = NpGa + NpGp = Np (G — Ga) + NGy, (3)

where Ny is the number of MSSs in the A state, Np is the number
of MSSs in the B state, and N = N4 + Ng. Therefore, a memristor
is modeled as a collection of N MSSs that evolve in discrete time
steps, At. At each time step, a subset of the MSSs in the A state will
transition to the B state, and vice versa. The probability that x MSSs
will transition out of a population of n MSSs is given by a binomial
distribution:

n! X n—x
PP (4)
where p is the probability that a MSS will transition states.

The change in conductance of a memristor is thus modeled
as a probabilistic process in which the number of switches that
transition between A and B states is drawn from a binomial dis-
tribution with a center at np and variance np (1 — p). This random
process accounts for the intrinsic dynamic stochastic behavior of
memristive devices. The update of the memristor conductance is
thus given by the contribution of two random variables, RV, and
RVg, drawn from two binomial distributions:

P(x,n) =

ANp = RV (Ng, Ps) — RVp (N3, Pp) (5)

The final update to the conductance of the memristor is thus given
by:

AGpm = ANg (Gg — Gy) (6)

Table 1
Parameters for the Generalized Metastable Switch Model (MSS) of an Ag-
chalcogenide memristive device.

Distribution

te ~Normal (1 = 0.32 x 1073, 0 = 0.1p)
Wi ~ Normal (1 = 0.91 x 1073, 0 = 0.1u)
Won ~ Normal (u =0.87 x 1072, 0 = 0.1y)

Model parameter

tc [ms]
Wotr = GalNy [mS]
Won = GpNp [mS]

Va [V] V4 ~ Normal (u =0.17,0 = 0.1n)
Vg [V] Vg ~ Normal (u = 0.22,0 = 0.1u)
N N ~ Normal (1« = 10000, 0 = 0.1)

To include device-to-device variability effects, the parameters of
the model, as well as the initial conditions of each of the elements
in the network were drawn from the probability distributions
described in Table 1. The values of these parameters are fitted to
an Ag-chalcogenide memristive device (Nugent & Molter, 2014).

2.6. Computational capabilities of the MN? as a reservoir: the isolated
digit speech recognition task

To test the computational capabilities of the MN? architecture,
we simulated an instance of the network to perform a temporal
pattern recognition task using the network as a reservoir under the
principles of the RC approach. The task, commonly known as the
isolated digit speech recognition task, consists in the supervised
classification of isolated spoken digits from ‘0’ to ‘9. Here, the term
‘supervised’ refers to the supervised learning paradigm as used in
the context of machine-learning. Therefore, the linear classifier
used for the classification of the isolated spoken digits (after their
transformation by the memristive reservoir) was trained on the
labeled data set described below.

The data set used for this task was taken from the TI46 cor-
pus (Doddington & Schalk, 1981), which consists of 500 samples;
each digit was recorded 10 times by 5 female speakers. The raw
signals of this data set are usually preprocessed for speech recog-
nition purposes. The preprocessing consists in a transformation of
the signal to the frequency domain and a selective filtering based
on psychoacoustic properties of the human ear (Vandoorne et al.,
2014). The version of the data set used in the present work was
preprocessed using the Lyon ear model described in Lyon and
Shamma (1996), applying a decimation of the input signals with
a factor of 128. This preprocessing step decomposes the signal of
each digit into 77 separate temporal signals, each corresponding to
a different frequency component. Fig. 5(b) illustrates an example
of the resulting temporal signals for each of the frequency com-
ponents (each color in Fig. 5(b) represents a different frequency
component) for one of the 10 samples of digit ‘1°.

The instance of the MN? architecture simulated for this task
consisted of a network with a total of 400 internal nodes (100
accessible and 300 non-accessible nodes; we simulated as large a
network was practical), and 82 external nodes (77 sources, each
corresponding to one of the 77 temporal frequency components of
the input signals. We incorporated 5 grounded nodes to encourage
a more evenly distributed current throughout the network). A
schematic graph of the architecture is shown in Fig. 4. Connections
between pairs of nodes were randomly generated using a Bernoulli
distribution with p = 0.9. The parameters of each of the mem-
ristive connections, as well as the initial conductance states, were
drawn from the probability distributions described in Table 1.

Each one of the 77 temporal frequency components (Fig. 5(b))
of the 500 samples was fed as an input voltage (scaled by a factor
of 1 x 10%) to one of the 77 source nodes of the simulated MN?
architecture. Network states, i.e., the voltages at the internal nodes
(both accessible and non-accessible), were recorded at each point
in time. For the classification of the spoken digits, 10 distinct linear
regression models were trained in parallel (Fig. 5(d)), one per
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Fig. 4. Network architecture used for the isolated digit speech recognition task.
The simulated network consisted of 482 nodes: 77 external driving sources, 100
accessible internal nodes, 300 non-accessible internal nodes and 5 grounded nodes.
The spatial location of the nodes serves just for representational purposes.

digit, using as input the memristive network states (Fig. 5(c)). The
data set was divided into training (450 samples) and test sets (50
samples). The test set was used to provide a reliable estimate of
the prediction accuracy of the model. Since there is a prediction
value for each point in time, a winner-take-all approach was used
to determine which digit was spoken during the test procedure.
Given the large number of input features, we used Ridge regression
to penalize those input features that are less important in the
prediction of the digit label. Fig. 5 shows a scheme for the isolated
digit speech recognition task.

2.7. Computational capabilities of the MN? as a reservoir: the separa-
tion and fading memory properties

According to the RC framework, a reservoir should possess
the two following properties to be computationally useful: fading
memory and separation (Jaeger, 2001; Maass et al., 2002).

The separation property (SP) is related to the computational
power! of the reservoir; it refers to the ability of the reservoir to
generate separate network states in response to different input sig-
nals, i.e. being able to map different input streams into significantly
different trajectories in the phase space of the reservoir (Jaeger,
2001; Maass et al., 2002). The fading memory property (FMP), on
the other hand, is related to the information storage capacity of the
reservoir; it refers to the ability of the reservoir to integrate tem-
poral information of the input history into its current state (Jaeger,
2001; Maass et al., 2002). This ability of the reservoir is determined
by the range of stable patterns that the network can generate.

Previous works have demonstrated that these two properties
are strongly related to the dynamics of the reservoir (Beggs, 2008;
Kauffman, 1993; Langton, 1990; Legenstein, 2005; Legenstein &
Maass, 2007). The diversity in the number of states associated to
the SP is a characteristic feature of systems operating in a chaotic
regime (Legenstein & Maass, 2007), whereas the ability to produce
stable state patterns associated to the FMP is a characteristic of
systems operating in an ordered regime. Therefore, if a system
operates under a chaotic dynamical regime, its state should be

1 There is not a unique definition for the computational power of a machine.
However, a machine is said to be computationally powerful depending on the
amount of operations that it can perform, i.e., the number of mappings between
inputs and outputs.

sensitive to changes in the input when the initial conditions are
held constant (Legenstein & Maass, 2007). In contrast, if a system
operates under an ordered dynamical regime, regardless of the dif-
ferences in the initial conditions, state differences should approach
zero if there are no longer any differences in the inputs (Legenstein
& Maass, 2007). Accordingly, a reservoir can be conceived as a
time-dependent pattern generator, and the evaluation of its com-
putational capabilities essentially relies on the analysis of these
spatiotemporal patterns for characterizing its dynamical regime.

Using the conditions for ordered and chaotic dynamics in au-
tonomous dynamical systems, different analyses were performed
to determine the separation and fading memory properties of the
MN?3 architecture, and the extent to which these properties can ex-
plain its performance in the isolated digit speech recognition task.

First, to quantify the SP of the memristive reservoir, we eval-
uated the evolution of the distance between the trajectories (in
phase space) of the network states, as defined by the voltages at
the accessible internal nodes,” generated by two different inputs
(i.e., two different digits), while holding the initial conditions con-
stant (i.e., the initial values of the conductance). Each input signal
consisted of a consecutive sequence of 11 samples of the exact
same digit (see Fig. 6(a)). These input sequences were generated for
digits ‘0’,‘1’,‘2’, and ‘3’, arbitrarily chosen, and were independently
fed into the same simulated instance of the MN* architecture
(i.e., an instance of the MN? network with the same physical
parameters and connectivity matrix). To isolate the effects due
to variations in the initial conditions of the system, the network
was reset to the same conductance state for each input sequence.
As with the speech recognition task, for every run, voltages at
the internal nodes were recorded for each point in time, and the
distance between trajectories in phase space of the network states
for all six possible paired combinations of the four given input
sequences was estimated.

The method used to quantify the FMP of the memristive reser-
voir is slightly different to the one used for the SP. In this case,
since we are interested in evaluating the sensitivity of the system
tovariations inits initial conditions®> when the input conditions are
held constant, we assessed the evolution of the distance between
trajectories (in phase space) of the network states (as defined by
the voltages at the accessible internal nodes) generated by the
exact same input sequence, but for different initial conditions,
i.e., different initial values of the conductance. We used as inputs
the same four sequences described above for the SP (see Fig. 6(c)).
Each of these input sequences was independently fed twice into
an identical simulated instance of the MN? architecture (i.e., same
physical parameters and connectivity matrix), but this time the
initial conductance values were randomly reassigned in every run.
As with the speech recognition task and the SP, for every run,
voltages at the internal nodes were recorded for each point in time,
and the distance between trajectories in phase space of the net-
work states for all pairs of simulated initial conditions, i.e., for each
input sequence under (two) different initial conductance values,
was estimated.

We used the definition of Euclidean distance as a measure to
quantify both the SP and the FMP. Thus, at time ¢, the distance
d, ., between trajectories (in the phase space) for network states
U (t) eRN anV (t) RV is given by:

N
A2, =Y [ui ) — v OF (7)

i=1

2 The state of the system was defined only in terms of the voltage at the internal
nodes, since they are of practical relevance.

3 Since the network proposed here is an input-driven dynamical system, a large
number of its state variables are zero unless there is an external driving force. This is
the case for all voltages and currents, except for the conductance of the memristive
connections. Consequently, the sensitivity of the network to variations in the initial
conditions was evaluated with respect to the conductance state of the memristors.
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Fig. 5. The isolated digit speech recognition task. (a) Toy example of the original input signal before preprocessing. (b) Real sample input signal for digit ‘1’ after preprocessing;
each color codes for a different frequency component (77 frequency components were used in total for all the digits). (c) Resulting memristive reservoir states for a sample
of digit ‘1. (d) Prediction of digit label by the linear classifier (Ridge regression).
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Fig. 6. Schematic of the methodology used to measure the separation property (SP) and fading memory property (FMP) of the MN? architecture. The sequences of digits
used as inputs for the reservoir are depicted in (a) (upper left), with their corresponding resultant reservoir states (RS) (upper right), for both the default and the modified
initial conditions. The different combinations of resultant reservoir states used to test the SP and the FMP are shown in (b) and (c), respectively.

In this case, u; (t) and v; (t) represent the voltage at the ith internal
node at time t for network states U(t) and V(t), respectively,
and N corresponds to the total number of internal nodes used in
the calculation of the distance. A scheme of the methodology to
quantify the SP and the FMP is depicted in Fig. 6.

3. Results and discussion
3.1. The isolated digit speech recognition task

Speech recognition is intrinsically a nonlinearly separable prob-
lem. Nevertheless, according to the operating principles of the
RC approach, the reservoir should act as a filter that performs a
nonlinear projection of the input space into a higher dimensional
space, and by doing this, it converts nonlinearly separable input
data into a linearly separable one, thus reducing the complexity of
the problem.

Results for the isolated digit speech recognition task are shown
in Fig. 7. The classification task was carried out for two different
scenarios: first, using only the voltages at the accessible internal
nodes (100 nodes; Fig. 7(a)), and second, using the voltages at all
the internal (both the accessible and non-accessible) nodes (400

nodes; Fig. 7(b)). As a control, the same classification task was per-
formed using the original preprocessed signals (Fig. 7(c)). In addi-
tion, for benchmark purposes, the results using the network states
of a (non-memristive) reservoir composed of 100 leaky integrator
neurons? were included (Fig. 7(d)) (Verstraeten et al., 2012).

The high classification performance presented in Fig. 7(c) cor-
responding to the original preprocessed signals shows that the
frequency domain transformation step of the preprocessing stage
reduces already in large part the complexity of the problem by
converting the signal in a quasi-linearly separable problem. In this
case, the precision score is 1.0 for 6 of the 10 digits, and 0.81
on average for the 4 remaining digits. When compared to the
results of the memristive reservoir using only the voltages at the
accessible internal nodes (Fig. 7(a)), the number of digits whose
precision score is 1.0 goes up to 8, and the two remaining digits
show an averaged precision score of 0.70. Nevertheless, if all the
internal nodes (i.e., the accessible and non-accessible nodes) of the
memristive reservoir are used, the precision is 1.0 for all the classes
(Fig. 7(b)). This improvement in the classification performance of
the memristive reservoir when all the internal nodes are included

4 A leaky integrator neuron is a standard neuron with a first-order low-pass filter
added to its output.
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Fig. 7. Classification performance (confusion matrix) for the isolated digit speech recognition task using the voltage at (a) the accessible internal nodes of the memristive
reservoir (100 nodes), at both (b) the accessible and non-accessible internal nodes of the memristive reservoir (400 nodes); (c) the original preprocessed data, and (d) the

states of a reservoir made-up of leaky integrator units (Verstraeten et al., 2012).

could be due to either an increase in the number of input features,
or to special discriminative features provided by the voltage at the
non-accessible internal nodes. The dynamics of the latter (non-
accessible internal nodes) are likely to be different due to their
embedding in the physical matrix where they directly interact with
each other (Fig. 3), in contrast to the accessible nodes, which do not
interact at all.

The high classification performance corresponding to the mem-
ristive reservoir states (Fig. 7(a) and (b)) suggests that the projec-
tion made by the memristive reservoir on the preprocessed signals
is further decreasing the complexity of the problem by increasing
the separability of the signals. To test this, we trained multiple
classifiers with different sizes for the training set using as input the
memristive reservoir states, and the original preprocessed signals.
If the memristive reservoir is indeed increasing the separability
of the signals, then the linear classifier should be able to attain
high precision and recall scores when trained with fewer samples.
Results are shown in Fig. 8.

Fig. 8(c) shows that the classification performance in terms of
both the precision and recall scores notably declines as the size of
the training set is reduced when the original preprocessed signals
are used as input. In contrast, the classification performance for
the memristive reservoir states, using only the accessible internal
nodes (Fig. 8(b)), and both the accessible and non-accessible in-
ternal nodes (Fig. 8(a)), barely decreases with the reduction of the
training set. However, the case in which the voltage at both the
accessible and non-accessible internal nodes are used (Fig. 8(a)),
seems to outperform the case in which only the voltage at the
accessible internal nodes is used (Fig. 8(b)). In the former case,
the performance in terms of both precision and recall only shows
a marked decline when the training size is just 30% of the whole
sample size, i.e., 150 out of 500 samples. Altogether, these results
show that the projection performed by the memristive reservoir on
the original preprocessed signals does reduce the complexity of the
problem by improving the separability of the preprocessed signals.

From the reported attempts on simulation of network of mem-
ristors used as reservoirs within the RC framework, Kudithipudi
et al.’s work (Kudithipudi et al., 2016) is perhaps the most suitable
to be used as benchmark for the MN? architecture here proposed.
In Kudithipudi et al. (2016), Kudithipudi et al. used a software-
based memristive RC architecture for epileptic seizure detection
and EMG prosthetic finger control; they reported an accuracy of
90% and 84%, respectively. Although the complexity of the multi-
label isolated spoken digit recognition task here presented, and
the biosignal processing tasks performed by Kudithipudi et al.
are not by any means directly comparable, they both present
relatively good prediction performance when compared to other

non-memristive, non-RC architectures such as the ones presented
in Chapaneri and Jayaswal (2013) and Limkar, Rao, and Sagvekar
(2012), which use dynamic time warping (DTW) and Mel fre-
quency cepstrum (MFCC) for a similar isolated spoken digit recog-
nition task, reporting classification accuracies of 90.5% and 99.16%,
respectively.

3.2. The separation property (SP)

The distance between trajectories (in phase space) of the net-
work states of the memristive reservoir, generated by two different
input sequences of digits under the same initial conductance states,
for all possible combinations of inputs (see Fig. 6(b)), is shown in
Fig. 9. For comparison purposes, the same analysis described in
Section 2.7 for the evaluation of the SP was carried out using the
network states of the same (non-memristive) reservoir presented
in Section 3.1 (cyan line in Fig. 9). In addition, the separation
between the input sequences as described by the original prepro-
cessed signals was also estimated (light blue line in Fig. 9).

A reservoir is said to have the SP if the distance between
trajectories of the network states neither decays to zero nor di-
verges exponentially with time (Jaeger, 2001; Maass et al., 2002).
Fig. 9 shows that for all possible combinations of input sequences,
the separation between trajectories of the network states of the
memristive reservoir is maintained in time: it neither decreases
nor exponentially diverges (dark blue line in Fig. 9). In addition,
compared to the results for the reservoir composed of leaky in-
tegrator neurons, and the original preprocessed input signals, the
memristive reservoir consistently presents a higher SP.

To test whether the SP of the memristive reservoir is respon-
sible for its increased performance when all the internal nodes,
accessible and non-accessible, are included in the classification
analysis (as shown in Fig. 7(a) and (b) for the speech recognition
task), we studied the effect of the number of internal nodes under
consideration on the estimation of both the SP and the classifi-
cation performance of the memristive reservoir. Results of these
analyses are shown in Fig. 10.

Fig. 10 shows that there is a positive correlation between the
number of internal nodes considered and the classification per-
formance of the memristive reservoir. The higher the number of
internal nodes included for the classification task, the higher is the
performance of the classifier in terms of both precision and recall.
Furthermore, Fig. 10(b) suggests that the SP of the memristive
reservoir is susceptible to the number of internal nodes considered
for its estimation. This result is not entirely surprising. Increasing
the number of internal nodes for the estimation of the SP naturally
leads to an increase in the number of dimensions describing the
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Fig. 8. Classification performance (in terms of precision and recall for each digit label) as a function of the training size for the isolated digit speech recognition task using the
voltage at (a) the accessible internal nodes of the memristive reservoir (100 nodes), at both (b) the accessible and non-accessible internal nodes of the memristive reservoir

(400 nodes); and (c) the original preprocessed data.

state of the network, thus positively contributing to the separation
between two network states. However, this only holds true if
the new added dimensions provide new information about the
input space, and that depends on the degree of nonlinearity of the
memristive reservoir. This will be further analyzed in Section 3.4.

Overall, these results suggest that the improvement in the
classification performance of the memristive reservoir could have
been, at least, partially driven by an increase in the SP of the system
potentially induced by the augmentation of the dimensionality due
to the inclusion of more internal nodes in the prediction of the
spoken digits’ labels. However, as we will show in Section 3.4,
an increase in the SP purely driven by the augmentation of the
dimensionality is not a sufficient condition for obtaining a good

classification performance. In addition, a nonlinear component
should be present.

3.3. The fading memory property (FMP)

Fig. 11 shows the distance between trajectories (in phase space)
of the network states of the memristive reservoir, generated by
the same input sequence (i.e., same digit) under different initial
conductance states. Results for the reservoir made of leaky inte-
grator units (the same one used in Fig. 7(d) and (cyan line of)
Fig. 9) were not included here because in the source code used for
the simulation of this type of reservoir, the states of the network
were by default initialized with the same values. Likewise, the
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distances between the original preprocessed input signals were
also excluded because evidently the distance between a signal and
itself will be in all cases zero.

A reservoir exhibits the FMP if variations introduced in the ini-
tial conditions of the network lead to a decaying distance between
trajectories (in the phase space) of the network states produced by
the same input (Legenstein & Maass, 2007; Maass, Natschlager, &
Markram, 2004). Fig. 11 shows that, during the transient stage of
the network’s response (i.e. at approximately the first 4 ms), the
Euclidean distance is higher compared to later stages. This means
that, although the inputs are the same (in which case one would

expect the network states to be the same), the network is able
to ‘remember’ that the initial conditions were different by giving
rise to temporarily different network states. Once the network
stabilizes and reaches a cyclic steady state (i.e., from 4 to 15 ms
approximately), this distance approaches zero, meaning that the
network states tend to be more similar, and thus the reservoir is
not able to ‘remember’ anymore the differences in the initial con-
ditions, i.e. the memory fades away. Further, although the distance
does not fully decay to zero, it is on average significantly lower (one
to four orders of magnitude) compared to the distances between
trajectories generated by two different input conditions (Fig. 9),
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which is clearly a desirable behavior for any type of reservoir.
These results suggest that the memristive reservoir is able to erase
spurious information contained in the initial conditions of the
system, and thus serves as evidence that the network possess the
FMP.

Fig. 11 also shows that the number of internal nodes considered
in the estimation of the distance between network states does not
seem to have a significant effect on the time that it takes to the
network to reach a steady state. This means that the stabilization
time, as expected, does not depend on the number of variables
included, but it is rather a property of the system that can be tuned
with the parameters and connectivity of its constituent memristive
elements.

3.4. Nonlinearity and the separation property

In Section 3.1 it was suggested that the improvement in the
classification performance of the memristive reservoir could be
potentially associated to an increase in the SP, induced by the
inclusion of more internal nodes under consideration. However,
it was also suggested that this increase in performance, driven by
an increase in the SP of the system, is not entirely explained by
the augmentation of the dimensionality, but it also depends on the
degree of nonlinearity of the network.

To test the validity of this hypothesis, the same analyses carried
out in Sections 3.1 and 3.2 were applied to a reservoir made-
up entirely of resistive elements with the same architecture and
similar electrical properties (i.e., conductance/resistance values)
of the memristive version presented in Sections 3.1 and 3.2. This
resistive reservoir was used as a control to control for nonlinearity.
Results of these analyses are shown in Fig. 12.

In contrast to the results presented for the memristive version
of the reservoir (Fig. 10(a)), Fig. 12(a) shows that the classification
performance of the resistive reservoir is highly degraded as more
internal nodes are included in the prediction of the digits’ labels.
Notwithstanding, Fig. 12(b) shows that the SP of the resistive
reservoir, as measure by the Euclidean distance, increases with the
number of internal nodes under consideration. These results prove
that an increase in the SP, induced by the augmentation of the
dimensionality, may be a necessary but not a sufficient condition
to perform well in the speech recognition task.

In addition, an interesting observation from Fig. 12 is that the
Euclidean distance between network states, given two distinct
input sequences, is on average higher for the resistive reservoir,
compared to the distance exhibited by the other systems laid out in
this work (Fig. 9), such as the memristive and the leaky integrator
reservoirs, which presented a higher classification performance
(Fig. 7).

Although both the memristive and the resistive versions of the
reservoir possess the exact same architecture (i.e., number of nodes
and connectivity matrices) and physical parameters, the nature
of their constituent operating units is fundamentally different.
Unlike resistors, memristors are intrinsically nonlinear elements
with memory. The poor performance of the resistive reservoir re-
gardless of its high SP values, compared to the memristive version
and the leaky integrator reservoir considered in the present work,
is mainly because it does not exhibit memory properties, and its
behavior is, by definition, linear.

To assess the level of nonlinearity of the MN? architecture,
we used the method applied in Maass et al. (2002) to quantify
the degree of nonlinearity in the response of a mixed network of
linear and nonlinear resistors. This method is based on a physical
phenomenon known as high harmonic generation (HHG) and is
associated with systems that produce nonlinear frequency trans-
formations. Therefore, we assessed whether the MN? architec-
ture exhibits a nonlinear frequency response by looking for the
presence of harmonics higher than the fundamental frequency of
excitation of the input voltage in the output current of the network.
This analysis was performed based on the Fourier transform of the
signal.

For this purpose, a random memristive network with 2 external
nodes (one source and one ground) and 400 (100 accessible and
300 non-accessible) internal nodes with a probability of connec-
tion p = 0.90 was simulated using a 10 Hz sinusoidal input signal
with different levels of voltage amplitude. The HHG analysis was
performed on the output current collected over 5 cycles of the
input signal. For each amplitude level, the network was reset to the
same initial state. For comparison purposes, this same analysis was
carried out for the resistive version of the reservoir using the exact
same architecture and physical parameters. Results are presented
in Fig. 13.

Fig. 13 (top) shows that the dynamics of the memristive reser-
voir do promote the generation of higher harmonics in the output
response of the system. This means that the memristive reservoir
does perform a nonlinear projection of the input space into its
network space, which is a desirable characteristic since it enhances
the SP of the system. On the other hand, Fig. 13 (bottom) shows that
the resistive reservoir is incapable of generating higher harmonics
in its output response, which is an expected behavior, given the
linear nature of its resistive constituent units.
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In Fig. 13 (top), it can also be observed that the intensity of
higher harmonics is attenuated by the amplitude of the input volt-
age. This decrease can be explained by the decline in the amount
of hysteresis and nonlinearity of the memristors composing the
reservoir. Fig. 14 shows the current-voltage (IV) curve of a single
memristor for different amplitudes in the input voltage using a
100 Hz sinusoidal signal. As the amplitude of the input voltage
increases, the memristor completes its set/reset process and does
not change any further, temporarily exhibiting a lower hysteresis
and thus less nonlinear behavior. This decrease in nonlinearity at
the microscopic level suppresses higher harmonic generation at
the global network scale (Oskoee & Sahimi, 2011; Sillin et al., 2013).

4. Conclusions and future directions

In this work, we simulated a random network of memristive
elements as a reservoir for the solution of the isolated digit speech
recognition task. We showed that the proposed architecture is not
only capable of successfully carrying out this task, but it also out-
performs the alternative proposed architectures. In addition, we
showed that its performance can be explained by a combination of
its separability, the presence of a fading memory and its nonlinear
behavior. Overall, results from this work strongly suggest that the
MN? architecture is a plausible alternative for the construction of
kernels that operate under the principles of RC, and that, in order to
perform more complex tasks, its performance could be potentially
improved by tuning its parameters to increase its SP and FMP.

Since memristive networks are input-driven systems, their
behavior largely depends on the characteristics of the input. In
contrast with autonomous dynamical systems, whose dynamics
are uniquely determined by the parameters of their constitutive
elements, the dynamics of memristive networks are strongly de-
termined by the nature and properties of the input. Thus, con-
trolling their behavior and taking advantage of their dynamics for
computational purposes requires adequate encoding techniques of
the input signals. For future work, it may be interesting to study
the effects of the type of input signal, as well as the effect of
connectivity density and connectivity patterns between nodes on
the overall behavior of the network, since these factors appear to
have nontrivial effects (Kang, Goh, Lee, & Kim, 2004).
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Fig. 14. Theoretical current-voltage (IV) curve of a single simulated memristor (using the model proposed in Nugent and Molter (2014) and explained in the Methods
section), using a 100 Hz sinusoidal input voltage, for different amplitude levels. The behavior of a single memristor becomes more linear as the amplitude of the input

voltage increases.

Although we introduced stochastic terms to induce device-to-
device and temporal variability, we did not study the effect of these
terms in the overall behavior and performance of the network.
In the case of memristive networks these sources of variability
are a critical factor since it is well known that the manufacturing
processes of these devices introduce important device-to-device
variations, and at the same time, these devices have shown to
present a poor consistent behavior over repetitive trials (Bill &
Legenstein, 2014).

Despite the simplicity of the methods presented here for the
evaluation of the SP and the FMP, they are a good first approach to
characterize the dynamic behavior of a specific reservoir architec-
ture. However, we encourage the use of more sophisticated meth-
ods. For instance, the FMP of the reservoir could be better evaluated
by assessing its performance in the NARMA task (Jaeger, 2003;
Steil, 2005; Verstraeten, Schrauwen, d’Haene, & Stroobandt, 2007).
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