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a b s t r a c t

Thiswork presents the simulation results of a novel recurrent,memristive neuromorphic architecture, the

MN3 and explores its computational capabilities in the performance of a temporal pattern recognition

task by considering the principles of the reservoir computing approach. A simple methodology based

on the definitions of ordered and chaotic dynamical systems was used to determine the separation and

fading memory properties of the architecture. The results show the potential use of this architecture as a

reservoir for the on-line processing of time-varying inputs.

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

The continuous improvement in the performance and process-

ing power of current computing devices has been mainly driven

by the increase in the number of transistors that can be placed in a

computer chip. In 1970, Intel co-founder Gordon Moore observed

that this increase follows an exponential trend, such that the

density of transistors per chip is doubled approximately every two

years (Moore, 1965, 1975). However, this exponential tendency

is unlikely to remain indefinitely. Several studies have suggested

that the miniaturization of transistors will soon face technological

and physical limitations and challenges (Waldrop, 2016). In addi-

tion to this, the architecture of current computing devices suffers

from what is known as the von Neumann bottleneck problem, a

limitation in the data transfer rate due to the physical separation

between the memory and the processing units. This configuration

results in reduced computational power and high energy con-

sumption.

These two limiting factors and the continuously increasing

demand for higher computational power by today’s Big Data re-

quire different and unconventional computing architectures and

approaches. One such example is neuromorphic systems, a com-

puting approach inspired by the information processing charac-

teristics of complex biological brains (Aleksander & Morton, 1989;

Mead, 1990).
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In contrast tomodern computers, themassively interconnected
architecture of the human brain allows it to reach far better per-
formance thanks to the parallel interaction of thousands of neu-
rons involved in a computation. Furthermore, there is no distance
between memory and processing in the human brain; these two
processes are equivalent and occur at a local level in the synaptic
connections between neurons. This entails amore efficient storage
and recall since the information exchange is direct and continuous,
as opposed to the inherent latency in current von Neumann archi-
tectures.

By emulating the parallel architecture and network dynam-
ics exhibited in biological neural circuits, neuromorphic systems
demonstrate properties such as high compactness, robustness to
noise, fault tolerance and computational and energy efficiency sim-
ilar to those observed in biological systems (Aleksander & Morton,
1989; Jo et al., 2010; Mead, 1990; Mead & Ismail, 2012; Morabito,
Andreou, & Chicca, 2013).

Recent advances in nanoelectronics have made possible the
fabrication of devices that exhibit memristor-like characteristics.
A memristor has been proposed as the fourth fundamental circuit
element, after the resistor, the inductor and the capacitor (Chua,
1971). It was first theorized by Leon Chua based on symmetry prin-
ciples. Essentially, a memristor is a two-terminal electronic device
whose conductance can be incrementally modified according to
the magnitude and direction of the applied voltage across or cur-
rent through the device. Memristors can also work as non-volatile
memories, which means they can store their resistance value even
in the absence of a power source (Dongale et al., 2016; Kim et al.,
2012). Given their adaptive behavior, memory storage capability,
and nanoscale dimensions, these newmemristive devices are ideal
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for the emulation of synapses in ultra-high-density and compact

artificial neuromorphic architectures (Jo et al., 2010; Snider, 2007,

2008).

Even though memristors have characteristics that make them

ideal for the emulation of synaptic connections in neuromorphic

hardware, their implementation has been hindered by the high

device variability, mainly due to the internal conduction mech-

anisms of the device, such as filament formation and oxidation

processes, as well as variability introduced during themanufactur-

ing process. This is the case for systems whose operation depends

on the training of the connections. For this reason, the practical

use of memristors in neuromorphic systems requires a type of

learning and network architecture that are highly tolerant to de-

vice imperfections and naturally embrace variability in memristor

processing (Bürger & Teuscher, 2013; Goudarzi, Lakin, Stefanovic,

& Teuscher, 2014). One such framework is the reservoir computing

(RC) architecture (Jaeger, 2001; Maass, Natschlager, & Markram,

2002).

In the RC architecture, a temporal signal is projected into a

high-dimensional space by a nonlinear dynamical system, or reser-

voir, that consists of a random, recurrent network of nonlinear

units, which acts as a short-term memory for the signal, and thus

contains information about past and present inputs. At the final

stage, a memoryless linear classifier is trained on the output of

the reservoir. Therefore, the connections within the reservoir are

not trained; rather, the performance of the reservoir mainly de-

pends on its global dynamical properties, and not on the individual

properties of any device. These characteristics make the reservoir

computing framework ideal for recurrent memristive networks.

To demonstrate the potential of this approach, this paper

presents the simulation results of a novel recurrent, memristive

neuromorphic architecture: the MN3 (Memristive Nanofiber Neu-

ral Network), and its use for temporal pattern recognition within

the framework of reservoir computing. This architecture is de-

scribed in a recent patent by the authors, details of which can be

found in Nino and Kendall (2017). Briefly, the system proposed in

Nino and Kendall (2017) consists of a mat of electrospun memris-

tive nanofibers, which can be spatially arranged to form an arti-

ficial neural network architecture that exhibits random, recurrent

connections in a highly dense and compact structure, all features

of biological neural networks. Given its recurrent and dynamic

connectivity, the architecture proposed is expected to exhibit the

requisite properties for the efficient reservoir design in the field

of reservoir computing. By dynamic connectivity we refer here to

themodifiable nature of the conduction strength of thememristive

connections. However, the presence or absence of a connection is

always fixed.

Acquiring a thorough theoretical understanding of the pro-

posed neuromorphic hardware architecture (MN3) is essential for

evaluating its potential as a neuromorphic processor. Valuable

insight into the behavior and dynamics of the network can be

gained via numerical simulations. Addressing this need, we have

developed a simulation tool in Python that can construct various

instances of the proposed memristive neuromorphic architecture,

simulate their dynamics, and evaluate their computational prop-

erties.

Prior studies focusing on networks of memristors designed

to operate under the RC approach have been reported in the

literature (Avizienis et al., 2012; Konkoli & Wendin, 2013a, b;

Kulkarni & Teuscher, 2012; Oskoee & Sahimi, 2011; Sillin et al.,

2013). However, most of them focused on the theoretical electrical

characterization of these networks, and few of them explored their

computational capabilities in the performance of real-world tasks.

The efforts of the present work are thus emphasized on both

providing details about the modeling and simulation of the MN3

architecture, and the exploration of its computational capabilities

in a speech recognition task by considering the operating princi-

ples of the reservoir computing (RC) framework. In addition, the

modeling approach implemented in the present work introduces

the effects of component mismatches and temporal sources of

variability, which are critical in real memristive devices.

One of the first reported attempts to model and simulate a

network of memristors was made by Oskoee and Sahimi (2011).

They carried out numerical simulations of electrical currents in a

two-terminal, square lattice of memristors and resistors that emu-

lates a large size, two-phase material with memristive properties.

The memristor model used in Oskoee and Sahimi (2011) is the

moving-wall model proposed by Strukov in Strukov, Snider, Stew-

art, and Williams (2008), but they included a nonlinear window

function in order to account for nonlinearities at the boundaries of

the insulated layer. Simulation results showed various interesting

behaviors: weak and strong memristive regimes, a possible first-

order transition at the percolation threshold, nonlinear dynamics

evidenced by the generation of second harmonics in the strong

memristive regime, and dependence of the network’s strength

on the frequency. One of the limitations of that work was the

restricted type of connectivity of the network, which constrained

the maximum number of edges per node to four.

Some of the results obtained by Oskoee and Sahimi in Oskoee

and Sahimi (2011), such as the manifestation of a soft and a hard

switching regime and the generation of higher harmonics, were

further confirmed in a later work by Sillin et al. (2013). In that

work, a network of atomic switches, which contains elements of

a nearest-neighbor, random network, was simulated. In contrast

to Oskoee and Sahimi’s work, the number of edges per node of

the network proposed in Sillin et al. (2013) was not constrained

to a certain number. Interestingly, in order to model the atomic

switches, Sillin et al. used a memristor model similar to the one

proposed by Oskoee and Sahimi in Oskoee and Sahimi (2011), but

they included a dissolution and a stochastic term in the derivative

of the state variable, which accounted for the breakdown and the

variability of the conductive pathways, respectively. Additionally,

Sillin et al. showed that the atomic switch network could poten-

tially serve as a reservoir in the context of RC by demonstrating its

performance in a waveform generation task (Sillin et al., 2013).

Another reported attempt to simulate a network of memris-

tors is the work of Kulkarni and Teuscher (2012). They built

a software framework that allowed them to create memristor

networks, to simulate and evaluate them in NgSpice, a mixed-

level/mixed-signal circuit simulator. As Sillin et al. (2013), Kulkarni

and Teuscher suggested that the random network of memristors

could be used as a reservoir in the context of RC, and success-

fully demonstrated its performance in a pattern recognition and

associative memory tasks using synthetic signals, and a genetic

algorithm to train the readout module.

There is also the work proposed by Konkoli and Wendin

(2013a). They created a generic software tool for the simulation of

the dynamics of sparse multi-terminal memristive networks, and

they implemented the threshold memristor model initially pro-

posed in Pershin and Di Ventra (2010). This software tool was used

in a later work by the authors to evaluate the computational capa-

bilities of a network of memristors in the context of RC (Konkoli &

Wendin, 2013b). They proposed the hypothesis that if the nonlin-

ear frequency response of the reservoir cannot be approximated

by a linear combination of delayed inputs, then the quality of

the reservoir is good. For testing this hypothesis, they proposed a

dissimilarity measure in the frequency domain between the real

output voltage at the internal nodes of the network, and the output

produced by the linear combination of the delayed inputs. The

more dissimilar these two signals are, the better is the quality of

the reservoir. They used the same dissimilarity measure for the

conductance and the voltage between internal nodes, and found
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Fig. 1. Electrospunmemristive nanofiber neural network architecture MN3 . (a) Detailed view of a connection between amemristive nanofiber and an external electrode. (b)

Schematic of the network of memristive nanofibers. (c) Detailed view of a connection between twomemristive nanofibers; each nanofiber consists of an internal conductive

core coatedwith amemristive shell. (d) The connection between an electrode and a nanofiber is modeled as a singlememristor. (e) SEM image of the electrospunmemristive

nanofiber with depicted electrodes. (f) The connection between two memristive nanofibers is modeled as a single memristor. (For interpretation of the references to color

in this figure legend, the reader is referred to the web version of this article.)

that these two variables present higher dissimilarity measures

than the voltage at the internal nodes (Konkoli & Wendin, 2013b).

One of the most recent works on the application of memristive

networks using the RC architecture was the one proposed by

Kudithipudi, Saleh, Merkel, Thesing, andWysocki (2016). They de-

veloped a software-based neuromemristive RC architecture, with

doubly twisted toroidal structure, and they showed the applica-

bility of this architecture for biosignal processing applications.

Kudithipudi et al.’s work will be later used as a benchmark for the

performance of the MN3 architecture here presented.

In order to better contrast the current work with prior efforts,

the structure of this paper is as follows: first, we provide a de-

scription of the MN3 architecture, followed by details about the

modeling and the simulation of the network. Next, we evaluate

the computational capabilities of the network by assessing its

performance in a speech recognition task under the paradigm of

reservoir computing. Finally, we report our conclusions regarding

the computational capabilities of the architecture proposed and

provide a guidance to continue exploring and harnessing the dy-

namics of memristive networks in future work.

2. Materials and methods

This section presents a detailed description of the system, as

well as the considerations and assumptions that were taken into

account for the modeling and simulation of the network.

2.1. The architecture

The MN3 architecture consists of a mat of electrospun memris-

tive nanofibers, which can be spatially arranged to form an arti-

ficial neural network architecture that exhibits random, recurrent

connections, in a highly dense and compact structure.

A schematic of the MN3 architecture is shown in Fig. 1. The

detailed views illustrate the cross section of a single fiber, as

well as the configuration of the connection between two fibers

at an intersection (c), and the connection between a fiber and an

electrode (a). Each fiber (blue lines in b and e) is made up of a

conductive core coated with a memristive shell. It is worth noting

that the connections at the intersection of twonanofibers (Fig. 1(c))

could have also been modeled as 2 memristors in series with dif-

ferent polarities. We did build a preliminary model of the network

taking into account this assumption. Since results did not present

observable changes in terms of prediction performance (not shown

in thiswork), we decided toworkwith the simplified version of the

model (i.e., assuming that connections at the intersection of two

nanofibers can be modeled as a single memristor), which resulted

to be less computationally expensive.

While this architecture is a physical embodiment, it can also

be conceived as an electrical circuit that, at a higher level of ab-

straction, represents the concept of an artificial neural network

in the context of machine-learning. Fig. 2 provides a detailed

sketch of the three different representations for the proposedMN3

architecture.

2.2. Modeling the system as a graph

For modeling and simulation purposes, the electrical circuit

representation of Fig. 2(b) was used. We adopted a graph-based

approach to model the circuit as a network of memristive links

that connect an array of external (controllable) and internal (non-

controllable) nodes. The set of external nodesmay either represent

an electrode connected to a driving source or a ground; and the

set of internal nodes may represent an accessible electrode, or the

conductive core of a fiber (non-accessible nodes). The total set of

nodes is denoted by N. The set of links of the network, denoted by

L, represent physical memristors that connect pairs of nodes.

2.3. Modeling connectivity

The connectivity of thenetwork is definedby anN×N adjacency

matrix. The i, jth element of this matrix is 1 if there is a memristive

connection between the pair of nodes i, j, otherwise the i, jth ele-

ment is zero. The assignment of the connections was determined

by a random variable that follows a Bernoulli distribution with

parameter p, where p approximates the average probability of two
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Fig. 2. Physical (a), electrical (b), and artificial neural network (c) representation of the memristive nanofiber neural network MN3; (d) representation of a memristive

connection between the nodes i and j.

Fig. 3. General structure of the node-to-node adjacency (connectivity) matrix for

the MN3 architecture. Internal nodes can either be: accessible (A) or non-accessible

(NA); external nodes can either be a source (S) or a ground (GR).

fibers being in direct contact when arbitrarily arranged in space

during the electrospinning process. Given the physical architecture

of the MN3 network (Figs. 1 and 2), the connectivity matrix would

have the form depicted in Fig. 3.

2.4. The algorithm

The algorithm used for the temporal evolution of the network

under an external applied voltage is a simplified version of the

one proposed in Konkoli and Wendin (2013a), and is summarized

below:

1. Random initialization of the conductance/resistance values

of the memristive connections.

2. For fixed conductance/resistance values, determine the volt-

age at the internal nodes using Kirchhoff’s Current Law

(KCL).

3. Determine the voltage across each memristive connection

using the results obtained in step 2.

4. Using Euler’s method, for a short delta of time (dt = 1 ×

10−4 s), update the value of the conductance/resistance of

each memristive connection using the voltages obtained in

step 3.

5. Go back to step 2 until the end of the external applied

voltage.

This algorithm was implemented in Python.

2.5. The memristor model

Several physical and chemical mechanisms have been found

to be responsible for the behavior of memristors and memristive

devices. Some of these are: nanomechanical effects, molecular

switching effects, electrostatic/electronic effects, electrochemical

metallization effects, valence change effects, thermochemical ef-

fects, phase-change effects, magnetoresistive effects and ferro-

electric tunneling effects. A detailed review on these mechanisms

is provided in Waser, Dittmann, Staikov, and Szot (2009). Based

on these mechanisms, several memristor models can be found in

the literature (Abdalla & Pickett, 2011; Berdan, 2013; Chang et

al., 2011; Laiho, Lehtonen, Russel, & Dudek, 2010; Linn, Siemon,

Waser, & Menzel, 2014; Nugent & Molter, 2014; Pershin & Di Ven-

tra, 2010; Pickett et al., 2009; Vourkas & Sirakoulis, 2013;Williams,

Pickett, & Strachan, 2013; Yakopcic, Taha, Subramanyam, & Pino,

2013).
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In Nugent and Molter (2014), authors proposed a generalized

memristive device model capable of accurately reproducing the

empirical behavior of severalmemristive devices including the Ag-

chalcogenide, AIST, GST, and WOx devices. Given its versatility,

we used this model for simulation purposes. This semi-empirical

model assumes that the current through the device comes from

both a memory-dependent current component, Im, and a Schottky

current, Is in parallel:

I = φIm (V , t) + (1 − φ) Is (V ) , (1)

where φ ∈ [0, 1].

The Schottky component, Is (V ), represents the Schottky barrier

that many memristive devices contain and that is formed at the

metal–semiconductor junction. On the other hand, the memory

component, Im, comes from the notion that memristors can be

represented as a collection of conducting channels that switch

between states with a different resistance value. The resistance of

the device can be modified through the application of an external

voltage that causes the channels to transition between low and

high conducting states. Thus, each conducting channel can be

treated as a metastable switch (MSS), and the conductance of the

device is defined by a collection of these MSSs that capture the

memory effect of the memristor.

In this model, the low and high conducting states of each

channel are separated by a potential barrier. If we let the barrier

potential be the reference potential V = 0, then the probability

that the MSS transitions from the B state to the A state is given by:

PA = α
1

1 + e−β(V−VA)
= αΓ (V , VA) . (2)

And the probability that the MSS transitions from the A state to

the B state is given by: PB = α (1 − Γ (V , −VB)). Here, β =
q

kT
=

(VT )
−1, where VT is the thermal voltage, α =

∆t
tc

is the ratio of the

time step period ∆t to the characteristic time scale of the device

tc , and V is the voltage across the switch.

The intrinsic electrical conductance of each MSS is given by GA

and GB. The total memristor conductance is given by the sum over

each MSS:

Gm = NAGA + NBGB = NB (GB − GA) + NGA, (3)

where NA is the number of MSSs in the A state, NB is the number

of MSSs in the B state, and N = NA + NB. Therefore, a memristor

is modeled as a collection of N MSSs that evolve in discrete time

steps,∆t . At each time step, a subset of theMSSs in the A state will

transition to the B state, and vice versa. The probability that xMSSs

will transition out of a population of nMSSs is given by a binomial

distribution:

P (x, n) =
n!

x! (n − 1) !
px(1 − p)n−x (4)

where p is the probability that a MSS will transition states.

The change in conductance of a memristor is thus modeled

as a probabilistic process in which the number of switches that

transition between A and B states is drawn from a binomial dis-

tribution with a center at np and variance np (1 − p). This random
process accounts for the intrinsic dynamic stochastic behavior of

memristive devices. The update of the memristor conductance is

thus given by the contribution of two random variables, RVA and

RVB, drawn from two binomial distributions:

∆NB = RVA (NA, PA) − RVB (NB, PB) (5)

The final update to the conductance of the memristor is thus given

by:

∆Gm = ∆NB (GB − GA) (6)

Table 1

Parameters for the Generalized Metastable Switch Model (MSS) of an Ag-

chalcogenide memristive device.

Model parameter Distribution

tc [ms] tc ∼ Normal (µ = 0.32 × 10−3, σ = 0.1µ)

Woff = GANA [mS] Woff ∼ Normal (µ = 0.91 × 10−3, σ = 0.1µ)

Won = GBNB [mS] Won ∼ Normal
(

µ = 0.87 × 10−2, σ = 0.1µ
)

VA [V] VA ∼ Normal (µ = 0.17, σ = 0.1µ)

VB [V] VB ∼ Normal (µ = 0.22, σ = 0.1µ)

N N ∼ Normal (µ = 10 000, σ = 0.1µ)

To include device-to-device variability effects, the parameters of

the model, as well as the initial conditions of each of the elements

in the network were drawn from the probability distributions

described in Table 1. The values of these parameters are fitted to

an Ag-chalcogenide memristive device (Nugent & Molter, 2014).

2.6. Computational capabilities of the MN3 as a reservoir: the isolated
digit speech recognition task

To test the computational capabilities of the MN3 architecture,

we simulated an instance of the network to perform a temporal

pattern recognition task using the network as a reservoir under the

principles of the RC approach. The task, commonly known as the

isolated digit speech recognition task, consists in the supervised

classification of isolated spoken digits from ‘0’ to ‘9’. Here, the term

‘supervised’ refers to the supervised learning paradigm as used in

the context of machine-learning. Therefore, the linear classifier

used for the classification of the isolated spoken digits (after their

transformation by the memristive reservoir) was trained on the

labeled data set described below.

The data set used for this task was taken from the TI46 cor-

pus (Doddington & Schalk, 1981), which consists of 500 samples;

each digit was recorded 10 times by 5 female speakers. The raw

signals of this data set are usually preprocessed for speech recog-

nition purposes. The preprocessing consists in a transformation of

the signal to the frequency domain and a selective filtering based

on psychoacoustic properties of the human ear (Vandoorne et al.,

2014). The version of the data set used in the present work was

preprocessed using the Lyon ear model described in Lyon and

Shamma (1996), applying a decimation of the input signals with

a factor of 128. This preprocessing step decomposes the signal of

each digit into 77 separate temporal signals, each corresponding to

a different frequency component. Fig. 5(b) illustrates an example

of the resulting temporal signals for each of the frequency com-

ponents (each color in Fig. 5(b) represents a different frequency

component) for one of the 10 samples of digit ‘1’.

The instance of the MN3 architecture simulated for this task

consisted of a network with a total of 400 internal nodes (100

accessible and 300 non-accessible nodes; we simulated as large a

network was practical), and 82 external nodes (77 sources, each

corresponding to one of the 77 temporal frequency components of

the input signals. We incorporated 5 grounded nodes to encourage

a more evenly distributed current throughout the network). A

schematic graph of the architecture is shown in Fig. 4. Connections

between pairs of nodeswere randomly generated using a Bernoulli

distribution with p = 0.9. The parameters of each of the mem-

ristive connections, as well as the initial conductance states, were

drawn from the probability distributions described in Table 1.

Each one of the 77 temporal frequency components (Fig. 5(b))

of the 500 samples was fed as an input voltage (scaled by a factor

of 1 × 103) to one of the 77 source nodes of the simulated MN3

architecture. Network states, i.e., the voltages at the internal nodes

(both accessible and non-accessible), were recorded at each point

in time. For the classification of the spoken digits, 10 distinct linear

regression models were trained in parallel (Fig. 5(d)), one per
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Fig. 4. Network architecture used for the isolated digit speech recognition task.

The simulated network consisted of 482 nodes: 77 external driving sources, 100

accessible internal nodes, 300 non-accessible internal nodes and 5 grounded nodes.

The spatial location of the nodes serves just for representational purposes.

digit, using as input the memristive network states (Fig. 5(c)). The

data set was divided into training (450 samples) and test sets (50

samples). The test set was used to provide a reliable estimate of

the prediction accuracy of the model. Since there is a prediction

value for each point in time, a winner-take-all approach was used

to determine which digit was spoken during the test procedure.

Given the large number of input features, we used Ridge regression

to penalize those input features that are less important in the

prediction of the digit label. Fig. 5 shows a scheme for the isolated

digit speech recognition task.

2.7. Computational capabilities of the MN3 as a reservoir: the separa-
tion and fading memory properties

According to the RC framework, a reservoir should possess

the two following properties to be computationally useful: fading

memory and separation (Jaeger, 2001; Maass et al., 2002).

The separation property (SP) is related to the computational

power1 of the reservoir; it refers to the ability of the reservoir to

generate separate network states in response to different input sig-

nals, i.e. being able tomap different input streams into significantly

different trajectories in the phase space of the reservoir (Jaeger,

2001; Maass et al., 2002). The fading memory property (FMP), on

the other hand, is related to the information storage capacity of the

reservoir; it refers to the ability of the reservoir to integrate tem-

poral information of the input history into its current state (Jaeger,

2001;Maass et al., 2002). This ability of the reservoir is determined

by the range of stable patterns that the network can generate.

Previous works have demonstrated that these two properties

are strongly related to the dynamics of the reservoir (Beggs, 2008;

Kauffman, 1993; Langton, 1990; Legenstein, 2005; Legenstein &

Maass, 2007). The diversity in the number of states associated to

the SP is a characteristic feature of systems operating in a chaotic

regime (Legenstein &Maass, 2007), whereas the ability to produce

stable state patterns associated to the FMP is a characteristic of

systems operating in an ordered regime. Therefore, if a system

operates under a chaotic dynamical regime, its state should be

1 There is not a unique definition for the computational power of a machine.

However, a machine is said to be computationally powerful depending on the

amount of operations that it can perform, i.e., the number of mappings between

inputs and outputs.

sensitive to changes in the input when the initial conditions are
held constant (Legenstein & Maass, 2007). In contrast, if a system
operates under an ordered dynamical regime, regardless of the dif-
ferences in the initial conditions, state differences should approach
zero if there are no longer any differences in the inputs (Legenstein
& Maass, 2007). Accordingly, a reservoir can be conceived as a
time-dependent pattern generator, and the evaluation of its com-
putational capabilities essentially relies on the analysis of these
spatiotemporal patterns for characterizing its dynamical regime.

Using the conditions for ordered and chaotic dynamics in au-
tonomous dynamical systems, different analyses were performed
to determine the separation and fading memory properties of the
MN3 architecture, and the extent towhich these properties can ex-
plain its performance in the isolated digit speech recognition task.

First, to quantify the SP of the memristive reservoir, we eval-
uated the evolution of the distance between the trajectories (in
phase space) of the network states, as defined by the voltages at
the accessible internal nodes,2 generated by two different inputs
(i.e., two different digits), while holding the initial conditions con-
stant (i.e., the initial values of the conductance). Each input signal
consisted of a consecutive sequence of 11 samples of the exact
samedigit (see Fig. 6(a)). These input sequenceswere generated for
digits ‘0’, ‘1’, ‘2’, and ‘3’, arbitrarily chosen, andwere independently
fed into the same simulated instance of the MN3 architecture
(i.e., an instance of the MN3 network with the same physical
parameters and connectivity matrix). To isolate the effects due
to variations in the initial conditions of the system, the network
was reset to the same conductance state for each input sequence.
As with the speech recognition task, for every run, voltages at
the internal nodes were recorded for each point in time, and the
distance between trajectories in phase space of the network states
for all six possible paired combinations of the four given input
sequences was estimated.

The method used to quantify the FMP of the memristive reser-
voir is slightly different to the one used for the SP. In this case,
since we are interested in evaluating the sensitivity of the system
to variations in its initial conditions3 when the input conditions are
held constant, we assessed the evolution of the distance between
trajectories (in phase space) of the network states (as defined by
the voltages at the accessible internal nodes) generated by the
exact same input sequence, but for different initial conditions,
i.e., different initial values of the conductance. We used as inputs
the same four sequences described above for the SP (see Fig. 6(c)).
Each of these input sequences was independently fed twice into
an identical simulated instance of the MN3 architecture (i.e., same
physical parameters and connectivity matrix), but this time the
initial conductance values were randomly reassigned in every run.
As with the speech recognition task and the SP, for every run,
voltages at the internal nodeswere recorded for each point in time,
and the distance between trajectories in phase space of the net-
work states for all pairs of simulated initial conditions, i.e., for each
input sequence under (two) different initial conductance values,
was estimated.

We used the definition of Euclidean distance as a measure to
quantify both the SP and the FMP. Thus, at time t , the distance
du,v between trajectories (in the phase space) for network states
U (t) ϵRN anV (t) ϵRN is given by:

d(t)2u,v =

N
∑

i=1

[ui (t) − vi (t)]
2 (7)

2 The state of the system was defined only in terms of the voltage at the internal

nodes, since they are of practical relevance.
3 Since the network proposed here is an input-driven dynamical system, a large

number of its state variables are zero unless there is an external driving force. This is

the case for all voltages and currents, except for the conductance of the memristive

connections. Consequently, the sensitivity of the network to variations in the initial

conditions was evaluated with respect to the conductance state of the memristors.



L.E. Suarez et al. / Neural Networks 106 (2018) 223–236 229

Fig. 5. The isolated digit speech recognition task. (a) Toy example of the original input signal before preprocessing. (b) Real sample input signal for digit ‘1’ after preprocessing;

each color codes for a different frequency component (77 frequency components were used in total for all the digits). (c) Resulting memristive reservoir states for a sample

of digit ‘1’. (d) Prediction of digit label by the linear classifier (Ridge regression).

Fig. 6. Schematic of the methodology used to measure the separation property (SP) and fading memory property (FMP) of the MN3 architecture. The sequences of digits

used as inputs for the reservoir are depicted in (a) (upper left), with their corresponding resultant reservoir states (RS) (upper right), for both the default and the modified

initial conditions. The different combinations of resultant reservoir states used to test the SP and the FMP are shown in (b) and (c), respectively.

In this case, ui (t) and vi (t) represent the voltage at the ith internal

node at time t for network states U(t) and V (t), respectively,

and N corresponds to the total number of internal nodes used in

the calculation of the distance. A scheme of the methodology to

quantify the SP and the FMP is depicted in Fig. 6.

3. Results and discussion

3.1. The isolated digit speech recognition task

Speech recognition is intrinsically a nonlinearly separable prob-

lem. Nevertheless, according to the operating principles of the

RC approach, the reservoir should act as a filter that performs a

nonlinear projection of the input space into a higher dimensional

space, and by doing this, it converts nonlinearly separable input

data into a linearly separable one, thus reducing the complexity of

the problem.

Results for the isolated digit speech recognition task are shown

in Fig. 7. The classification task was carried out for two different

scenarios: first, using only the voltages at the accessible internal

nodes (100 nodes; Fig. 7(a)), and second, using the voltages at all

the internal (both the accessible and non-accessible) nodes (400

nodes; Fig. 7(b)). As a control, the same classification task was per-

formed using the original preprocessed signals (Fig. 7(c)). In addi-

tion, for benchmark purposes, the results using the network states

of a (non-memristive) reservoir composed of 100 leaky integrator

neurons4 were included (Fig. 7(d)) (Verstraeten et al., 2012).

The high classification performance presented in Fig. 7(c) cor-

responding to the original preprocessed signals shows that the

frequency domain transformation step of the preprocessing stage

reduces already in large part the complexity of the problem by

converting the signal in a quasi-linearly separable problem. In this

case, the precision score is 1.0 for 6 of the 10 digits, and 0.81

on average for the 4 remaining digits. When compared to the

results of the memristive reservoir using only the voltages at the

accessible internal nodes (Fig. 7(a)), the number of digits whose

precision score is 1.0 goes up to 8, and the two remaining digits

show an averaged precision score of 0.70. Nevertheless, if all the

internal nodes (i.e., the accessible and non-accessible nodes) of the

memristive reservoir are used, the precision is 1.0 for all the classes

(Fig. 7(b)). This improvement in the classification performance of

the memristive reservoir when all the internal nodes are included

4 A leaky integrator neuron is a standard neuronwith a first-order low-pass filter

added to its output.
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Fig. 7. Classification performance (confusion matrix) for the isolated digit speech recognition task using the voltage at (a) the accessible internal nodes of the memristive

reservoir (100 nodes), at both (b) the accessible and non-accessible internal nodes of the memristive reservoir (400 nodes); (c) the original preprocessed data, and (d) the

states of a reservoir made-up of leaky integrator units (Verstraeten et al., 2012).

could be due to either an increase in the number of input features,

or to special discriminative features provided by the voltage at the

non-accessible internal nodes. The dynamics of the latter (non-

accessible internal nodes) are likely to be different due to their

embedding in the physicalmatrixwhere they directly interactwith

each other (Fig. 3), in contrast to the accessible nodes, which do not

interact at all.

The high classification performance corresponding to themem-

ristive reservoir states (Fig. 7(a) and (b)) suggests that the projec-

tionmade by thememristive reservoir on the preprocessed signals

is further decreasing the complexity of the problem by increasing

the separability of the signals. To test this, we trained multiple

classifiers with different sizes for the training set using as input the

memristive reservoir states, and the original preprocessed signals.

If the memristive reservoir is indeed increasing the separability

of the signals, then the linear classifier should be able to attain

high precision and recall scores when trained with fewer samples.

Results are shown in Fig. 8.

Fig. 8(c) shows that the classification performance in terms of

both the precision and recall scores notably declines as the size of

the training set is reduced when the original preprocessed signals

are used as input. In contrast, the classification performance for

the memristive reservoir states, using only the accessible internal

nodes (Fig. 8(b)), and both the accessible and non-accessible in-

ternal nodes (Fig. 8(a)), barely decreases with the reduction of the

training set. However, the case in which the voltage at both the

accessible and non-accessible internal nodes are used (Fig. 8(a)),

seems to outperform the case in which only the voltage at the

accessible internal nodes is used (Fig. 8(b)). In the former case,

the performance in terms of both precision and recall only shows

a marked decline when the training size is just 30% of the whole

sample size, i.e., 150 out of 500 samples. Altogether, these results

show that the projection performedby thememristive reservoir on

the original preprocessed signals does reduce the complexity of the

problem by improving the separability of the preprocessed signals.

From the reported attempts on simulation of network of mem-

ristors used as reservoirs within the RC framework, Kudithipudi

et al.’s work (Kudithipudi et al., 2016) is perhaps the most suitable

to be used as benchmark for the MN3 architecture here proposed.

In Kudithipudi et al. (2016), Kudithipudi et al. used a software-

based memristive RC architecture for epileptic seizure detection

and EMG prosthetic finger control; they reported an accuracy of

90% and 84%, respectively. Although the complexity of the multi-

label isolated spoken digit recognition task here presented, and

the biosignal processing tasks performed by Kudithipudi et al.

are not by any means directly comparable, they both present

relatively good prediction performance when compared to other

non-memristive, non-RC architectures such as the ones presented

in Chapaneri and Jayaswal (2013) and Limkar, Rao, and Sagvekar

(2012), which use dynamic time warping (DTW) and Mel fre-

quency cepstrum (MFCC) for a similar isolated spoken digit recog-

nition task, reporting classification accuracies of 90.5% and 99.16%,

respectively.

3.2. The separation property (SP)

The distance between trajectories (in phase space) of the net-

work states of thememristive reservoir, generated by twodifferent

input sequences of digits under the same initial conductance states,

for all possible combinations of inputs (see Fig. 6(b)), is shown in

Fig. 9. For comparison purposes, the same analysis described in

Section 2.7 for the evaluation of the SP was carried out using the

network states of the same (non-memristive) reservoir presented

in Section 3.1 (cyan line in Fig. 9). In addition, the separation

between the input sequences as described by the original prepro-

cessed signals was also estimated (light blue line in Fig. 9).

A reservoir is said to have the SP if the distance between

trajectories of the network states neither decays to zero nor di-

verges exponentially with time (Jaeger, 2001; Maass et al., 2002).

Fig. 9 shows that for all possible combinations of input sequences,

the separation between trajectories of the network states of the

memristive reservoir is maintained in time: it neither decreases

nor exponentially diverges (dark blue line in Fig. 9). In addition,

compared to the results for the reservoir composed of leaky in-

tegrator neurons, and the original preprocessed input signals, the

memristive reservoir consistently presents a higher SP.

To test whether the SP of the memristive reservoir is respon-

sible for its increased performance when all the internal nodes,

accessible and non-accessible, are included in the classification

analysis (as shown in Fig. 7(a) and (b) for the speech recognition

task), we studied the effect of the number of internal nodes under

consideration on the estimation of both the SP and the classifi-

cation performance of the memristive reservoir. Results of these

analyses are shown in Fig. 10.

Fig. 10 shows that there is a positive correlation between the

number of internal nodes considered and the classification per-

formance of the memristive reservoir. The higher the number of

internal nodes included for the classification task, the higher is the

performance of the classifier in terms of both precision and recall.

Furthermore, Fig. 10(b) suggests that the SP of the memristive

reservoir is susceptible to the number of internal nodes considered

for its estimation. This result is not entirely surprising. Increasing

the number of internal nodes for the estimation of the SP naturally

leads to an increase in the number of dimensions describing the
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Fig. 8. Classification performance (in terms of precision and recall for each digit label) as a function of the training size for the isolated digit speech recognition task using the

voltage at (a) the accessible internal nodes of the memristive reservoir (100 nodes), at both (b) the accessible and non-accessible internal nodes of the memristive reservoir

(400 nodes); and (c) the original preprocessed data.

state of the network, thus positively contributing to the separation

between two network states. However, this only holds true if

the new added dimensions provide new information about the

input space, and that depends on the degree of nonlinearity of the

memristive reservoir. This will be further analyzed in Section 3.4.

Overall, these results suggest that the improvement in the

classification performance of the memristive reservoir could have

been, at least, partially driven by an increase in the SP of the system

potentially induced by the augmentation of the dimensionality due

to the inclusion of more internal nodes in the prediction of the

spoken digits’ labels. However, as we will show in Section 3.4,

an increase in the SP purely driven by the augmentation of the

dimensionality is not a sufficient condition for obtaining a good

classification performance. In addition, a nonlinear component

should be present.

3.3. The fading memory property (FMP)

Fig. 11 shows the distance between trajectories (in phase space)

of the network states of the memristive reservoir, generated by

the same input sequence (i.e., same digit) under different initial

conductance states. Results for the reservoir made of leaky inte-

grator units (the same one used in Fig. 7(d) and (cyan line of)

Fig. 9) were not included here because in the source code used for

the simulation of this type of reservoir, the states of the network

were by default initialized with the same values. Likewise, the
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Fig. 9. Quantification of the separation property (SP). Euclidean distance between the trajectories (in phase space) of the memristive reservoir (using only the voltage

at the accessible internal nodes; dark blue line), and the reservoir formed by leaky integrator units (cyan line). For comparison, the Euclidean distance using the original

preprocessed data is also shown (light blue line). The distance between digit ‘0’ and digits ‘1’, ‘2’ and ‘3’ is shown in (a); the distance between digit ‘1’ and digits ‘2’ and ‘3’ is

shown in (b), and the distance between digits ‘2’ and ‘3’ is shown in (c). (For interpretation of the references to color in this figure legend, the reader is referred to the web

version of this article.)

Fig. 10. Increase in the classification performance of the memristive reservoir, potentially induced by an increase in the separation property (SP) due to an augmentation in

the dimensionality (i.e., the number of internal nodes used to describe the state of the system). The classification performance (in terms of precision, recall and F1 score for

each digit label) and the separation property (SP), as a function of the number of internal nodes used to describe the state of the memristive reservoir are shown in (a) and

(b), respectively.

distances between the original preprocessed input signals were

also excluded because evidently the distance between a signal and

itself will be in all cases zero.

A reservoir exhibits the FMP if variations introduced in the ini-

tial conditions of the network lead to a decaying distance between

trajectories (in the phase space) of the network states produced by

the same input (Legenstein & Maass, 2007; Maass, Natschlager, &

Markram, 2004). Fig. 11 shows that, during the transient stage of

the network’s response (i.e. at approximately the first 4 ms), the

Euclidean distance is higher compared to later stages. This means

that, although the inputs are the same (in which case one would

expect the network states to be the same), the network is able

to ‘remember’ that the initial conditions were different by giving

rise to temporarily different network states. Once the network

stabilizes and reaches a cyclic steady state (i.e., from 4 to 15 ms

approximately), this distance approaches zero, meaning that the

network states tend to be more similar, and thus the reservoir is

not able to ‘remember’ anymore the differences in the initial con-

ditions, i.e. the memory fades away. Further, although the distance

does not fully decay to zero, it is on average significantly lower (one

to four orders of magnitude) compared to the distances between

trajectories generated by two different input conditions (Fig. 9),
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Fig. 11. Quantification of the fadingmemory property (FMP). Euclidean distance be-

tween the trajectories (in phase space) of thememristive reservoir using the voltage

at the accessible internal nodes (dark green); and the voltage at both the accessible

and non-accessible internal nodes (light green). Figures (a) through (d) show the

distance between the reservoir states generated by each digit sequence (‘0’, ‘1’, ‘2’

and ‘3’) and the same sequence under different initial conditions (‘0*’, ‘1*’, ‘2*’ and

‘3*’), i.e., different initial conductance states, respectively. (For interpretation of the

references to color in this figure legend, the reader is referred to the web version of

this article.)

which is clearly a desirable behavior for any type of reservoir.
These results suggest that the memristive reservoir is able to erase
spurious information contained in the initial conditions of the
system, and thus serves as evidence that the network possess the
FMP.

Fig. 11 also shows that the number of internal nodes considered
in the estimation of the distance between network states does not
seem to have a significant effect on the time that it takes to the
network to reach a steady state. This means that the stabilization
time, as expected, does not depend on the number of variables
included, but it is rather a property of the system that can be tuned
with the parameters and connectivity of its constituentmemristive
elements.

3.4. Nonlinearity and the separation property

In Section 3.1 it was suggested that the improvement in the
classification performance of the memristive reservoir could be
potentially associated to an increase in the SP, induced by the
inclusion of more internal nodes under consideration. However,
it was also suggested that this increase in performance, driven by
an increase in the SP of the system, is not entirely explained by
the augmentation of the dimensionality, but it also depends on the
degree of nonlinearity of the network.

To test the validity of this hypothesis, the same analyses carried

out in Sections 3.1 and 3.2 were applied to a reservoir made-

up entirely of resistive elements with the same architecture and

similar electrical properties (i.e., conductance/resistance values)

of the memristive version presented in Sections 3.1 and 3.2. This

resistive reservoir was used as a control to control for nonlinearity.

Results of these analyses are shown in Fig. 12.

In contrast to the results presented for the memristive version

of the reservoir (Fig. 10(a)), Fig. 12(a) shows that the classification

performance of the resistive reservoir is highly degraded as more

internal nodes are included in the prediction of the digits’ labels.

Notwithstanding, Fig. 12(b) shows that the SP of the resistive

reservoir, as measure by the Euclidean distance, increases with the

number of internal nodes under consideration. These results prove

that an increase in the SP, induced by the augmentation of the

dimensionality, may be a necessary but not a sufficient condition

to perform well in the speech recognition task.

In addition, an interesting observation from Fig. 12 is that the

Euclidean distance between network states, given two distinct

input sequences, is on average higher for the resistive reservoir,

compared to the distance exhibited by the other systems laid out in

this work (Fig. 9), such as the memristive and the leaky integrator

reservoirs, which presented a higher classification performance

(Fig. 7).

Although both the memristive and the resistive versions of the

reservoir possess the exact samearchitecture (i.e., number of nodes

and connectivity matrices) and physical parameters, the nature

of their constituent operating units is fundamentally different.

Unlike resistors, memristors are intrinsically nonlinear elements

with memory. The poor performance of the resistive reservoir re-

gardless of its high SP values, compared to the memristive version

and the leaky integrator reservoir considered in the present work,

is mainly because it does not exhibit memory properties, and its

behavior is, by definition, linear.

To assess the level of nonlinearity of the MN3 architecture,

we used the method applied in Maass et al. (2002) to quantify

the degree of nonlinearity in the response of a mixed network of

linear and nonlinear resistors. This method is based on a physical

phenomenon known as high harmonic generation (HHG) and is

associated with systems that produce nonlinear frequency trans-

formations. Therefore, we assessed whether the MN3 architec-

ture exhibits a nonlinear frequency response by looking for the

presence of harmonics higher than the fundamental frequency of

excitation of the input voltage in the output current of the network.

This analysis was performed based on the Fourier transform of the

signal.

For this purpose, a randommemristive networkwith 2 external

nodes (one source and one ground) and 400 (100 accessible and

300 non-accessible) internal nodes with a probability of connec-

tion p = 0.90 was simulated using a 10 Hz sinusoidal input signal

with different levels of voltage amplitude. The HHG analysis was

performed on the output current collected over 5 cycles of the

input signal. For each amplitude level, the networkwas reset to the

same initial state. For comparison purposes, this same analysis was

carried out for the resistive version of the reservoir using the exact

same architecture and physical parameters. Results are presented

in Fig. 13.

Fig. 13 (top) shows that the dynamics of the memristive reser-

voir do promote the generation of higher harmonics in the output

response of the system. This means that the memristive reservoir

does perform a nonlinear projection of the input space into its

network space, which is a desirable characteristic since it enhances

the SP of the system.On the other hand, Fig. 13 (bottom) shows that

the resistive reservoir is incapable of generating higher harmonics

in its output response, which is an expected behavior, given the

linear nature of its resistive constituent units.
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Fig. 12. Decrease in the classification performance of the resistive reservoir despite an increase in the separation property (SP) due to the augmentation of the dimensionality

(i.e., the number of internal nodes used to describe the state of the system). The classification performance (in terms of precision, recall and F1 score for each digit label) and

the separation property (SP), as a function of the number of internal nodes used to describe the state of the resistive reservoir are shown in (a) and (b), respectively.

Fig. 13. Higher harmonic generation (HHG) analysis. Higher harmonics to funda-

mental intensity ratio for different input bias levels. Results of the HHG analysis for

the memristive reservoir (top), and for the resistive reservoir (bottom).

In Fig. 13 (top), it can also be observed that the intensity of

higher harmonics is attenuated by the amplitude of the input volt-

age. This decrease can be explained by the decline in the amount

of hysteresis and nonlinearity of the memristors composing the

reservoir. Fig. 14 shows the current–voltage (IV) curve of a single

memristor for different amplitudes in the input voltage using a

100 Hz sinusoidal signal. As the amplitude of the input voltage

increases, the memristor completes its set/reset process and does

not change any further, temporarily exhibiting a lower hysteresis

and thus less nonlinear behavior. This decrease in nonlinearity at

the microscopic level suppresses higher harmonic generation at

the global network scale (Oskoee& Sahimi, 2011; Sillin et al., 2013).

4. Conclusions and future directions

In this work, we simulated a random network of memristive

elements as a reservoir for the solution of the isolated digit speech

recognition task. We showed that the proposed architecture is not

only capable of successfully carrying out this task, but it also out-

performs the alternative proposed architectures. In addition, we

showed that its performance can be explained by a combination of

its separability, the presence of a fading memory and its nonlinear

behavior. Overall, results from this work strongly suggest that the

MN3 architecture is a plausible alternative for the construction of

kernels that operate under the principles of RC, and that, in order to

performmore complex tasks, its performance could be potentially

improved by tuning its parameters to increase its SP and FMP.

Since memristive networks are input-driven systems, their

behavior largely depends on the characteristics of the input. In

contrast with autonomous dynamical systems, whose dynamics

are uniquely determined by the parameters of their constitutive

elements, the dynamics of memristive networks are strongly de-

termined by the nature and properties of the input. Thus, con-

trolling their behavior and taking advantage of their dynamics for

computational purposes requires adequate encoding techniques of

the input signals. For future work, it may be interesting to study

the effects of the type of input signal, as well as the effect of

connectivity density and connectivity patterns between nodes on

the overall behavior of the network, since these factors appear to

have nontrivial effects (Kang, Goh, Lee, & Kim, 2004).
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Fig. 14. Theoretical current–voltage (IV) curve of a single simulated memristor (using the model proposed in Nugent and Molter (2014) and explained in the Methods

section), using a 100 Hz sinusoidal input voltage, for different amplitude levels. The behavior of a single memristor becomes more linear as the amplitude of the input

voltage increases.

Although we introduced stochastic terms to induce device-to-
device and temporal variability, we did not study the effect of these
terms in the overall behavior and performance of the network.
In the case of memristive networks these sources of variability
are a critical factor since it is well known that the manufacturing
processes of these devices introduce important device-to-device
variations, and at the same time, these devices have shown to
present a poor consistent behavior over repetitive trials (Bill &
Legenstein, 2014).

Despite the simplicity of the methods presented here for the
evaluation of the SP and the FMP, they are a good first approach to
characterize the dynamic behavior of a specific reservoir architec-
ture. However, we encourage the use of more sophisticated meth-
ods. For instance, the FMPof the reservoir could be better evaluated
by assessing its performance in the NARMA task (Jaeger, 2003;
Steil, 2005; Verstraeten, Schrauwen, d’Haene, & Stroobandt, 2007).
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