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Abstract

We consider semidefinite programs (SDPs) with equality constraints. The vari-
able to be optimized is a positive semidefinite matrix X of size n. Following
the Burer-Monteiro approach, we optimize a factor Y of size n X p instead,
such that X = Y YT, This ensures positive semidefiniteness at no cost and can
reduce the dimension of the problem if p is small, but results in a nonconvex
optimization problem with a quadratic cost function and quadratic equality con-
straints in Y. In this paper, we show that if the set of constraints on Y regularly
defines a smooth manifold, then, despite nonconvexity, first- and second-order
necessary optimality conditions are also sufficient, provided p is large enough.
For smaller values of p, we show a similar result holds for almost all (linear)
cost functions. Under those conditions, a global optimum Y maps to a global
optimum X = Y YT of the SDP. We deduce old and new consequences for SDP
relaxations of the generalized eigenvector problem, the trust-region subproblem,
and quadratic optimization over several spheres, as well as for the Max-Cut and
Orthogonal-Cut SDPs, which are common relaxations in stochastic block mod-
eling and synchronization of rotations. © 2018 Wiley Periodicals, Inc.

1 Introduction
We consider semidefinite programs (SDPs) of the form

(SDP) f*= Xnéin (C,X) subjectto/(X)=b, X =0,
esnxn

where S™*" is the set of real symmetric matrices of size n, C € S™*" is the cost
matrix, (C,X) = Tr(CTX), o/:S"™" — R™ is a linear operator capturing m
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equality constraints with right-hand side b € R™, and the variable X is symmetric,

positive semidefinite. Let A1,..., Ay € S™*" be the constraint matrices such that
A (X); = (A;, X), and let
(1.1) ¢ ={X €¢S"". &/(X)=band X > 0}

be the search space of (SDP), assumed to be nonempty.

Interior point methods solve (SDP) in polynomial time [23]. In practice, how-
ever, for n beyond a few thousand, such algorithms run out of memory (and time),
prompting research for alternative solvers. Crucially, if ¢ is compact, then (SDP)
admits a global optimum of rank at most r, where r(r—;'U < m [7,24]—we review
this fact in Section 2.2. Thus, if one restricts ¢ to matrices of rank at most p with
M > m, the optimal value remains unchanged. This restriction is easily en-
forced by factorizing X = Y'Y where Y has size n x p, yielding a quadratically
constrained quadratic program:

(P) min (CY,Y) subjectto /(YY) =b.
Y eRn*P

In general, (P) is nonconvex because its search space
(1.2) My =Y eR"”P: /(YY) = b}

is nonconvex. (When p is clear from context or unimportant, we just write .#.)

Nonconvexity makes it a priori unclear how to solve (P). Still, the benefits are
that .# requires no conic constraint and can be lower dimensional than €. This has
motivated Burer and Monteiro [12, 13] to try to solve (P) using local optimization
methods, with surprisingly good results. They developed theory in support of this
observation (details below).

Commenting on their results, Burer and Monteiro [13, end of sec. 3] ask how
large one must take p so that the local minima of (P) are guaranteed to map to
global minima of (SDP). The theorem they provide essentially asserts that one
needs only1 M > m, with the important caveat (in their own words) that
positive-dimensional faces of (SDP) which are “flat” with respect to the objec-
tive function can harbor nonglobal local minima. The caveat—the existence or
nonexistence of nonglobal local optima, or their potentially adverse effect for local
optimization algorithms—was not further discussed. How mild this caveat really
is (as stated) is hard to gauge, considering ¢ can have a continuum of faces.

Contributions

In this paper, we identify settings where the nonconvexity of (P) is benign, in
the sense that second-order necessary optimality conditions are sufficient for global
optimality—an unusual property for a nonconvex problem. This paper extends a
previous conference paper by the same authors [11]. Our core assumption is as
follows.

! The condition on p and m is slightly, but inconsequentially, different in [13].
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Assumption 1.1. For a given p such that .# (1.2) is nonempty, constraints on (SDP)
defined by Aq,..., A, € S™ and b € R™ satisfy at least one of the following:
(a) {A1Y,..., A, Y} are linearly independent in R?*? forall Y € ., or
(b) {A1Y,..., A;Y } span a subspace of constant dimension in R”*? for all Y
in an open neighborhood of .Z in R"*?.

In either case, let m’ denote the dimension of the space spanned by {AY,...,
Ay Y}, (By assumption, m’ is independent of the choice of Y € .Z.)

Under Assumption 1.1, .Z is a smooth manifold, which is why we say such
an (SDP) is smooth. Furthermore, if the assumption holds for several values of p,
then m’ is the same for all. Formal statements follow; proofs are in Appendix A.

PROPOSITION 1.2. Under Assumption 1.1, 4 is an embedded submanifold of
R"*? of dimension np — m’.

PROPOSITION 1.3. If Assumption 1.1 holds for some p, it holds for all p’ < p
such that #y is nonempty. Furthermore, if Assumption 1.1(a) holds for p = n,
then it holds for all p' such that .#y is nonempty. In both cases, m' is independent
of p.

Examples of SDPs satisfying Assumption 1.1 are detailed in Section 5 (they all
satisfy Assumption 1.1(a) for p = n). The assumption itself is further discussed in
Section 6. Our first main result is as follows, where rank .7 can be replaced by m
if preferred. Optimality conditions are derived in Section 2.

THEOREM 1.4. Let p be such that w > rank &7 and such that Assumption 1.1
holds. For almost any cost matrix C € S, if Y € . satisfies first- and second-
order necessary optimality conditions for (P), then Y is globally optimal and X =
Y YT is globally optimal for (SDP).

The proof combines two intermediate results (Proposition 3.1 and Lemma 3.3
below):

(1) If Y is column-rank deficient and satisfies first- and second-order necessary
optimality conditions for (P), then it is globally optimal and X = Y YT is
optimal for (SDP).

) If M > rank o7, then, for almost all C, every Y that satisfies first-
order necessary optimality conditions is column-rank deficient.

The first step is a variant of well-known results [12,13,17]. The second step is new
and crucial, as it allows to formally exclude the existence of spurious local optima,
thus resolving the caveat raised by Burer and Monteiro generically in C.

Theorem 1.4 is a statement about the optimization problem itself, not about
specific algorithms. If % is compact, then so is .# and known algorithms for
optimization on manifolds converge to second-order critical points,” regardless of

2 Points that satisfy first- and second-order necessary optimality conditions. Compactness of &
ensures a minimum is attained in (P), hence also that second-order critical points exist.
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initialization [10]. Thus, provided p is large enough, for almost any cost matrix C,
such algorithms generate sequences that converge to global optima of (P). Each
iteration requires a polynomial number of arithmetic operations.

In practice, the algorithm is stopped after a finite number of iterations, at which
point one can only guarantee approximate satisfaction of first- and second-order
necessary optimality conditions. Ideally, this should lead to a statement of approx-
imate optimality. We are only able to make that statement for large values of p.
We state this result informally here and give a precise statement in Corollary 4.5
below.

THEOREM 1.5 (Informal). Assume € is compact and Assumption 1.1 holds for
p = n + 1. Then, for any cost matrix C € S™", if Y € .My approximately
satisfies first- and second-order necessary optimality conditions for (P), then it is
approximately globally optimal and X = Y'Y is approximately globally optimal
for (SDP) in terms of attained cost value.

Theorem 1.4 does not exclude the possibility that a zero-measure subset of cost
matrices C may pose difficulties. Theorem 1.5 does apply for all cost matrices, but
requires a large value of p. A complementary result in this paper, which comes
with a more geometric proof, constitutes a refinement of the caveat raised by Burer
and Monteiro [13] as highlighted in the introduction. It states that a suboptimal
second-order critical point ¥ must map to a face .#y yv of the convex search space
¢ whose dimension is large (rather than just positive) when p itself is large. The
facial structure of € is discussed in Section 2.2. The following is a consequence
of Corollary 2.9 and Theorem 3.4 below.

THEOREM 1.6. Let Assumption 1.1 hold for some p. Let Y € .# be a second-
order critical point of (P). If rank(Y) < p or ifrank(Y) = p and dim Fyyr <
M —m’ + p, then' Y is globally optimal for (P) and X = YY" is globally
optimal for (SDP).

Combining this theorem with bounds on the dimension of faces of ¢ allows us to
conclude the optimality of second-order critical points for all cost matrices C, with
bounds on p that are smaller than 7. Implications of these theorems for examples
of SDPs are treated in Section 5, including the trust-region subproblem, Max-Cut,
and Orthogonal-Cut.

Notation

S™*" is the set of real, symmetric matrices of size n. A symmetric matrix X
is positive semidefinite (X > 0) if and only if u"Xu > 0 for all v € R”. For
matrices A, B, the standard euclidean inner product is (4, B) = Tr(ATB). The
associated (Frobenius) norm is ||A|| = /(A, A). Id is the identity operator and /,,
is the identity matrix of size n. The variable m’ < m is defined in Assumption 1.1.
The adjoint of <7 is &7 *, such that &/*(v) = viA1 + -+ + v Am.
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2 Geometry and Optimality Conditions

We first discuss the smooth geometry of (P) and the convex geometry of (SDP),
as well as optimality conditions for both.

2.1 For the Nonconvex Problem (P)

Endow R”™*? with the classical euclidean metric (U, Us) = Tr(U 1T U,), corre-
sponding to the Frobenius norm: |U||> = (U,U). As stated in Proposition 1.2,
under Assumption 1.1 for a given p, the search space .# of (P) defined in (1.2) is
a submanifold of R"*? of dimension dim.# = np — m’. Furthermore, the tan-
gent space to .# at Y is a subspace of R"*? obtained by linearizing the equality
constraints.

LEMMA 2.1. Under Assumption 1.1, the tangent space at Y to #, Ty #, obeys
Ty# ={Y eR™P: (YY" +YYT) =0}
(2.1 ={Y e R"™P: (A;Y.Y)=0fori =1,...,m}.

PROOF. By definition, ¥ € R"*? is a tangent vector to ./Z at Y if and only if
there exists a curve y: R — . such that y(0) = Y and y(0) = Y, where y is the
derivative of y. Then, 7 (y(t)y(t)T) = b for all ¢. Differentiating on both sides
yields o7 (y(¢)y(t)" + y(¢)y(t)") = 0. Evaluating at ¢ = 0 confirms that Ty ./ is

included in the subspace (2.1). To conclude, use the fact that both subspaces have
the same dimension under Assumption 1.1, by Proposition 1.2. U

Each tangent space is equipped with a restriction of the metric (-, -}, thus mak-
ing .# a Riemannian submanifold of R”*?, From (2.1), it is clear that the 4;Y
span the normal space at Y':

2.2) Ny .# = span{A,Y,..., A, Y}.
An important tool is the orthogonal projector Projy: R"*? — Ty .#:

2.3) Projy Z = argmin Y —Z|.
YETy.///

We have the following lemma to characterize it:
LEMMA 2.2. Under Assumption 1.1, the orthogonal projector is given by
Projy Z = Z — ¥ (G (ZYT))Y,

where o/ *: R™ — S™*" is the adjoint of &/, G = G(Y) is a Gram matrix defined
by Gij = (A;Y,A;Y), and GT denotes the Moore-Penrose pseudo-inverse of G.
Furthermore, if Y + Z(Y) is differentiable in an open neighborhood of .# in
R"*P then Y v Projy Z(Y) is differentiable at all Y in A .
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PROOF. Orthogonal projection is along the normal space, so that Projy Z €
Ty # and Z — Projy Z € Ny.Z (2.2). From the latter we infer there exists
1 € R™ such that

m
Z—Projy Z =Y i AiY = #*(WY,
i=1
since the adjoint of &7 is &/* () = 141 + - + UmAm by definition. Multiply
on the right by Y T and apply %7 to obtain
A(ZYT) = A (S (WYY,
where we used <7 (Projy (Z)Y ") = 0 since Projy (Z) € Ty.#. The right-hand
side expands into
m m
A (YY) = <Ai’ DAY YT> = DAY, 4,V )y = (G-
=1 i=1
Thus, any p satisfying Gu = o/ (ZY ") will do. Without loss of generality, we
pick the smallest norm solution: & = GT&/(ZYT). The function ¥ — GV is
continuous and differentiable at ¥ € .# provided G has constant rank in an open

neighborhood of Y in R"*? [16, theorem 4.3], which is the case under Assump-
tion 1.1. U

Problem (P) minimizes
(24 g¥)=(CY,Y)

over ./, where g is defined over R"*?, Tts classical (euclidean) gradient at ¥
is Vg(Y) = 2CY. The Riemannian gradient of g at Y, grad g(Y), is defined
as the unique tangent vector at ¥ such that, for all tangent Y, (gradg(¥),Y) =
(Vg(Y),Y). This is given by the projection of the classical gradient onto the tan-
gent space [3, eq. (3.37)]:

grad g(Y) = Projy (Vg(¥)) = 2 Projy (CY) = 2(C — *(GTe/(CYYT)))Y.
This motivates the definition of S as follows, with G;; = (Ai Y, A;Y ):
25 S=S¥)=SH¥YH=C-—F*(n) withu=G6TzCYY").

This is indeed well-defined since G;; is a function of Y'Y T. We get a convenient
formula for the gradient:

(2.6) gradg(Y) = 2S5Y.

In what follows, S will play a major role.

Turning toward second-order derivatives, the Riemannian Hessian of g at Y
is a symmetric operator on the tangent space at Y obtained as the projection of
the derivative of the Riemannian gradient vector field [3, eq.(5.15)]. The latter
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is indeed differentiable owing to Lemma 2.2. With D denoting classical Fréchet
differentiation, writing S = S(Y)and S = D(Y — S(Y)(Y)[Y],

Hess g(Y)[Y] = Projy (D grad g(Y)[Y]) = 2Projy (SY + SY)

(2.7) .
= 2Projy (SY).

The projection of SY vanishes because S = &/*(v) for some v € R™ so that
SY = Z;'n=1 v; A;Y is in the normal space at ¥ (2.2).

These differentials are relevant for their role in necessary optimality conditions
of (P).

DEFINITION 2.3. Y € .# is a (first-order) critical point for (P) if
1
(2.8) 3 gradg(Y) =SY =0,

where S is a function of Y (2.5). If furthermore Hess g(Y') > 0, that is (using the
fact that Projy is self-adjoint),

. 1 . . . .
(2.9) VY e Ty # E(Y,Hessg(Y)[Y]) =(Y,SY) =0,
then Y is a second-order critical point for (P).

PROPOSITION 2.4. Under Assumption 1.1, all local (and global) minima of (P)
are second-order critical points.

PROOF. These are standard necessary optimality conditions on manifolds; see
[31, rem. 4.2 and cor. 4.2]. O

Thus, the central role of S in necessary optimality conditions for the nonconvex
problem is clear. Its role for the convex problem is elucidated next.

2.2 For the Convex Problem (SDP)

The search space of (SDP) is the convex set ¢ defined in (1.1), which is assumed
to be nonempty. Regarding geometry, we are primarily interested in the facial
structure of € [27, §18].

DEFINITION 2.5. A face of € is a convex subset .% of ¢ such that every (closed)
line segment in ¢ with a relative interior point in .% has both endpoints in .%. The
empty set and ¥ itself are faces of €.

For example, the nonempty faces of a cube are its vertices, edges, facets, and the
cube itself. By [27, thm. 18.2], the collection of relative interiors of the nonempty
faces forms a partition of ¢ (the relative interior of a singleton is the singleton).
That is, each X € % is in the relative interior of exactly one face of &, called Fx.
The dimension of a face is the dimension of the lowest-dimensional affine subspace
that contains that face. Of particular interest are the zero-dimensional faces of &
(singletons).

DEFINITION 2.6. X € % is an extreme point of € if dim %y = 0.
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In other words, X is extreme if it does not lie on an open line segment included
in €. If € is compact, it is the convex hull of its extreme points [27, cor. 18.5.1].
Of importance to us, if € is compact, (SDP) always attains its minimum at one of
its extreme points since the linear cost function of (SDP) is (a fortiori) concave [27,
cor. 32.3.2]. The faces of ¥ can be described explicitly as follows. The proof is in
Appendix B.

PROPOSITION 2.7. Let X € € have rank p and let ¥ be its associated face (that
is, X is in the relative interior of Fx.) Then, with Y € M), suchthat X =YY T

(2.10) Fx ={X' =Y, + AY": A cker Ly and [, + A > 0},
where ZLx: SP*P — R™ is defined by
2.11) Lx(A) = A (YAYT) = (YTALY A), ... (YT A,Y, A))".

Thus, the dimension of .%x is the dimension of the kernel of % . Since the
dimension of SP*? is M and rank(%y) < m’, the rank-nullity theorem gives
a lower bound:

p(p+1)

1
(2.12) dim Fy = T —rank Z = rp+)

2
For extreme points, dim .#y = 0; then, w = rank % < m’. Solving for p
(the rank of X) shows extreme points have small rank, namely,

AV 8m' +1—-1

= 3 .

Since (SDP) attains its minimum at an extreme point for compact €', we recover the
known fact that one of the optima has rank at most p*. This approach to proving
that statement is well-known [24, thm. 2.1].

Optimality conditions for (SDP) are easily stated once S (2.5) is introduced—it
acts as a dual certificate, known in closed form owing to the underlying smooth
geometry of .#. We need a first general fact about SDPs (Assumption 1.1 is not
required.)

PROPOSITION 2.8. Let X € € and let S = C — &/*(v) for some v € R™ (as
is the case in (2.5) for example). If S > 0 and (S, X) = 0O, then X is optimal
for (SDP).

PROOF. First, use S > 0: forany X’ € ¢, since X’ > 0 and &/ (X) = &/ (X'),
0= (8. X) =(C.X') — (" (v), X) = (C. X') — (v, &/ (X)).
Concentrating on the last term, use (S, X} = 0:
(v, (X)) = (*(v). X) = (C. X) — (5. X) = (C, X).
Hence, (C, X) < (C, X'), which shows X is optimal. 0

(2.13) dim #x =0 = rank(X) < p*

Since (SDP) is a relaxation of (P), this leads to a corollary of prime importance.
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COROLLARY 2.9. Let Assumption 1.1 hold for some p. If Y is a critical point
for (P) as defined by (2.8) and S (2.5) is positive semidefinite, then X = Y YT is
globally optimal for (SDP) and Y is globally optimal for (P).

PROOF. Since Y is a critical point, SY = 0; thus, (S, X} = 0 and Proposi-
tion 2.8 applies. 0

A converse of Proposition 2.8 holds under additional conditions that are satisfied
by all examples in Section 5. Thus, for those cases, for a critical point Y, Y YT is
optimal if and only if S is positive semidefinite. We state it here for completeness
(this result is not needed in what follows.)

PROPOSITION 2.10. Let X € € be a global optimum of (SDP) and assume strong
duality holds. Let Assumption 1.1(a) hold with p = rank(X). Then, S > 0 and
(S, X) =0, where S = S(X) is asin (2.5).

PROOF. Consider the dual of (SDP):
(DSDP) max (h,v) subjectto C —a*(v) > 0.

veR™
Since we assume strong duality and X is optimal, there exists v optimal for the
dual such that (C, X) = (b,v). Using (b,v) = (Z(X),v) = (X.o*(v)), this
implies

0=(C,X)—(b,v) =(C —F*(). X).
Since both C — .&7*(v) and X are positive semidefinite, (C — .&7*(v))X = 0. As
a result, by definition of © and G (2.5),

w=G6"7(CXx)=6"7(7*0W)X) =G TGv =,

where we used GT = G~! under Assumption 1.1(a) and

(Gv)i = Gijvj =Y (A AjX)vj = (A, /* (V) X) = o (o/* (1) X);.
- -

J

Thus, S = C — &*(u) = C — &/*(v) has the desired properties. This concludes
the proof and shows uniqueness of the dual certificate. O

3 Optimality of Second-Order Critical Points

We aim to show that second-order critical points of (P) are global optima, pro-
vided p is sufficiently large. To this end, we first recall a known result about
rank-deficient second-order critical points.>

PROPOSITION 3.1. Let Assumption 1.1 hold for some p and let Y € . be a
second-order critical point for (P). If rank(Y) < p, then S(Y) > 0 so that Y is
globally optimal for (P) and sois X = Y YT for (SDP).

3 Optimality of rank-deficient local optima is shown (under different assumptions) in [13, 17],
with the proof in [17] actually only requiring second-order criticality.
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PROOF. The proof parallels the one in [17]. By Corollary 2.9, it is sufficient to
show that S = S(Y) (2.5) is positive semidefinite. Since rank(Y) < p, there exists
Z € R? such that z # 0 and Yz = 0. Furthermore, for all x € R”, the matrix
Y = xz'issuchthat YYT = 0. In particular, Y isa tangent vector at Y (2.1).
Since Y is second-order critical, inequality (2.9) holds, and here simplifies to

0<(Y,SY) = (xz.8xz") = ||z|* - x"Sx.
This holds for all x € R”. Thus, S is positive semidefinite. U

COROLLARY 3.2. Let Assumption 1.1 hold for some p > n. Then, any second-
order critical point Y € A of (P) is globally optimal, and X = YY" is globally
optimal for (SDP).

PROOF. For p > n (with p = n + 1 being the most interesting case), points
in .# are necessarily column-rank deficient, so that the corollary follows from
Proposition 3.1. For p = n, if Y is rank deficient, use the same proposition.
Otherwise, Y is invertible and SY = 0 (2.8) implies S = 0, which is a fortiori
positive semidefinite. By (2.5), this only happens if C = &*(u) for some y, in
which case the cost function (C, X} = (&*(u), X) = (u, b) is constant over % .

O

In this paper, we aim to secure optimality of second-order critical points for p
less than n. As indicated by Proposition 3.1, the sole concern in that respect is the
possible existence of full-rank second-order critical points. We first give a result
that excludes the existence of full-rank first-order critical points (thus, a fortiori of
second-order critical points) for almost all cost matrices C, provided p is suffi-
ciently large. The argument is by dimensionality counting.

LEMMA 3.3. Let p be such that w > rank &7 and such that Assumption 1.1
holds. Then, for almost all C, all critical points of (P) are column-rank deficient.

PROOF. Let Y € .# be a critical point for (P). By the definition of S(Y) =
C — *(u(Y)) (2.5) and the first-order condition S(Y)Y = 0 (2.8), we have

(3.1) rank ¥ < null(C — &*(u(Y))) < max null(C — &7 (v)),
ve m

where null denotes the nullity (dimension of the kernel). This first step in the proof
is inspired by [30, thm. 3]. If the right-hand side evaluates to ¢, then there exists v
and M = C — .&/*(v) such that null(M) = £. Writing C = M + o&/*(v), we find
that

(3.2) C € M + im(&¥),

where .4} denotes the set of symmetric matrices of size n with nullity £ and the +
is a set sum. The set .4} has dimension

nn+1)y £LE€+1)
2 2

(3.3) dim A =
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Assume the right-hand side of (3.1) evaluates to p or more. Then, a fortiori,

(3.4) Ce |J M+im@a*).
{=p,...n
The set on the right-hand side contains all “bad” matrices C, that is, those for
which (3.1) offers no information about the rank of Y. The dimension of that set
is bounded as follows, using the fact that the dimension of a finite union is at most
the maximal dimension, and the dimension of a finite sum of sets is at most the
sum of the set dimensions:
dim( U s+ im(;z{*)) < dim(Ap + im(«/*))
{=p,...n
<n(n+l)_p(p+l)
- 2 2
n(n+1)
2

+ rank &7 .

Since C € S™*" lives in a space of dimension
if

, almost no C verifies (3.4)

| 1 |
n(nz—i— ) _ p(p2+ ) + rank @&/ < —n(nz—i— ).

Thus, if p(pTJrl) > rank 7, for almost all C, critical points have rank(Y) < p. [

Theorem 1.4 follows as an easy corollary of Proposition 3.1 and Lemma 3.3.

In order to make a statement valid for all C, we further explore the implications
of second-order criticality on the definiteness of S. For large p (though still smaller
than n), we expect full-rank second-order critical points should indeed be optimal.
The intuition is as follows. If Y € .# is a second-order critical point of rank p,
then, by (2.8), SY = 0, which implies S has a kernel of dimension at least p.
Furthermore, by (2.9), S has “positive curvature” along directions in Ty .#, whose
dimension grows with p. Overall, the larger p, the more conditions force S to have
nonnegative eigenvalues. The main concern is to avoid double counting, as the two
conditions are redundant along certain directions: this is where the facial structure
of & comes into play.

The following theorem refines this intuition. We use ® for Kronecker products
and vec to vectorize a matrix by stacking its columns on top of each other, so that
vec(AXB) = (BT ® A) vec(X). A real number a is rounded down as |a .

THEOREM 3.4. Let p be such that Assumption 1.1 holds. Let Y € ./ be a second-
order critical point for (P). The matrix X = Y'Y belongs to the relative interior

of the face Fx (2.10). If rank(Y) = p, then S = S(X) (2.5) has at most

dim Zx — A
35) le—XJ
p
negative eigenvalues, where
1
(3.6) A= M ——

2
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In particular, if dim Fx < A + p, then S is positive semidefinite and both X and
Y are globally optimal.

PROOF. Consider the subspace vec(Ty.#) of vectorized tangent vectors at Y;
it has dimension k £ dim.#. Pick U € R"*k with columns forming an or-
thonormal basis for that subspace: UTU = I;. Then, UT (1 » ® S)U has the same
spectrum as %Hess g(Y). Indeed, for all ¥ € Ty.# there exists x € R¥ such that
vec(Y) = Ux, and, by (2.9),

%(Y, Hessg(Y)[Y]) = (Y,SY) = (Ux, (I, ® S)Ux) = (x,UT(I, ® S)Ux).

In particular, U (1 »®S)U is positive semidefinite since Y is second-order critical.

Let V € R"*P sz, Vv =1 2, have columns forming an orthonormal basis of
the space spanned by the vectors vec(YR) for R € RP*P: such V exists because
rank(Y) = p. Indeed, vec(YR) = (I, ® Y)vec(R), and I, ® ¥ € RnP*P?
then has full rank p2. Since Y is a critical point, SY = 0 by (2.8), which implies
(I, ®S)V =0.

Let k" denote the dimension of the space spanned by the columns of both U and
V,and let W € R"”*k" wTW = I, be an orthonormal basis for this space. It
follows that M = WT(1 » ® S)W is positive semidefinite. Indeed, for any z, there
exist x, y such that Wz = Ux + Vy. Hence, z'Mz = x'U (I, ® S)Ux > 0.

Let Ag < --- < Ap—1 denote the eigenvalues of S, and let Xo <... < Inl,_l
denote the eigenvalues of I, ® S. The latter are simply the eigenvalues of S
repeated p times, thus: X,- = Ali/p)- Let o < +++ < pgs—; denote the eigenvalues
of M. The Cauchy interlacing theorem states that, for all 7,

(3.7 Al S i = Aignp—kr-
In particular, since M > 0, we have 0 < g < AL(np—k’) /p]- It remains to
determine k’.

From Proposition 1.2, recall that k = dim.# = np — m’. We now investigate
how many new dimensions V" adds to U. All matrices R € R?*? admit a unique
decomposition as

R = Ryew + Ryery + R(kerjf)i’

where Rgyew is skew-symmetric, Ryer « is in the kernel of % (2.11), and Rer )L
is in the orthogonal complement of the latter in SP*7. Recalling the definition of
tangent vectors (2.1), it is clear that Y = Y Rgew is tangent. Similarly, Y =
Y Ryer o is tangent because of the definition of £ (2.11). Thus, vectorized ver-
sions of these are already in the span of /. On the other hand, by definition,
YR er )+ is not tangent at Y (if it is nonzero). This raises &’ (the rank of W) by

dim (ker %)+ = w — dimker % . Since dimker % = dim %y, we have

pip+1

(3.8) k' =np—m' + 5

dim #x = np + A — dim Fx.
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Thus, np — k' = dim.%x — A. Combine with A|¢,p—k/)/p] = O to conclude the
proof. O

Theorem 1.6 follows easily from Corollary 2.9 and Theorem 3.4.

Remark 3.5. What does it take for a second-order critical point ¥ € .# to be
suboptimal? For local optima, the quote from Burer and Monteiro [13, §3] in
the introduction readily states that ¥ must have rank p, and the face .%x (with
X = YYT) must be positive dimensional and such that the cost function (C, X) is
constant over .#x . Here, under Assumption 1.1 for p, Theorem 3.4 states that if ¥
is second-order critical and is suboptimal, then .#x must have dimension A + p
or higher. Since (2.12) suggests generic faces at rank p have dimension A, this
further shows that suboptimal second-order critical points, if they exist, can only
occur if the cost function is constant over a high-dimensional face of €.

To use Theorem 3.4 in a particular application, one needs to obtain upper bounds
on the dimensions of faces of ¥’. We follow this path for a number of examples in
Section 5.

4 Near Optimality of Near Second-Order Critical Points

Under Assumption 1.1, problem (P) is an example of smooth optimization over
a smooth manifold. This suggests using Riemannian optimization to solve it [3],
as already proposed by Journée et al. [17] in a similar context. Importantly, known
algorithms—in particular, the Riemannian trust-region method (RTR)—converge
to second-order critical points regardless of initialization [2]. We state here a recent
computational result to that effect [10].

PROPOSITION 4.1. Under Assumption 1.1, if € is compact, RTR initialized with
any Yo € M producesin O(1/ sfge o + 1/&2) iterations a point Y € .4 such that

g(Y) < g(Yo). llgradg(Y)l|l <eg. and Hessg(¥Y) = —eyld,
where g (2.4) is the cost function of (P).

PROOF. Apply the main results of [10] using the fact that g has locally Lipschitz
continuous gradient and Hessian in R"*? and .# is a compact submanifold of
R"*P, g

Importantly, only a finite number of iterations of any algorithm can be run in
practice, so that only approximate second-order critical points can be computed.
Thus, it is of interest to establish whether approximate second-order critical points
are also approximately optimal. As a first step, we give a soft version of Corol-
lary 2.9. We remark that the condition /,, € im.o/™* is satisfied in all examples of
Section 5.
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LEMMA 4.2. Let Assumption 1.1 hold for some p and assume € (1.1) is compact.
For any Y on the manifold ./, if ||grad g(Y)| < eg and S(Y) > —%In, then the
optimality gap at Y with respect to (SDP) is bounded as

(4.1) 0<2(g(Y)— f*) <enR+ e VR,

where [* is the optimal value of (SDP) and R = maxycy Tr(X) < oo measures
the size of €.

If I, € im(</™*), the right-hand side of (4.1) can be replaced by ey R. This
holds in particular if all X € € have the same trace and € has a relative interior
point (Slater condition).

PROOF. By assumption on S(Y) = C — &*(u(Y)) (2.5) with w(Y) =
Gla(CcYY"),

VX'€%  —STHX') = (S(). X') = (C. X)) — (o (V). X')
= (C. X') = (u(Y), b).

This holds in particular for X’ optimal for (SDP). Thus, we may set (C, X’) = f*,
and certainly Tr(X’) < R. Furthermore,

(w(Y),b) = (u(Y), /(YY) = (C = S(Y),YYT) = g(Y) = (S(Y)Y.Y).
Combining the displayed equations and using grad g(Y) = 2S(Y)Y (2.8), we find
42) 0<2(g(Y)— f*) <euR+ (gradg(¥),Y).

In general, we do not assume [, € im(&/™*), and we get the result by Cauchy-

Schwarz on (4.2) and ||Y || = /Tr(YYT) < VR:
0<2(g(Y)— f*) < euR+egVR.

But if I, € im(&/*), then we show that Y is a normal vector at Y, so that it is
orthogonal to grad g(Y). Formally: there exists v € R™ such that I,, = &*(v),
and

(gradg(Y).Y) = (grad g(Y)Y . I,) = (/(grad g(Y)Y "), v) = 0,

since grad g(Y') € Ty.# (2.1). This indeed allows us to simplify (4.2).

To conclude, we show that if 4 has a relative interior point X’ (thatis, &/ (X') =
b and X’ > 0) and if Tr(X) is constant for X in ¥, then I, € im(</™*). Indeed,
S = im(/™*) @ ker o7, so there exist v € R™ and M € ker.«Z such that
In = &/*(v) + M. Thus, for all X in &,

0=Tr(X - X)) =(Z* W)+ M, X -X')=(M X - X').
This implies M is orthogonal to all X — X’. These span ker </ since X' is interior.
Indeed, for any H € ker.«/, since X’ > 0, there exists £ > 0 such that X 2

X'+ tH > 0and &/ (X) = b, so that X € . Hence, M € ker .« is orthogonal
to ker o7. Consequently, M = 0 and I, = &/*(v). O
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The lemma above involves a condition on the spectrum of S. Next, we show
this condition is satisfied under an assumption on the spectrum of Hess g and rank
deficiency.

LEMMA 4.3. Let Assumption 1.1 hold for some p. If Y € # is column-rank
deficient and Hess g(Y) > —ey 1d, then S(Y) = —&4 1.

PROOF. By assumption, there exists z € R?, ||z|| = 1, such that Yz = 0. Thus,
for any x € R”, we can form Y =xz". Itisa tangent vector since YY" =0
(2.1) and ||Y |> = ||x||®. Then, condition (2.9) combined with the assumption on
Hess g(Y) tells us

—ey||lx||? < (Y,Hess g(Y)[Y]) = 2(Y,SY) = 2(xz"zx", S) = 2x " Sx.
This holds for all x € R”, hence S > —‘%I n as required. O
We now combine the two previous lemmas to form a soft optimality statement.

THEOREM 4.4. Assume € is compact and let R < oo be the maximal trace of
any X feasible for (SDP). For some p, let Assumption 1.1 hold for both p and
p+ 1. Forany Y € #p, form Y = [Y|0px1] in Mps1. The optimality gap at Y
is bounded as

@43)  0=2(g(¥)~ /") < VRlgrad g (V)| = RAmin(Hess g(V)).

If all X € € have the same trace R and there exists a positive definite feasible X,
then the bound

4.4) 0 <2(g(Y) = f*) < —RAmin(Hess g(V))

holds. If p > n, the bounds hold with Y=Y (and Assumption 1.1 only needs to
hold for p.)

PROOF. Since YYT = YYT, S(¥) = S(Y); in particular, we have g(¥) =
g(Y) and |grad g(Y)|| = |/grad g(Y)||. Since Y has deficient column rank, apply

Lemmas 4.2 and 4.3. For p > n, there is no need to form Y as Y itself necessarily
has deficient column rank. U

This works well with Proposition 4.1. Indeed, equation (4.3) also implies the
following:

*
halHess (P =~ 260 =)= VRlgradg)]
That is, an approximate critical point Y in .#, that is far from optimal (for (SDP))
maps to a comfortably escapable approximate saddle point Y in Mp41. This can
be helpful for the development of optimization algorithms.

For p = n+1, the bound in Theorem 4.4 can be controlled a priori: approximate
second-order critical points are approximately optimal for any C .

4 With p = n + 1, problem (P) is no longer lower dimensional than (SDP), but retains the
advantage of not involving a positive semidefiniteness constraint.



16 N. BOUMAL, V. VORONINSKI, AND A. BANDEIRA

COROLLARY 4.5. Assume € is compact. Let Assumption 1.1 hold for p = n + 1.
IfY € My satisfies both ||grad g(Y)|| < eg and Hess g(Y') > —ey 1d, then Y
is approximately optimal in the sense that (with R = maxy ey Tr(X)):

0<2(g(Y)— f*) <egVR +euR.

Under the same condition as in Theorem 4.4, the bound holds with right-hand side
en R instead.

Theorem 1.5 is an informal statement of this corollary.

5 Applications

In all applications below, Assumption 1.1(a) holds for all p such that the search
space is nonempty. For each one, we deduce the consequences of Theorems 1.4
and 1.6. For the latter, the key part is to investigate the facial structure of the SDP.
As everywhere else in the paper, ||x| denotes the 2-norm of vector x and || X||
denotes the Frobenius norm of matrix X.

5.1 Generalized Eigenvalue SDP
The generalized symmetric eigenvalue problem admits a well-known extremal
formulation:

(EIG) min x'Cx subject to x"Bx =1,
xeR”

where C, B are symmetric of size n > 2. The usual relaxation by lifting introduces
X = xx" and discards the constraint rank(X) = 1 to obtain this SDP (which is
also the Lagrangian dual of the dual of (EIG)):

(EIG-SDP) eréin (C,X) subjectto (B, X)=1, X >0.
c nxn

Let € denote the search space of (EIG-SDP). It is nonempty and compact if and
only if B > 0, which we now assume. A direct application of (2.13) guarantees
all extreme points of 4 have rank 1, so that it always admits a solution of rank 1:
the SDP relaxation is always tight, which is well-known. Under our assumption,
B admits a Cholesky factorization as B = R'R with R € R™™" invertible. The
corresponding Burer-Monteiro formulation at rank p reads:

(EIG-BM) min (CY,Y) subjectto |[RY|? = 1.
Y eR7xP

Let .# denote its search space. Assumption 1.1(a) holds for any p > 1 with
m’ = 1. Indeed, for all Y € .#, {BY} spans a subspace of dimension 1, since
BY = RTRY, RY # 0, and RT is invertible. Thus, Theorem 1.4 readily states
that for p > 2, for almost all C, all second-order critical points of (EIG-BM) are
optimal.

We can do better. The facial structure of ¢ is easily described. Recalling (2.12),
forall X = YYT € ¥ we have dim . %y = w — 1, since YTBY # 0.
Hence, by Theorem 1.6, for any value of p > 1, all second-order critical points
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of (EIG-BM) are optimal (for any C). In particular, for p = 1 (EIG) and (EIG-BM)
coincide, and we get the following:

COROLLARY 5.1. All second-order critical points of (EIG) are optimal.

This is a well-known fact, though usually proven by direct inspection of neces-
sary optimality conditions.

5.2 Trust-Region Subproblem SDP

The trust-region subproblem consists of minimizing a quadratic on a sphere,
withn > 2:
(TRS) min x'Ax +2b"x + ¢ subjectto ||x|? = 1.

x€R”

It is not difficult to produce (A, b, ¢) such that (TRS) admits suboptimal second-
order critical points. The usual lifting here introduces

X = (T)(XT 1) = (ﬁﬁr T) and C = (gﬂ i).

The quadratic cost and constraint are linear in X, yielding this SDP relaxation:

(TRS-SDP)
eréin (C,X) subjectto Tr(Xi1:m,1:n) = 1. Xpt1n+1 =1, X > 0.
c nxn

Let € denote the search space of (TRS-SDP). It is nonempty and compact.
Here too, a direct application of (2.13) guarantees the SDP relaxation is always
tight (it always admits a solution of rank 1), which is a well-known fact related to
the S-lemma [25]. The Burer-Monteiro relaxation at rank p reads:
(TRS-BM)

Y,

i CY.Y bjectto [ Y1]|> = 1. [ly2[> = 1, with ¥ = :
o (CYT) subjectto 1112 = 1, Dyl = 1, win v = (1)

Let .# denote its search space. After verifying that Assumption 1.1 holds (see
below), application of Theorem 1.4 guarantees that for p > 2 and for almost all
(A, b, c¢), second-order critical points of (TRS-BM) are optimal. We can further
strengthen this result by looking at the faces of €, as we do now.

LEMMA 5.2. Assumption 1.1(a) holds for any p > 1 with m’ = 2. Furthermore,
for X € € of rank p,

. 0 ifp=1,
dim %y =
X {P(Pz-i-l) ) lprz-

PROOF. The constraints of (SDP) are defined by

_ In Onxl _ _ Onxn Onxl _
T 2 TR () R
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For Y € .#, we have

61 Onxp
Ar1Y = , AY = .
! (lep) 2 ( s )

These are nonzero and always linearly independent, so dimspan{A,Y, A2Y} = 2
forall Y € .#, which confirms that Assumption 1.1(a) holds with m’ = 2.

The facial structure of € is simple as well. Let X € % have rank p and consider
Y € 4 suchthat X = Y Y. To use (2.12), note that

YTALY =YY, YTAY = y,y).

These are nonzero. For p = 1, they are scalars: they span a subspace of dimen-
sion 1. Then, dim.%xy = 1 —1 = 0. For p > 1, we argue they are linearly
independent. Indeed, if they are not, there exists & # O such that Y'Y, = &y, y,.
If so, Y1 must have rank 1 with row space spanned by y», so that Y1 = z y; for
some z € R” and ||z|| = 1. As aresult, Y itself has rank 1, which is a contradic-
tion. Thus, dim %y = M — 2, as announced. O

Combining the latter with Theorem 1.6 yields the following new result, which
holds for all (A, b, ¢). Notice that for p = 1, the theorem correctly allows second-
order critical points to be suboptimal in general.

COROLLARY 5.3. For p > 2, all second-order critical points of (TRS-BM) are
globally optimal.

A second-order critical point ¥ of (TRS-BM) with p = 2 is thus always opti-
mal. If Y has rank 1, it is straightforward to extract a solution of (TRS) from it. If
Y has rank 2,° it maps to a face of dimension 1. The endpoints of that face have
rank 1 and are also optimal. The following lemma shows these can be computed
easily from Y by solving two scalar equations.

LEMMA 5.4. Let Y € .# be a second-order critical point of (TRS-BM) with
p =2 and let z € R? satisfy |Y1z||> = 1 and yjz = 1. Then, Y1z is a global
optimum of (TRS).

PROOF. If rank(Y) = 1, then Y; = xyZT for some x € R”, and ||Y1]| = 1,
|y2]l = 1 ensure ||x|| = 1. Solutions to ygz, = 0 are of the form z = y; + u,
where yZT u = 0. For any such z, Y1z = x, which is indeed optimal for (TRS) since
Y is globally optimal for (TRS-BM) and x attains the same cost for the restricted
problem (TRS).

Now assume rank(Y') = 2. By (2.10), the one-dimensional face .#y y contains
all matrices of the form Y (I>—M)Y T such that ,b—M > Oand (I, — M, YY) =
0,{lr—M,y, y;) = 0. This face has two extreme points of rank 1, for which
I, — M is a positive semidefinite matrix of rank 1, so that Ip — M = zz" for

5 This can happen, notably if (4, b, c) forms a so-called hard case TRS (details omitted.) This
observation shows that it is indeed necessary to exclude some nontrivial matrices C in Lemma 3.3.
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some z € R2. Given that Y is feasible, the conditions on z are ||Y1z]|> = 1 and
y;z = 1. These equations define an ellipse in R? and two parallel lines, totaling
four intersections +z, +z" which can be computed explicitly. Fixing y;z = +1
allows identifying the two extreme points of the face. Since the cost function is
constant along that face, either extreme point yields a global optimum in the same
way as above. O

5.3 Optimization over Several Spheres

The trust-region subproblem generalizes to optimization of a quadratic function

over k spheres, possibly in different dimensions ny, ..., n; > 2:
(Spheres) min x"Cx subjectto ||xi|| =+ = x| = 1.
x;€R" i=1..k . T T T
with x' = ()c1 Xy 1).
The variable x is in R*™!, with n = ny + --- + ng. Since the last entry of x
is 1, this indeed covers all possible quadratic functions of x1,...,x;. The SDP
relaxation by lifting reads:
i C. X bject to Tr(X11) = --- = Tr(X =1,
vegomin G X} subject to Tr(X1y) 1(Xkk)
(Spheres-SDP) Xntin+1 =1, X >0,

where X;; denotes the block of size n; x n; of matrix X, in the obvious way. This
SDP has a nonempty compact search space and k + 1 independent constraints, so
that by (2.13) it always admits a solution of rank at most p* = @. The
Burer-Monteiro relaxation at rank p reads:
(Spheres-BM)
min ~ (CY,Y) subjectto [|Y1] =---= V|| = L ly| =1,
YRt with YT = (Y] - Y] ),

where Y; € R%*? and y € R?. It is easily checked that Assumption 1.1(a) holds
for all p > 1. Thus, Theorem 1.4 gives this result:

COROLLARY 5.5. For p > —V8kz+9_1 and for almost all C, all second-order crit-
ical points of (Spheres-BM) are optimal and map to optima of (Spheres-SDP).

To apply Theorem 1.6, we first investigate the facial structure of the SDP.

LEMMA 5.6. Let Y be feasible for (Spheres-BM) and have full rank p. The di-
mension of the face of the search space of (Spheres-SDP) at YY T obeys

1
dim yny < % -2
if p =2, anddim Fyyr =0ifp = 1.
PROOF. Following (2.12),
1
dim Fyyr = M — dim span(YlTYl, e, YkTYk, ny).

2



20 N. BOUMAL, V. VORONINSKI, AND A. BANDEIRA

Since Y is feasible, each defining element of the span is nonzero, so that the di-
mension is at least 1. If p = 1, these elements are scalars: they span R. Now
consider p > 2 and assume for contradiction that the span has dimension 1. Then,
all defining elements are equal up to scaling. In other words: YiTYi =q;-yy'
for some nonzero «;. If so, ¥; has rank 1 and there exists z; € R™ such that
Y; = z;y". In turn, this implies ¥ has rank 1, which is a contradiction. Thus, the
span has dimension at least 2. O

COROLLARY 5.7. For p > max(2, k), all second-order critical points of the prob-
lem (Spheres-BM) are optimal and map to optima of (Spheres-SDP) (for any C).

For k = 1, this recovers the main result about the trust-region subproblem. If
the cost function in (Spheres) is a homogeneous quadratic, then it can be written as

(SpheresH) min xTCx subjectto |xi|| =--- = x| = 1,
x; R i=1...k . T T T
with x" = (x{ - x}).
The corresponding relaxation and Burer-Monteiro formulations read
(SpheresH-SDP)

Xr%jn (C,X) subjectto Tr(X11) =--=Tr(Xgx) =1, X >0,

c nxn

and

(SpheresH-BM) mi’pxp(CY, Y) subjectto [|[Yi]| =--= ||Vl =1,
YeR with YT = (Y] -~ Y)).

Assumption 1.1(a) holds for all p > 1 with m’ = k. A similar analysis of the
facial structure yields the following corollary of Theorem 1.6.

COROLLARY 5.8. For almost all C, provided p > —ngz'H_l, all second-order

critical points of (SpheresH-BM) are optimal and map to optima of the problem
(SpheresH-SDP). If p > k, the result holds for all C.

For k = 1, this recovers the results of (EIG) with B = I,.

5.4 Max-Cut and Orthogonal-Cut SDP

Let n = qd for some integers ¢, d. Consider the semidefinite program

(OrthoCut) eréin (C,X) subjectto sbd(X)=1I,, X >0,
c nxn

where sbd: S"*" — S™*" preserves the diagonal blocks of size d x d and zeros
out all other blocks. Specifically, with X;; denoting the (i, j )™ block of size d x d

in matrix X,

X ifi = /.

de(X)i]' = " e ]
' Ogxq otherwise.

For example, with d = 1, the constraint sbd(X) = [ is equivalent to diag(X) = 1
and this SDP is the Max-Cut SDP [15]. For general d, diagonal blocks of X of size
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d x d are constrained to be identity matrices: this SDP is known as Orthogonal-
Cut [6,9]. Among other uses, it appears as a relaxation of synchronization on
Zo = {£1} [1,5,21] and synchronization of rotations [14, 28], with applications
in stochastic block modeling (community detection) and SLAM (simultaneous lo-
calization and mapping for robotics).

The Stiefel manifold St(p, d) is the set of matrices of size p x d with orthonor-
mal columns. The Burer-Monteiro formulation of (OrthoCut) is an optimization
problem over ¢ copies of St(p, d):

(OrthoCut-BM)

min CY.Y) subjecttoY, Y, =1;Vk, YT =[vi -+ Y,]
Y1,...,qu]R1)><d< ) 4 Ktk =1d [ a]

For d = 1, this problem captures one side of the Grothendieck inequality [18,

eq. (1.1)]. Assumption 1.1(a) holds for all p > d with m’ = g2t (which is
the number of constraints). Theorem 1.4 applies as follows.

COROLLARY 5.9. If p > Y—"———"1—+"— 1+4"(d+1 -1 , for almost all C, any second-order
critical point Y of (OrthoCut-BM) is a global optimum, and X = Y YT is globally
optimal for (OrthoCut).

In order to apply Theorem 1.6, we must investigate the facial structure of
={X € S"": sbd(X) = I,,, X > 0}.
The following result generalizes a result in [19, thm. 3.1(i))] tod > 1.

THEOREM 5.10. If X € € has rank p, then the face Fx (2.10) has dimension
bounded as

) d+l ) d+l
5.1) p(p; ) _, er < dimFx < p(p; ) _p ;r .

If p is an integer multiple of d, the upper bound is attained for some X.

The proof is in Appendix C. Combining this with Theorem 1.6 yields the fol-
lowing result.

COROLLARY 5.11. If p > Zién any second-order critical point Y for the prob-

lem (OrthoCut-BM) is globally optimal, and X = Y Y is globally optimal for the
problem (OrthoCut). In particular, for Max-Cut SDP (d = 1), the requirement is

p>5.

PROOF. IfY isrank deficient, use Proposition 3.1. Otherwise, since rank(X) =
p, Theorem 5.10 gives dim .y < M — pdJrl and Theorem 1.6 gives opti-
mality if
pip+1) ) d+1

2 2

This is the case provided (n — p)(d + 1) < 2p, that is, if p > Zi; O

dim .%.
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6 Discussion of the Assumptions

We now discuss the assumptions that appear in the main theorems.

The starting point of this investigation is the hope to solve (SDP) by solving (P)
instead. For smooth, nonconvex optimization problems, even verifying local op-
timality is usually hard [22]. Thus, we wish to restrict our attention to efficiently
computable points, such as points that satisfy first- and second-order Karush-Kuhn-
Tucker (KKT) conditions for (P); see [12, §2.2] and [29, §3]. This only helps if
global optima satisfy the latter, that is, if KKT conditions are necessary for opti-
mality.

A global optimum Y necessarily satisfies KKT conditions if constraint qualifi-
cations (CQs) hold at ¥ [29]. The standard CQs for equality constrained programs
are Robinson’s conditions or metric regularity (they are here equivalent). They
read as follows:

(CQ) CQsholdatY € .# if A1Y,..., A;Y are linearly independent in R"*7.

Considering all cost matrices C, global optima could, a priori, be anywhere in .Z .
Thus, we require CQs to hold at all Y in .# rather than only at the (unknown)
global optima. This leads to Assumption 1.1(a). Adding redundant constraints (for
example, duplicating (A1, X) = b1) would break the CQs but does not change the
optimization problem. This is allowed by Assumption 1.1(b).

In general, (SDP) may not have an optimal solution. One convenient way to
guarantee that it does is to require % to be compact, which is why this assumption
appears in Theorem 1.5 to bound optimality gaps for approximate second-order
critical points. When % is compact, one furthermore gets the guarantee that at least
one of the global optima is an extreme point of 4", which leads to the guarantee that
at least one of the global optima has rank p bounded as w < m’ (2.13). The
other way around, it is possible to pick the cost matrix C such that the unique
solution to (SDP) is an extreme point of maximal rank, which can be as large as
allowed by (2.13). This justifies why, in Theorem 1.4, the bound on p is essen-
tially optimal. The compactness assumption could conceivably be relaxed, pro-
vided candidate global optima remain bounded. This could plausibly come about
by restricting attention to positive definite cost matrices C.

One restriction in particular in Theorem 1.4 merits further investigation: the ex-
clusion of a zero-measure set of cost matrices (“bad C”). From the trust-region
subproblem example in Section 5.2, we know that it is necessary (in general) to
allow the exclusion of a zero-measure set of cost matrices in Lemma 3.3. Yet,
in that same example, the excluded cost matrices do not give rise to suboptimal
second-order critical points (as we proved through a different argument involving
Theorem 1.6.) Thus, it remains unclear whether or not a zero-measure set of cost
matrices must be excluded in Theorem 1.4. Resolving this question is key to gain-
ing a deeper understanding of the relationship between (SDP) and (P).



GUARANTEES FOR BURER-MONTEIRO FACTORIZATIONS OF SMOOTH SDPS 23

Finally, we connect the notion of smooth SDP used in this paper to the more
standard notion of nondegeneracy in SDPs as defined in [4, def. 5]. Informally: for
linearly independent A;, nondegeneracy at all points is equivalent to smoothness.
The proof is in Appendix D.

DEFINITION 6.1. X is primal nondegenerate for (SDP) if it is feasible and Ty +
ker.of = S™*", where Ty is the tangent space at X to the manifold of symmetric
matrices of rank r embedded in S"*", where r = rank(X).

PROPOSITION 6.2. Let A1,..., A defining o/ be linearly independent. Then,
Assumption 1.1(a) holds for all p such that .4, is nonempty if and only if all
X € € are primal nondegenerate.

7 Conclusions and Perspectives

We have shown how, under Assumption 1.1 and extra conditions (on p, com-
pactness, and the cost matrix), the Burer-Monteiro factorization approach to solv-
ing (SDP) is “safe” despite nonconvexity. For future research, it is of interest to
determine if the proposed assumptions can be relaxed. Furthermore, it is impor-
tant for practical purposes to determine whether approximate second-order critical
points are approximately optimal for values of p well below n (an example of this
for a specific context is given in [5]). One possible way forward is a smoothed
analysis of the type developed recently in [8, 26], though these early works leave
plenty of room for improvement.

Appendix A Consequences and Properties of Assumption 1.1

PROOF OF PROPOSITION 1.2. The set .# is defined as the zero level set of
®: R — R™ where ®(Y) = /(YY) — b. The differential of ® at Y,
D®(Y), has rank equal to the dimension of the space spanned by {417, ..., A, Y }.
Under Assumption 1.1(a), D®(Y) has full rank m on .# and the result follows
from [20, cor. 5.14]. Under Assumption 1.1(b), D®(Y') has constant rank m’ in a
neighborhood of .# and the result follows from [20, thm. 5.12]. O

PROOF OF PROPOSITION 1.3. First, let Assumption 1.1(a) hold for some p,
and consider p’ < p such that .#, is nonempty. For any Y’ € .#,, form
Y = [Y'|0px(p—p»] € R™P. Clearly, Y is in .4}, so that

m = dimspan{A1Y,..., A, Y} = dimspan{A1Y’, ... AnY'},

as desired. For p = n, we now consider the case p’ > n. Let Y’ € .#, and
consider its full SVD, Y/ = UXVT, with & € R"P'. Then, Y'V is in .4y
as well. Since the last p” — n columns of ¥ are zero, we have Y'V = UX =
[Y'[0px(p'—n)] With Y € 4. Thus, as desired,
dimspan{41Y’,..., AnY'} = dimspan{A1Y'V,..., A, Y'V}
= dimspan{A4Y,..., A, Y} = m.
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Second, let Assumption 1.1(b) hold for some p, and consider p’ < p such
that ./, is nonempty. For any Y’ € .#, form Y = [Y'|0,x(p—pn] € #p. By
assumption, there exists an open ball By in R”*? of radius ¢ = &(Y) > 0 centered
at Y such that _ _

dimspan{A{Y,..., ApY}=m’
forall Y € By. Let By’ be the open ball in R”*?” of radius &(Y) and center Y.
Forany Y’ € By, form Y = [Y/|0yx(p—p»]. Since |Y =Y | = Y = Y/| <,
we have Y € By, so that
m’ = dimspan{A,Y,..., A,y ¥} = dimspan{A,Y’, ... AnY'}.

Thus, Assumption 1.1(b) holds with the open neighborhood of .#),/ consisting of
the union of all balls By~ for Y’ € .#, as described above. O

Appendix B The Facial Structure of

PROOF OF PROPOSITION 2.7. The construction follows [24] and applies for
any linear equality constraints. We first show that if X’ is of the form in (2.10),
then it must be in Fy. This is clear if X’ = X. Otherwise, pick ¢ > 0 such that
I, —tA > 0. Then, X' and X” = Y(I, —tA)Y " define a closed line segment in
% whose relative interior contains X. By Definition 2.5, this implies X’ (and X")
are in %y .

The other way around, we now show that any point in .#y must be of the form of
X’ 1in (2.10). Let W € S™*" be such that X’ = X + W. Since X is in the relative
interior of .Zy, which is convex, there exists ¢+ > 0 such that X — tW € Fy.
Let Y, € R™@=P) pe such that M = [Y YJ_] is invertible. We can express
X =YY and W as

X—M|:0 O]M and W—M|:B-|- Ci|M.

Then, explicitly, these two matrices must belong to 4

X+ W= M[IPBJFTA g:|MT and X — (W = M[IP_;;TA :;g]MT.
In particular, they must both be positive semidefinite, which implies C > 0 and
—tC > 0, so that C = 0. By Schur’s complement, it follows that B = 0. Thus,
W = YAYT for some A € SP*? such that I, + A > 0. Furthermore, o7 (X') =
(X + W) = b, so that &/ (W) = 0. The latter is equivalent to Zx(4) = 0 by
using (2.11). O

Appendix C Faces of the Ortho-Cut SDP

PROOF OF THEOREM 5.10. Consider the definition of Zx (2.11) and inequal-
ity (2.12): the latter covers the lower bound and shows we need rank %% >
p(d +1)/2 for the upper bound; that is, we need to show the condition Ly (4) = 0
imposes at least p(d + 1)/2 linearly independent constraints on 4 € SP*7,
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Let Y € .#), be such that X = YYT, and let yi,...,y, € R? denote the
rows of Y transposed. Greedily select p linearly independent rows of Y, in order,
such that row i is picked iff it is linearly independent from rows y; to y;_1. This
is always possible since Y has rank p. Write t = {t; < --- < 1,} to denote the
indices of selected rows. Write s = {((k—1)d +1),..., kd} to denote the indices
of rows in slice Y, kT ,and let ¢ = 53 Nt be the indices of selected rows in that slice.

We make use of the following fact [19, lem. 2.1]: for x1,...,x, € R? linearly
independent, the p(p + 1)/2 symmetric matrices x; xJT + x; xl-T form a basis of
SP*P_ Defining E;; = yiij + yjyiT = Ejji, this means & = {E, ,,: LU =
1,..., p} forms a basis of SP*? (& is a set, so that E;; and Ej; contribute only
one element). Similarly, since each slice ¥, kT has orthonormal rows, matrices in
{Ejj: 1, ] € s} are linearly independent.

The constraint £y (A) = 0 means (4, E;;) = 0 for each k and for each i, j €
sk - To establish the theorem, we need to extract a subset .7 of at least p(d + 1)/2
of these gd(d + 1)/2 constraint matrices, and guarantee their linear independence.
To this end, let

(C.1) T ={Ejj ke{l,...,qtandi € cx C 5, j € Sk}.

That is, for each slice k, .7 includes all constraints of that slice which involve at
least one of the selected rows. For each slice &, there are |cx|d — W such
constraints—note the correction for double-counting the E;;’s where both i and j
are in ¢. Thus, using |c1| + --- + |c4| = p, the cardinality of .7 is:

q
—1
€2 |7]= Z[lffkld e =D

k=1

q
|=rasim-3 Y
k=1

We first show matrices in .7 are linearly independent. Then, we show |.7| is large
enough.

Consider one E;; € J: i, j € s for some k and i = t; for some £ (otherwise,
permute i and j). By construction of ¢, we can expand y; in terms of the rows
selected in slices 1 to k, i.e., y; = Zﬁ/k:l Qj ¢yt Where £ = |cq] + -+ + |ck].
As a result, E;; expands in the basis & as follows: E;; = Zﬁf"zl oo Byt
As noted before, E;j;’s in .7 contributed by a same slice k are linearly indepen-
dent. Furthermore, they expand in only a subset of the basis &, namely, & ®) =
{Etp1p: b1 < £ < Ly 4" < Ly}t 1y is a selected row of slice k and 7/ is a se-
lected row of some slice between 1 and k. For k # k', &%) and &*") are disjoint;
in fact, they form a partition of &. Hence, elements of .7 are linearly independent.
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It remains to lower bound (C.2). To this end, use |cx| < d and |c1|+---+|cq| =
p to get:

q
kgl eul” = xeRq:lel&as)(d,||x||1:p )l = Lngz + (P - ngd)2 < pd.

Indeed, the maximum in x is attained by making as many of the entries of x as
large as possible, that is, by setting | p/d | entries to d and setting one other entry
to p — | p/d]d if the latter is nonzero. This many entries are available since
p < gd = n. That this is optimal can be verified using KKT conditions. In
combination with (C.2), this confirms at least p(d + 1/2) — pd/2 = p(d + 1)/2
linearly independent constraints act on A, thus upper bounding dim .%x.

To conclude, we argue that the proposed upper bound is essentially tight. Indeed,
build ¥ € .#), by repeating ¢ times the d first rows of I,, then by replacing
its p first rows with [, (to ensure Y has full rank). If p/d is an integer, then
exactly the p/d first slices each contribute d{d + 1)/2 independent constraints,
ie., dimﬁny = p(p + 1)/2— p(d + 1)/2. [l

Appendix D Equivalence of Global Nondegeneracy and Smoothness

PROOF OF PROPOSITION 6.2. By Proposition 1.3, it is sufficient to consider the
case p = n. Consider X € € of rank r and a diagonalization X = QDQT, where
D = diag(A1,...,A+,0,...,0)and O = [Q1 Qz] is orthogonal of size n with
01 € R™", By [4, thm. 6], since Aq,..., A, are linearly independent, X is
primal nondegenerate if and only if the matrices

B [QIAkQI QIAkQ2i|’ el

054501 0
are linearly independent. The By are linearly dependent if and only if there exist
oy, ...,0y, not all zero such that 1By + -+ + o By, = 0. Considering the

first r columns of the By, the latter holds if and only if >, ax QT4x 01 = 0,
which holds if and only if ), axAx Q1 = 0. For any ¥ € R"*? such that
X = YYT, since span(Y) = span(Q1), we have ) ; ax Ax Q1 = 0 if and only
if Y paxAxY = 0. This shows the By are linearly dependent if and only if
the ArY are linearly dependent. Thus, X is primal nondegenerate if and only if
{A1Y,..., A, Y} are linearly independent. Overall, primal nondegeneracy holds
atall X € ¢ if and only if Assumption 1.1(a) holds. 0
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