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1 Introduction

The role of deformability in determining the structural
and mechanical properties of bubbles and emulsions

Arman Boromand,*** Alexandra Signoriello, Janna Lowensohn,? Carlos S. Orellana,?
Eric R. Weeks,? Fangfu Ye,>¢ Mark D. Shattuck,” and Corey S. O’Hern®<:8/

We perform computational studies of jammed particle packings in two dimensions undergoing
isotropic compression using the well-characterized soft particle (SP) model and deformable parti-
cle (DP) model that we developed for bubbles and emulsions. In the SP model, circular particles
are allowed to overlap, generating purely repulsive forces. In the DP model, particles minimize
their perimeter, while deforming at fixed area to avoid overlap during compression. We compare
the structural and mechanical properties of jammed packings generated using the SP and DP
models as a function of the packing fraction p, instead of the reduced number density ¢. We
show that near jamming onset the excess contact number Az = z — z; and shear modulus ¢ scale
as Ap%3 in the large system limit for both models, where Ap = p —p; and z; ~ 4 and p; ~ 0.842 are
the values at jamming onset. Az and ¢ for the SP and DP models begin to differ for p = 0.88. In this
regime, Az ~ % can be described by a sum of two power-laws in Ap, i.e. Az~% ~ CyAp?> +C Ap'0
to lowest order. We show that the ratio C; /C is much larger for the DP model compared to to that
for the SP model. We also characterize the void space in jammed packings as a function of p.
We find that the DP model can describe the formation of Plateau borders as p — 1. We further
show that the results for z and the shape factor <7 versus p for the DP model agree with recent
experimental studies of foams and emulsions.

temperature.. 12 The ability to vary particle microstructure en-
ables the design of soft materials with novel functional properties

Soft materials, such as grafted core-shell particles, dendrimers,
star polymers, emulsions, foams, and hydrogels, are a class of
materials for which their microstructure can be altered by exter-
nal fields, applied deformation, and thermal fluctuations at room
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and processing capabilities. Molecular architecture, surface inter-
actions, and deformability of soft particles can be harnessed to
develop novel soft composites with optimized energy absorption,
self-healing behavior, high mechanical strength, and other desir-
able properties.3~® In addition, many biological systems such as
biofilms?, cell aggregates®, and tissues? can be considered as col-
lections of soft and deformable particles.

The interactions between soft particles, e.g. the softness, range,
and strength of the attraction and repulsion between soft particles
is controlled by their composition and microstructure. In turn, the
interactions between soft particles determine the collective me-
chanical and rheological properties of packings of soft particles.
Significant challenges remain in understanding the influence of
particle microstructure and interactions on the macroscopic prop-
erties of soft matter systems. In this article, we study the role of
particle deformability in determining the structural and mechani-
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Fig. 1 A configuration of overlapping disks (e.g. dark grey regions be-
tween overlapping light grey particles) at ¢ = 1.0 for the SP model. For
the central green particle i that overlaps several adjacent particles, we
can define a more realistic packing fraction p for the SP model, by asso-
ciating half of each overlap to particle i and the other half to each particle
Jj (red region) that overlaps i. The modified shape parameter for parti-
cle i can then be obtained by calculating the perimeter and area of the
green-colored shape. In this example, <% = 1.025 and p = 0.95.

cal properties of packings of quasi-2D emulsions, modeled as col-
lections of purely repulsive, deformable particles at and above the
jamming transition.

Systems composed of soft, frictionless particles, such as foams
and emulsions, can jam, or develop a non-zero static shear mod-
ulus ¢, when they are isotropically compressed to packing frac-
tions that approach random close packing ¢;.1%12 For ¢ < ¢y,
packings of purely repulsive, frictionless spherical particles have
an insufficient number of interparticle contacts for them to be me-
chanically stable. As a result, the packings exist at zero pressure
(p =0) and are fluid-like, and particle rearrangements cost zero
energy. 13 When compressed to ¢;, the packings develop a con-
nected interparticle contact network with an isostatic number of
contacts per particle z; = N./N, where N, = 2N’ — 1, N' = N —N,,
N is the total number of particles, and N, is the number of rattler
particles with less than 2 contacts, for frictionless circular parti-
cles in two spatial dimensions (2D) with periodic boundary con-
ditions. 15 For ¢ > ¢, the packings become solid-like with z > z;
and a nonzero shear modulus ¢ > 0.15-17

A number of computational studies have been performed to
investigate the structural and mechanical properties of com-
pressed foams and emulsions in the solid-like regime ¢ > ¢;.18-21
One of the most frequently used models for characterizing their
structural and mechanical properties is the soft particle (SP)
model 16:18  for which there is a potential energy cost proportional
to the square of the overlap between pairs of spherical particles,
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and no energy cost when the particles do not overlap. These stud-
ies find that the excess contact number above the isostatic num-
ber,

z—ZJzzg(¢—¢J)“3, @

and the shear modulus,
o
G~ G5 (091, ®)

obey power-law scaling relations with ¢ — ¢;, where the scaling
exponents ocg’ = [3(')7’ =0.5 in the large-system limit. 1-16:22 Further,
these studies have found that the exponents do not vary with the
shape of the purely repulsive interaction potential and are the
same in 2D and 3D.1%17:19:22,

In Egs. 1 and 2, we define the packing fraction (or reduced
number density) in 2D for packings of circular disks as ¢ =
YN, mo?/4A, where o; is the diameter of disk i and A = L,Ly is
the area of the simulation box with edge lengths L, = L, in the
x- and y-directions. Note that when using this definition of ¢,
the area of particle overlaps is multiply-counted. A positive fea-
ture of the SP model is its simplicity, however, a negative aspect
is that the particles do not conserve area when the packings are
compressed above jamming onset.

There have also been a number of experimental23-26 studies
(as well as computational studies20-21) of the structural and me-
chanical properties of compressed foams and emulsions in 2D and
3D. These studies also find power-law scaling of the excess con-
tact number,

2=z~ (p—-p)%, (3)
where o/ occurs in the range 0.4 to 1 depending on the particular
study. The power-law scaling of z — z; is measured versus p — py,
not ¢ — ¢;, where p is the true packing fraction of the system.
For systems at jamming onset, p; = ¢y, but ¢ > p when parti-
cles overlap in the SP model. Also, ¢ > 1.0 is allowed, whereas
p < 1.0 is a hard constraint. In addition, experimental studies of
compressed emulsions in 3D have shown that the shear modulus
obeys power-law scaling in p — py,

G~ (p—ps)P

but the scaling exponent g’ > 122728

In light of the discrepancies between the power-law scaling ex-
ponents found in the experimental studies of compressed foams
and emulsions and those obtained from the computational studies
of the SP model, we employ the recently developed deformable
particle (DP) model 29for foams and emulsions to understand how
particle deformability affects the packing fraction dependence of
the structural and mechanical properties of jammed particle pack-
ings.

Other computational methods have been employed to model
particle deformability in soft matter systems, such as foams and
emulsions. There are two main classes of methods for model-
ing particle deformability: Lattice Boltzmann3®3! and particle-
based methods?%-32-3>, The lattice-based methods have typically
focused on two- or multi-phase modeling, whereas the DP model
focuses only on the shape degrees of freedom of the particles (i.e.
bubbles or droplets). Our work on the DP model differs from the
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previous studies using particle-based methods. First, the work
by Rognon, et al.3> has been limited to small systems composed
of 2 —5 particles. Second, the froth model by Kern, et al.33 is
limited to the dry regime, where the true packing fraction ap-
proaches unity. In contrast, the DP model can be used to study a
wide range of packing fractions, from values where the particles
are out of contact to confluent systems. The model proposed by
Kahara et al.3? is most similar to the DP model. However, by mod-
eling the pressure of the carrier fluid, their study is limited to the
wet regime. In addition, their studies have focused on the rheo-
logical properties of bubbles during shear. In contrast, this article
will focus on the structural and mechanical properties of jammed
deformable particles generated during isotropic compression.

A central assumption of the SP model is that the particles re-
main spherical as particle overlap increases when the system is
compressed above jamming onset. For this reason, studies that
employ the SP model typically quantify the system properties as
a function of ¢ instead of the true packing fraction p 23-24, Even
though the SP model does not conserve particle area as the system
is compressed, one can also measure the structural and mechan-
ical properties as a function of the true packing fraction p when
using the SP model by attributing half of an overlap between par-
ticles i and j to particle ; and the other half to particle j. (See
Fig. 1.)

A key feature in jammed packings of foams and emulsions is
that the particles maintain their area (volume) during compres-
sion over the full range of packing fraction. Bubbles in foams and
emulsion droplets can deform, become non-spherical, and form
additional contacts that do not occur in the SP model at a com-
parable value of packing fraction as that shown in Fig. 2 (a) and
(b). In this article, we show that the soft particle and deformable
particle models show similar results for the scaling of the excess
contact number and shear modulus versus p — p; for packing frac-
tions close to jamming onset. However, for larger p, we find that
z—zy and ¥ for the SP and DP models begin to differ significantly.
In this regime, z(p) for the deformable particle model is similar to
that found for experimental studies of compressed emulsions and
foams in 2D. We also study the geometric properties of the void
space of jammed packings as a function of p. We show that unlike
the SP model, the DP model is able to recapitulate the formation
of Plateau borders36-3%, where bubble edges have a relative ori-
entation of 120° and form a void with shape factor &/ ~ 4.87,
near confluence. (The shape factor <7 = p?/4ma, where p is the
perimeter and « is the area of the void space26:29.)

The remainder of the article is organized as follows. In Sec. 2,
we describe the soft particle and deformable particle models for
2D compresed foams and emulations, and the isotropic compres-
sion protocol that we employ to numerically generate jammed
packings. In Sec. 3, we compare the results for the structural and
mechanical properties of jammed packings using the SP and DP
models. We show the variation of p with ¢ above jamming onset
and quantify the decrease in the average area of the particles as
a function of increasing packing fraction for the SP model. We
measure p versus the shape factor <7 to determine at what shape
factor the SP and DP models reach confluence. We then show the
power-law scaling results for z —z; and ¢ versus p — p,; for the

SP and DP models. We also characterize the connected void re-
gions, by measuring the number, size, and shape of the voids as a
function of packing fraction for the SP and DP models. In Sec. 4,
we summarize the results for the SP and DP models, compare
the results for the DP model to those from recent experiments
on compressed foams and emulsions, and discuss future research
directions.

2 Simulation Methods

In this article, we study the structural and mechanical properties
of isotropically compressed jammed packings of N purely repul-
sive, frictionless bidisperse particles in 2D using the soft particle
and deformable particle models. For both models, the simulation
cell is square with periodic boundaries in both directions.

2.1 Soft Particle Model

For the soft particle model, pairs of circular disks i and j interact
via the purely repulsive pairwise potential:

2
& r,-j r,'j
o= (1= 1=y,
Use(ri) 2( Gij) ®( Gij)’ ®)

where ¢ is the characteristic energy scale of the interaction,
0;j=(0; +0;)/2 is the average diameter and r;; is the center-to-
center separation between disks i and j, and ©(.) is the Heaviside
step function that sets the interaction potential to zero when disks
i and j do not overlap. We focused on systems composed of N/2
large and N /2 small disks with equal mass m and diameter ratio,
01,/0s = 1.4 to avoid crystallization. The total potential energy for
the SP model is Usp = ¥;~.; Usp(rij) and the stress tensor is given
by

N

oy =AY fijurijy, (6)

i>j
where g, v =x and y and f,-j = —ﬁr,jUSP(rij). To measure the
shear modulus ¢, we apply an infinitesimal affine shear strain y
to the x-positions of the particle centers, x; = x; + yy;, and measure
the resulting shear stress X,,. We then calculate the shear modu-
lus 4 = —dX.,y/dy (at fixed area). For the SP model, we measure
energy, length, and stress in units of €, org, and €/ GLZS.

2.2 Deformable Particle Model
To model bubbles and droplets, we consider the deformable parti-
cle model2? for foams and emulsions with a potential energy that
includes the following three terms:

N N
Upp = Z 5“ Z = o) (7

T Mg

+ Ut

Each deformable “particle” (indexed by m = 1,...,N) is modeled
as a polygon with N, circulo-line edges to represent N, — 1 shape
degrees of freedom. The circulo-lines have width §4° and are
indexed by i = 1...,N,. (See Fig. 2c). We consider N/2 large
particles with N, = 17 and N/2 small particles with N, = 12, and
arop/aso = (17/12)? ~ 2.0, which is similar to the area ratio of the
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Fig. 2 Similar jammed packings of N = 64 bidisperse disks [half large (blue) and half small (pink) disks with diameter ratio o;/os = 1.4] with packing
fraction p ~ 0.92 generated using the (a) soft particle (SP) model and (b) deformable particle (DP) model for foams and emulsions. The average
shape parameter is (</) ~ 1.01 and 1.03 for the SP and DP models, respectively. The dashed boxes highlight extra contacts that form in the packing
of deformable particles compared to the soft particle packing during compression. (c) Close-up of a jammed configuration of N = 128 deformable
particles at p = 0.99 and shape parameter (<) = 1.06. Each deformable particle is a collection of N, interconnected circulo-lines with width 6. The
system includes N/2 large particles with N, = 17 and N/2 small particles with N, = 12. The preferred areas of the particles (in Eq. 7) are azo and aso,
for the large and small particles, respectively, with azo/aso ~ 2.0. The inset shows two interacting deformable particles m and n. Uy is proportional to
(8 — dmin)?, Where dp;, is the minimum distance between overlapping circulo-lines j and k on deformable particles m and n.

large and small disks in the SP model. We have also studied
DP packings with larger numbers of vertices (while maintaining
arp/aso ~ 2.0), and the structural and mechanical properties are
similar to those for N, = 17 and 12 for the large and small parti-
cles, respectively. The location of the ith circulo-line in particle m
is Vi, and the bond vector ij = Vmit1 — Vi = lm7ilAm,,- connects
circulo-lines i+ 1 and i.

The first term in Upp is proportional to the total length of the
interface, i.e. the perimeter, p,, = Zﬁ\i | Im,i of the mth particle with
a proportionality constant equal to the line tension y. The second
term is quadratic in a,, with a minumum at a; g, which penalizes
deviations in area from the reference value a; 5. Here, we study
kaaf g9 > 10°, which implies that the fluctuations in the particle ar-
eas are < 1073, We characterize the shape of the deformable par-
ticles by calculating the particle shape parameter .o, = p2, /4%a,,,
which equals 1 for circular disks and is greater than 1 for all non-
spherical shapes29:41,

Note that for the DP model for foams and emulsions, we re-
move the constraint on the elastic interface?, i.e. the preferred
bond length, I, ; = 0. As a result, the spacing between the ver-
tices on a given deformable particle can change as they interact
with vertices on neighboring particles. This allows us to correctly
model the formation of elongated edges when deformable par-
ticles make contacts (such that /,,; > 0), as well as model the
formation of Plateau borders6-37 with 4, ; — 0.

The third term, Uj,, penalizes overlaps between deformable
particles by including purely repulsive interactions between pairs
of contacting circulo-lines on neighboring deformable particles:

L A Ay dmin :
U = Y Y Y Y5 (1-%) ®

m=1n>m j=1k=1

dmin
X ®<1— 5 ),
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where €, gives the strength of the repulsive interactions, dy;, is
the minimum distance between circulo-lines j and k on contacting
deformable particles m and n, and @(.) ensures that there is no
interaction when the circulo-lines on different particles are out
of contact. The stress tensor for packings of deformable particles
is obtained using X,y =A~'YY fi‘z“rf‘,, where f”;-ex‘ = —§rl.Uim is
the force on particle i arising from Uj,, and 7 is the position of the
centroid of particle i.

To measure the shear modulus ¢, we apply an infinitesimal
affine shear strain y to the x-positions of the i = 1,...,N, circulo-
lines on each particle m, v;mﬁl- = Vym,i + YVym,i» and measure the
resulting shear stress X,. We then calculate the shear modu-
lus 4 = —dX,,/dy (at fixed area). For the DP model, we mea-
sure energy, length, and stress in units of ¢, /, and &,/I?, where
I = (\/aso + v/aro)/2. The structural and mechanical properties
of DP packings at jamming onset do not depend on the parame-
ters ¥, k4, and &,. However, above jamming onset, the properties
can depend on these parameters. We focused on the parameter
regime, & > ka(aL,so)2 > ¥{pm), which is typical for foams and
emulsions.

2.3 Isotropic Compression Packing Protocol

The protocol to generate jammed packings is similar for the SP
and DP models. The protocol proceeds in two stages. For each
initial condition, we first identify the packing fraction p; = ¢, at
jamming onset. For the SP model, the system is initialized using
random locations for the disks at p = 0.20. For the DP model, we
place the particle centers randomly at p = 0.20 and then position
the N, circulo-lines equally spaced around each particle center.
We successively isotropically compress the system (by decreas-
ing the size of the simulation cell) using small packing fraction
increments (8¢ =10"* for the SP model and 8p = 10~* for the
DP model) and minimize the total potential energy per parti-
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Fig. 3 (a) The packing fraction p — p; versus the reduced number density ¢ — ¢; for static packings of N = 32 bidisperse disks using the SP model.
The dashed line is p = ¢. The solid line indicates p — p; = C(¢ — ¢;)°3[1 — (¢ — ¢s)], where C = &(1). (b) Average particle area (a) normalized by the
value at jamming onset a; as a function of p — p, for the SP (downward triangles) and DP (diamonds) models with N = 32. The dashed line has the
form a/a; — 1o (p — p;)®, with { ~ 2.5 to capture the large p — p; behavior. (c) The packing fraction p — p; and reduced number density ¢ — ¢, versus
the shape parameter, ' — 1, for the DP (diamonds) and SP (triangles) models. ¢ = 1 occurs at < = 1.03 for the SP model (filled triangles). In contrast,
p =1 at o/ > 1.10 for the SP model (open triangles). Packings generated using the DP model reach confluence at & ~ 1.07. The dashed-dotted line
has the form p — py = (& — 1)® with o ~ 0.3 for the DP model, which captures the large p — p; behavior. The dashed line through the SP model data
has a similar form, but with two scaling regimes: one at small «# — 1 with @ ~ 0.5 and one at large & — 1 with o ~ 0.3. The solid line has the form

0 — ¢y o< (o —1)* with A ~ 0.67 for the SP model.

cle, Usp/N, for the SP model (or Upp/(NN,) for the DP model)
after each compression step using over-damped molecular dy-
namics simulations until the kinetic energy per particle satisfies
K/N < 1072 for the SP model and the total kinetic energy per
circulo-line K/(NN,) < 10720 for the DP model. If Usp/N or
Upp/(NN,) is “zero” (i.e. Usp/N < 10713 or Upp/(NN,) < 10~1)
after minimization, the system is subsequently compressed. If
Usp/N or Upp/(NN,) is nonzero, i.e. there are finite particle over-
laps and Ugp/N > 10~13 or Upp/(NN,) > 10~'3, after minimiza-
tion, the system is subsequently decompressed. The increment
by which the packing fraction is changed at each compression or
decompression step is gradually decreased.

We terminate the process of finding the onset of jamming at
ps or ¢; when the system satisfies 10713 < Ugp/N < 107'¢ and
K/N <1072 for the SP model or 10713 < Upp/(NN,) < 10716 and
K/(NN,) < 102 for the DP model. This process yields mechani-
cally stable packings at jamming onset.

The second stage of the protocol involves sampling the system
at set of packing fractions p — p; > 0 above jamming onset with
adjacent values separated by §p = 10~ for the DP model or a
set of ¢ — ¢y > 0 with adjacent values separated by §¢ = 10~*
for the SP model. Ensemble averages are obtained by averaging
over systems at fixed ¢ — ¢; or p — p; for the SP and DP models,
respectively, where ¢; and p; are determined separately for each
initial condition. The distribution of ¢; and p; for the SP and DP
models are shown for several system sizes in the Appendix.

3 Results

Below, we compare the results for the structural and mechani-
cal properties of particle packings as a function of packing frac-
tion above jamming onset obtained using the soft particle and
deformable particle models. These studies allow us to investigate
the effect of particle deformability on the structural and mechan-
ical properties of jammed solids. As discussed in Sec. 1, there are

several key differences between the SP and DP models. For exam-
ple, the SP model allows overlap between particles and concomi-
tant decreases in the particle area as the system is compressed
above jamming onset. In contrast, the particles in the DP model
deform to prevent interparticle overalps, and thus they maintain
their areas, and do not remain circular in shape.

A method to minimize the effects of the loss of particle area for
the SP model is to quantify the structural and mechanical proper-
ties of jammed packings generated using the SP model as a func-
tion of the true packing fraction p, not ¢. To measure p at each
¢ > ¢y, we need to subtract from ¢A the muliply-counted areas of
overlapping disks. For ¢ < 1.2, we only need to consider overlaps
between pairs of disks, i.e. subtract off the area of each lens be-
tween pairs of overlapping disks. (See Fig. 1.) In this case, the
true packing fraction is

Noro? 1Y
p:Z i ,,Zaw, (9)
i=1 4A Ai>j Y
where
gov =V (rij + 1) (rij = 01) (rij + ) (rij + 035) (10)
7] 2

is the area of the lens between overlapping disks i and j and G;; =
(0;—0j)/2. For ¢ > 1.2, the lens between overlapping disks i and
j can overlap with the lens of other overlapping pairs of disks,
which modifies Eq. 9.

In Fig. 3 (a), we plot the deviation in the true packing fraction
from that at jamming onset, Ap = p — p;, versus the deviation in
the reduced number density ¢ from the value at jamming onset,
A¢ = ¢ — ¢y, for jammed packings generated using the SP model.
On a linear scale, p ~ ¢ for ¢ < 0.88. More generally, we find

Ap ~ C(Ap —A¢'), 11
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Fig. 4 (a) The number of contacts per particle z and (b) shear modulus
¢ versus the true packing fraction p for jammed packings of N = 256 par-
ticles generated using the SP (open downward triangles) and DP models
(open diamonds). We also show z and ¢ versus the reduced number
density ¢ for the SP model (filled downward triangles). The dashed and
dashed-dotted lines are fits of z and ¢ versus Ap for the DP and SP mod-
els, respectively, using the forms in Tables 1 and 2. The solid lines are fits
of z(A¢) and ¥ (A¢) to the forms in Tables 1 and 2 for the SP model. The
dashed-dotted vertical lines indicate the packing fraction above which
the measurements start to deviate from the power-law scaling forms in
Egs. 13 and 14.
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where C is weakly dependent on ¢. (See Figs. 10 (a) and (b)
in the Appendix.) Note that Eq. 11 is exact when higher-order
overlaps (i.e. the lens from overlapping disks i and j overlaps
with the lens from other overlapping disks) do not occur. To study
the structural properties of the SP model near confluence, p — 1,
we also considered cases where three disks mutually overlap. The
true packing fraction becomes
N rg?
p= ,:21 1A

Iyl y e (12)

A YA k>i,j ve
where a?j‘.;{ is the area of the Reuleaux triangles that form when
three disks mutually overlap. Using this approximation, we find
that p — 1 near ¢ ~ 1.24.

As discussed in the introduction, for packings generated using
the SP model, the area of the particles decreases with increasing
packing fraction above jamming onset. We calculate the average
area of the particles (normalized by the average at jamming on-
set) (a)/ay versus Ap for packings generated using the SP and DP
models in Fig. 3 (b). On a linear scale, (a) begins deviating signif-
icantly from a; for Ap 2 0.04 for the SP model. In the Appendix,
we show that a/a; — 1 o< Ap® with an exponent { ~ 1.5 at small
Ap and § &~ 2.5 at large Ap for the SP model. In contrast, (a) ~ a;
over the full range of Ap for the DP model.

In Fig. 3 (c), we quantify how the particles deform during
isotropic compression above jamming onset. In general, the pack-
ing fraction increases with the shape parameter & — 1. In the Ap-
pendix, we show that p — py grows as a power-law in the deviation
of the shape parameter from that at jamming onset, (& —1)®. At
small &/ — 1, w ~ 0.66 and ~ 1.0 for the SP and DP models, re-
spectively. At large <7 — 1, @ = 0.3 for both the SP and DP models.
¢ — ¢y for the SP model also grows as a power-law with & — 1,
but much faster than p — p;.

At what shape parameter do 2D foams and emulsions reach
confluence? Fig. 3 (c) shows that the DP and SP models reach
confluence (Ap ~ 0.16) at different values of the shape parame-
ter, &/ ~ 1.07 for the DP model and .« > 1.10 for the SP model.
Thus, we find similarites and differences between the shapes of
the particles for packings generated using the SP and DP models
as they are compressed above jamming onset. An interesting sim-
ilarity is that the packing fraction for both the SP and DP models
scales as p —py ~ (o« —1)?, where o ~ 0.3 at large p.

Next, we compare the contact number z and shear modulus ¥
versus the packing fraction for the SP and DP models. On a linear
scale, which emphasizes the values at large packing fraction, we
find weak system-size dependence for z and ¢ for packings gener-
ated via the SP and DP models. Note that for the deformable par-
ticle model, multiple circulo-lines on one deformable particle can
be in contact with multiple circulo-lines on another deformable
particle. These multiple circulo-line contacts are treated as a sin-
gle contact between two deformable particles.

In Fig. 4, for both z and ¢, measured in packings of N = 256
particles, the results for the SP and DP models are similar near
jamming onset ¢; ~ p;. For z and ¢, the results for the SP and
DP models begin to deviate near p =~ 0.88. We find that more in-
terparticle contacts form as the packings are compressed above
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Fig. 5 Panels (a) and (d) show the excess contact number z — z; and shear modulus ¢ plotted versus A¢ for the SP model. (b) and (e) show the same
data in panels (a) and (d), except plotted versus Ap. Panels (c) and (f) show z—z; and ¢ versus Ap for the DP model. Each symbol represents different
system sizes: N = 32 (squares), 64 (circles), 128 (upward triangles), and 256 (downward triangles). The dotted lines in panels (a)-(c) have slope equal
to 1. The solid line in (a), dashed-dotted line in (b), and dashed line in (c) are the same fits to the data as in Fig. 4 (a). The dotted lines in panels (d)-(f)
have slope equal to 0.8. The solid line in (d), dashed-dotted line in (e), and dashed line in (f) are the same fits to the data as in Fig. 4 (b).

jamming onset for the DP model, compared to that for the SP
model. As a result, the shear modulus grows more rapidly with
p for packings generated using the DP model. We also show the
best fits of z and ¢ for the SP model to the power-law scaling
form with A¢ in Egs. 1 and 2. As found previously, the scaling ex-
ponents o = B¢ ~ 0.5 for the SP model. 1315 By plugging Eq. 11
into Eqgs. 1 and 2, we can convert z(A¢) and ¢ (A¢) to z(Ap) and
Z(Ap). To lowest order in Ap, we find

e—z B (p—pn)® +2(p—pn)™ (13)

and
p P
G ~95 (p—p))P +9F (p—ps)Pi 14

for the SP model, where of ~ Bf ~ 0.5 and af ~ B ~ 1.0. We
show fits of z(Ap) and ¢ (Ap) for the SP model to Egs. 13 and 14 as
dashed-dotted lines in Fig. 4. The combination of the two power-
laws in Ap with exponents 0.5 and 1.0 accurately describes the
data for Az and ¢. However, Az begins deviating from Eq. 13 for
p 2 0.98 near confluence. Moreover, we find that Eqs. 13 and
14 can be used to fit the data for the DP model as well. The

parameters for the fitting functions are shown in Tables 1 and 2.

In Fig. 5 (a) and (d), we present the excess contact number
z—zy and shear modulus ¢ versus A¢ on logarithmic axes for
jammed packings using the SP model for system sizes ranging
from N = 32 to 256. By plotting the data on logarithmic scales,
we can identify several different regimes in A¢: 1) A¢ < 1073,
2) 1073 < Ag < 0.2, and 3) A¢ > 0.2. Regime 1, where ¢ ~ ¢y,
is difficult to see on the linear scales shown in Fig. 4 (a). In this
regime, there is strong system-size dependence and Az ~ A¢ and
4 ~ AP0, 2242 As found previously, at intermediate Ag, Az ~ A%
and 4 ~ Aq)pr , where af) ~ ﬁ]‘p ~ 0.5. The characteristic A¢p* at
which the o and f exponents cross-over from 1 to 0.5 and 0 and
0.5, respectively, scales as A¢p* ~ N2, (See Tables 1 and 2.) Thus,
regime 2 extends to smaller A¢ as the system size increases. In
regime 3, at large A¢, we find that the power-law scaling behavior
of Az and ¢ with A¢ breaks down.

Using Eq. 11, we can convert the data from functions of A¢ to
functions of Ap for the SP model. We show Az(Ap) and ¢4 (Ap) in
Fig. 5 (b) and (d). We find two different regimes in Ap. At low Ap,
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z—z5~Ap and & ~ Ap®. At intermediate and large Ap, the forms
for z—z; and ¢ include a sum of two power-laws as shown in
Egs. 13 and 14. The characteristic packing fraction that separates
the small and large Ap regimes also scales as Ap* ~ N2,
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Fig. 6 The deviation in the contact number z o, — z verus p* — p, where
p* is the packing fraction at which z = z¢onr = 6, for (a) the SP and (b)
DP models. For both the SP and DP models, we show a range of sys-
tem sizes: N =32 (squares), 64 (circles), 128 (upward triangles), and 256
(downward triangles). The vertical dashed-dotted lines indicate the val-
ues of p* — p that correspond to the vertical dashed-dotted lines in Fig. 4
(a). The insets show the same data as in the main panels except zconf — z
and p* —p are scaled by N. The horizontal dashed line in the inset to
panel (a) is (zcont —2)N = 2.

In Fig. 5 (c) and (f), we show Az and ¢ versus Ap for the DP
model. The data also show two regimes in Ap. At small Ap,
Az~ Ap and & ~ Ap®. At intermediate and large Ap, we fit Az

8| Journal Name, [year], [vol.],1-13

Table 1 Parameters for the scaling forms for the excess contact number
Az(A9) and Az(Ap) (Egs. 1 and 13) for the SP and DP models.

Model z;+£0.005 ¢;,p;+0.005 P afP 0P afP
SP(p) 397 0.84 37 05 0 1.0
SP(p)  3.97 0.84 26 05 40 1.0
DP(p)  3.97 0.835 33 05 71 1.0

Table 2 Parameters for the scaling forms for the shear modulus ¢ (A¢)
and ¢ (Ap) (Egs. 2 and 14) for SP and DP models.

Model ¢;,p;£0.005 0P BIP  @PP  por
SP(¢) 0.84 0.42 0.5 0 1.0
SP(p) 0.84 0.38 0.5 0.35 1.0
DP(p) 0.835 0.07 0.5 1.7 1.0

and ¢ to a sum of two power laws with exponents 0.5 and 1.
(See Tables 1 and 2.) Note that the scaling of Az and ¥ for the
DP model is similar to that for the SP model (Egs.13 and 14), but
the ratio of the coefficient for the linear term in Ap to that for the
Ap®? term is much larger than the corresponding ratio for the SP
model. If we use only a single power law exponent to fit the data
for Az and ¢ at large Ap, we find a best fit exponent of 0.8 for
both Az and ¢. Winklemann, et al. 20 recently studied packings
of bubbles and showed that z—z; ~ (p — p;)% with an exponent
o' = 1.0, which is larger than the value we find if we use a single
power-law to fit the data for Az for Ap > 1072,

In Fig. 5 (a) and (b), the data for Az begin to plateau at large
A¢ or Ap, indicating that the packings are reaching confluence
with zeonr = 6 at p = p*, where p* — 1 in the large system limit.
To understand the scaling of z near confluence, we plot z.onf — 2
versus p* — p. For the SP model, we use Eq. 12 to determine p.
We find that the data for z.,n¢ —z versus p* — p for different system
sizes can be collapsed onto a master curve when we scale zeonf — 2z
and p* —p by N as shown in the inset to Fig. 6 (a). However,
as p — p*, (zecont — 2)N does not approach zero for the SP model.
Instead, (zeont —2)N — 2. (zconf — 2)N approaches a finite value
because Eq. 12 does not account for all multiply-counted overlaps
between mutually overlapping pairs of disks (i.e. beyond three
mutually overlapping disks). For the DP model, z.o,f —z verus
p*— p can also be collapsed onto a master curve when both zco,s —
zand p* — p are scaled by N (Fig 6 (b)). Unlike the SP model, for
the DP model we find that z.,,s — z scales as p* — p in the large
system limit over several orders of magnitude in p* — p.

In addition to the contact number and shear modulus, we also
studied the variation of the structure of the void space of jammed
packings as a function of packing fraction p. To do this, for each
jammed packing, we identify all of the void space that is not occu-
pied by particles. We then determine the connected void regions
(i.e. one can reach any part of a connected void region from any
point in the region). The topology of each connected void can be
characterized by the number of edges, or the smallest number of
particles that form a loop on the perimeter of the void region (us-
ing the depth first search algorithm). 43 In Fig. 7 (a), we compare
the probability P,(p) to have a void with / sides as a function of



p for the SP and DP models. Near p;, the SP and DP models are
identical and we find that the distributions P, (p;) are the same for
the two models. In this regime, the probability of 3- and 4-sided
voids are similar (~ 0.4), while the probabilities for 5- and 6-sided
voids are much smaller (~0.18 and ~ 0.02). For p 2 0.88, P;(p) for
the DP model begins to deviate from that for the SP model. Sim-
ilar behavior was found for the deviation in the contact number
Az(p) for p = 0.88. For the DP model, we find an increase in the
probability of 3-sided voids over that for the SP model and a com-
parable decrease in the probability of 4-sided voids relative to the
SP model. For the DP model, we find that P; =1 for p 2 0.97. In
contrast, P; = 1 only in the limit p — 1 for the SP model. Further,
we find that the shape parameter o/ = o/, = 1t/(4\/3 —27) ~ 4.87
of the 3-sided voids for the DP model is independent of p, indi-
cating that the DP model correctly captures the structure of the
Plateau borders that form as p — 1. However, the shape param-
eter of the 3-sided voids varies from &/ =~ 7, to less than 2 as p
increases from p; to 1 for the SP model, which indicates that the
void structure for the SP model differs significantly from that for
jammed packings of foams and emulsions near confluence.

In Fig. 8, we show preliminary studies comparing the results
for jammed packings generated using the DP model to the results
from optical microscopy experiments of quasi-2D compressed
emulsion droplets23. We find that the contact number z versus
p for the DP model closely matches that from the experiments
(Fig. 8 (c)). In addition, we show that the evolution of the shape
factor of the particles with packing fraction above jamming onset
is similar for the DP model and experiments (Fig. 8 (d)). How-
ever, we encourage additional experiments on compressed foams
and emulsions to be performed with packing fraction p > 0.95 to
determine whether the DP model can recapitulate the structural
and mechanical properties of compressed emulsions near conflu-
ence. For example, new experimental studies can test the predic-
tion for the DP model that z¢onr — z scales linearly with 1 — p near

p=1.
4 Discussion and Conclusions

In this article, we investigated the structural and mechanical
properties of jammed packings undergoing isotropic compression
in 2D using the soft particle (SP) model 18:44
formable particle model?® that we developed for bubbles and
emulsions. The SP model has been widely used to characterize
the structural, mechanical, and rheological properties of jammed
particulate systems including granular materials!>, dense col-
loidal suspensions*®, foams!®, and emulsions*. The key dif-
ference between the two models is that in the SP model, the par-
ticles decrease in area as the system is compressed above jam-
ming onset, while the DP model conserves particle area during
compression. Studies that have employed the SP model typically
characterize the properties of jammed packings as a function of
the reduced number density ¢ 13-16:17_ rather than using the true
packing fraction p. In this work, we provide direct comparisons
of the structural and mechanical properties of packings generated
using the SP and DP models as a function of the packing fraction
p.

First, we showed explicitly that the SP and DP models give

and the new de-

0.0 £ e OO0 T
0.85 0.90 0.95 1.00

p

Fig. 7 (a) Probability £, to have a void with [/ sides (I = 3 (red), 4 (green),
5 (pink), and 6 (cyan)) for jammed packings as a function of p for the SP
(symbols) and DP models (lines). For both models, we studied ensem-
bles of 500 jammed packings of N = 64 bidisperse particles. The void
probability is normalized such that ¥, P,(p) = 1. We also show snapshots
of jammed packings using (b) the DP and (c) SP models at p =0.97. The
large (small) particles are outlined in blue (pink). 3- and 4-sided voids are
shaded red and green, respectively. The square boxes with a solid out-
line indicate the main simulation cells. The inset in panel (b) is a close-up
of the region within the small box with a dashed outline.

the same results near jamming onset, where the disks are un-
deformed. In particular, we showed that the probability distri-
bution P(p,;) of jamming onsets p; ~ ¢; are nearly identical for
the SP and DP models with p; &~ 0.842 in the large system limit.
(For the detailed discussion of this point, see the Appendix.) In
addition, we find similar scaling behavior for the excess contact
number z — z; and shear modulus ¢ versus p — p;. Near jamming
onset, for both the SP and DP models, z —z; ~ (p — ps)'* and
& ~ (p —py)° for small systems. 2242 This scaling behavior occurs
for p — py < Ap*, where Ap* ~ N~2. In the large system limit,
2—z7~% ~ (p —ps)°> near jamming onset for both the SP and
DP models.

For packings that are compressed above jamming onset, we
determined the relation between the packing fraction p and re-
duced number density ¢ for the SP model. Using this relation,
we showed that for the SP model Az(Ap) ~ ¥4 (Ap) can be repre-
sented as a sum of power-laws in Ap (not a single power-law),
with Ap%3 and Ap'© as the lowest order terms. The scaling of Az
and ¢ is similar for the DP model, but the ratio of the coefficient
for the linear term in Ap to that for the Ap%> term is much larger
than the corresponding ratio for the SP model. As a result, we
find that z(p) and ¢(p) are larger for the DP model compared to
the SP model for p > 0.88.

In addition, we characterized the void space in jammed pack-
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Fig. 8 (a) An example optical microscopy image of over-compressed quasi-2D oil droplets in water at packing fraction p = 0.91+0.123. The average
droplet size is D ~ 200um. The scale bar in (a) is 200um. (b) Processed image in (a) from which we measured the shape parameter ¥ — 1, contact
number, and local packing fraction of each droplet using surface-voronoi tessellation (green lines). As <7 increases from 1 to 1.08 the color varies from
dark blue to dark red. (c) Contact number z plotted versus p for the DP model (open diamonds) and experiments (filled triangles: emulsions 3 and filled
circles: foams?#). (d) p versus </ — 1 for the DP model (open diamonds). We also include a scatter plot of p versus .«7 — 1 for ~ 150 emulsion droplets

(filled triangles: emulsions23).

ings2%47 as a function of packing fraction for both models.

We showed that the DP model can recapitulate the formation
of Plateau borders as the deformable particles become tightly
packed. The probability to obtain 3-sided voids becomes unity
for p 2 0.97 and the shape factor of the 3-sided voids (& ~ .47,)
is independent of p. In contrast, for the SP model, the proba-
bility of 3-sided voids only becomes unity in the limit p — 1 and
o < ), over the full range of packing fraction. Thus, the SP
model does not capture the topological features of the void space
of packings of compressible bubbles near confluence. We believe
that the results from this article will inspire additional experimen-
tal and theoretical studies of the collective behavior of droplets
and bubbles in emulsions and foams. For example, the DP model
can be extended to include attractive interactions to investigate
the mechanical response of attractive emulsions in both 2D and
3D48. In addition, active forces can be added to each circulo-line
in the DP model to simulate collective motion, such as swarming
and migration, in cell aggregates as well as living tissues.

5 Appendix

In this Appendix, we provide additional calculations to support
the conclusions described in the main text. In Fig. 9, we show
the distribution of the reduced number densities P(¢;) for the
SP model (panel (a)) and the distribution of packing fractions
P(py) for the DP model (panel (b)) at jamming onset using the
isotropic compression protocol discussed in Sec. 2.3. (We also
include the fraction f; of packings with ¢, (or p;) at or below a
given value in the insets to Fig. 9 (a) and (b).) The distributions
for the SP and DP models were obtained using the same initial
random particle positions. At jamming onset ¢; = p;, and thus
the distributions P(¢;) and P(p;) for the SP and DP models are
nearly identical. Similar to previous studies, we also find that the
root-mean-square deviation in the packing fraction at jamming
onset scales as A¢y ~ N9 with 6 ~ 0.55, and ¢; — 0.842 in the
large system limit.

In Fig. 10, we show a series of scaling laws for several physi-
cal quantities and compare the behavior for packings generated

10| Journal Name, [year], [vol.], 1-13

using the SP and DP models. In Fig. 10 (a), we show that
p—¢ ~ (Usp/N)¥, where k = 0.75, for the SP model. The scal-
ing exponent x can be obtained by assuming ¢ — p o< A¢' from
Eq. 11 and using A¢ ~ (Usp/N)°? from Eq. 5.

In Fig. 10 (b), we show Ap = p — p; versus A9 = ¢ — ¢; for
packings generated using the SP model. The dashed line obeys
Eq. 11 with C = 1.2. As discussed in Sec. 3, the relation between
Ap and A¢ only holds when multiply-counted overlaps (i.e. be-
yond pairwise overlaps) are absent. Combining the results from
Fig. 10 (b) and 3 (a), we see that Eq. 11 holds over nearly 10
orders of magnitude in A¢. In Fig. 10 (c), we show the data for
the relative deviation in the area of the particles 1 — (a) /ay versus
p — py from Fig. 3 (b) on logarithmic scales for the SP model. In
contrast to the DP model, the SP model does not conserve parti-
cle area when ovecompressed above jamming onset. We find two
power-law scaling regimes. 1— (a)/ay ~ Ap® with { ~ 1.5 and 2.5
at small and large Ap, respectively.

In Figs. 10 (c) and (d), we characterize the change in particle
shape as the packings are compressed above jamming onset for
the SP and DP models. We show that Ap ~ (&/—1)%, but the
scaling exponent takes on different values in the for small and
large values of & — 1. At small & — 1, @ = 0.66 and = 1.0 for the
SP and DP models, respectively. At large &/ — 1, @ =~ 0.3 for both
the SP and DP models.
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averaged over 500 jammed packings of N = 32 disks generated using SP model. The solid line has slope equal to 0.75. (b) Ap = p — p, plotted versus
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