

Start | Author Index | View Uploaded Presentations | Meeting Information

GSA Annual Meeting in Indianapolis, Indiana, USA - 2018

Paper No. 283-11

Presentation Time: 4:25 PM

LOESS IN THE LODEVE? EXPLORING THE DEPOSITIONAL CHARACTER OF THE PERMIAN SALAGOU FORMATION, LODEVE BASIN (FRANCE)

PFEIFER, Lily S., Geology and Geophysics, University of Oklahoma, Norman, OK 73069, SOREGHAN, Gerilyn S., School of Geology and Geophysics, University of Oklahoma, 100 East Boyd St, Norman, OK 73019, POCHAT, Stephane, Laboratoire de Planetologie et Géodynamiques, University of Nantes, Nantes, 44000, France and VAN DEN DRIESSCHE, Jean, Geosciences, University of Rennes, Rennes, 35042, France

Permocarboniferous strata of basins proximal to the Central Pangaean Mountains in France archive regional paleoequatorial climate during a unique interval in geological history (late Paleozoic Pangaean assembly, ice age collapse, megamonsoon inception). The voluminous (estimated 2 km) succession of exclusively fine-grained redbeds that composes the Permian Salagou Formation (Lodéve Basin, France) has been interpreted as recording either lacustrine or fluvial settings. We present preliminary field data to explore the hypothesis that these deposits record eolian transport, and ultimate deposition as either loess or in a shallow lacustrine environment. Fieldwork includes ~1000 m of section described at dm-scale, and magnetic susceptibility measured at 0.5 m intervals, from sections strategically located in both proximal and distal areas, and from all stratigraphic levels of the unit to assess spatial and temporal variations. These data indicate that the lower and middle Salagou Formation is dominated by internally massive, red mud-siltstone with no evidence of channeling. Up-section, a higher frequency of ripples, rare hummocky cross stratification, and mudcracks record the presence of shallow water, but with no channeling, nor units of grain size exceeding very fine-grained sand. Randomly-oriented slickensides at various localities in the mid-upper Salagou may represent incipient pedogenesis. The lack of evidence for channels and other fluvial features casts doubt on a fluvial interpretation. A lacustrine interpretation is consistent with local evidence of shallow water. However, in the absence of fluvial transport indicators, large volumes of entirely fine-grained material that were delivered to the Lodéve basin call for eolian transport, and thus a loess or shallow lacustrine interpretation. The documentation of voluminous paleoloess in eastern equatorial Pangea during the Permian could reflect the influence of glaciation associated with the Variscan highlands. Together with previous studies that detail Permian loess in western equatorial Pangea, this work impacts our understandingof the global Late Paleozoic climate system and presents a need to reevaluate modeling parameters (e.g. equatorial mountain glaciation, atmospheric dust loading).

Session No. 283

T117. Greenhouse to Icehouse Transition: Global Events of the Devonian, Carboniferous, and Early Permian II Wednesday, 7 November 2018: 1:30 PM-5:30 PM

Room 140 (Indiana Convention Center)

Geological Society of America Abstracts with Programs. Vol. 50, No. 6 doi: 10.1130/abs/2018AM-317628

© Copyright 2018 The Geological Society of America (GSA), all rights reserved. Permission is hereby granted to the author(s) of this abstract to reproduce and distribute it freely, for noncommercial purposes. Permission is hereby granted to any individual scientist to download a single copy of this electronic file and reproduce up to 20 paper copies for noncommercial purposes advancing science and education, including classroom use, providing all reproductions include the complete content shown here, including the author information. All other forms of reproduction and/or transmittal are prohibited without written permission from GSA Copyright Permissions.

Back to: T117. Greenhouse to Icehouse Transition: Global Events of the Devonian, Carboniferous, and Early Permian II

<< Previous Abstract | Next Abstract >>