
1

Cognitive Network Management and Control with
Significantly Reduced State Sensing‡

Arman Rezaee, Student Member, Vincent W.S. Chan, Life Fellow IEEE, Fellow OSA

Claude E. Shannon Communication and Network Group, RLE
Massachusetts Institute of Technology, Cambridge MA, USA

Emails: {armanr, chan}@mit.edu

Abstract—Future networks have to accommodate an increase
of 3-4 orders of magnitude in data rates with heterogeneous
session sizes and potentially stricter time deadline requirements.
The dynamic nature of scheduling of large transactions and the
need for rapid actions by the Network Management and Control
(NMC) system, require timely collection of network state infor-
mation. Rough estimates of the size of detailed network states
suggest a huge burden for network transport and computation
resources. Thus, judicious sampling of network states is necessary
for a cost-effective network management system. In this paper,
we consider an NMC system where sensing and routing decisions
are made with cognitive understanding of network states and
short-term behavior of exogenous offered traffic. We study a
small but realistic example of adaptive monitoring based on
significant sampling techniques. This technique balances the need
for updated state information against the updating cost and
provides an algorithm that yields near optimum performance
with significantly reduced burden of sampling, transport and
computation. We show that our adaptive monitoring system can
reduce the NMC overhead by a factor of 100 in one example.
The spirit of cognitive NMC is to collect network states ONLY
when they can improve the network performance.

I. INTRODUCTION

We are in the midst of a major technological storm that will
change the landscape of networking for years to come. The
introduction and adoption of high-definition (HD) video and a
myriad of new applications that depend on it are the primary
drivers of this transformation. According to Cisco, IP video
traffic will be 82 percent of all IP traffic by 2021, up from 73
percent in 2016 [2], [3]. The same reports forecast live video
to grow 15-fold while virtual reality and augmented reality
traffic will increase 20-fold in the same period.

As it stands, the majority of the global video content is
intended for human consumption. But the advent of cheap and
versatile “Big Data” applications such as facial recognition
softwares and healthcare monitoring systems will tip the scale
in favor of video production for machine consumption. In
fact, machine-to-machine communications required for real-
time applications will soon become the dominant type of data
transfers over wide-area networks.

Consequently, the networking landscape created by this
heterogeneous set of applications and products is no longer

‡These results were presented in part at the 2018 Global Communications
Conference (Globecom) [1].
‡This work is sponsored by NSF NeTS program, Grant No. #6936827 and
the HKUST/MIT programs.

static, or even quasi-static. The input traffic is continuously
varying and can experience abrupt changes. The bursty and
dynamic nature of the traffic generated by these applications
require quick (100ms − 1 s) network adaptation to maintain
quality of service and experience [4]. Unfortunately, current
Network Management and Control (NMC) systems are much
too slow and their operational paradigm does not scale well
with network size and traffic intensity.

To illustrate the efficacy of our cognitive management
approach, we will use an example that primarily focuses on
challenges involved with ‘shortest path’ routing in dynamic
networks. In this context, an NMC system has to monitor the
state of queues throughout the network to decide which path(s)
should be used to connect different origin-destination (OD)
pairs. In practice, various shortest path algorithms (Bellman-
Ford, Dijkstra, etc.) are used to identify the optimal shortest
path. The correctness of these algorithms requires the assump-
tion that after some period of time the system will settle
into its steady state. We refer interested readers to [5] for a
thorough explanation of these issues. With the dynamic nature
of current and future networks, the steady state assumption is
particularly not valid, nonetheless the basic functional unit of
these algorithms can be adapted to address the new challenges.

Shortest path routing algorithms assign a length/weight to
each link of the network; this length is usually a proxy for
traffic congestion on the link but can also incorporate other
factors. Depending on the specific implementation, the length
may depend on the number of packets waiting in the queue,
loading of the output line, or the average packet delay on
the link during a pre-specified amount of time. Neighboring
nodes exchange their estimated shortest distances to all other
nodes periodically and new information will be disseminated
throughout the network after a few rounds of exchanges.

Suppose the routing table for each node contains the
available paths to each destination and the latest estimates
of their lengths, as shown in Table I. Given this, a node
can identify the shortest path to all destinations, but more
importantly it can use the relative difference between the
length of the shortest path and that of other paths to determine
the likelihood that the identity of the shortest path changes
in the near future. Hence, the frequency by which we update
each entry of the routing table can effectively be determined
from this likelihood as well as other pairwise considerations.

2

Table I: Partial routing table maintained by node A

Destination Path Length

Y B → C → D → Y 2
E → F → G→ Y 3

H → I → Y 8

Z J → K → Z 4
L→M → Z 7

N → O → P → Z 9

Thus, as opposed to updating the whole table at a minimum
rate required for all dynamic situations, each entry of the
routing table will be updated only when it can be of significant
value to the optimal operation of the network. It is in this
sense that we refer to our technique as significant sampling.
To illustrate this principle, we will focus primarily on a
simplified model where an OD pair is connected via exactly
two independent paths with time varying lengths/weights.
Within this framework, we develop an adaptive monitoring
system that determines the value of updating the length/weight
of a given path as well as the cost associated with the updating
process. This allows the NMC system to optimally allocate its
resources to collect and disseminate information regarding the
state of network elements according to their importance.

The rest of the paper is organized as follows: Section II
introduces the general stochastic model and establishes the
framework through which the monitoring process is optimized.
Section III-A assumes a Wiener process as the end-to-end
delay process and evaluates the benefits and shortcomings
of this model. Section III-B applies the framework to the
much richer Ornstein-Uhlenbeck process. Section IV extends
the results to general networks. A summary and concluding
remarks are provided in Section V.

II. PROBLEM SETUP – GENERAL MODEL

Suppose that an OD pair is connected via two independent
paths P1 and P2 as illustrated in Figure 1, and denote the
stochastically evolving weight of Pi by Xi(t). 1

D

Figure 1: An OD pair with two independent paths.

Let us use X(t) to denote the stochastic process that
results from subtracting the weights of the two paths, i.e.,
X(t) = X2(t) − X1(t). Clearly, continuous optimal routing
can be achieved if we know whether or not X1(t) < X2(t).
This is equivalent to knowing the sign of X(t) for all t.
Since continuous monitoring of X(t) is far from cost effective,
our aim is to identify a strategy that specifies the best future
updating times based on the last observed value of X(t).

1Xi(t) can be the rate of transmission (messages/s) times the expected
delay/message on Pi, which gives it units of delay/s.

t
t0 t1 tnt2

T1 T2

· · ·

···

tn−1

Tn

X(tn)

τ

X(t)

X(t0)

Figure 2: Illustration of n samples taken during a period τ .

More concretely, consider a sample function of X(t) as
shown in Figure 2. Given X(t0), (i.e., the state of both
elements at time t0), we would like to identify the next
epoch t1 for updating our routing tables. When the value of
the function at t1, i.e. X(t1), is realized, we will use it to
determine the following updating time t2 and so forth. Notice
that Ti’s and X(ti)’s are the fundamental random variables
defined recursively as

Ti = f
(
X(ti−1)

)
and ti = ti−1 + Ti

Between two updating epochs ti−1 and ti, the process
X(t) will evolve according to an underlying stochastic model.
Recall that P1 is the optimal route if X(t) > 0 and P2 is the
optimal route if X(t) < 0. So the communicating OD pair
will experience an excess cost if the process X(t) changes
sign between two sampling epochs and the transmission
route is not adapted. Let us use C[ti−1,ti] to denote the cost
of such errors during [ti−1, ti]. Without loss of generality,
assume X(ti−1) > 0 and suppose that the OD pair uses P1

as the route during [ti−1, ti]. Then the cost of error during
this period is simply the integral of X(t) after the process
experienced a sign change. In other words,

C[ti−1,ti] = −
∫ ti

ti−1

X−(t) dt

where X−(t) is the negative part of the function defined as
X−(t) = (X(t)− |X(t)|)/2.

Figure 3 illustrates this process though a specific example.
Note that X(ti−1) > 0, indicating that at ti−1, P1 is the
shortest path. Furthermore, note that X(t) becomes negative
shortly after ti−1 at which point P1 is no longer the shortest
path. If P1 is used during [ti−1, ti], we will accrue an
excess routing cost of C[ti−1,ti] which corresponds to the red
area depicted in the figure. When the stochastic nature of
the underlying process is known, a distribution is induced
over possible sample paths of X(t), and we can use this
distribution to compute the expected cost of error during this
period, denoted by E

[
C[ti−1,ti]

]
.

3

!

C[ti−1,ti]

ti−1 ti
X(t)

Figure 3: Visual depiction of cost of error, C[ti−1,ti], between
two consecutive sampling epochs.

We shall now introduce the notion of updating cost to
capture the efforts required to collect and disseminate state
information throughout the network so that all routing tables
are up-to-date. Google Maps offers a great example of various
costs associated with such efforts, as the system gathers
congestion information from individual drivers on the road.
The GPS-enabled device will incur a data transmission cost
by using the wireless services, and will drain its battery
as a result of the required computation and communication.
Furthermore, there is a cost associated with reporting the latest
congestion information to all other drivers. In general, the
updating cost may vary over time and can differ for various
network elements, but for simplicity we will use a single figure
of merit, c, to account for the cost. This is a catchall quantity
that should represent the costs associated with collection and
dissemination of the routing information across the whole
network. If we update the routing tables by sampling the
process n times during [0, τ], as shown in Figure 2, then
the expected total cost CTotal resulting from sampling and
unintended errors is

E
[
CTotal

]
=

n∑
i=1

(
c+ E

[
C[ti−1,ti]

])
+ E

[
C[tn,τ]

]
For a given time horizon [0, τ], an optimal offline sampling

strategy will identify the optimal number of samples and their
corresponding epochs to minimize the expected total cost.
Alternatively, we may choose to minimize the cost rate (cost
per unit time) for an infinite time horizon. These possible
approaches can be summarized as

argmin
n,{t1<···<tn≤τ}

E
[
CTotal

]

or argmin
n,{t1<···<tn≤τ}

lim
τ→∞

E
[
CTotal

]
τ

The aforementioned formulations are not as useful in prac-
tice because routing and updating decisions should be made
in real-time. In other words, an NMC is interested in making
routing and sampling decisions for the immediate future and
cannot afford to plan too far into the future. Let us use
C[ti−1,ti](x) to denote the cost of error during [ti−1, ti] given
that X(ti−1) = x.

Then the most informative formulation computes the optimal
updating period T

∗
i as

T
∗
i (x) = argmin

Ti>0

c+ E
[
C[ti−1,ti](x)

]
Ti

Furthermore, if X(t) is Markovian, then the distribution
of its trajectory is only a function of its last observed
value. Hence, for Markov processes E

[
C[ti,ti+τ](x)

]
=

E
[
C[0,τ](x)

]
. Hence, for such processes we can treat every

sampled value as if it had occurred at time zero. Using CT (x)
as a shorthand for C[0,T](x), we can write our optimization as

T
∗
1 (x) = argmin

T>0

c+ E
[
CT (x)

]
T

(1)

This concludes our discussion of the general setting of
the problem and the relevant optimization formulations. The
following section focuses on appropriate models for transient
behavior of congestion and/or delay.

III. DELAY MODELS

Queues constitute one of the basic building blocks of a
communication network and have been extensively studied
for decades [6], [7]. While queuing theory has provided
tremendous insight into the operation of data networks, it
has struggled in providing tractable expressions that deal with
transient behavior of queues (which is of immense importance
to us!). For example, let us consider an M/M/1 queue with
arrival rate λ, and service rate µ, whose state transition
diagram as a Markov process is shown in Figure 4,

0 1 2 · · · j − 1 j j + 1 · · ·
λ λ λ λ

µ µ µ µ

Figure 4: State transition diagram corresponding to the birth-
death process of an M/M/1 queue.

Assuming that the queue is in state i at time 0, then the
probability that it will be in state k at time t is given by [6]:

Pk(t) = e−(λ+µ)t
[

ρ(k−i)/2Ik−i(at)

+ ρ(k−i−1)/2Ik+i+1(at) +

+ (1− ρ)ρk
∞∑

j=k+i+2

ρ−j/2Ij(at)

]

were ρ = λ/µ, a = 2
√
λµ, and Ik is the modified Bessel

function of the first kind defined as,

Ik(x) ,
∞∑
m=0

(x/2)k+2m

(k +m)!m!
k ≥ −1

Referring to this expression, Kleinrock notes:“This last ex-
pression is most disheartening. What it has to say is that an
appropriate model for the simplest interesting queueing system
[M/M/1 queue] leads to an ugly expression for the time-
dependent behavior of its state probabilities” [6, p. 78].

4

Hence, we advocate an approach whereby operational in-
sights can be provided through judiciously chosen alternative
models which lend themselves to easier analysis and can be
insightful as engineering guidelines for the design of future
networks. Desirable transient models of delay in data networks
should have the following characteristics:
• Stability - the stochastic model of delay should be stable

so that linear combination of two or more such processes
will remain in the same family of distributions.

• Stochasticity - capture the rise in uncertainty about state
of the network as more time passes from last observation.

• Simplicity - provide a formulation that is amenable to
analysis and numerical computation.

In selecting a model with these attributes, it is often beneficial
to approximate the delay process with an appropriate diffusion
process. The inherent structure of diffusion processes makes it
easier to avoid some of the combinatorial challenges involved
in the original problem. The following two sections describe
two such models of delay. Section III-A uses a Wiener process
as the building block of the delay model and Section III-B
considers the Ornstein-Uhlenbeck process.

A. Wiener Process

Numerous successful attempts have been made at modeling
queuing delay as a Wiener process. Most notably, it has
been shown that the normalized queue length in heavy traffic
(i.e., as ρ → 1) can be approximated by a one-dimensional
reflected Wiener process, also known as the reflected Brownian
motion [7]–[9]. Modeling the waiting time of customers as
a Wiener process satisfies our modeling criteria because 1)
Wiener process is stable, hence the waiting time of customers
in cascaded series of independent links would itself be a
Wiener process, 2) uncertainty in the realization of a sample
path of a Wiener process grows with time.

We shall define and note a few properties of the Wiener
process and refer the interested reader to [10] for a thorough
investigation of general properties of the Wiener process.

Definition 1. A real valued stochastic process {W (t) : t ≥ 0}
is a Wiener process with a start at x ∈ R if the following hold:
• W (0) = x
• the process has independent increments.
• for all t ≥ 0 and h > 0, the increments W (t+h)−W (t)

are normally distributed with zero mean and variance h.
• the function W (t) is continuous almost surely.

Lemma 1. A Wiener process {W (t) : t ≥ 0} with a start
at 0, has the following probability density function (pdf) and
cumulative distribution function (cdf) respectively,

fW (t)(x) =
1√
2πt

exp

(−x2
2t

)
FW (t)(x) =

1

2

(
1 + erf

(
x√
2t

))
where erf(β) = 2√

π

∫ β
0

e−z
2

dz.

Proof. The results are direct consequences of the definition of
a Wiener process.

Recall that we used X(t) to denote the stochastic process
that results from subtracting the weights of the two paths, i.e.
X(t) = X2(t) −X1(t). If each Xi(t) is approximated as an
independent Wiener process, we can see that X(t) is another
Wiener process with a start at X(0) = X2(0)−X1(0) and a
variance equal to the sum of the variances of the two processes.
Without loss of generality, suppose that X(t) has a variance of
α2t for some α ∈ R, and assume that X(0) = x > 0. This is
equivalent to assuming X(t) = x+ αW (t), where W (t) is a
Wiener process with a start at zero. As before, we will assume
that the OD pair uses P1 as the shortest route until the next
update time at t1. Noting that Wiener process is Markovian
and using CT (x) as a shorthand for C[0,T](x), we can see that
routing through P1 for T seconds will incur the following cost
of error

CT (x) = −
∫ T

0

X−(t) dx = −
∫ T

0

min {X(t), 0} dt

= −
∫ T

0

min {x+ αW (t), 0} dt

Appendix A derives the following closed form expression for
the expected value of this quantity,

E
[
CT (x)

]
=

√
T
(
2Tα2 + x2

)
3α
√
2π

exp

(
− x2

2α2T

)
− erfc

(
x

α
√
2T

)[
xT

2
+

x3

6α2

]

which can be used with Eq. (1), as restated below, to get the
optimal sampling period

T
∗
1 (x) = argmin

T>0

c+ E
[
CT (x)

]
T

Interestingly, the shortest possible sampling period can be
computed in closed form by noting that E

[
CT (x)

]
is strictly

decreasing in x, and thus for any T > 0 the expected cost of
error is minimized at x = 0. Solving the first order optimality
condition gives us

min
x
T

∗
1 (x) = T

∗
1 (0) =

(
18πc2

α2

) 1
3

(2)

This is an important quantity as it constitutes a maximum
updating frequency for all “fixed-period” (i.e. uniform) up-
dating strategies. In other words, if the NMC updates occur
any faster, the cost of updates will be larger than the potential
gains from identifying the optimal route. Furthermore, Eq. (2)
shows that increasing the updating cost c by a factor of γ
reduces the frequency of updates (i.e. 1/T

∗
1) by a factor of

γ2/3; while increasing α has the inverse of that effect. Noting
the complexity of the optimization, let us use a simple first
order method to approximate the optimal updating period T

∗
1 .

5

20 40 60 80 100 120 140
t

-15

-10

-5

5

10

(a) Exact numerical solution using Eq. (3)

20 40 60 80 100 120 140
t

-15

-10

-5

5

10

(b) Approximate solution using Eq. (4)

Figure 5: Sample path of a Wiener process, and associated samples for c = 1.

Furthermore, to simplify our notation, we will assume that
α = 1 in the remainder of this section2,

E
[
CT (x)|α = 1

]
=

√
T
(
2T + x2

)
exp

(
− x2

2T

)
3
√
2π

− erfc

(
x√
2T

)[
xT

2
+
x3

6

]
hence,

∂

∂T

(
c+ E

[
CT (x)

∣∣α = 1
]

T

)
=

1

T 2

(
−c+

√
T
(
T − x2

)
e−

x2

2T

3
√
2π

+
x3

6
erfc

(
x√
2T

))
= 0 (3)

which can be solved numerically to obtain the optimal T
∗
1

for any given x. Appendix B shows that solving Eq. (3) is
approximately equal to solving the following equation for T

x2 = T ln

(
T 3

18πc2

)
(4)

Unfortunately T cannot be written in terms of elementary
functions of x and the above expression is the best (approx-
imate) representation of the relation between the observed
value x and the next sampling time T . Figures 5 depicts a
sample path of X(t) = 1 +W (t) (i.e. X(0) = 1 and α = 1),
and compares the solutions obtained by numerically solving
Eq. (3) to the approximate solution obtained through Eq.(4).
Red vertical lines are drawn to specify the updating epochs as
computed by each equation for a sampling cost of c = 1.

Notice that both solutions are very close to each other, and
in both cases we sample the process more frequently when it
is closer to zero. This is because when X(t) ≈ 0 the delay
on both paths are very similar and any small perturbation can
change the identity of the shortest path. Much more insight

2Parameter α is a scaling parameter and can be set to one without loss of
generality. To see why, suppose that the time-axis has units of hours and let
α = 60. The only relevant property of the Wiener process is that at time t it
should possess a variance of α2t = 3600t. Hence, after 1 hour, the process
has a variance of 3600. What happens if we change the units of the time-axis
to seconds? Well, we need to ensure that after 1 hour the process has the
same variance! Since 1 hour = 3600 sec, we can see that when the process
is observed in units of seconds we can simply take α to be 1. Hence, setting
α = 1 is equivalent to viewing the original process with a rescaled time-axis.

can be gained from Figure 5, but for brevity and to avoid
repetition we’ll postpone this discussion to Section III-B.

B. Ornstein-Uhlenbeck Process

The Wiener process, W (t), discussed in Section III-A lacks
stationarity and rapidly wanders to infinity as evident in the
simulation of 500 sample paths of the Wiener process shown
in Figure 6. In fact, law of iterated logarithms can be used to
show that

lim sup
t→∞

W (t)√
2t ln ln(t)

= 1

lim inf
t→∞

W (t)√
2t ln ln(t)

= −1

While the algorithm described in the previous section can be
readily deployed into real systems, the absence of stationarity
makes it impossible to reason about long-term average behav-
ior of our algorithm. To address this deficiency, we will lever-
age the heavy-traffic results of Halfin and Whitt [9], which
show that when service times are exponentially distributed,
the sequence of appropriately normalized queue lengths will
converge to the Ornstein-Uhlenbeck (OU) process.

0 2000 4000 6000 8000 10000 12000
-300

-200

-100

0

100

200

300

t

Figure 6: Simulation of 500 independent Wiener processes and
the bounds provided by law of iterated logarithms.

6

It is well known that the OU process is the only non-
trivial process that is simultaneously Gaussian, Markov, and
stationary; all of which are ideal for our purposes. OU process
is the continuous time analogue of the discrete time auto-
regressive AR(1) process and satisfies the following stochastic
differential equation:

dX(t) = θ(µ−X(t)) dt+ σ dW (t)

where σ > 0 is the standard deviation of the process and
W (t) denotes a standard Wiener process. Parameter µ is the
long-term mean of the process, and θ > 0 signifies the mean-
reversion speed. Parameter θ may seem obscure at first glance,
and the reader may wonder which network characteristic is
captured by this parameter. To answer this question, note that
many mechanisms are employed to steer the network towards
a desirable stable state. As an example, consider the role
of congestion control in TCP, which regulates the rate of
packet transmission to achieve a high level of link utilization
while maintaining fairness and low delay. The magnitude of θ
roughly captures the strength and speed of such mechanisms
and the behavior of exogenous traffic within the network.

We should note that linear combination of independent OU
processes with the same θ results in another OU process with
the same θ, while variance and long-term mean parameters
would be added in a linear fashion.

Let us suppose that weights of paths P1 and P2 can be
approximated by independent OU processes with the same θ;
then X(t) = X2(t) − X1(t) is another OU process. A full
treatment of the general OU process is possible but due to
length limitations and to simplify our notation we shall focus
on the case where the difference process, X(t), has a long-
term mean of µ = 0. This corresponds to the case where
the long-term mean delays of both paths are similar/equal.
Without loss of generality suppose X(0) = x > 0 and assume
that the OD pair use P1 as the optimal route until the first
update epoch at T . Then the solution to the aforementioned
stochastic differential equation can be written recursively as

X(t) = xe−θt + σ

∫ t

0

e−θ(t−s) dWs

which can be represented (conditioned on X(0) = x) via a
time-scaled Wiener process as

X(t) = xe−θt +
σe−θt√

2θ
W
(
e2θt − 1

)
As a result, the cost of error associated with mis-identifying
the shortest path during this period can be computed as

CT (x) = −
∫ T

0

X−(t) dx = −
∫ T

0

min {X(t), 0} dt

=
x
(
e−θT − 1

)
θ

−
∫ T

0

min

{
σe−θt√

2θ
W
(
e2θt − 1

)
,−xe−θt

}
dt

Appendix C derives the following closed form expression for
the expected value of this quantity,

E
[
CT (x)

]
=

x
(
e−θT − 1

)
θ

+
σ

4θ
√
θπ

∫ e2θT−1

0

√
y

(1 + y)
3
2

exp

(
− θx

2

yσ2

)
dy

+
x

4θ

∫ e2θT−1

0

1

(1 + y)
3
2

erfc

(
−
√
θx
√
yσ

)
dy

It comes as no surprise that E[CT (x)] is the central quantity
that dictates the behavior of the system, yet it presents a
formidable challenge to intuition. Fortunately, E[CT (x)] lends
itself to a piecewise linear approximation that sheds light
on its behavior. Before delving into the piecewise linear ap-
proximation, we shall investigate the shortest sampling period
associated with this process, which occurs when x = 0. Let
us start by evaluating E[CT (x)] when x = 0,

E
[
CT (0)

]
=
σ
(
ln
(

eθT +
√

e2θT −1
)
−
√
1− e−2θT

)
2θ
√
θπ

Despite the relative simplicity of this expression, we cannot
find an analytic solution to the following objective function,

T
∗
1 (0) = argmin

T>0

c+ E
[
CT (0)

]
T

(5)

To obtain the first order optimality condition, let us differen-
tiate the aforementioned expression and expand it as a Taylor
series,

∂

∂T

(
c+ E

[
CT (0)

]
T

)
= − c

T 2
+

σ

3
√
2π
√
T

+
√
O(T)

Setting the sum of the first two terms equal to zero gives us,

T
∗
1 (0) = T

∗
=

(
18πc2

σ2

) 1
3

(6)

Incidentally, this expression is identical to Eq. (2) which
captured the shortest sampling period of a Wiener process.
This should not be surprising because at x = 0, the OU process
is not experiencing any mean reversion and is effectively
indistinguishable from a Wiener process.

The aforementioned result can be used to create a piecewise
linear approximation to E[CT (0)]. We can avoid the need for
an excessive number of linear segments by noting that we are
only interested in the behavior of the E[CT (0)] when T is
close to T

∗
1 (0), and thus the simplest such approximation can

be stated as3

E
[
CT (0)

]
≈


0 for T ∈

[
0, T

∗]
m
(
T − T ∗)

for T > T
∗

where m = ∂E[CT (0)]
∂T

∣∣∣∣
T=T∗
= σ
√

1−e−2θT
∗

2
√
θπ

and T
∗
= T

∗
1 (0).

3We will focus on a 2-segment piecewise linear approximation in this sec-
tion. A thorough development of a 3-segment piecewise linear approximation
is provided in Appendix D.

7

20 40 60 80 100 120 140
t

-6

-4

-2

2

4

6

(a) Numerical solution according to Eq. (7)

20 40 60 80 100 120 140
t

-6

-4

-2

2

4

6

(b) Approximate solution according to Eq. (8)

Figure 7: Sample path of an OU process with σ = 0.5, θ = 0.025, x0 = 1, c = 0.1.

Recall that our goal has been to solve the following general
optimization problem

T
∗
1 (x) = argmin

T>0

c+ E
[
CT (x)

]
T

(7)

we can start by generalizing the linear approximation to
E
[
CT∗ (0)

]
to non-zero values of x. Note that

E
[
CT∗ (x)

]
≈ E

[
CT∗ (0)

]
+ x

(
∂E
[
CT∗ (x)

]
∂x

∣∣∣∣∣
x=0

)
where

∂E
[
CT∗ (x)

]
∂x

∣∣∣∣∣
x=0

=
e−θT

∗
−1

2θ

Note that E[CT (x)] is a non-negative quantity, and is
decreasing in x. As a result, we only need to consider the
effects of x on the non-zero portion of the approximation, and
find its corresponding interception point with the horizontal
axis. Putting it all together we have:

E
[
CT (x)

]
≈

 0 for T ∈ [0, f(x)]

m
(
T − f(x)

)
for T > f(x)

where f(x) = T
∗
+ 1−e−θT

∗

√
1−e−2θT

∗

√
π

σ
√
θ
x.

This approximation shows that the initial routing decision
will remain correct for approximately f(x) seconds;
consequently the expected cost of error during this period is
approximately 0. As we pass the threshold of f(x) seconds,
it becomes likely that the originally selected path is no longer
optimal and routing erroneously through it will incur a cost
of m units per second. Continuing with our approximation,

c+ E
[
CT (x)

]
T

≈


c

T
for T ∈ [0, f(x)]

m+
c−mf(x)

T
for T > f(x)

The approximate cost rate function shows that if the update
epoch T occurs at or before f(x), we will only incur the
updating cost c, amounting to a cost rate of c/T . However, if
the updating epoch occurs after f(x), then the cost includes the
updating cost c, as well as the cost of error which accrues at
a rate of m units per second. Mathematically speaking, when
T ∈ [0, f(x)], the objective function is decreasing with T and
reaches its minimum at T = f(x). On the other hand, when
T > f(x), an increase or decrease in the objective function
depends on the sign of c−mf(x). If this expression is greater
than zero, it will reach its infimum at infinity; otherwise the
minimum will occur at T = f(x). Putting it all together we
have

argmin
T>0

c+ E
[
CT (x)

]
T

≈

 f(x) if c < mf(x)

∞ else

This gives us a clear description of the approximate al-
gorithm: if the cost of updating routing information is small
enough, i.e., if c < mf(x), then we should update the routing
tables by sampling the process at T = f(x). Otherwise, the
cost of updating is too large and we should continue our
previous routing decisions without any new samples.

As a result, if we constrain ourselves to cases were the
updating cost c < mf(x), we get a simple expression for the
time until the next updating epoch, T , as a function of the last
observed value of the process, x, namely

T
∗
1 (x) = T

∗
+

1− e−θT
∗√

1− e−2θT
∗

√
π

σ
√
θ
x (8)

Figures 7 depicts a sample path of an OU process with
σ = 0.5, θ = 0.025 and an initial value of X(0) = 1,
and compares the solutions obtained by numerically solving
Eq. (7) to the approximate solution of Eq. (8). Red vertical
lines are drawn to specify the updating epochs as suggested
by our algorithm and the red dots denote the sampled values
of the function. It should be noted that our approximate
algorithm closely follows the exact numerical solution and is
a good candidate for implementation purposes because of its
significantly reduced complexity. Notice that when the process
is far from zero, indicating that the delay of one of the paths
is significantly less than the other, we do not need to sample

8

their weights frequently. This matches our intuition because in
this case it is unlikely for the shorter/better path to get worse
than the second path in a short period of time. On the other
hand, when the process is close to zero, indicating that the
weight of both paths are very similar, we require more frequent
samples to track whether or not the process has changed its
sign. The varying frequency of updates is revealed via the
changing density of the vertical red lines in the figure.

We should additionally note that the shortest updating
period occurs when the two paths have identical weights,
i.e., x = 0. This corresponds to an updating period of
T

∗
1 (0) =

(
18πc2/σ2

)1/3
. Comparing our adaptive updating

method to a uniform one that samples at this rate, we see
a gain of

G =
E
[
T

∗
1 (x)

]
T

∗
1 (0)

=

∫∞
0
T

∗
1 (x)f|X(t)|(x) dx

T
∗
1 (0)

where f|X(t)|(x) denotes the pdf of the (one-sided) OU
process. Recalling that the OU process is Gaussian we have

f|X(t)|(x) = 2

√
θ

πσ2
exp

(
−θx

2

σ2

)
for x ≥ 0

After some algebra we get

G = 1 +
1

T ∗
1− e−θT

∗√
1− e−2θT

∗

1

θ
√
θ

(9)

≈ 1 +
1

θ

(σ
c

)1/3(1

144π

)1/6

where the approximation is accurate when θT
∗

is small.
Note that the gain is inversely proportional to θ, and

as such it improves unboundedly as θ goes to zero. This
is due to the fact that θ represents the strength of mean-
reversion for this process (and is inversely proportional to
the coherence time of the process). As a result, when θ is
small the process is not strongly attracted to its long-term
mean, which significantly reduces the chances of crossing
the horizontal axis. For processes with small θ, our adaptive
algorithm will automatically adopt a lower sampling rate
resulting in a significant reduction in sampling and updating
costs. This makes sense since processes with long coherence
time are very predictable and do not require much sampling.
The gain will also increase, though at a lower rate, when
σ increases, which amplifies the wandering behavior of the
process. Figure 8 depicts the gain as computed by Eq. (9),
and shows one example where the gain is as high as 100.

IV. GENERALIZATIONS TO LARGE NETWORKS

Our analysis has so far focused on a single OD pair with
two independent paths. Fortunately, the 2-path case can be
used as a building block to address more general cases where
the OD pair are connected via n paths. The key to this
generalization is to view the weights associated with these n
paths, i.e. {X1(t), . . . , Xn(t)}, as n(n−1)/2 pairs of weights,
i.e. {Xi(t), Xj(t)} i,j∈[1,...,n]

i<j

, and then apply our sampling

algorithm to each pair.

0.01 0.05 0.1 0.5 1 5

1

5

10

50

100

G
a
in

= 0.5

= 5

Figure 8: Gain of our adaptive sampling strategy (c = 1).

As an example, let us consider the case when we have 3
paths between the source and destination, whose weights are
denoted by {X1(t), X2(t), X3(t)}. We can apply the sampling
algorithm described in previous sections to the following three
pairs: {X1(t), X2(t)}, {X1(t), X3(t)}, and {X2(t), X3(t)}.
Note that each pair can be treated independently and the
sampling algorithm can identify the shortest path in each pair.
Clearly, the network management and control system can
identify the global shortest path as a byproduct of identifying
the shortest-path within each pair.

Note that the aforementioned approach will have to be
applied to O(n2) pairs. This can be reduced to O(n) pairs
by realizing that we are not interested in perfect ordering
of these weights and are only interested in identifying the
shortest one! To see how, let us reconsider the case with
3 paths connecting the source to the destination. Suppose
that we know the length of all three paths at time t = 0.
In this case, we can correctly identify the shortest path
between the origin and the destination at time zero. Let us
denote them in increasing order by {X1(t), X2(t), X3(t)},
i.e. X1(t) is the shortest path followed by X2(t) and X3(t)
respectively. We can now compare the length of each path to
that of the shortest path! This can be achieved by considering
the following “n − 1 = 2” pairs: {X1(t), X2(t)} and
{X1(t), X3(t)}, and applying our sampling algorithm to each
pair. Not surprisingly, our pairwise sampling algorithm will
be able to determine when X1(t) is no longer the shortest path.

Clearly, this approach can be extended to the case where a
OD pair is connected via n paths. If X1(t) is the shortest path
at time zero, we can consider the following n − 1 pairs of
paths: {X1(t), Xj(t)}j 6=1 and apply our sampling algorithm
to each pair to identify the optimal sampling rate.

To see the operation of such a system within the context of
routing tables, let us augment the routing table of I with an
additional column to track the variance of delay on each path,
as shown in Table II.

9

Table II: Partial routing table maintained by node A

Destination Path Length Variance

Y B → C → D → Y 2 4
E → F → G→ Y 3 5

H → I → Y 8 1

Z J → K → Z 4 2
L→M → Z 7 4

N → O → P → Z 9 7

Given the routing table in Table II, node A can query nodes
B and E, which are the first hops on the two shortest paths to
node Y , about their respective distances to node Y according
to our sampling formula

T1(x) = T
∗
+

1− e−θT
∗√

1− e−2θT
∗

√
π

σ
√
θ
x, T

∗
=

(
18πc2

σ2

) 1
3

where x = 3 − 2 = 1, σ =
√
4 + 5 = 3, and θ is a global

parameter that depends on network protocols and network size.
The same procedure can be used to compute the updating time
for all other paths. When a link is shared between multiple OD
pairs, the algorithm simply picks the smallest sampling time
from those computed for all OD pairs.

Not only is the proposed algorithm simple to understand and
implement, it also addresses an often-overlooked byproduct of
traditional routing protocols. It was shown in [11] that routing
updates can inadvertently become synchronized, causing insta-
bility as well as untimely and unmanageable bursts of traffic.
To address such issues, a whole host of ad-hoc randomization
procedures have been incorporated into commercial routers.
In contrast, our algorithm requires each node to independently
measure the variance of delay on each of its outgoing links.
Given the unique geographical location of each node within the
network and expected difference in their measurements, it is
unlikely for the routing updates to synchronize, thus avoiding
the need for explicit randomization procedures.

V. CONCLUSION

In this paper, we introduced a new algorithm that allows
us to capture the tradeoff between monitoring and optimal
operation of a network. We introduced the concept of sam-
pling/updating cost to capture the cost associated with the
collection and dissemination of routing information within a
network. We further studied two stochastic models of delay,
namely the Wiener process and the Ornstein-Uhlenbeck pro-
cess and showed that we can dynamically adjust the sampling
times of each link based on their instantaneous significance
to network management. The gain (as reduction in number of
samples) over the traditional uniform sampling was as large as
100 in one example. We concluded our remarks by extending
our notions to general networks and suggest that a network
can be operated in a decentralized fashion at high performance
using significant sampling to report and update its network
states, allowing the NMC system to be scalable. The essential
spirit of the cognitive NMC is that it collects network states
ONLY when they matter to the network performance.

APPENDIX A
COMPUTING E

[
CT (x)

]
FOR A WIENER PROCESS

Recall that

CT (x) = −
∫ T

0

X−(t) dx = −
∫ T

0

min {X(t), 0} dt

= −
∫ T

0

min {x+ αW (t), 0} dt

= −
∫ T

0

x+min {αW (t),−x} dt

= −
∫ T

0

x+ αmin

{
W (t),

−x
α

}
dt

= −xT − α
∫ T

0

min

{
W (t),

−x
α

}
dt

with an expected value of

E
[
CT (x)

]
= −xT − α

∫ T

0

E
[
min

{
W (t),

−x
α

}]
dt

Since x
α is a constant and is independent of W (t), we can

compute the distribution of the minimum as

Pr

{
min

{
W (t),

−x
α

}
≤ y
}

=

{
FW (t)(y) for y < −x

α
1 for y ≥ −xα

Hence,

E
[
min

{
W (t),

−x
α

}]
=

∫ −x
α

−∞
yf

W (t)
(y) dy

+
−x
α
Pr

{
W (t) >

−x
α

}
=

∫ −x
α

−∞

y√
2πt

exp

(−y2
2t

)
dy

− x

α

[
1− FW (t)

(−x
α

)]

= −
√
t√
2π

exp

(
− x2

2tα2

)
− x

2α

[
1 + erf

(
x

α
√
2t

)]
Putting it all together we have

E
[
CT (x)

]
= −xT +

α√
2π

∫ T

0

√
t exp

(
− x2

2tα2

)
dt

+
x

2

∫ T

0

1 + erf

(
x

α
√
2t

)
dt

=

√
T
(
2Tα2 + x2

)
3α
√
2π

exp

(
− x2

2α2T

)
− erfc

(
x

α
√
2T

)[
xT

2
+

x3

6α2

]

10

APPENDIX B
APPROXIMATION TO T

∗
1 (x) FOR A WIENER PROCESS

We shall start by proving the following lemma:

Lemma 2. For any β > 0, we have the following bound on
the complementary error function(

1− 1
2β2

)
e−β

2

√
πβ

< erfc (β) <
e−β

2

√
πβ

Proof. The following proof is based on a similar result ob-
tained in [12, p. 83]. For β > 0, a useful approximation
to the complementary error function can be obtained using
integration by parts:

erfc(β) =
2√
π

∫ ∞
β

exp
(
−z2

)
dz

=
2√
π

∫ ∞
β

1

z

(
z exp

(
−z2

))
dz

=
2√
π

(−1
2z

exp
(
−z2

) ∣∣∣∞
β

)
− 2√

π

(∫ ∞
β

1

2z2
exp

(
−z2

)
dz

)
=

1√
πβ

exp
(
−β2

)
− 1√

π

∫ ∞
β

1

z2
exp

(
−z2

)
dz

Note that:

0 <

∫ ∞
β

1

z2
exp
(
−z2

)
dz <

1

β3

∫ ∞
β

z exp
(
−z2

)
dz

=
1

2β3
exp

(
−β2

)
which gives us the following bounds,(

1− 1
2β2

)
e−β

2

√
πβ

< erfc (β) <
e−β

2

√
πβ

Let us recall the functional part of Eq. (3) as shown below,

−c+
√
T
(
T − x2

)
e−

x2

2T

3
√
2π

+
x3

6
erfc

(
x√
2T

)
= 0

which can be rearranged as

2
√
T
(
T − x2

)
e−

x2

2T +
√
2πx3erfc

(
x√
2T

)
= 6
√
2πc (10)

letting β = x√
2T

and applying the result of Lemma 2 we get,

√
2T
(
1− T

x2

)
e−

x2

2T

x
√
π

< erfc

(
x√
2T

)
<

√
2Te−

x2

2T

x
√
π

rearranging the terms of the inequality gives us

2
√
T

(
1− T

x2

)
e−

x2

2T <
√
2πx erfc

(
x√
2T

)
< 2
√
Te−

x2

2T

It is clear that as T
x2 → 0, the expression converges to

the stated upper bound. Let us use the upper bound as an
approximation such that:

√
2πx erfc

(
x√
2T

)
≈ 2
√
T exp

(
− x

2

2T

)

substituting this approximation in Eq. (10),

2
√
T
(
T − x2

)
e−

x2

2T + x22
√
T exp

(
− x

2

2T

)
= 6
√
2πc

where terms with x2 coefficients will cancel to give us,

T
3
2 e−

x2

2T = 3
√
2πc

Unfortunately T cannot be written in terms of elementary
functions of x, and by rearranging the terms we obtain the
following results:

x2 = T ln

(
T 3

18πc2

)
APPENDIX C

COMPUTING E
[
CT (x)

]
FOR A ZERO-MEAN OU PROCESS

Recall that

CT (x) = −
∫ T

0

X−(t) dx = −
∫ T

0

min {X(t), 0} dt

= −
∫ T

0

min

{
xe−θt +

σe−θt√
2θ

W
(

e2θt − 1
)
, 0

}
dt

= −
∫ T

0

xe−θt +min

{
σe−θt√

2θ
W
(

e2θt − 1
)
,−xe−θt

}
dt

= −
∫ T

0

xe−θt dt

−
∫ T

0

min

{
σe−θt√

2θ
W
(

e2θt − 1
)
,−xe−θt

}
dt

=
x
(
e−θT − 1

)
θ

−
∫ T

0

min

{
σe−θt√

2θ
W
(

e2θt − 1
)
,−xe−θt

}
dt

and

−
∫ T

0

min

{
σe−θt√

2θ
W
(

e2θt − 1
)
,−xe−θt

}
dt

= −
∫ T

0

σe−θt√
2θ

min

{
W
(

e2θt − 1
)
,

√
2θ

σ
eθt
(
−xe−θt

)}
dt(11)

= −
∫ T

0

σe−θt√
2θ

min

{
W
(

e2θt − 1
)
,
−x
√
2θ

σ

}
dt

=
−σ√
2θ

∫ T

0

e−θtmin

{
W
(

e2θt − 1
)
,
−x
√
2θ

σ

}
dt

=
−σ

(2θ)
3
2

∫ e2θT−1

0

1

(1 + y)
3
2

min

{
W (y),

−x
√
2θ

σ

}
dy (12)

=
−σ

(2θ)
3
2

∫ e2θT−1

0

min {W (y), h}
(1 + y)

3
2

dy (13)

where (11) is possible because θ > 0, and σ > 0, and we
know that min(A,B) = 1

α min(αA,αB) for α > 0 (in our
scenario, α =

√
2θ
σ eθt). Equation (12) is the result of a simple

change of variable for y = e2θt − 1, and (13) simplifies the
notation by defining h = −x

√
2θ/σ. Hence,

E
[
CT (x)

]
=

x
(
e−θT − 1

)
θ

− σ

(2θ)
3
2

∫ e2θT−1

0

E [min {W (y), h}]
(1 + y)

3
2

dy

11

Using the same process used in Appendix A to compute the
expectation, we obtain

E
[
min

{
W (y), h

}]
= −

√
y√
2π

exp

(
−h

2

2y

)
+ h

1

2

[
1− erf

(
h√
2y

)]
= −

√
y√
2π

exp

(
−h

2

2y

)
+

h

2
erfc

(
h√
2y

)
which simplifies the expected cost of error to

E
[
CT (x)

]
=

x
(
e−θT − 1

)
θ

+
σ

√
2π(2θ)

3
2

∫ e2θT−1

0

√
y

(1 + y)
3
2

exp

(
−h

2

2y

)
dy

− σ

2(2θ)
3
2

∫ e2θT−1

0

h

(1 + y)
3
2

erfc

(
h√
2y

)
dy

=
x
(
e−θT − 1

)
θ

+
σ

4θ
√
θπ

∫ e2θT−1

0

√
y

(1 + y)
3
2

exp

(
− θx

2

yσ2

)
dy

+
x

4θ

∫ e2θT−1

0

1

(1 + y)
3
2

erfc

(
−
√
θx
√
yσ

)
dy

APPENDIX D
PIECEWISE LINEAR APPROXIMATION TO E

[
CT (0)

]
FOR AN

OU PROCESS

Recall that

E
[
CT (x)

]
=

x
(
e−θT − 1

)
θ

+
σ

4θ
√
θπ

∫ e2θT−1

0

√
y

(1 + y)
3
2

exp

(
− θx

2

yσ2

)
dy

+
x

4θ

∫ e2θT−1

0

1

(1 + y)
3
2

erfc

(
−
√
θx√
yσ

)
dy

and thus,

E
[
CT (0)

]
=
σ
(
ln
(√

e2θT − 1 + eθT
)
−
√
1− e−2θT

)
2θ
√
θπ

We shall approximate E
[
CT (0)

]
via 3 linear segments. The

first segment should approximate the function when T ≈ 0, the
third section should approximate the function when T →∞,
and the middle section should connect the aforementioned two
segments in a reasonable fashion. Let us start by computing
the derivative of E

[
CT (0)

]
with respect to T,

∂E[CT (0)]
∂T

=
σ

2θ
√
θπ

∂

∂T

(
ln
(√

e2θT − 1 + eθT
))

− σ

2θ
√
θπ

∂

∂T

(√
1− e−2θT

)

=
σ

2θ
√
θπ

 2θe2θT

2
√

e2θT−1
+ θeθT

√
e2θT − 1 + eθT

− 2θe−2θT

2
√
1− e−2θT


=

σ

2
√
θπ

 e2θT√
e2θT−1

+ eθT

√
e2θT − 1 + eθT

− e−2θT

√
1− e−2θT


=

σ

2
√
θπ

(
1√

1− e−2θT
− e−2θT

√
1− e−2θT

)
=

σ
√
1− e−2θT

2
√
πθ

Notice that

∂E[CT (0)]
∂T

∣∣∣∣
T=0

= 0

lim
T→∞

∂E[CT (0)]
∂T

= lim
T→∞

σ
√
1− e−2θT
2
√
πθ

=
σ

2
√
πθ

Hence, the first segment of the approximation will be a
horizontal line (i.e. with slope of 0) and the third segment
will have a slope equal to σ

2
√
πθ

. The slope of the third
segment signifies that the long-term growth rate of E[CT (0)]
is equal to σ

2
√
πθ

. In fact, since the process is stationary,
this limit does not depend on the last observed value, and
is also valid for E[CT (x)]. Stated another way, if we do not
sample the process, in the long run, it will incur σ

2
√
πθ

units of
additional cost per unit time as a result of misidentifying the
shortest path. Consequently, the segment of our approximation
corresponding to the long-term behavior of E[CT (0)] should
have a slope of σ

2
√
πθ

. Computing the algebraic expression for
the third segment of the approximation can be done by,

lim
T→∞

E
[
CT (0)

]
=

σ

2θ
√
θπ

lim
T→∞

ln
(√

e2θT − 1 + eθT
)

− σ

2θ
√
θπ

lim
T→∞

√
1− e−2θT

=
σ

2
√
θπ

(
T − 1− ln(2)

θ

)

There are many ways to choose the middle segment. One
reasonable way is to choose it so that its intersection
with the first segment coincides with the solution
to Eq. (6), i.e. it will intersect the first segment at

T
∗
1 (0) = T

∗
=
(

18πc2

σ2

) 1
3

. Furthermore, we can choose
the second segment such that it will have a slope equal to the
slope of E

[
CT (0)

]
at T

∗
. Using m1 to denote this slope, we

have m1 = ∂E[CT (0)]
∂T

∣∣∣∣
T=T∗
= σ
√

1−e−2θT
∗

2
√
θπ

and T
∗
= T

∗
1 (0).

Putting all of this together, and letting L(0, T) denote our
3-segment piecewise linear approximation to E[CT (0)], we get

12

Figure 9: A 3-segment piecewise linear approximation to

E[CT (0)].

L(0, T) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

0 for T ∈ [
0, T

∗]
m1

(
T − T

∗)
for T ∈ [

T
∗
, T

∗∗]

m2

(
T − 1− ln(2)

θ

)
for T > T

∗∗

where

m1 =
σ
√

1− 2e−2θT∗

2
√
θπ

, m2 =
σ

2
√
θπ

T
∗∗

=
−T ∗

√
1− e−2θT∗ + 1−ln(2)

θ

1−
√
1− e−2θT∗

Figure 9 depicts E[CT (0)] as well as our 3-segment piece-

wise linear approximation, L(0, T), for σ = 0.5, and θ = 0.02.

REFERENCES

[1] A. Rezaee and V. W. Chan, “Cognitive network management and control
with significantly reduced state sensing,” in Global Telecommunications
Conference (GLOBECOM 2018), 2018 IEEE. IEEE, 2018, pp. 1–6.

[2] “The zettabyte era: Trends and analysis,” June 2017. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/vni-hyperconnectivity-wp.html

[3] “Cisco vni: Forecast and methodology, 2016-2021,” June 2017. [Online].
Available: https://www.cisco.com/c/en/us/solutions/collateral/service-
provider/visual-networking-index-vni/complete-white-paper-c11-
481360.html

[4] V. W. Chan and E. Jang, “Cognitive all-optical fiber network architec-
ture,” in Transparent Optical Networks (ICTON), 2017 19th Interna-
tional Conference on. IEEE, 2017, pp. 1–4.

[5] D. Bertsekas and R. Gallager, Data Networks (Second Edition.). Upper
Saddle River, NJ, USA: Prentice-Hall, Inc., 1992.

[6] L. Kleinrock, Queueing Systems Volume I: Theory. New York: John
Wiley & Sons, 1975, vol. 1.

[7] ——, Queueing Systems Volume II: Computer Applications. New York:
John Wiley & Sons, 1976, vol. 2.

[8] J. F. C. Kingman, “The single server queue in heavy traffic,” Mathe-
matical Proceedings of the Cambridge Philosophical Society, vol. 57,
no. 4, pp. 902–904, 1961.

[9] S. Halfin and W. Whitt, “Heavy-traffic limits for queues with many
exponential servers,” Operations research, vol. 29, no. 3, 1981.

[10] P. Mörters and Y. Peres, Brownian motion. Cambridge University Press,
2010.

[11] S. Floyd and V. Jacobson, “The synchronization of periodic routing
messages,” IEEE/ACM transactions on networking, vol. 2, no. 2, pp.
122–136, 1994.

[12] J. M. Wozencraft and I. M. Jacobs, Principles of communication
engineering. New York, Wiley [1965], 1965.

Arman Rezaee is a Ph.D. candidate in Electrical
Engineering and Computer Science at MIT, and a
member of the Claude E. Shannon Communication
and Network Group at the Research Laboratory
of Electronics (RLE) of MIT. He has received a
M.S. degree in Electrical Engineering and Computer
Science in 2011 from MIT, and a B.S. degree in
Electrical Engineering in 2009 from Arizona State
University (ASU). His research interests span vari-
ous aspects of cognitive network management and
control systems. His recent works leverage tech-

niques from deep reinforcement learning to bridge the gap between theory
and practice of network management and control.

Vincent W.S. Chan the Joan and Irwin Jacobs Pro-
fessor of EECS, MIT, received his BS(71), MS(71),
EE(72), and Ph.D.(74) degrees in EE all from MIT.
From 1974 to 1977, he was an assistant professor,
EE, at Cornell University. He joined MIT Lincoln
Laboratory in 1977 and had been Division Head
of the Communications and Information Technol-
ogy Division until becoming the Director of the
Laboratory for Information and Decision Systems
(1999-2007). He is currently a member of the Claude
E. Shannon Communication and Network Group at

the Research Laboratory of Electronics of MIT. In July 1983, he initiated
the Laser Intersatellite Transmission Experiment Program and in 1997, the
follow-on GeoLITE Program. In 1989, he formed the All-Optical-Network
Consortium among MIT, AT&T and DEC. He also formed and served as PI
the Next Generation Internet Consortium, ONRAMP among AT&T, Cabletron,
MIT, Nortel and JDS, and a Satellite Networking Research Consortium
formed between MIT, Motorola, Teledesic and Globalstar. He has served in
many US/non-US government advisory boards/committees and the Board of
Governors of the Communication Society including VP of Publications. He
also has been active with several start-ups and was a director of a Fortune-
500 company and chaired its technical advisory board. He is a Member of the
Corporation of Draper Laboratory and is a member of Eta-Kappa-Nu, Tau-
Beta-Pi and Sigma-Xi, and the Fellow of the IEEE and the Optical Society
of America. He is currently the Chair of the Strategic Planning Committee
and the President Elect of the IEEE Communication Society. Throughout
his career, Professor Chan has spent his research focus on communication
and networks, particularly on free space and fiber optical communication
and networks and satellite communications. His work has led the way to a
successful laser communication demonstration in space and early deployment
of WDM optical networks. His recent research emphasis is on algorithmically-
optimized heterogeneous network architectures with stringent performance
demands.

