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Abstract
Preterm birth is an important cause of perinatal brain injury 
(PBI). Neurological injury in extremely preterm infants often 
begins in utero with chorioamnionitis (CHORIO) or inflam-
mation/infection of the placenta and concomitant placental 
insufficiency. Studies in humans have shown dysregulated 
inflammatory signaling throughout the placental-fetal brain 
axis and altered peripheral immune responses in children 
born preterm with cerebral palsy (CP). We hypothesized that 
peripheral immune responses would be altered in our well-
established rat model of CP. Specifically, we proposed that 
isolated peripheral blood mononuclear cells (PBMCs) would 
be hyperresponsive to a second hit of inflammation through-
out an extended postnatal time course. Pregnant Sprague-
Dawley dams underwent a laparotomy on embryonic day 18 
(E18) with occlusion of the uterine arteries (for 60 min) fol-
lowed by intra-amniotic injection of lipopolysaccharide (LPS, 

4 μg/sac) to induce injury in utero. Shams underwent lapa-
rotomy only, with equivalent duration of anesthesia. Lapa-
rotomies were then closed, and the rat pups were born at 
E22. PBMCs were isolated from pups on postnatal day 7 (P7) 
and P21, and subsequently stimulated in vitro with LPS for 3 
or 24 h. A secreted inflammatory profile analysis of condi-
tioned media was performed using multiplex electrochemi-
luminescent immunoassays, and the composition of inflam-
matory cells was assayed with flow cytometry (FC). Results 
indicate that CHORIO PBMCs challenged with LPS are hyper-
reactive and secrete significantly more tumor necrosis factor 
α (TNFα) and C-X-C chemokine ligand 1 at P7. FC confirmed 
increased intracellular TNFα in CHORIO pups at P7 following 
LPS stimulation, in addition to increased numbers of CD11b/c 
immunopositive myeloid cells. Notably, TNFα secretion was 
sustained until P21, with increased interleukin 6, concomi-
tant with increased expression of integrin β1, suggesting 
both sustained peripheral immune hyperreactivity and a 
heightened activation state. Taken together, these data in-
dicate that in utero injury primes the immune system and 
augments enhanced inflammatory signaling. The insidious 
effects of primed peripheral immune cells may compound 
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PBI secondary to CHORIO and/or placental insufficiency, and 
thereby render the brain susceptible to future chronic neu-
rological disease. Further understanding of inflammatory 
mechanisms in PBI may yield clinically important biomarkers 
and facilitate individualized repair strategies and treatments.

© 2019 S. Karger AG, Basel

Introduction

In the USA and worldwide, prematurity is a major 
cause of infant mortality and long-term disability in chil-
dren [1]. Survivors of very preterm birth can have numer-
ous neurological disorders and cognitive impairment,  
including cerebral palsy (CP), epilepsy, intellectual dis-
ability, impaired sensory processing, and attentional dis-
orders [2–4]. Epidemiological, clinical, and preclinical 
studies support a placental-fetal brain axis in neurological 
development, with alterations or disruptions in this axis 
leading to brain injury [2, 5–7]. Chorioamnionitis (CHO-
RIO) is the most common abnormality found in placentas 
from very preterm infants and a principle cause of pre-
term birth [8–11]. Defined by inflammation and hypoxia-
ischemia (HI), CHORIO disrupts the maternal-placental 
interface and directly impacts the fetal microenvironment 
[12, 13]. It is well established that injuries during these 
critical periods of development have long-term effects on 
growth, metabolism, cognitive function, motor perfor-
mance, and inflammatory response [5, 6, 12, 14–16].

Changes in the intrauterine microenvironment, and 
subsequent fetal and neonatal events, impact develop-
ment and life-long susceptibility to illness. Indeed, envi-
ronmental stressors can negatively affect the develop-
ment of fundamental physiological processes, including 
those of the immune and central nervous systems. CHO-
RIO is a significant risk factor for CP in term, near-term, 
and preterm infants [8, 17–22]. Perinatal inflammatory 
responses have been implicated in the pathophysiology of 
CP [14, 23, 24]. A fetal inflammatory response syndrome 
(FIRS), the fetal equivalent of systemic inflammatory re-
sponse syndrome (SIRS), is frequently present in neo-
nates born as a result of spontaneous preterm labor sec-
ondary to CHORIO [25–28].

Like the central nervous system, the fetal immune sys-
tem develops and matures over the course of gestation 
[26]. Similar to neural cells, fetal and neonatal leukocytes 
are uniquely responsive to their environment [26, 29]. In-
deed, delineation of leukocyte responses following injury 
may serve as an important clinical and scientific biomark-
er. Minimizing the impact of perinatal brain injury (PBI) 

due to preterm birth is dependent on the successful iden-
tification of critical pathways essential to the develop-
mental programs amongst neural-immune cells in the 
placental-fetal brain axis [30]. While the interactions be-
tween innate and adaptive immune responses following 
PBI are relatively unknown, human studies have shown 
that preterm children with CP have altered inflammatory 
responses at school age [14]. Specifically, peripheral blood 
mononuclear cells (PBMCs) from children with CP are 
hyperresponsive to lipopolysaccharide (LPS) stimulation 
compared to age-matched typically developing preterm 
controls. Previously, we found a robust FIRS in our rat 
model of CP secondary to placental inflammation and 
insufficiency, along with lasting cognitive and motor im-
pairment, and significant alterations in the placental-fetal 
brain axis [25, 31–33]. Thus, given that developmental 
plasticity is altered by perinatal injury and may have long-
term effects on the inflammatory responses of circulating 
leukocytes, we hypothesized that peripheral immune re-
sponses would be altered through a prolonged period of 
development in our rat model of CP.

Materials and Methods

Animals
All procedures were performed consistent with National Re-

search Council guidelines, and with the approval of the Institu-
tional Animal Care and Use Committee at the University of New 
Mexico Health Sciences Center. ARRIVE guidelines were followed 
[34].

Prenatal Insult
Pregnant Sprague-Dawley rat dams underwent abdominal lap-

arotomy on embryonic day 18 (E18), consistent with previous re-
ports [25, 31–33, 35–38]. To induce prenatal injury similar to 
CHORIO, bilateral uterine arteries were transiently occluded for 
60 min to induce placental insufficiency, followed by an intra-am-
niotic injection of LPS 0111:B4 (4 μg/sac; Sigma-Aldrich, St. Louis, 
MO, USA) as previously published [25, 30–33]. Laparotomies 
were closed, and the rat pups were born at term on E22. Sham dams 
underwent laparotomy with equivalent exposure to anesthesia. 
Male and female pups were used and randomly assigned to all out-
come measures, and they represented the offspring from at least 4 
different dams per condition. Previously, we published the placen-
tal pathology with robust neutrophilia and cytokine levels consis-
tent with histological CHORIO, FIRS, neuroinflammatory re-
sponses, as well as MRI outcome and the long-term cognitive and 
motor functional abnormalities in this model [25, 31–33].

PBMC Isolation
PBMCs from sham or CHORIO pups were isolated on postna-

tal day 7 (P7) and P21 using a Ficoll gradient separation [14]. Spe-
cifically, venous blood was collected from the right atrium in py-
rogen-free, heparinized, K2 EDTA vacutainer tubes (Becton Dick-
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inson, Franklin Lakes, NJ, USA). Blood was pooled from P7 pups 
but not P21 pups. Two milliliters of blood plus 2 mL RPMI 1640 
media (Gibco, Waltham, MA, USA), were then added to a 15-mL 
conical tube with mixing by inversion. The blood mixture was lay-
ered on 3 mL of well-mixed Ficoll-Paque Plus 1084 (GE Health-
care, Chicago, IL, USA) media, and then centrifuged at 400 g for 
30 min at room temperature with the centrifuge brake in the “off” 
position. Using a sterile pipette, the upper layer containing plasma 
and platelets was drawn off, leaving the mononuclear cell layer un-
disturbed at the interface. Mononuclear cells were then transferred 
to a sterile centrifuge tube using a sterile pipette, and 3 volumes 
(approx. 6 mL) RPMI media were added. Cells were suspended by 
gently drawing them in and out of a pipette and then centrifuged 
at 400 g for 10 min at room temperature with the centrifuge brake 
on. Subsequently, supernatant was removed, and the cells were re-
suspended in 6 mL RPMI media. After an additional round of cen-
trifugation as described above, supernatant was discarded, and the 
cell pellet resuspended in 6–8 mL RPMI media and prepared for 
plating.

PBMC Treatment with LPS
PBMCs at P7 or P21 were plated in 3.5-cm culture dishes at a 

density of 2 × 106 cells per dish (1 × 106 cells/mL, 2 mL each). 
PBMCs were then stimulated without or with LPS (10, 50, or 100 
ng/mL) for 3 or 24 h and the supernatants collected, consistent 
with prior reports [14, 39]. Each experimental condition was per-
formed in triplicate. Notably, treatment of PBMCs from both 
CHORIO and sham pups with differing doses of LPS yielded a dose 
response of TNFα secretion (Fig. 1). Given the robustness of the 
response, and consistent with previous reports, 100 ng/mL of LPS 
was used for all subsequent experiments [40–42].

Multiplex Electrochemiluminescent Immunoassay
A secreted cytokine and chemokine profile analysis was per-

formed on supernatants from cultured PBMCs (n = 6–7/group) 
using a V-plex rat proinflammatory panel for TNFα, interleukin 
(IL)-1β, C-X-C chemokine ligand 1 (CXCL1) and IL-6 (MesoScale 
Discovery, Gaithersburg, MD, USA). Specifically, conditioned 
media was loaded (diluted 1: 4) in duplicate on a 96-well plate, con-
sistent with the manufacturer’s specification and also numerous 

prior preclinical and clinical studies [25, 43–48]. Plates were read 
on a Quickplex SQ 120 Imager. This system has high content valid-
ity and an interassay variation of < 12% in our laboratory.

Flow Cytometry
PBMCs from CHORIO and sham groups were isolated and plat-

ed as described above. All antibodies were purchased from Thermo 
Fisher Scientific-eBioscience (Waltham, MA, USA) and were used at 
0.125–0.5 μg per 1 × 106 cells, as recommended by the manufacturer. 
Four pups per condition (sham or CHORIO) were used for each ex-
periment, resulting in a total of 8 pups at both P7 and P21. Cells for 
each condition were plated in 2 replicate wells. Cells from one of the 
replicate wells were used for the surface staining of CD45 (common 
leukocyte marker), CD11b/c (integrin α-M, pan marker for myeloid 
cells), MHC2 (immune activation marker), ED2-like antigen (rat 
macrophage marker, HIS36), and CD29 (integrin β1). Cells from 
other replicate wells were used for surface staining of CD45 and 
CD11b/c, followed by intracellular staining for the cytokine TNFα. 
Cells that were assayed for intracellular cytokine detection were 
treated with a 2 μL/mL protein transport inhibitor cocktail (contain-
ing brefildin A and monensin; Thermo Fisher Scientific-eBioscience) 
that was added simultaneously with media or LPS at the beginning 
of the cultures. The protein transport inhibitor cocktail inhibits the 
intracellular protein secretory/transport pathway, resulting in the ac-
cumulation of secreted proteins/cytokines in the lumen of the endo-
plasmic reticulum and in the Golgi apparatus which can be detected 
by intracellular staining and flow cytometric analysis [49].

Staining for surface antigens and intracellular cytokines was 
conducted as described in Noor et al. [50]. Briefly, following 24 h 
of stimulation with LPS or media, cells were transferred into sepa-
rate FACS tubes (BD FalconTM, Becton Dickinson) and pelleted by 
centrifugation at 300 g for 10 min at 4  ° C, with the supernatant 
discarded. Cells were then resuspended in 1 × PBS (without cal-
cium and magnesium; Sigma-Aldrich) and stained with Viability 
Dye eFluor® 450 (Thermo Fisher Scientific-eBioscience) for 30 
min, washed with FACS buffer (1× PBS containing 1.0% BSA and 
1 mM EDTA). Cells were then incubated with a saturating solution 
of Fc block (BD Biosciences, San José, CA, USA) for 10 min, fol-
lowed by staining with fluorochrome-conjugated antibodies 
against surface antigen or appropriate isotype controls for 30 min. 
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Fig. 1. LPS induces dose-responsive increases in TNFα. Peripheral blood mononuclear cells isolated from post-
natal day 21 pups were stimulated with control or LPS (10, 50, and 100 ng/mL) for 24 h in sham (a) and CHORIO 
(b) pups. * p < 0.05, ** p < 0.01, *** p < 0.001.
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All of these steps were conducted in the dark on ice. Following 
surface antibody staining, cells were washed and resuspended in 
250 μL FACS buffer, and then passed through a 40-μm cell strain-
er immediately prior to analysis to avoid cell clumping.

For intracellular staining of TNFα, cells were washed with PBS 
and stained with viability dye and surface markers (CD45 and 
CD11b/c), as described above. Cells were then fixed with 4% PFA 
(Sigma-Aldrich) for 20 min at room temperature, washed with 
FACS buffer and permeabilized with 0.3% saponin (Sigma-Al-
drich) in FACs buffer, followed by incubation with anti-rat TNFα 
for 40 min on ice in the dark. Cells were then washed in saponin-
FACs buffer, resuspended in FACS buffer, and then proceeded to 
flow cytometer data acquisition, as described previously [32, 50].

For flow cytometry (FC) analysis at P7, UltraComp eBeads 
(Thermo Fisher Scientific-eBioscience) were used for generating 
compensation controls; for P21 FC, blood leukocytes with single 
fluorochrome stains were used for compensation controls. For P21 
FC analysis, viability dye was not included; live cells were identified 
by their size and granularity. Data were acquired using the BD LSR 
Fortessa cell analyzer (BD Biosciences) and analyzed using FlowJo 
software v8.7.4 (FlowJo LLC, Ashland, OR, USA). Cells were gated 
first on size and granularity (FSC vs. SSC), followed by gating on 
single cells (SSC-A vs. SSC-H and FSC-A vs. FSC-H). Viable (ver-
ified by viability dye staining) and CD45-positive (CD45+) cells 
were identified, as described before [43, 50]. To identify myeloid 
cells, only CD45+ cells were analyzed for CD11b/c+ expression. 
CD45+CD11b/c+ cells were then further analyzed for MHC2, 
ED2-like antigen, CD29, or TNFα expression. Mean fluorescence 
intensity (MFI) was measured.

Statistical Analyses
Data are represented as mean ± standard error of the mean 

(SEM). Parametric statistical differences between 2 groups were 
compared with Student’s t test, and between 3 groups with a one-
way ANOVA with Tukey’s post hoc correction. p < 0.05 was con-
sidered statistically significant.

Results

In utero Insult Yields Altered Inflammatory Responses 
at P7
Beginning on P7, we isolated PBMCs from pups ex-

posed to sham conditions or in utero CHORIO insult. 
The levels of TNFα in the supernatant of nonstimulated 
PBMCs from sham and CHORIO pups were comparable 
after 3 h (0.22 ± 0.7 vs. 0.30 ± 0.06 pg/mL, respectively), 
although a baseline difference in the levels of IL-6 was 
detected with CHORIO PBMCs secreting 2.6-fold more 
IL-6 than sham PBMCs at 3 h (p < 0.001). LPS stimulation 
of the PBMCs resulted in significant increases of TNFα in 
the supernatants of both groups (sham: 0.22 ± 0.7 vs. 
11.02 ± 0.7 pg/mL; CHORIO: 0.30 ± 0.06 vs. 26.66 ± 6.8 
pg/mL, p < 0.001 for both). However, CHORIO PBMCs 
had significantly higher levels of secreted TNFα in re-
sponse to LPS stimulation than the PBMCs from the 

sham pups (Fig.  2a) as well as significantly increased 
CXCL1 secretion (Fig. 2b). No additional changes in IL-6 
levels were observed with LPS challenge. These increased 
responses compared to sham demonstrates enhanced im-
mune reactivity. This pattern held at 24 h of LPS stimula-
tion, with CHORIO PBMCs continuing to secrete more 
TNFα and CXCL1 than sham-stimulated PBMCs 
(Fig.  2c–d), but not more IL-6 (114 vs. 91 pg/mL, p > 
0.05). Interestingly, by 24 h, the levels of TNFα in the su-
pernatant of nonstimulated PBMCs from sham and 
CHORIO pups were significantly different. In this non-
stimulated condition, TNFα secretion was increased by 
84% in CHORIO pups compared to sham controls 
(Fig. 2e, p < 0.05). Furthermore, FC analyses confirmed 
increased intracellular TNFα in CHORIO PBMCs com-
pared to sham PBMCs (Fig. 2f–g). Together, these data 
indicate that the PBMCs from the CHORIO pups were 
hyperreactive in response to a second LPS stimulus dur-
ing the first postnatal week.

To test whether differences in cytokine secretion and 
PBMC hyperreactivity were a result of fundamental 
changes in white blood cell populations after CHORIO, 
we performed FC for common cell-surface, cell-specific 
markers. At baseline and without LPS stimulation, CHO-
RIO PBMCs were defined by significantly higher percent-
ages of CD11b/c- and ED-2/CD163-expressing cells 
(Fig. 3a, b), indicating increased numbers of circulating 
myeloid and mature macrophages at P7 in CHORIO pups 
compared to sham pups. However, at baseline, there were 
no differences in integrin β1, a marker of activation 
(Fig. 3c). Interestingly, LPS stimulation sustained the in-
crease in CD11b/c+ cells in CHORIO pups compared to 
sham pups (Fig. 3d). This alteration, however, occurred in 
the absence of any difference in MHC2 or integrin β1 ex-
pression (Fig. 3e, f). Taken together, these data show that 
CHORIO changes the population of white blood cells and 
that a secondary hit of LPS sustains the number of myeloid 
cells when compared to nonstimulated LPS controls.

In utero Insult Yields Sustained Changes in 
Inflammatory Responses at P21
After establishing changes in peripheral inflammatory 

reactivity at P7, or 2 weeks after in utero insult, we deter-
mined whether changes in immune cell reactivity and re-
sponse had been sustained. Thus, we assessed PBMCs for 
the secretion of proinflammatory cytokines and chemo-
kines at P21, 4 weeks after CHORIO, equivalent to tod-
dler age in humans. Similar to what was observed at P7, 
sham and CHORIO PBMCs secreted similar levels of 
TNFα in the absence of LPS (0.14 ± 0.07 vs. 0.16 ± 0.12 
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pg/mL). Additionally, both sham and CHORIO cells re-
sponded to LPS by increasing TNFα (sham: 0.14 ± 0.07 
vs. 10.44 ± 2.3 pg/mL TNFα; CHORIO: 0.16 ± 0.12 vs. 
23.32 ± 3.8 pg/mL, p < 0.001 for both). Notably, in the 
presence of LPS for 3 h, PBMCs from P21 CHORIO rats 
hypersecreted TNFα and IL-6, compared to sham PBMCs, 
but not CXCL1 (Fig. 4a–c). This effect was also observed 
when the PBMCs were stimulated with LPS for 24 h 
(Fig. 4d–f). Interestingly, by 24 h, the levels of TNFα in 

the supernatant of nonstimulated PBMCs from sham and 
CHORIO pups were also significantly different (0.16 ± 
0.07 vs. 0.99 ± 0.13 pg/mL, p < 0.001, Fig. 4g), confirming 
a long-term change in PBMC secretion of TNFα and im-
mune reactivity even at baseline. FC performed on P21 
cells corroborated a trend to increased intracellular TNFα 
(Fig. 4h, p = 0.06). These data indicate persistent periph-
eral hyperimmune reactivity following CHORIO and in 
response to LPS stimulation.
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Fig. 2. CHORIO peripheral blood mononuclear cells (PBMCs) are 
primed and augment proinflammatory cytokine secretion follow-
ing LPS stimulation. PBMCs were isolated from postnatal day 7 
sham or CHORIO pups and stimulated with control or LPS for  
3 h (a, b) or 24 h (c–g). Secreted levels of TNFα (a) and CXCL1 (b) 
were significantly increased in CHORIO PBMCs challenged with 
LPS compared to sham control PBMCs. At 24 h, CHORIO PBMCs 

also secreted more TNFα (c) and CXCL1 (d) than sham PBMCs in 
response to LPS challenge. e Notably, CHORIO PBMCs secreted 
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Next, we examined whether PBMC hyperreactivity 
was associated with changes in immune cell markers us-
ing FC with surface antigen staining. Interestingly, de-
spite changes in proinflammatory secretion, we found 
similar levels of CD11b/c cells in CHORIO and sham cells 
treated with LPS (Fig. 5a), as well as an equivalent expres-
sion of MHC2 (Fig.  5b). However, integrin β1 (CD29) 
was significantly elevated on LPS-stimulated CHORIO 
PBMCs compared to sham-stimulated cells, consistent 
with an increased activation state (Fig. 5c). Notably, base-
line levels of integrin β1 at P21 were equivalent in sham 
and CHORIO cells (Fig. 5d).

Discussion

Preterm infants exposed to intrauterine inflammation 
are at an increased risk of neurodevelopmental disorders, 
and adverse outcomes are more strongly associated with 

a combination of antenatal and postnatal inflammation 
than either circumstance alone [51]. In this report, we 
provide the first evidence that levels of TNFα, CXCL1, 
and IL-6 released from LPS-stimulated PBMCs are sig-
nificantly higher in term-equivalent P7 and toddler-
equivalent P21 rats exposed to prenatal placental inflam-
mation and insufficiency concomitant with acute chang-
es in inflammatory cell composition and enduring 
alterations in their systemic inflammatory response. To-
gether, these data suggest that rats with in utero injury 
have sustained peripheral immune hyperreactivity  
(SPIHR). These data corroborate reports on preterm chil-
dren with CP [14] and our own previous reports of ele-
vated serum proinflammatory cytokines, enhanced in-
flammatory signal transduction through the maternal-
placental-fetal axis, and CP-like motor phenotypes in this 
model [25, 32]. Indeed, immune plasticity altered by in 
utero insults may have long-term effects on the inflam-
matory responses of circulating leukocytes, which may 
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pups were stimulated with control or LPS (100 ng/mL) for 24 h. 
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viable (identified by size, granularity and viability dye staining) 
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larly, the proportion of cells showing positive expression for the 
mature macrophage marker (ED-2/CD163-like antigen) among 

viable myeloid cells even without LPS stimulation was also in-
creased in CHORIO pups compared to sham controls. c When vi-
able myeloid cells at baseline were further analyzed for the adhe-
sion molecule integrin β1, however, there were no differences in 
expression (mean fluorescence intensity, MFI), indicative of 
equivalent activation. d With LPS challenge, proportions of 
CD11b/c+ cells remained increased compared to sham PBMCs 
stimulated with LPS. However, no differences in MFI for MHC2 
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serve as a biomarker of persistent or prior neuroinflam-
mation and brain injury [52, 53]. Notably, preterm new-
borns that have elevated levels of biomarkers of systemic 
inflammation on 2 occasions 1 week apart are at a higher 
risk of brain injury and impaired neurodevelopment [47, 
48, 51, 54]. Thus, the insidious effects of primed periph-
eral immune cells may compound PBI secondary to 
CHORIO and increase susceptibility to future chronic 
onset neurological diseases.

The mechanisms for how remote maternal infections 
or CHORIO facilitate PBI are unknown. Numerous stud-
ies have reported that higher levels of proinflammatory 

cytokines such as TNFα in the amniotic fluid, plasma, and 
umbilical cord blood are associated with CP in children 
who are born preterm [14, 55–59]. Circulating proin-
flammatory cytokines can directly induce damage [56]. 
Similarly, immune cells can also be directly involved in 
injury [60–62]. The immature brain expresses CXC che-
mokines that promote cellular infiltration [25, 32, 56, 60], 
and lymphocytes expressing TNFα and IL-6 have been 
identified within lesions in the preterm human brain. Un-
doubtedly, the role of TNFα is multifactorial, as it is se-
creted by numerous cells, including microglia and mac-
rophages in the periphery [63]. T helper cells, including 
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Fig.  4. CHORIO-induced hyperactivation of peripheral blood 
mononuclear cells (PBMCs) is sustained until postnatal day 21 
(P21). PBMCs were isolated from P21 sham or CHORIO pups and 
stimulated with control or LPS for 3 h (a–c) or 24 h (d–h). Secret-
ed levels of TNFα (a) and IL-6 (c) were significantly increased in 
CHORIO PBMCs challenged with LPS compared to sham control 
PBMCs, but the CXCL1 level remained unchanged. At 24 h, CHO-

RIO PBMCs also secreted more TNFα (d) and IL-6 (f) than sham 
PBMCs in response to LPS challenge. g CHORIO P21 PBMCs se-
creted more TNFα in the absence of LPS challenge and at baseline 
compared to sham cells. h Flow cytometry confirmed increased 
intracellular TNFα in LPS-stimulated CHORIO PBMCs. * p < 0.05, 
*** p < 0.001.
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TH1, also secrete TNFα [64]. Previously, we documented 
transient, acute elevations in TNFα and sustained eleva-
tions in CXCL1, a potent neutrophil trafficking chemo-
kine, in the serum of pups with CHORIO [25, 32]. The 
mechanism(s) for the elevated serum levels in CHORIO 
rats may be in part related to the increased secretion of 
TNFα and CXCL1 from PBMCs, as shown here. Togeth-
er these data indicate augmented immune function by 
prior exposure to inflammation during development. 
Our data are consistent with previous studies in preterm 
sheep, where responses to LPS in the monocytes of sheep 
7–14 days after exposure to intra-amniotic endotoxin 
tended to exceed those of adults and preterm controls [14, 
65]. These data are also consistent with an altered inflam-
matory cytokine network, hallmarked by increased TNFα 
and IL-6, in a mouse model of intrauterine infection [64, 
66] and a porcine model of maternal infection during 
pregnancy [67]. Taken together, these data support that 
the secretion of cytokines and chemokines facilitates a 
damaging cellular inflammatory response, including the 
maturation and migration of immune cells.

The underlying causes of altered cellular inflammatory 
responses in preterm children and those who develop CP 
remain unknown. While there are many converging ge-
netic and environmental factors that warrant consider-
ation, the increased LPS sensitivity of PBMCs, noted in 
both children with CP and our rats exposed to CHORIO, 

suggests that inflammation during both the perinatal and 
postnatal periods have a yet-to-be-defined programming 
effect, yielding a lasting change in immune response. In-
deed, neural-immune communication and programming 
has been reported in several disorders, including chronic 
pain, fetal alcohol syndrome, stroke, schizophrenia, Alz
heimer’s disease, and autism spectrum disorders [50, 52, 
53, 68–71]. Notably, fetal white blood cell counts change 
with gestational age, with lymphocytes being the most 
prevalent leukocyte up to 37 weeks’ gestation [26, 72]. 
While lymphocytes increase linearly with gestational age, 
neutrophils increase exponentially after 31 weeks’ gesta-
tion and become the predominant lymphocyte at term 
[26]. CHORIO induces circulating CD45RO+ effector/
memory T cells associated with brain injury in preterm 
neonates [20, 55]. Here, we found increased TNFα ex-
pression by myeloid cells concomitant with increased 
CD11b/c cells, a marker of dendritic cells, monocytes, 
macrophages, and neutrophils, and indicative of hyper-
immune activation following LPS stimulation in CHO-
RIO pups. We also observed increased numbers of 
CD11b/c cells and ED-2/CD163+ macrophages in CHO-
RIO pups alone compared to sham pups in the absence of 
a second LPS hit. Previously, we reported increased pla-
cental and cerebral neutrophils in this model, with elevat-
ed CXCR2 and MHC2 expression supporting a global 
change in immune action following CHORIO. While 
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Fig.  5. CHORIO-induced hyperactivation 
of myeloid cells continues at least until 
postnatal day 21 (P21). Flow cytometry 
analysis of peripheral blood mononuclear 
cells (PBMCs) isolated from P21 pups re-
vealed equivalent proportions of viable 
myeloid (CD45+CD11b/c+) cells in 
PBMCs from sham and CHORIO pups fol-
lowing LPS stimulation (a), and similar 
MHC2 mean fluorescent intensity (MFI) 
(b). c However, when viable myeloid cells 
from LPS-stimulated groups were further 
analyzed for the adhesion molecule, integ-
rin β1, CHORIO cells challenged with LPS 
had significantly increased expression 
(MFI) compared to sham cells challenged 
with LPS, indicative of enhanced activa-
tion. d Levels of integrin β1, and thus acti-
vation, are similar between sham and 
CHORIO cells at baseline. * p < 0.05.
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these changes in immune cell composition had normal-
ized by P21, the markers of immune activation, including 
elevated integrin β1 expression, remained in CHORIO 
PBMCs stimulated with LPS when compared to sham-
stimulated cells, supporting a persistently increased acti-
vation state. Undoubtedly, future investigations must fo-
cus on the developmental expression of cytokines, im-
mune markers, and activation states of the circulating and 
resident leukocyte populations, including neutrophils, as 
we observed changes in cytokine levels, and leukocyte ac-
tivation and maturation markers between P7 and P21, 
with and without additional LPS stimulation.

Understanding the dynamics of altered immune re-
sponses and persistent inflammation through the placen-
tal-fetal brain axis is a prerequisite for the rational design 
of therapeutic interventions in this population of vulner-
able patients [73]. Lymphocytes are found in the brain 
after injury in both rodents and humans, and a lack of 
mature lymphocytes protects from HI-induced white-
matter injury [73]. Other groups have shown that a cere-
bral influx of TH17-like lymphocytes coordinates neuro-
inflammatory responses, and documented an elevated ex-
pression of the early TH17 lymphocyte marker, IL-23R, 
in PBMCs in infants with confirmed histological CHO-
RIO and in rodents with LPS-sensitized HI injury [20]. 
Interestingly, in the preclinical rat experiments, adminis-
tration of FTY720 (fingolimod) blocked leukocyte traf-
ficking and acute induction of NF-κβ signaling in the de-
veloping brain [20], attenuating blood-brain barrier 
damage and proinflammatory cytokine expression with 
improved white-matter health [20]. Similarly, ELGAN 
studies have demonstrated the capacity of infants to re-
spond to in utero inflammation with a proinflammatory 
TH1/TH17 phenotype [13]. While these responses may 
be protective against pathogens, they may also promote a 
sustained fetal and neonatal inflammatory response syn-

drome, including SPIHR, which involves multiorgan in-
flammation and injury [13, 45].

In conclusion, this study supports the notion that an 
inflammatory process that starts in utero may continue 
through childhood and beyond. Dysfunction throughout 
the placental-fetal brain axis, including inflammation and 
HI, may sensitize and program immune cells and associ-
ated cytokine networks to respond more vigorously, and 
for a longer period of time, to a stimulus that would not 
otherwise have evoked such an intense response [51]. To 
this end, SPIHR and the activation of immunological 
memory stemming from in utero insults may be associ-
ated with impaired neurodevelopment [55]. The durable 
changes in PBMC reactivity demonstrated here and else-
where [14] may prove to be an effective biomarker of 
perinatal brain injury, and the clinical utility may prove 
to be high, given the ease of access to these cells and to 
well-defined stimulation protocols. Additional investiga-
tions are required to further understand the homeostatic 
regulation of central and peripheral inflammatory cells in 
infants with CHORIO as well as the long-term conse-
quences of its dysregulation.
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