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ABSTRACT
High-dimensional predictive models, those with more measurements than observa-
tions, require regularization to be well defined, perform well empirically, and possess
theoretical guarantees. The amount of regularization, often determined by tuning
parameters, is integral to achieving good performance. One can choose the tuning
parameter in a variety of ways, such as through resampling methods or generalized
information criteria. However, the theory supporting many regularized procedures
relies on an estimate for the variance parameter, which is complicated in high dimen-
sions. We develop a suite of information criteria for choosing the tuning parameter
in lasso regression by leveraging the literature on high-dimensional variance esti-
mation. We derive intuition showing that existing information-theoretic approaches
work poorly in this setting. We compare our risk estimators to existing methods
with an extensive simulation and derive some theoretical justification. We find that
our new estimators perform well across a wide range of simulation conditions and
evaluation criteria.
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1. Introduction

Suppose we are given a data set, Z1, . . . , Zn, of paired observations including a covari-
ate Xi ∈ Rp and its associated response Yi ∈ R such that Z>i = (X>i , Yi). Concatenat-
ing the covariates row-wise, we obtain the design matrix X = [X1, . . . , Xn]> ∈ Rn×p.
We assume that the relationship between the covariate and response is of the form

Y = Xβ∗ + ε, (1)

where ε ∼ (0, σ2I), meaning the entries of ε are mean zero with uncorrelated compo-
nents each having variance σ2.

When p > n, estimation of the linear model requires some structural assumptions
on β∗ for learning algorithms to possess theoretical guarantees. A common approach
in this scenario is to assume ‖β∗‖q is small for some q ≥ 0 and try to estimate β∗ via
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penalized least squares. We will focus mainly on the lasso

β̂(λ) = argmin
β∈Rp

1

n
‖Y − Xβ‖22 + λ ‖β‖1 , (2)

where λ ≥ 0 is a tuning parameter and ‖·‖2 and ‖·‖1 are the `2- (Euclidean) and
`1-norms respectively. Similar M -estimators with different penalties include, among
others, ridge regression, the group lasso [1], and the smoothly clipped absolute devia-
tion penalty [SCAD, 2]. Though the focus of this paper is on lasso, we will occasionally
also reference ridge regression,

β̂ridge(λ) = argmin
β∈Rp

1

n
‖Y − Xβ‖22 + λ ‖β‖22

= (X>X + λIp)
−1X>Y,

because it has a closed form which can provide intuition.
For lasso, by convexity there is always at least one solution to equation (2), although

if rank(X) < p, there may be multiple minimizers [see 3, for details]. In this case,
we refer to ‘the’ solution as the outcome of the particular minimization technique
used [e.g. LARS, 4]. For ridge regression, a unique solution always exists for λ > 0,
although, for λ small enough, numerical issues may intercede. We will also consider
some modifications to equation (2) which attempt to eliminate the influence of tuning
parameters (see Section 4.2 for a more detailed description).

The theoretical optimality properties that exist in the literature for penalized regres-
sion rely on appropriate tuning parameter selection. Under restrictions on the design
matrix X, the distribution of ε, and the sparsity pattern of β∗, [5] shows that, as long
as the number of nonzero entries in β∗ does not increase too quickly, the probability
of making prediction errors with magnitude larger than σ2 log(p)/n goes to zero if

λn = aσ
√

log(p)/n for some constant a. Likewise, deviations in the distance between

β̂(λ) and β∗ of order larger than σ
√

log(p)/n have small probability. While theoretical
results of this type provide comfort that a data analyst’s procedure will eventually per-
form well given sufficient data, they require the optimal λn which depends on unknown
quantities such as σ2, the noise distribution, and other constants.

In practice, many methods for empirically choosing λ given a fixed dataset have been
proposed. These methods can be lumped into three broad categories: (1) generalized
information criteria like AIC or BIC, (2) resampling procedures such as cross-validation
or the bootstrap, and (3) reformulations of the lasso optimization problem (e.g. scaled
sparse regression or

√
lasso).1 In order to evaluate these approaches, we must be explicit

as to the properties we desire in our final estimator: low prediction risk, parameter
estimation consistency, correct model selection, or simply accurate estimates of the
prediction risk.

The aim of this paper is to evaluate tuning parameter selection procedures for
high-dimensional lasso regression. To this end we (1) introduce a suite of novel risk
estimation methods that are simple to compute and perform well empirically, (2) con-
trast these new risk estimation methods with existing, superficially similar GIC-based
methods, and, lastly, (3) provide a comprehensive simulation study over a broad range
of data generating scenarios and estimation goals which compares our procedure to

1There is some overlap between these categories. For example, generalized cross-validation can be thought of

as either a resampling procedure or an information criterion.
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existing methods. This investigation both justifies our proposal and reveals deficien-
cies for current high-dimensional approaches while also suggesting interesting research
directions, particularly the relationship between risk estimation and high-dimensional
variance estimation.

In Section 2, we discuss two broad categories of procedures for tuning parameter
selection: cross-validation and generalized information criteria. We demonstrate that
there is a significant difference between using generalized information criteria in the
low-dimensional (p < n) versus the high-dimentional (p > n) regimes. Section 3 mo-
tivates and introduces our proposed modification to Stein’s unbiased risk estimation
using plug-in estimators for σ2 and the degrees-of-freedom for the lasso. It also dis-
cusses the different versions of modern high-dimensional variance estimators which we
consider. In Section 4, we present a comprehensive simulation comparing our proposal
with some existing alternatives. We focus on the performance of the lasso, but we
include scaled-sparse regression,

√
lasso, and SCAD for comparison. We also demon-

strate the methods on a genetics dataset. Finally, Section 5 gives a theoretical result,
showing that under standard assumptions our proposed risk estimator converges to the
true prediction risk at the parametric rate. Section 6 summarizes our recommendations
and suggest possible avenues for further research.

Notation: For any vector β ∈ Rp, we denote S = S(β) = {j : βj 6= 0} and XS(β) to
be the columns of the design matrix selected by β. We write S∗ = S(β∗) and s∗ = |S∗|.
Also, for any square matrix H, define the trace of H, tr(H), to be the sum of the
diagonal entries. Define the squared `2-prediction risk of a coefficient vector β to be

Rβ = n−1E ‖Xβ − Xβ∗‖22 , (3)

where the expectation is over the data Z1, . . . , Zn. Likewise, we define the training
error to be

t̂rainβ = n−1 ‖Xβ − Y ‖22 .

Throughout this paper, if a procedure β is indexed by a tuning parameter λ, we will

write, for example, t̂rainβ(λ) ≡ t̂rainλ.

2. Existing tuning parameter selection methods

In this section, we discuss existing procedures for tuning parameter selection for lasso
regression. In the context of regularized regression, risk estimation and tuning param-
eter selection are often used interchangeably because any risk estimator can be used
to select tuning parameter(s). However, it is important for our exposition to belabor
the distinction for two reasons: (1) not all tuning parameter selection procedures pro-
duce an estimate of the prediction risk, and (2) we may wish to evaluate the quality
of the selection procedure by comparing model selection accuracy or parameter con-
sistency, metrics which don’t require a risk estimate anyway. That is, we may ask if√

lasso, a tuning-free method which does not estimate the prediction risk, produces
better estimates of β∗ than the lasso with λ selected by cross-validation. As a preview
of our results in Section 4.4, the answer to this question is generally no, but if we
use GCV to select λ instead, then this conclusion is reversed. This section introduces
existing tuning parameter selection procedures, some of which estimate the predic-
tion risk—cross-validation, Stein’s unbiased risk estimation (SURE), and information
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criteria—while others do not.

2.1. Cross-validation

Frequently [for example 6–8], the recommended technique for selecting λ is through
K-fold cross-validation (CV). Letting Vn = {v1, . . . , vK} be a partition of {1, . . . , n}

CV (λ;Vn) =
1

K

∑
v∈Vn

1

|v|
∑
r∈v

(
Yr −X>r β̂(v)(λ)

)2
,

where β̂(v)(λ) is the lasso estimator in equation (2) with the observations in the
validation set v removed, and |v| indicates the cardinality of the set v. We define

λ̂CV = argminλCV (λ;Vn). Common choices for K are K = 10 or K = n. Cross-
validation was shown to perform correct model selection and lead to good prediction
risk [9].

Several adaptations of cross-validation for use with the lasso have been proposed.
One such method is Modified Cross-Validation [MCV, 10] which seeks to correct for a
bias in CV induced by the lasso penalty. Generalized cross-validation [11, GCV] is a
much older modification of cross-validation with some computational benefits. It can
also be viewed as an information criterion, so we discuss it further in the next section.

2.2. Generalized information criteria

A common alternative to cross-validation is to minimize a generalized information
criterion (GIC). Define the degrees of freedom [12] of the prediction Ŷ = Xβ ∈ Rn to
be

df =
1

σ2

n∑
i=1

Cov(Ŷi, Yi),

where Cov(Ŷi, Yi) = E
[
(Ŷi − EŶi)(Yi − EYi)

]
.

Referring to equation (1), if σ2 is unknown and ε is Gaussian, then a GIC takes the
form

info(Cn, g) = log
(

t̂rainβ

)
+ Cn g(df), (4)

where Cn depends only on n, and g : [0,∞)→ R is a fixed function. This GIC form is
frequently suggested in the literature for choosing λ in the lasso problem [for example

2, 13–16], with df replaced by an estimator d̂f. We defer discussion of how to form d̂f
for the lasso to Section 3. The choices Cn = 2/n or Cn = log(n)/n with g(x) = x are
commonly referred to as AIC and BIC, respectively. Additionally, generalized cross-
validation is defined as

GCV =
t̂rainβ

(1− df /n)2
. (5)

Written on the log scale, GCV takes the form of equation (4) with g(x) = log(1−x/n)
and Cn = −2/n.
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While GIC-based tuning parameter selection has enjoyed good theoretical and em-
pirical success in a broad range of applications, classical asymptotic arguments un-
derlying GIC apply only for p fixed and rely on maximum likelihood estimates (or
Bayesian posteriors) for all parameters including σ2. More recent investigations have
explored theoretical regimes in which p is allowed to increase, but the constraint p < n
is still enforced. [17] shows that the correct model is selected asymptotically even if
p→∞ as long as p/n→ 0. Additionally, [16] investigates a variety GIC-based methods
under increasing p, but again restricted to the case p < n.

Theoretical support for GIC breaks down in the high-dimensional setting. The most
serious issue is that info(Cn, g) from equation (4) is unusable without modification if

n < p because it is possible to achieve t̂rainβ = 0 and hence log(t̂rainβ) = −∞.
Therefore, as λ → 0, info(Cn, g) will approach −∞ unless g(df) → ∞ faster, and
λ = 0 will always be selected. Simply forcing λ > ε for some small positive ε often fails
to remedy this situation in the sense that λ = ε is selected. Nonetheless, info(Cn, g) is
still commonly for use with the lasso, even in high-dimensional situations [e.g. 13].

To provide some intuition for this last claim, we provide the following trivial example
which explores the behavior of AIC, BIC, and GCV for selecting the tuning parameter
in a simple situation. We illustrate this problem with β̂ridge(λ), as these GIC then have
a closed form.

Example 1. Consider the following regression data set:

Y =
σ√
2

[
1
−1

]
, and X =

1√
2

[
1 1

√
2

1 −1 0

]
.

In this no noise case, Y is a scalar multiple of a column of X.
For ridge regression, one can show that

df(λ) =
3λ+ 4

(2 + λ)(1 + λ)
,

t̂rainλ =
σ2λ2

4

(
1

(2 + λ)2
+

1

(1 + λ)2

)
,

and so,

info(Cn, g) = log

(
σ2λ2

4

(
1

(2 + λ)2
+

1

(1 + λ)2

))
+ Cn g

(
3λ+ 4

(2 + λ)(1 + λ)

)
.

For 0 < λ < 1, 13σ2λ2

144 ≤ t̂rainλ ≤ 5σ2λ2

16 , so log(t̂rainλ) → −∞ like log(λ) as λ → 0.
Hence, minimizing info(Cn, g) will choose λ = 0 unless the second term increases at

least as fast as − log(λ), that is we require constants c and C such that g
(

3λ+4
(2+λ)(1+λ)

)
≥

C log(1/λ) for all λ < c. We see immediately that AIC and BIC, which both have
g(x) ≡ x, will always select λ = 0. This corresponds to reporting the unregularized,
least squares solution.
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λ λ

Figure 1. The left plot shows AIC (red, dashed) and BIC (blue, dotted) as we vary λ from 1× 10−5 to 1 for

the small numerical example. The right plot shows the same setup but GCV instead. Notice that, using AIC

or BIC, we would always choose the unregularized, λ = 0 model while GCV leads us to select λ = ∞.

For GCV, the issue is a bit more subtle. In this example, as rank(X) = n = 2,
− log(1 − df /n) → ∞ and hence the rate that − log(1 − df /n) goes to ∞, along
with magnitude of the constants involved, determines which trivial solution, λ = 0 or
λ → ∞, is returned. In particular,

log

(
5σ2

9

)
≥ GCV = log

(
σ2(2λ2 + 6λ+ 5)

(2λ+ 3)2

)
≥ lim

λ→∞
GCV = log

(
σ2

2

)
which means GCV will select λ → ∞ and β̂ → 0.

In Figure 1, we plot AIC and BIC for λ ∈ [1 × 10−5, 1] (left plot) and GCV (right
plot) for ridge regression on this dataset. Using AIC would have us report the unreg-
ularized model; that is using a least squares solution. We will illustrate how the lasso
behaves with info(Cn, g) in greater detail below. Finally, we note that the behavior of
GCV in this example is the opposite of what happens in the simulations we report be-
low. There, the penalty term is unable to outweigh the training error term, and hence,
the unregularized, λ = 0, solution is usually returned.

3. Our procedure for tuning parameter selection via plug-in estimation

To remedy the pathological behavior of info(Cn, g) from equation (4) in the high-
dimensional case, we propose to select λ in the lasso problem via unbiased risk estima-
tion. Under the model in equation (1), the squared �2 prediction risk of a coefficient
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vector β can be written

Rβ = n−1E ‖Xβ − Xβ∗‖22

= n−1E ‖Xβ − Y ‖22 − σ
2 + 2n−1

n∑
i=1

Cov(Ŷi, Yi),

= n−1E ‖Xβ − Y ‖22 − σ
2 + 2n−1σ2 df .

Therefore, a suite of sensible estimators of the squared `2 prediction risk is produced
via

R̂β(σ̂2, Cn) = n−1 ‖Xβ − Y ‖22 − σ̂
2 + Cnσ̂

2d̂f, (6)

where Cn is a sequence of constants depending on n, σ̂2 is an estimator of σ2, and d̂f
is an estimator of df for the procedure under consideration. This general expression is
commonly referred to as Stein’s unbiased risk estimator [SURE, 18]. For simplicity, we

will omit any arguments to R̂ that aren’t directly relevant to the discussion at hand
and write R̂λ ≡ R̂β(λ) when β is indexed by the tuning parameter λ.

If E[σ̂2d̂f] = σ2 df and E[σ̂2] = σ2 then R̂β(σ̂2, Cn = 2n−1) is an unbiased estimator

of Rβ. For example, suppose that n > p, β̂(0) is a least squares solution, and σ̂2 =

(n−p)−1
∥∥∥Y − Xβ̂(0)

∥∥∥2

2
is the least squares estimator of σ2. Then E[σ̂2d̂f] = σ2 df and

R̂
β̂(0)

(σ̂2, Cn = 2n−1) is the classical Mallow’s Cp [19]. This follows as β̂(0) is linear

in Y and hence df = d̂f = tr(H) = rank(X), where H is such that Xβ̂(0) = HY .
As the lasso is not linear Y , we must use an estimate of df. [7, 20] show that for the

lasso, the degrees of freedom of Ŷ = Xβ̂(λ) is equal to E[rank(XS(λ))], suggesting the

natural unbiased estimator d̂f = d̂f(λ) = rank(XS(λ)). This is the degrees of freedom

estimator we use for both GIC and R̂λ.
Though SURE is not in itself a new approach to selecting tuning parameters in the

lasso problem, the literature at this point contains a major omission. When rank(X) =
n ≤ p, the choice of an estimator of the noise variance σ2 is far from straightforward.
For example, the lasso path algorithm in the R package lars avoids this issue. If p < n,
it provides a Cp-like score, which is superficially similar to equation (6), with the least-
squares variance estimator for the largest possible model as σ̂2. Hence, it is unusable
(and not produced) if p > n.

In the recent theoretical literature, results for high-dimensional tuning parameter
selection assume σ2 is known to get around the difficult task of high-dimensional vari-
ance estimation [21–24]. However, it is crucial to estimate σ2 for R̂λ to work effectively
in practice. To demonstrate this necessity, we perform a second small simulation to
illustrate the poor behavior of R̂(σ2) when σ2 is erroneously assumed known.

Example 2. We generate draws according to the model in equation (1), such that
n = 30, p = 150, and β∗ has one nonzero coefficient drawn from the standard Laplace
distribution. In Figure 2, we explore four methods for choosing λ for the lasso. Clock-
wise from top left these methods are R̂λ(σ2 = 1), R̂λ(σ̂2

CV), R̂λ(σ̂2
RCV) (see Section 3.1

for definitions of these variance estimators), and lastly info(Cn = 2/n, g(x) = x),
which corresponds to AIC.

As expected, R̂λ(σ2 = 1) performs quite poorly when σ is far from 1. In this case,
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Figure2. Weusefourdifferentvaluesfor σ:σ=0.5(red,solid,circles),σ=1(green,dashed,squares),
σ=1.5(cyan,dotted,diamonds),σ=5(violet,dash-dot,triangles).Averticallineisdrawnattheminimizer.

Riskestimationmethods,clockwisefromtopleft:R(σ2=1),R(σ2CV),R(σ
2
RCV),andinfo(Cn=2/n,g(x)=

x).Noticethatinfo(Cn =2/n,g(x) =x)alwaysselectstheunregularized modelandR(σ2=1)depends

significantlyonσ.

theselectedmodelshavewidelyvaryingdegreesoffreedom,choosinghighlynon-sparse
modelsdespitetherebeingonly1non-zerotruecoefficient.Also,info(Cn=2,g(x)=x)
continuestochoosetheunregularizedsolution,aspredictedbythepreviousexample,
unlesswearbitrarilyconstraindftobesomevaluelessthan30.Theothertwo,R(σ2CV)

andR(σ2RCV),performmuchbetter. Wenowdiscussbothoftheseestimators.Occa-
sionallyinpractice,researchersmaynotcomputeinfo(Cn=2,g(x)=x)forallλ.
Instead,itiscalculatedfromthemostsparsetotheleastsparsesolutions,andthen
cutoffwheninfo(Cn=2,g(x)=x)doesnotdecrease.However,thisproceduremay
notalwayswork.Inparticular,forσ=5,info(Cn=2,g(x)=x)ismonotonically
increasing,exceptfordf=30.Inothercases,info(Cn=2,g(x)=x)isnotguaranteed
tobeconvex,andthisprocedurewillresultinpossiblyignoringbettersolutions.
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3.1. High-dimensional variance estimation

The literature on variance estimation in high dimensions is a quickly growing field.
We use three high-dimensional variance estimators in our proposed risk estimator. A
comprehensive evaluation of these estimators (and some others) is given by [25], but
we note that the goal here is different: we do not wish to estimate σ2 itself but rather
wish to use it as an input to R̂β, which can then be used to select tuning parameters
or estimate Rβ. It is not necessarily true that a good estimator of σ2 leads to a good
estimator of Rβ.

The first two approaches start by finding β̂(λ̂CV ) by minimizing a K-fold cross-

validation estimator of the risk to produce λ̂CV (see Section 2.1 for the details of cross

validation) and finding a minimizer of equation (2) after inserting λ̂CV . With this
coefficient estimate, the squared `2-norm of the residuals can be used as a variance
estimate, that is

σ̂2
CV =

1

n− d̂f(λ̂CV )

∥∥∥Y − Xβ̂(λ̂CV )
∥∥∥2

2
. (7)

Alternatively, a restricted maximum likelihood-type method can be formed by exam-
ining the orthogonal complement of the projection onto the column space of XS(λ̂CV )

:

H⊥CV . Using this projection we define

σ̂2
RMLE =

1

tr(H⊥CV )

∥∥∥H⊥CV Y ∥∥∥2

2
=

1

n− d̂f(λ̂CV )

∥∥∥H⊥CV Y ∥∥∥2

2
.

The second equality follows because, for the lasso,

trace(H⊥CV ) = trace(I − HCV ) = n − rank
(
XS(λ̂CV )

)
, which implies trace(H⊥CV ) =

n−d̂f(λ̂CV ). Hence these two variance estimators differ only in the size of the residuals.
In fact, due to the nature of projections,∥∥∥H⊥CV Y ∥∥∥2

2
≤
∥∥∥Y − Xβ̂(λ̂CV )

∥∥∥2

2
.

Thus, it must hold that σ̂2
RMLE ≤ σ̂2

CV and R̂(σ̂2
RMLE) penalizes model complexity

less than R̂(σ̂2
CV ). In Section 4, our simulations show that, when choosing Cn = 2/n,

R̂(σ̂2
CV ) results in lower prediction risk, better estimation consistency, and higher

precision, while R̂(σ̂2
RMLE) has better recall.

The third variance estimation method we consider is known as refitted cross-
validation [RCV, 26]. After randomly splitting the data in half, XS(λ̂CV )

is formed

on the first half and σ̂2
1 is formed via equation (7), using the Y and X values from

the second half. The procedure is then repeated, exchanging the roles of the halves,
producing σ̂2

2. A final estimate is formed via σ̂2
RCV = (σ̂2

1 + σ̂2
2)/2.

In a comprehensive simulation study, [25] finds that σ̂2
CV is the most reliable esti-

mator for σ2 out of those cited above, although, as pointed out by [26], it appears to
have a negative bias whereas σ̂2

RCV does not. However, this doesn’t mean that any of
the above methods will necessarily produce superior performance as a plug-in variance
estimator for risk estimation or tuning parameter selection.

Armed with any of the above high-dimensional variance estimators, we can form an
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estimator of β∗ via β̂(λ̂), where

λ̂ = argmin
λ

R̂λ(σ̂, Cn). (8)

As discussed above, tuning parameter selection procedures based on SURE or in-
formation criteria have no theoretical justification when the variance is unknown and
p > n. In the next section, we present a comprehensive empirical investigation of the
performance of the lasso with tuning parameter selected by the aforementioned meth-
ods. Additionally, we include comparisons to other modified lasso-type methods for
completeness.

4. Empirical evaluation

In the remainder of this paper, we evaluate our proposed risk estimation methods for
the purposes of choosing the tuning parameter λ for lasso. We consider only the high-
dimensional setting and evaluate success using several criteria such as prediction risk
and model selection. We first perform a comprehensive simulation and then present
results from a real-world application involving survival times as a function of gene
expression data.

4.1. Simulation parameters

For our simulations, we consider a wide range of possible conditions by varying the
correlation in the design, ρ; the number of measurements, p; the sparsity, α; and
the signal-to-noise ratio, SNR. In all cases, we let n = 200 (similar results hold for
n = 100).

The design matrices, X ∈ Rn×p, are produced by concatenating independent and
identically distributed rows with mean zero and correlations introduced by an autore-
gressive model: Cov(Xij , Xik) = ρ|j−k|. For these simulations, we consider correlations
ρ = 0.1, 0.5, and 0.8.

For sparsity, we define s∗ = bnαc and generate the s∗ non-zero elements of β∗
from a Laplace distribution with parameter 1, which matches a Bayesian interpre-
tation of the lasso. We let α be 0.4 or 0.7, which corresponds to 8 or 40 non-zero
elements, respectively. We vary σ2 so that the signal-to-noise ratio, defined to be
SNR = n−1β>∗ E[X>X]β∗/σ

2, is 0.1, 1, or 10. Note that as SNR increases the observa-
tions go from a high-noise and low-signal regime to a low-noise and high-signal one.
We let p = 400 or p = 1500.

Lastly, we consider two different noise distributions, εi ∼ N(0, 1) and εi ∼ 3−1/2t(3).
Here t(3) indicates a t distribution with 3 degrees of freedom and the 3−1/2 term
makes the variance equal to 1 and the εi are independent. As the results for these noise
distributions are quite similar, we only present the Gaussian simulations. Furthermore,
while we have simulated all combinations of these parameters and distributions, we
include only a subset here for brevity.

4.2. Modified lasso-type methods

For a more complete comparison, we include in our simulations some variations on the
lasso estimator that have been proposed.
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First, [27] develops ‘scaled sparse regression’ (SSR), which uses the fact that the
optimal choice of λ for lasso is asymptotically proportional to σ. By recasting the lasso
problem as

β̂SSR = argmin
β,σ

1

2nσ
‖Y − Xβ‖22 +

(1− a)σ

2
+M ‖β‖1 ,

and fixing M and a, the authors develop theory for “tuning parameter free” lasso
with simultaneous variance estimation. Though this is a promising approach, the ob-
jective function is not convex, hence the variance and the lasso solution are iteratively
computed and the solutions tend to depend on the starting values. Nonetheless, SSR
enjoys attractive theoretical properties.

Alternatively, [28] suggests the
√

lasso, or “square root lasso,” as a modification of
the lasso problem

β̂√lasso = argmin
β

1√
n
‖Y − Xβ‖2 +

λn
n
‖β‖1 . (9)

Appealing to asymptotic arguments, they show that the minimizer of equation (9)
achieves near oracle performance if λn = c

√
nΦ−1(1−α/(2p)), which does not depend

on σ. Here, Φ−1 is the quantile function for the standard Gaussian distribution.
We also consider the Smoothly Clipped Absolute Deviation Penalty [2]:

β̂SCAD = argmin
β

1

2n
‖Y − Xβ‖22 +

p∑
j=1

gλ(|βj |),

where

g′λ(θ) = λ

[
1(θ ≤ λ) +

(aλ− θ)+

(a− 1)λ
1(θ ≥ λ)

]
,

for some a > 2 and θ > 0.
Lastly, our experiments show that GCV tends to dramatically under regularize

in the lasso problem. Likewise, setting Cn = log(n)/n in R̂β(σ̂2, Cn) tends to over
regularize. Hence, we investigate a two-stage method whereby an intial screening is
performed by selecting λ̂GCV and forming S

λ̂GCV
. This often selects a very large model,

typically with |S
λ̂GCV

| = n. For the second stage, we use only the columns of X
with indices in S

λ̂GCV
to compute R̂β(σ̂2, Cn = log(n)/n), which is minimized over

λ to produce λ̂. Then, the output of this two-stage method is β̂(λ̂). We refer to this
procedure as “2-stage” and do not report results for GCV alone as it is uniformly
poor. This procedure is shown in Algorithm 1.

GCV’s behavior is intimately connected to the rate at which the numerator, given by
the training error, and the denominator, given by (1−df /n)2, go to zero as λ→ 0. In
our simulations, the numerator goes to zero at a faster rate than the denominator and
hence GCV tends to dramatically under-regularize. Additionally, by noting that 1/(1−
x)2 ≈ 1 + 2x, GCV is approximately the same as AIC. However, this approximation is
only accurate for x near zero, which happens when df is forced to be small relative to n.
In the classical case where n� p, this approximation is quite accurate, but in the high-
dimensional problem, relatively larger df may explain some of the underperformance

11



Algorithm 1: 2-stage method for tuning parameter selection

Input: Design matrix X, response Y , sequence of λ
1 Solve equation (2) for each λ;

2 Find λ̂GCV by minimizing equation (5);

3 Set S
λ̂GCV

to be the non-zero elements of β̂(λ̂GCV );

4 Compute R̂β(σ̂2, Cn = log(n)/n) using only the columns of X in S
λ̂GCV

for each λ;

5 Select λ̂2-stage by minimizing R̂β(σ̂2, Cn = log(n)/n);

Output: Coefficient estimates β̂(λ̂2-stage)

Table 1. List of methods and abbreviations used in our empirical

study

Abbreviation Method
CV-10-Fold 10-fold cross validation
MCV Modified Cross Validation

R-Oracle-2 R̂β(σ2, Cn = 2/n)

R-CV-2 R̂β(σ̂2
CV , Cn = 2/n)

R-RMLE-2 R̂β(σ̂2
RMLE , Cn = 2/n)

R-RCV-2 R̂β(σ̂2
RCV , Cn = 2/n)

R-Oracle-logn R̂β(σ2, Cn = log(n)/n)

R-CV-logn R̂β(σ̂2
CV , Cn = log(n)/n)

2-stage Two-stage method using GCV then R-CV-logn
SCAD Smoothly clipped absolute deviation
SSR Scaled sparse regression

SQRT
√

lasso

SQRT refitted OLS estimation on the model selected with
√

lasso

of GCV as a tuning parameter selection method.
In the next section, we give more details about the numerical implementation of the

methods considered in this paper to aid in reproducibility.

4.3. Implementation of methods and notation

For ease of reference, Table 1 displays all of the methods for which we present sim-
ulations. Since all of these methods rely on numerical optimization routines, it is
important to discuss the particular implementation of the solvers used to generate
β̂(λ).

Two widely used implementations for lasso are glmnet [29], which uses coordinate
descent and a grid of λ values, and lars, which leverages the piece-wise linearity of the
lasso solution path. The package glmnet is much faster than lars, however, glmnet
only examines a grid of λ values and returns an approximate solution at each λ (due
to the iterative nature of the algorithm). Additionally, glmnet suffers from numerical
stability issues for small λ values when p > n.

Because the lars path will necessarily change for different cross-validation folds,
the grid-based nature of glmnet is more suited for use with cross-validation. For this
reason, we use glmnet for CV-10-Fold and to find σ̂2

CV , σ̂2
RCV , and σ̂2

RMLE .

With any high dimensional variance estimator σ̂2, we need to compute λ̂ =
argmin R̂λ(σ̂2). We use lars to find the entire lasso solution path on all of the data

to compute R̂λ(σ̂2) and then report the minimizer λ̂ and β̂(λ̂).
To optimize the modified lasso problems’ objective functions, we use the R package

scalreg to fit SSR and the R package flare to fit the
√

lasso. For scalreg, we

12



choose the starting point for the iteration via the quantile method [30]. For flare,
we set the tuning parameter to λ = c

√
nΦ−1(1 − α/(2p)) with c = 1.1 and α = 0.05,

as suggested by [28]. As
√

lasso tended to pick the correct model but with overly
regularized coefficient estimates, we will additionally examine a refitted version of√

lasso in which the unregularized least squares solution of Y on XS(β̂√lasso)
is reported.

In an attempt to get as close as possible to the global optimum, we decrease the prec

(precision) option to 1×10−10 and increase max.ite (maximum iterations) to 1×107.
To fit SCAD, we use the package ncvreg [31] with default settings (a = 3.7) and

choose λ via the built in CV function. We note that [2] suggests using either CV or
an approximation to GCV which uses the trace of the projection matrix from the
final iteration to form an estimate d̂f. However, this matrix is a function of Y , so the
calculated df is not unbiased. We therefore only report the default cross-validation-
based method, and we note that subsequent work [14, 32] has carefully investigated
information criteria using SCAD.

The ideal, or oracle, version of our method in equation (6) would use the known
variance. We refer to this as the oracle risk estimator and note that it is unbiased.
Obviously this is not a viable estimator in practice, but it is useful for normalizing
comparisons in our simulation study. We provide two versions of this oracle estimator:
R̂β(σ2, Cn = 2/n) and R̂β(σ2, Cn = log(n)/n).

4.4. Simulation results

We present results for four different metrics based on different data analysis objectives.
If the risk estimation methods are used to select tuning parameters, then the data
analysts could be interested in the prediction risk, which evaluates how well we can
predict a new Y given a new X; consistency, which measures how far the procedure
β̂ is from β∗; or F-score, which considers how well a method does at model selection.
Alternatively, when evaluating the success of a method, or when comparing it to
another method, the risk estimate itself is of interest. We evaluate these four criteria in
the following subsections. Table 1 shows the correspondence between the mathematical
notation we have used so far, and the arabic letters used in the figures. When describing
each figure, we will refer to different methods with the arabic letters for clarity.

4.4.1. Prediction risk

Prediction risk is an important criterion as it is often a major goal in modern data
analysis applications. For these simulations, we approximate Rβ in equation (3) with
the average squared error over 5000 test observations and normalize it by subtracting
σ2, but continue to denote it Rβ. We present boxplots for the log of the prediction risk
of the selected models in Figure 3 and Figure 4 for SNR 0.1 and 10 respectively.

For low SNR, MCV, R-RMLE-2, SQRT, and SQRT refitted all perform noticeably
worse than the competing methods. For high SNR, SCAD performs best, especially
when p = 1500 and when the true vector β∗ is non-sparse (α = 0.7). Also, CV-10-Fold
and R-CV-2 both perform somewhat better than R-RCV and R-CV-logn.

4.4.2. Consistency

The second performance metric we use examines the ability of β̂(λ̂) to produce accurate
estimates of the true parameter β∗. We examine a normalized version of the deviation
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Figure3. ComparisonoflogpredictionriskforSNR=0.1.Toprow:α=0.4.Bottomrow:α=0.
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Figure4. ComparisonoflogpredictionriskforSNR=10.Toprow:α=0.4.Bottomrow:α=0.7.

betweentheestimatedcoefficientsandthesizeoftheparameter:

C(β)=
E β−β∗
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Figure5. ComparisonofconsistencyforSNR=0.1.Toprow:α=0.4.Bottomrow:α=0.
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Figure6. ComparisonofconsistencyforSNR=10.Toprow:α=0.4.Bottomrow:α=0.7.

Thus,smallervaluesarebetter,andvaluesnear1oftenrepresentoverlysparsesolu-

tionsasβ≡0⇒E β−β∗ = β∗.
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In the low-SNR regime (Figure 5), no procedure performs particularly well, as one
would expect. The R-CV-logn, 2-stage, SQRT, and SQRT refitted nearly always select
β̂ ≡ 0 with occasional exceptions. This results in slightly better C(β̂) than the other
methods. For the high-SNR regime (Figure 6), SCAD performs best, particularly in
the sparse scenario (α = 0.4) or when p = 1500 and ρ = 0.1. CV-10-Fold and R-CV-2
perform similarly to each other and are slightly better than the other methods. MCV,
R-RMLE-2, SQRT, and SQRT refitted all perform rather poorly.

4.4.3. F-score

To examine the ability of these procedures to perform model selection directly, we
define the precision and recall for a particular β to be respectively (recalling that
S = {j : |βj | > 0} and |S| is the number of elements in S)

P (S) =
|S ∩ S∗|
|S|

and R(S) =
|S ∩ S∗|
|S∗|

.

To parsimoniously represent both precision and recall at the same time, we use the
F -score (sometimes referred to as the F1-score), which is the harmonic mean of the
precision and recall:

F (S) =
2R(S)P (S)

R(S) + P (S)
=

2
1

R(S) + 1
P (S)

.

Observe that F (S) is equal to one if and only if R(S) and P (S) are both equal to
one and equal to zero if either R(S) or P (S) are equal to zero. Thus, higher values
represent better performance. As an aside, the SQRT and SQRT refitted methods will
have the same F-score (as they select the same model). We nonetheless plot both of
the methods to maintain easier comparability to other figures.

For the low SNR case (Figure 7), no methods are consistently good. For the high
SNR case (Figure 8), the 2-stage method, SSR, and R-CV-logn work well across all
settings of α and ρ. When β∗ is sparse (α = 0.4), SQRT has good F-score performance,
but it is one of the worst when α is large. The performance of SCAD has similar
discrepancies: it one of the best performers when ρ = 0.1 and one of the worst when
ρ = 0.8. This is potentially useful because ρ can be estimated by the data analyst before
fitting the regression (as compared to the SNR or sparsity which cannot). Thus, one
could use SCAD in the uncorrelated setting but avoid it when the design is highly
correlated. It is notable that for F-score in the high SNR case only, R-CV-logn and
2-stage outperform CV-10-Fold, R-CV-2, and R-RCV-2.

4.4.4. Estimating the risk of the oracle linear model

Instead of using a risk estimate as a tool to empirically choose tuning parameters,
sometimes it is important to directly estimate the risk of a procedure to evaluate
or compare its performance. In this subsection, we investigate the risk estimation
property of both K-fold CV and R̂(σ̂, Cn) for a few choices of K and σ̂2. As MCV,
SSR, 2-stage, SCAD, and SQRT are model selection/estimation procedures and not
risk estimators, we leave them out of this comparison. The goal here is to determine
whether equation (6) can yield good risk estimates in the high-dimensional setting the
same way that unbiased risk estimation can in the low-dimensional setting. Hence, we
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Figure7. ComparisonofF-scoreforSNR=0.1.Toprow:α=0.4.Bottomrow:α=0.
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Figure8. ComparisonofF-scoreforSNR=10.Toprow:α=0.4.Bottomrow:α=0.7.

setCn=2/nasthiswouldbetheunbiasedchoiceifeitherσ
2isknownanddfis

unbiasedorσ2isunbiasedanddfdoesn’tdependonY.
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Table 2. The root mean squared error of all five risk estimators. Bold values indicate the best

method(s) (those within .005 of the minimum) in each case.

snr alpha p rho CV-2-Fold CV-10-Fold R-CV-2 R-RCV-2 R-RMLE-2
0.1 0.4 400 0.1 0.125 0.108 0.104 0.105 0.104
0.1 0.4 400 0.8 0.118 0.105 0.105 0.104 0.106
0.1 0.4 1500 0.1 0.145 0.107 0.106 0.104 0.106
0.1 0.4 1500 0.8 0.128 0.104 0.102 0.104 0.103
0.1 0.7 400 0.1 0.447 0.147 0.131 0.119 0.158
0.1 0.7 400 0.8 0.405 0.122 0.112 0.107 0.132
0.1 0.7 1500 0.1 0.426 0.137 0.114 0.100 0.146
0.1 0.7 1500 0.8 0.413 0.150 0.118 0.109 0.156
10 0.4 400 0.1 0.142 0.115 0.112 0.115 0.107
10 0.4 400 0.8 0.142 0.099 0.097 0.099 0.093
10 0.4 1500 0.1 0.117 0.101 0.103 0.099 0.111
10 0.4 1500 0.8 0.139 0.087 0.092 0.163 0.089
10 0.7 400 0.1 0.463 0.147 0.160 0.465 0.227
10 0.7 400 0.8 0.393 0.156 0.161 0.308 0.165
10 0.7 1500 0.1 0.371 0.110 0.192 0.831 0.313
10 0.7 1500 0.8 0.440 0.158 0.272 0.588 0.198

Using, K-fold CV or R̂ to both choose λ̂ and evaluate the risk β̂(λ̂) conflates R̂’s
performance at tuning parameter selection and risk estimation. Hence, for this eval-
uation only, we use as a β∗-estimation procedure the oracle least squares estimator.
That is, we set

β̂O = argmin
β
‖Y − XS∗β‖

2
2

and then calculate R̂
β̂O

(σ̂2
CV , 2/n), R̂

β̂O
(σ̂2
RCV , 2/n), and R̂

β̂O
(σ̂2
RMLE , 2/n) where σ̂2

is estimated with the relevant high-dimensional variance estimator. We also include
2-Fold CV and 10-Fold CV. This choice of β∗ estimation procedure is still a function
of the data, and hence is random, but it does not require the selection of a tuning
parameter. It should, however, be in a neighborhood of β∗.

We find that for sparse models (Figure 9 and Figure 10, top rows), there is very
little difference between these five procedures: all are unbiased on median, though
2-Fold CV has slightly larger variance. However, with less sparse models, 2-Fold CV
greatly overestimates the risk, while 10-Fold CV is quite accurate. For high SNR and
low sparsity, R-RCV-2 has a large upward bias, though it is otherwise quite accurate.
For another take, Table 2 shows the squared difference between the risk estimate and
the true risk (σ2 in all cases), averaged across the simulation runs—the risk of the
risk estimator. Looking down the table for low SNR, R-RCV-2 is the best method
according to this metric, although for sparse models, 10-Fold CV and R-CV-2 are
close behind in terms of MSE. This is because the small negative bias of R-RCV-2 is
outweighed by the smaller variance it has relative to 10-fold CV and R-CV-2, which
are relatively unbiased. With high SNR and dense models, R-RCV-2 is terrible with
high positive bias and huge variance, worse than even 2-Fold CV. Note that R-RCV-2
uses a version of 2-Fold CV to estimate σ2. Here, 10-Fold CV is easily the best, R-
CV-2 has low bias, but relatively large variance, while R-RMLE-2 has a pronounced
downward bias with small variance.

The poor performance of CV-2-Fold and R-RCV-2 (for dense, high SNR condi-
tions) deserves additional comment. According to [25, Figure 9], the ability of σ̂2

RCV
to estimate the variance deteriorates with increasing SNR, which is in line with our
simulations. This is an area for further investigation as neither we nor [25] can pro-
vide a careful explanation for this phenomenon. One possibility is that splitting the

18



p: 400

rho: 0.1

p: 400

rho: 0.8

p: 1500

rho: 0.1

p: 1500

rho: 0.8

ll

l

l

l

ll
lll

l

l

l

ll
l

l

l

l

l

l

l

l

l
l

l

l

l

l
l
ll

l

l

l

l
l
l

l

l

l

l

ll

l

l

l

l

l

l

l

l

l

l

ll

l

l

l

l

l

l

l

l

ll
ll ll ll

ll

1.0

1.5

2.0

1.0

1.5

2.0

al
p
h
a: 
0.
4

al
p
h
a: 
0.
7

C
V
−
2
−
F
ol
d

C
V
−
1
0
−
F
ol
d

R
−
C
V
−
2

R
−
R
C
V
−
2

R
−
R
M
L
E
−
2

C
V
−
2
−
F
ol
d

C
V
−
1
0
−
F
ol
d

R
−
C
V
−
2

R
−
R
C
V
−
2

R
−
R
M
L
E
−
2

C
V
−
2
−
F
ol
d

C
V
−
1
0
−
F
ol
d

R
−
C
V
−
2

R
−
R
C
V
−
2

R
−
R
M
L
E
−
2

C
V
−
2
−
F
ol
d

C
V
−
1
0
−
F
ol
d

R
−
C
V
−
2

R
−
R
C
V
−
2

R
−
R
M
L
E
−
2

Figure9. ComparisonofriskestimationforSNR=0.1.Toprow:α=0.4.Bottomrow:α=0.
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Figure10. ComparisonofriskestimationforSNR=10.Toprow:α=0.4.Bottomrow:α=0.7.

datainhalfprovidesinsufficienttrainingdataforaccurateestimationandoneortwo
additionalsplitsmaybesufficienttoremedytheissue.
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Figure11. Analysisofleukemiapatientsurvivaltimes.Leftplot:predictionriskontestdata.Thehorizontal

lineindicatestheriskoftheidenticallyzeroestimatorβ(λ)≡ 0.Rightplot:numberofselectedgenesfor
methodsthatreportβ(λ)=0.

Anotherpossibleareaforfurtherinvestigationistheconstructionofaconfidence
intervalfortheriskestimator.Ascross-validationaveragesoverKfoldsinthetraining
data,thevariationofthepredictionerroroneachfoldcanbeusedtoformaninformal
confidenceintervalfortherisk.Thisconfidenceintervalcanbeusefulinpractice,for
examplewhenusingtheso-called“onestandarderrorrule”[29].Theriskestimator
inequation(6)doesnotrelydirectlyonsubsamplingandhencedoesnotbydefault
produceaconfidenceinterval.Ifthedataanalystdesiressuchanuncertaintyestimate,
asensible,thoughcomputationallyexpensive,approachwouldbeviathebootstrap.

4.5. Dataexample:survivaltimesforleukemiapatients

WeexamineamicroarraydatasetconsistingofdiffuselargeB-celllymphoma(DL-
BCL)patients[33,34].Thisdatasetconsistsofmeasurementsof7399genesmadeon
160trainingpatientsand80testpatients,matchingthetrainingandtestsplitused
by[34].Theresponse,Y,isthesurvivaltimeforeachpatientwhichwetransformas
log(Y+1)duetoskewness.
Ourresults,whichcanbefoundinFigure11(leftplot),arethatmanyofthetuning

parameterselectionmethodschooseλsuchthatβ(λ)≡0;thatis,theidenticallyzero
vector.CV-10-Fold, MCV,R-CV-2,R-RCV-2,SSR,andSCADproducenon-trivial
coefficientestimatesthatimproveontheriskofthezeroestimatorwhileR-RMLE-2
producesanontrivialcoefficientestimatethatismuchworsethanthezeroestimator.
Forreference,thevarianceestimatorsσ2areapproximately0.23,0.68,and0.69for
σ2RMLE,σ

2
CV,andσ

2
RCV,respectively.Additionally,eachmethodsuggestsdramatically

differentnumbersofselectedgenes(Figure11,rightplot),rangingfrom6forSSR
to116forR-RMLE-2.Theintersectionoftheselected modelsforthose methods
whichproducenontrivialcoefficientestimatesaregenes3822and4131,whichmaybe
reasonablecandidatesforfurtherinvestigation.

5. Theoreticalanalysis

Inthissection,weprovidearesultdemonstratingthat,underanumberofstandard
conditions,ourriskestimatorwillproduceapredictorwhoseperformanceiscompa-
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rable to that of the true model. For convenience, we define xj to be the jth column of
X and Xij to be the i, j entry of X. Also, let S ⊆ {1, 2, . . . , p} be an index set with |S|
elements and define Sc to be complement: Sc := {1, 2, . . . , p} \ S.

We define the following conditions.

Condition 1. Assume that Y = Xβ∗ + ε
Condition 2. The εi are distributed i.i.d sub-Gaussian with variance σ2. That is

∀t ∈ R, E[exp(tεi)] ≤ exp{σ2t2/2}.
Condition 3. The design matrix X satisfies CX := max1≤j≤p ‖xj‖22 /n = O(1) for all

p.
Condition 4. If β ∈ Rp is such that ‖βSc‖1 ≤ L ‖βS‖1, for some L ≥ 0, then

‖βS‖21 ≤
|S|
φ2n

β>X>Xβ,

where φ ≡ φ(L) > 0 is known as a compatibility constant.

These conditions are well-known and appear frequently in lasso-related theoretical
results. We assume that the data is actually generated by a linear model, as was the
case in our simulated analysis. We assume homoscedastic noise which has reasonable
tails. Gaussian distributions satisfy Condition 2 as well as bounded distributions and
other standard “light-tailed” distributions. Our goal will be to consider the standard
high dimensional setting where p � n and both approach infinity. Because of this,
we need to ensure that as we add columns to the design matrix, larger and larger
entries do not come to dominate the solution. Condition 3 says that the maximum
column norm grows like its length but not with p. This condition can be eliminated
without any difficulty, but it allows for easier interpretation of the result. Finally, we
assume that the design matrix satisfies the so-called “compatibility condition” [35].
This allows us to relate the `1-norm of the coefficient vector with the L2-norm of the
predicted values for a collection of sufficiently sparse coefficient vectors. This condition
is also related to the restricted eigenvalue condition [5, 36] which is an alternative.

We state the core result, showing an upper bound on the prediction loss of the
lasso with tuning parameter chosen by R̂ versus the true coefficient vector β∗. Set
Λ = [λmin, λmax] to be the optimization grid for the tuning parameter λ.

Theorem 1. Assume Condition 1–Condition 4. Let δ > 0 and Λ = [λmin, λmax]. Set

λmin = 2σ

√
2CX(log(p)+δ)

n . Then, with probability at least 1− 2e−δ,

1

n

∥∥∥Xβ∗ − Xβ̂(λ̂)
∥∥∥2

2
≤
(

2s∗
φ2

)(
9λ2

max +
8σ2CX (log(p) + δ)

n

)
+ ρ

(
4σ

√
2CX (log(p) + δ)

n

)
.

The first part of the upper bound depends on λmax. The second part depends on
the penalty ρ. Results for the lasso with oracle tuning parameter deal only with an
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upper bound that looks like

2s∗
φ2

8σ2CX (log(p) + δ)

n
.

Therefore, for convergence, they examine the case where s∗ goes to infinity as fast
as possible. Thus, the lasso “works” as long as s∗ = o(n/ log(p)). For our bound to

be meaningful when s∗ grows this quickly, we must have λmax = O(
√

log(p)/n), the
same order as λmin. That is, if s∗ grows as fast as possible, we get a trivial Λ interval
with the upper and lower bounds having the same order (though they can differ by
an arbitrary constant). If, instead, s∗ is constant, hence growing as slowly as possible,
then we simply need λmax = o(1).

Finally, we require ρ

(
4σ

√
2CX(log(p)+δ)

n

)
to go to zero at a similar rate. This of

course depends on the penalty selected. For AIC, we require

ρ

(
4σ

√
2CX (log(p) + δ)

n

)
=

2

n
σ̂2d̂f

(
4σ

√
2CX (log(p) + δ)

n

)
.

Thus, if σ̂2 = O(1), then

d̂f

(
4σ

√
2CX (log(p) + δ)

n

)
= o(n)

is sufficient. In particular, for d̂f = O(s∗) gives convergence.

6. Discussion

In this paper, we investigate a large number of procedures for selecting λ in high-
dimensional lasso problems. Our results supplement and elaborate upon those of [16]
which apply to the low-dimensional setting (p < n). In general, the unbiased-risk-
estimation methods we present perform consistently well across conditions. They ex-
hibit many of the familiar properties from the AIC-vs.-BIC debate (BIC selects smaller
models, AIC is better for prediction) as well as some variation across variance esti-
mators due to estimation bias. Our simulations lead us to suggest a novel two-stage
method (see Section 4.2 and Algorithm 1) that also performs consistently well and
warrants further theoretical investigations.

Substantial theory exists for the optimal choice of the tuning parameter for the lasso
and related methods. These results, however, depend both on unknown properties of
the data generating process and unknown constants. Though there are many data-
dependent methods for choosing the tuning parameters, there is a distinct lack of
guidance in the literature about which method to use. This uncertainty is even more
pronounced when faced with high-dimensional data where p� n.

We give examples that show that one commonly advocated approach, a generalized
information criterion which has desirable theoretical properties in low dimensions,
would necessarily choose the unregularized model with λ = 0 when p > n. Therefore,
we propose a risk estimator motivated by Stein’s unbiased risk estimation. This esti-
mator requires three ingredients: an estimate of the degrees of freedom (d̂f), a constant
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that may depend on n (Cn), and an estimator of the variance (σ̂2). While the degrees
of freedom for the lasso problem is well understood, the other two choices are much
less so. In particular, high-dimensional variance estimation is a difficult problem in its
own right.

6.1. Overall recommendations

In general, CV-10-Fold performs similarly to R-CV-2, which tends to outperform both
R-RCV-2 and R-CV-logn. A notable exception is that R-CV-logn dramatically out-
performs for model selection when in the high SNR regime. In all other cases, both
CV-10-Fold and R-CV-2 should perform satisfactorily in practice relative to the other
methods we examine.

For the oracle risk estimation methods, R-oracle-2 and R-oracle-logn, σ̂2
CV is a

good estimator of σ2 in practice and hence R-CV-2 and R-CV-logn behave very sim-
ilarly to R-oracle-2 and R-oracle-logn, respectively. However, the variance estimator
σ̂2
RMLE tends to dramatically underestimate σ2 and hence R-RMLE-2 tends to under-

regularize. Also, though MCV performs the best on the genetics data set, it performed
very poorly in the simulations. Hence, R-RMLE-2 and MCV should be avoided in prac-
tice.

SCAD performs well for both prediction risk and consistency, particularly when p
is large and the true model is not sparse. On the other hand, SQRT refitted performs
substantially better than SQRT and hence should be used as an additional step to
SQRT in practice. However, SQRT refitted tends to underperform the other methods
in our simulations.

In general, the SURE-based methods we develop perform quite well across different
simulation conditions and evaluation metrics. The 2-stage method described in Sec-
tion 4.3 also performs well and warrants further investigation. Standard 10-fold CV
performs adequately while the behavior of scaled-sparse regression,

√
lasso variants,

and MCV depends strongly on the simulation condition. In particular, these modern
methods often underperform the SURE-based methods presented in this paper.
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Appendix A. Proof of Theorem 1 and supporting results

Lemma 2 (Generalization of [13], Lemma 6.2). Define

G =

{
max

1≤j≤p
2|ε>xj |/n < M

}
.

Suppose Condition 2 holds. For any δ > 0, if

M := 2σ

√
2CX (log(p) + δ)

n
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then

P(G) ≥ 1− 2e−δ.

Proof. Define xj to be the jth column of X and recalling that Xij is the jth entry of
the ith covariate vector. Define

Zj :=
2ε>xj
n

.

Let t ≥ 0 be given. Then, under Condition 2, we have

E [exp(tZj)] =

n∏
i=1

E
[
exp

(
2tεiXij

n

)]
≤

n∏
i=1

exp

(
4t2σ2X2

ij

2n2

)
= exp

(
2t2σ2

n2
‖xj‖22

)
.

Therefore,

1− P (G) = P
(

max
j
|Zj | ≥M

)
≤
∑
j

P (|Zj | ≥M)

≤ pmax
j

P (|Zj | ≥M)

≤ 2pmax
j

inf
t

exp(−tM) exp

(
2t2σ2

n2
‖xj‖22

)
= 2p inf

t
exp(−tM) exp

(
2t2σ2

n2
max
j
‖xj‖22

)
= 2p exp

{
− n2M2

8σ2 maxj ‖xj‖22

}
.

Thus, for any δ > 0, if we set

M :=

√
8 maxj ‖xj‖22 σ2

n2
(log(p)− log(δ))

then

P (G) ≥ 1− 2δ.

Redefine δ → e−δ and use CX ≥ n−1 maxj ‖xj‖22 to get the result.

Lemma 3. Define λ̂ as in equation (8). Set ρ(λ) = Cnσ̂
2d̂f(λ). Then for any λ ≥ 0,

1

n

∥∥∥Xβ∗ − Xβ̂(λ̂)
∥∥∥2

2
+ λ

∥∥∥β̂(λ)
∥∥∥

1
≤ 2

n
ε>X(β∗ − β̂(λ̂)) + λ ‖β∗‖1 + ρ(λ)
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Proof.

1

n

∥∥∥Y − Xβ̂(λ̂)
∥∥∥2

2
+ λ

∥∥∥β̂(λ)
∥∥∥

1
≤ 1

n

∥∥∥Y − Xβ̂(λ̂)
∥∥∥2

2
+ ρ(λ̂) + λ

∥∥∥β̂(λ)
∥∥∥

1

≤ 1

n

∥∥∥Y − Xβ̂(λ)
∥∥∥2

2
+ ρ(λ) + λ

∥∥∥β̂(λ)
∥∥∥

1

≤ 1

n
‖Y − Xβ∗‖22 + ρ(λ) + λ ‖β∗‖1 .

Here we have used the fact that λ̂ minimized n−1
∥∥∥Y − Xβ̂(λ)

∥∥∥2

2
+ ρ(λ) and β̂(λ)

minimized n−1 ‖Y − Xβ‖22 + λ ‖β‖1. Using Y = Xβ∗ + ε gives∥∥∥Y − Xβ̂(λ̂)
∥∥∥2

2
=
∥∥∥Xβ∗ + ε− Xβ̂(λ̂)

∥∥∥2

2

= ‖ε‖22 +
∥∥∥X(β∗ − β̂(λ̂))

∥∥∥2

2
+ 2ε>X(β∗ − β̂(λ̂))

while ‖Y − Xβ∗‖22 = ‖ε‖22. Therefore,

1

n

∥∥∥Xβ∗ − Xβ̂(λ̂)
∥∥∥2

2
+ λ

∥∥∥β̂(λ)
∥∥∥

1
≤ 2

n
ε>X(β∗ − β̂(λ̂)) + ρ(λ) + λ ‖β∗‖1 .

Lemma 4 (Generalization of [13], Theorem 6.1). Suppose Condition 1 and Condi-
tion 4 hold. Then on G, for any λ > M ,∥∥∥β̂(λ)− β∗

∥∥∥
1
≤ s∗(3λ+M)2

4(λ−M)φ2
.

Proof. Note that β∗ = 0 on Sc∗. Then, by the triangle inequality, we have,∥∥∥β̂(λ)
∥∥∥

1
≥
∥∥∥β̂Sc

∗
(λ)
∥∥∥

1
−
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1

+ ‖β∗‖1 . (A1)

Therefore, on G for any λ ≥ 0,

1

n

∥∥∥X(β̂(λ)− β∗)
∥∥∥2

2
+ λ

(∥∥∥β̂Sc
∗
(λ)
∥∥∥

1
−
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1

+ ‖β∗‖1
)

≤ 1

n

∥∥∥X(β̂(λ)− β∗)
∥∥∥2

2
+ λ

∥∥∥β̂(λ)
∥∥∥

1
,

≤ 2

n
ε>X(β̂(λ)− β∗) + λ ‖β∗‖1

≤M
∥∥∥β̂(λ)− β∗

∥∥∥
1

+ λ ‖β∗‖1

= M
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1

+M
∥∥∥β̂Sc

∗
(λ)
∥∥∥

1
+ λ ‖β∗‖1 ,

where the first inequality is due to equation (A1) and the second and third follow from
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Lemma 3. The final equality follows by noting that∥∥∥β̂(λ)− β∗
∥∥∥

1
=
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1

+
∥∥∥β̂Sc

∗
(λ)
∥∥∥

1
.

Collecting terms shows that

1

n

∥∥∥X(β̂(λ)− β∗)
∥∥∥2

2
+ (λ−M)

∥∥∥β̂Sc
∗

∥∥∥
1
≤ (λ+M)

∥∥∥β̂S∗ − β∗∥∥∥
1
. (A2)

By using the above inequality twice, we see that

1

n

∥∥∥X(β̂(λ)− β∗)
∥∥∥2

2
+ (λ−M)

∥∥∥β̂(λ)− β∗
∥∥∥

1

≤ 1

n

∥∥∥X(β̂(λ)− β∗)
∥∥∥2

2
+ (λ−M)

∥∥∥β̂S∗(λ)− β∗
∥∥∥

1
+ (λ+M)

∥∥∥β̂S∗ − β∗∥∥∥
1

=
1

n

∥∥∥X(β̂(λ)− β∗)
∥∥∥2

2
+ 2λ

∥∥∥β̂S∗(λ)− β∗
∥∥∥

1

≤ (λ+M)
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1

+ 2λ
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1

= (3λ+M)
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1

By equation (A2),
∥∥∥β̂Sc

∗

∥∥∥ ≤ (λ + M)(λ −M)−1
∥∥∥β̂S∗ − β∗∥∥∥

1
and hence Condition 4

with L = (λ+M)(λ−M)−1 applies. Also, observe that uv ≤ u2/4 + v2. Therefore,

(3λ+M)
∥∥∥β̂S∗(λ)− β∗

∥∥∥
1
≤ (3λ+M)

( √
s∗

φ
√
n

)∥∥∥X(β̂(λ)− β∗)
∥∥∥

2

≤
(

(3λ+M)2s∗
4φ2

)
+

1

n

∥∥∥X(β̂(λ)− β∗)
∥∥∥2

2
.

Rearranging produces the desired result as long as λ > M .

Proof of Theorem 1. On the set G,

2

n
ε>X(β∗ − β̂(λ̂)) < M

∥∥∥β̂(λ̂)− β∗
∥∥∥

1
.
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By Lemma 3 and Lemma 4 for any λ > M

1

n

∥∥∥Xβ∗ − Xβ̂(λ̂)
∥∥∥2

2
< M

∥∥∥β̂(λ̂)− β∗
∥∥∥

1
+ λ ‖β∗‖1 − λ

∥∥∥β̂(λ)
∥∥∥

1
+ ρ(λ)

≤M sup
λ′∈Λ

∥∥∥β̂(λ′)− β∗
∥∥∥

1
+ λ

∥∥∥β∗ − β̂(λ)
∥∥∥

1
+ ρ(λ)

≤ (M + λ) sup
λ′∈Λ

∥∥∥β̂(λ′)− β∗
∥∥∥

1
+ ρ(λ)

≤ 2λ sup
λ′∈Λ

∥∥∥β̂(λ′)− β∗
∥∥∥

1
+ ρ(λ)

≤ 2λ sup
λ′∈Λ

s∗(3λ
′ +M)2

4(λ′ −M)φ2
+ ρ(λ)

≤
(
s∗

2φ2

)(
λ(3λmax +M)2

M

)
+ ρ(λ)

≤
(
s∗
φ2

)(
λ

M

)(
9λ2

max +M2
)

+ ρ(λ).

Where for this last inequality we use that λmin = 2M . Finally, since this inequality
holds for all λ > M and ρ(λ) is decreasing in λ, we take λ = 2M .

29


	Introduction
	Existing tuning parameter selection methods
	Cross-validation
	Generalized information criteria

	Our procedure for tuning parameter selection via plug-in estimation
	High-dimensional variance estimation

	Empirical evaluation
	Simulation parameters
	Modified lasso-type methods
	Implementation of methods and notation
	Simulation results
	Prediction risk
	Consistency
	F-score
	Estimating the risk of the oracle linear model

	Data example: survival times for leukemia patients

	Theoretical analysis
	Discussion
	Overall recommendations

	Proof of Theorem 1 and supporting results

