


# **PHARMACOLOGY 2019**

15-17 December | Edinburgh



- Participate in the UK's leading pharmacology event
- Share your research with over 1,200 attendees
- Apply for awards and attendance bursaries
- Have your work published in the British Journal of Pharmacology or the British Journal of Clinical Pharmacology



9 September











Themed Section: Chemical Biology of Reactive Sulfur Species

## **REVIEW ARTICLE**

# Inorganic hydrogen polysulfides: chemistry, chemical biology and detection

Correspondence Ming Xian, Key Laboratory of Molecular Clinical Pharmacology, School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong 510436, China. E-mail: mxian@wsu.edu

Received 11 January 2018; Revised 22 March 2018; Accepted 23 March 2018

Heng Liu<sup>1,2</sup>, Miles N Radford<sup>2</sup>, Chun-tao Yang<sup>3</sup>, Wei Chen<sup>2</sup> and Ming Xian<sup>2,3</sup>

<sup>1</sup>Hubei Collaborative Innovation Center for Advanced Organic Chemical Materials, Ministry of Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules and College of Chemistry and Chemical Engineering, Hubei University, Wuhan, Hubei, China, <sup>2</sup>Department of Chemistry, Washington State University, Pullman, WA, USA, and <sup>3</sup>Key Laboratory of Molecular Clinical Pharmacology, School of Pharmaceutics Science, Guangzhou Medical University, Guangzhou, Guangdong, China

Recent studies suggest that inorganic hydrogen polysulfides ( $H_2S_n$ ,  $n \ge 2$ ) play important regulatory roles in redox biology. Modulation of their cellular levels could have potential therapeutic value. This review article focuses on our current understanding of the biosynthesis, biofunctions, fundamental physical/chemical properties, detection methods and delivery techniques of H<sub>2</sub>S<sub>n</sub>.

#### LINKED ARTICLES

This article is part of a themed section on Chemical Biology of Reactive Sulfur Species. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v176.4/issuetoc

### **Abbreviations**

3MP, 3-mercaptopyruvate; 3MST, 3-mercaptopyruvate sulfurtransferase; BODIPY, boron difluoride dipyrromethene; CARS, cysteinyl-tRNA synthetase; d-PET, donor-excited photoinduced electron transfer; GSSH, glutathione persulfide; H<sub>2</sub>S, hydrogen sulfide; H<sub>2</sub>S<sub>n</sub>, hydrogen polysulfides; HNO, nitroxyl; HSNO, nitrososulfide; ICT, intramolecular charge transfer; Keap1, Kelch ECH associating protein 1; mBB, mono-bromobimane; MPO, myeloperoxidase; NIR, near-IR; Nrf2, nuclear factor erythroid 2-related factor 2; RSS, reactive sulfur species; TP, two-photon



### Introduction

Reactive sulfur species (RSS) are a family of sulfur-containing molecules found in biological systems and are involved in a variety of biological processes (Giles et al., 2001; Giles and Jacob, 2002; Gruhlke and Slusarenko, 2012; Paulsen and Carroll, 2013; Yang et al., 2017). Representative RSS include thiols, hydrogen sulfide, persulfides, polysulfides and S-modified cysteine derivatives such as S-nitrosothiols (SNO) and sulfenic acids (SOH). Among these molecules, hydrogen sulfide (H<sub>2</sub>S) has been most well-studied as this gas molecule has recently been classified as a critical cell signalling molecule, much like **nitric oxide (NO)** (Li et al., 2011; Wang, 2012; Módis et al., 2014; Polhemus and Lefer, 2014; Szabo et al., 2014). For example, H<sub>2</sub>S functions as an endothelial cell-derived relaxing factor via direct activation of ATP-sensitive potassium (KATP) channels. Deprivation of endogenous production of H2S contributes to the development of hypertension. Moreover, H2S has shown beneficial effects on oxidative stress, inflammation and fibrosis. While research on H<sub>2</sub>S is still actively ongoing, a hot new topic in this field has emerged that focuses on a series of H<sub>2</sub>S-related reactive sulfane sulfur species (Ono et al., 2014; Toohey and Cooper, 2014; Kimura, 2015; Park et al., 2015; Akaike et al., 2017). Sulfane sulfur refers to sulfur atoms with six valence electrons but no charge (represented as S<sup>0</sup>). H<sub>2</sub>S-related sulfane sulfur compounds include persulfides (R-S-SH), polysulfides (R-S<sub>n</sub>-SH or R-S-S<sub>n</sub>-S-R), inorganic hydrogen polysulfides ( $H_2S_n$ ,  $n \ge 2$ ) and protein-bound elemental sulfur (S<sub>8</sub>). Among these, the hydrogen polysulfides H<sub>2</sub>S<sub>n</sub> are especially attractive. Recent studies have suggested that H<sub>2</sub>S<sub>n</sub> exist endogenously and are linked to a number of physiological and pathological processes. H<sub>2</sub>S<sub>n</sub> can serve as the source of H<sub>2</sub>S, as well as the sink of H<sub>2</sub>S. Much of what is known as H<sub>2</sub>S signalling may be actually due to H<sub>2</sub>S<sub>n</sub>. In this review, we summarize current knowledge about H<sub>2</sub>S<sub>n</sub>, focusing on their formation, functions, fundamental physical/chemical properties, detection methods, as well as releasing strategies.

### Biosynthesis of H<sub>2</sub>S<sub>n</sub>

Currently, how H<sub>2</sub>S<sub>n</sub> are produced endogenously is still a topic under active investigation. The studies by Kimura et al. suggest that H<sub>2</sub>S<sub>n</sub> are mainly produced from 3mercaptopyruvate **(3MP)** by 3-mercaptopyruvate sulfurtransferase (3MST) (Kimura et al., 2015). In their studies, the produced H<sub>2</sub>S<sub>n</sub> were trapped by mono-bromobimane (mBB) and further identified by LC-FL and LC-MS/MS analysis. Based on the identity and ratio of mBB-trapped products, it was found that the major H<sub>2</sub>S<sub>n</sub> species was H<sub>2</sub>S<sub>3</sub>, while H<sub>2</sub>S<sub>2</sub> and H<sub>2</sub>S<sub>5</sub> were minor products. Kimura et al. also found that H<sub>2</sub>S<sub>n</sub> were localized in the cytosol of cells, and H<sub>2</sub>S<sub>n</sub> could be produced from H<sub>2</sub>S by 3MST and rhodanese. The basal endogenous H<sub>2</sub>S<sub>3</sub> concentration was 3.4 nmol·g<sup>-1</sup> protein in the brain, which is comparable to the concentration of H<sub>2</sub>S (4.8 nmol·g $^{-1}$  protein). Kimura *et al.* later found that 3MST also produces cysteine- and glutathione-persulfides (Cys-SSH and GSSH) (Kimura et al., 2017). Based on these results, two possible mechanisms describing 3MST-mediated H<sub>2</sub>S<sub>n</sub> and persulfide biosynthesis are shown in Scheme 1: (A) 3MST abstracts the sulfur from its substrate 3MP to form a persulfidated enzyme intermediate (3MST-S<sub>n</sub>SH), which then degrades to form H<sub>2</sub>S<sub>n</sub>. Next, H<sub>2</sub>S<sub>n</sub> transfer the sulfane sulfur atom to other thiols (Cys, GSH or protein-SH) to form persulfide species. (B) After the persulfidated enzyme intermediate (3MST-S<sub>n</sub>SH) is formed, it directly transfers the sulfane sulfur atom to other thiols or H<sub>2</sub>S to form the corresponding persulfide species, including H<sub>2</sub>S<sub>n</sub>. It should be noted that in these studies, H<sub>2</sub>S<sub>n</sub> species were identified by mBB capturing experiments. An assumption in these conclusions is that all H<sub>2</sub>S<sub>n</sub> species as well as other thiol species like CysSSH are captured by mBB with high effectiveness and the capturing rates are faster than the dynamic interchanges within these sulfur species. This assumption should be further evaluated before the conclusions can be well-accepted.

Very recently, Akaike et al. reported another interesting enzymic pathway that can contribute to the biosynthesis of

#### Scheme 1

3MST-mediated H<sub>2</sub>S<sub>n</sub>/persulfide biosynthetic pathways.

H<sub>2</sub>S<sub>n</sub> (Akaike et al., 2017). They found that prokaryotic and mammalian cysteinyl-tRNA synthetases (CARS) can very effectively catalyse the production of cysteine persulfide (CysSSH) and polysulfides (CysS<sub>n</sub>SH) using cysteine as the substrate (Scheme 1C). CARS was also found to integrate cysteine polysulfides into proteins during translational process. As one can imagine, CysSSH and CysS<sub>n</sub>SH are valuable precursors of H<sub>2</sub>S<sub>n</sub>. Therefore, H<sub>2</sub>S<sub>n</sub> biosynthesis is likely to be controlled by this CARS-mediated pathway. Overall, the mechanisms summarized in Scheme 1 indicate that Cys-SSH/GSSH and H<sub>2</sub>S<sub>n</sub> are normally formed together.

The crosstalk between H<sub>2</sub>S and NO is interesting, and a synergistic effect of these two signalling molecules can be expected. Several groups have studied the direct reactions between H<sub>2</sub>S and NO and found the chemistry is rather complicated (Eberhardt et al., 2014; Cortese-Krott et al., 2015; Miyamoto et al., 2017). In these studies, a mixture of H<sub>2</sub>S (using Na<sub>2</sub>S as the equivalent) and NO (using a NO donor such as diethylamine NONOate or S-nitroso-N-acetyl-D,Lpenicillamine) was generated, and the products were trapped and analysed by spectroscopy methods. Indeed, H<sub>2</sub>S<sub>n</sub> are found to be the products, as well as nitroxyl (HNO), nitrososulfide (HSNO) and even SSNO-. The formation of these products can be possibly attributed to the following equations:

$$HS^- \rightarrow HS^{\bullet} + e^-$$

HS<sup>•</sup> + NO<sup>•</sup>→HSNO

 $HSNO + H_2S {\rightarrow} HSSH + HNO$ 

 $HSSH + HSNO \rightarrow HSSNO + H_2S$ 

The fast reaction between H<sub>2</sub>S and NO to form H<sub>2</sub>S<sub>n</sub> may have important biological implications. For example, H<sub>2</sub>S producing enzymes (3MST and cystathionine βsynthase) and NO synthase (NOS) are localized to neurons and astrocytes in the CNS. Therefore, endogenously generated  $H_2S$  and NO can react with each other to produce  $H_2S_n$ , which then activate TRPA1 channels to modify synaptic activity. In the cardiovascular system, eNOS and cystathionine  $\gamma$ -lyase are localized to vascular endothelium and smooth muscle respectively. NO and H<sub>2</sub>S generated from these enzymes may interact and produce H<sub>2</sub>S<sub>n</sub> to activate **protein kinase G (PKG)1***α* to induce vascular relaxation.

H<sub>2</sub>S<sub>n</sub> can also be generated from H<sub>2</sub>S catalysed by haem proteins. For example, Olson et al. showed that cytosolic copper/zinc SOD catalysed the oxidation of H<sub>2</sub>S to produce H<sub>2</sub>S<sub>2</sub>, as well as H<sub>2</sub>S<sub>3</sub> and H<sub>2</sub>S<sub>5</sub> (Olson et al., 2018). O<sub>2</sub> or H<sub>2</sub>O<sub>2</sub> was used as the electron acceptor in the reaction. Interestingly, SOD-catalysed H<sub>2</sub>S oxidation is found to be inhibited by high H<sub>2</sub>S concentration (>1 mM), and the reaction appears to be specific for dissolved H2S (not the hydrosulfide anion HS<sup>-</sup>). Nagy et al. recently studied the detailed mechanisms of myeloperoxidase (MPO)-catalysed H<sub>2</sub>S oxidation (Garai et al., 2017) and found the Compound III state is formed in the reactions of H<sub>2</sub>S with MPO in the presence of oxygen. This enzymic reaction provides a slow

flux of sulfane sulfur species generation (which likely involves H<sub>2</sub>S<sub>n</sub>) that may be important in endogenous signalling.

In addition to their biosynthesis, the degradation pathways of H<sub>2</sub>S<sub>n</sub> are also important, but these are much less studied. Recently, Nagy and co-workers investigated the fates of polysulfides under reducing environments (Dóka et al., 2016). They studied how H<sub>2</sub>S exposure affects the activity of thioredoxin reductase-1 (TrxR1). Instead of enzyme inhibition, TrxR1 was found to reduce H<sub>2</sub>S<sub>n</sub> in a polysulfide concentration-dependent manner in the presence of NADPH. Polysulfides appear to be good substrates and not inhibitors of TrxR1. Moreover, the GSH system (with NADPH, GSH and glutathione reductase) was also found to catalyse the reduction of polysulfides in a concentrationdependent manner. As can be expected, the Trx and GSH systems are critical in maintaining sulfane sulfur homeostasis and sulfide signalling.

### Biological functions of H<sub>2</sub>S<sub>n</sub>

The oxidation state of the sulfane sulfur in H<sub>2</sub>S<sub>n</sub> is zero. H<sub>2</sub>S<sub>n</sub> can readily react with protein cysteine residues to form protein persulfides (P-S-SH). This reaction, named as S-persulfidation (also known as S-perthiolation S-sulfhydration), is believed to be the major contributor of the biological functions of  $H_2S_n$ . For example,  $H_2S_n$  showed strong protective effects against oxidative damage caused by excessive ROS. This is due to H<sub>2</sub>S<sub>n</sub> promoting the release of nuclear factor erythroid 2-related factor 2 (Nrf2) and induces the translocation of Nrf2 into the nucleus by persulfidating its binding partner Kelch-like ECH-associated protein 1 (Keap1), subsequently causing an increase in intracellular GSH levels and the expression of HO-1 (a Nrf2-regulatory gene) (Koike et al., 2013). H<sub>2</sub>S<sub>n</sub> were also found to regulate the activity of the tumour suppressor protein, lipid phosphatase and tensin homolog (PTEN), by introducing the sulfane sulfur into the active site cysteine of PTEN (Greiner et al., 2013). The study by Mutus and coworkers showed that H<sub>2</sub>S<sub>n</sub> could suppress the activity of glyceraldehyde 3-phosphate dehydrogenase (GAPDH) via persulfidation on Cys 152 (Jarosz et al., 2015). Additionally, H<sub>2</sub>S<sub>n</sub> were found to induce Ca<sup>2+</sup> influx in astrocytes and stimulate mouse sensory neurons by activating TRPA1 channels. The molecular mechanism is due to persulfidation of two cysteine residues at the amino terminus of the TRPA1 channels (Yukari et al., 2015). Eaton et al. found that in the presence of oxidants, such as **H<sub>2</sub>O<sub>2</sub>** or O<sub>2</sub>, H<sub>2</sub>S can be converted into H<sub>2</sub>S<sub>n</sub> very quickly and afterwards activate **PKG1**α by thiol-disulfide exchange reactions. The PKG disulfide formation could then effectively relax vascular smooth muscle (Stubbert et al., 2014). Finally, the recent discovery by Akaike et al. about CARS-mediated persulfide formation is very interesting (Akaike et al., 2017). Polysulfides generated by CARS (including CysSSH and H<sub>2</sub>S<sub>n</sub>) contribute significantly to polysulfidation on proteins (via both post-translational and co-translational processes). This new pathway plays an important role in the mitochondrial electron transport chain, suggesting a new role of polysulfides/persulfides in maintaining mitochondrial bioenergetics. This unique sulfur



respiration is expected to be linked to oxidative stress related diseases.

# Fundamental physical/chemical properties of H<sub>2</sub>S<sub>n</sub>

There are several chemical methods to make mixtures of  $H_2S_n$  or relatively pure  $H_2S_2$ ,  $H_2S_3$  and  $H_2S_4$  (Steudel, 2003). For example, liquid sulfur and  $H_2S$  can react to give a mixture of long-chain  $H_2S_n$  (Equation 1). As  $H_2S$  and elemental sulfur occur together in hot underground deposits of natural gas, the formation of  $H_2S_n$  under these high-pressure conditions is very likely.

$$H_2S + nS_{liq} \rightarrow H_2S_{n+1} \tag{1}$$

On the other hand,  $H_2S_n$  are unstable species and tend to decompose to elemental sulfur ( $S^0$  or  $S_8$ ) and  $H_2S$  (Equation 2). In the natural gas field, when the gas is produced and the pressure and temperature are lowered, the decomposition reaction takes place. The precipitated elemental sulfur solid may cause serious problems when it clogs pipelines and valves.  $H_2S_n$  decomposition can be catalysed by substances such as alkali, nucleophiles and metals.

$$H_2S_n \rightarrow H_2S + {(n-1)}/_8S_8$$
 (2)

Thermolysis and photolysis of H<sub>2</sub>S<sub>n</sub> are believed to be radical chain reactions (Muller and Hyne, 1969; Gosavi *et al.*, 1973). Take H<sub>2</sub>S<sub>2</sub>, for example, the first step is assumed to be the homolytic cleavage of the S–S bond to form HS<sup>\*</sup> (Equation 3), which then abstracts hydrogen from H<sub>2</sub>S<sub>2</sub> to form H<sub>2</sub>S and HS<sup>\*</sup> (Equation 4). Recombination of HS<sup>\*</sup> and HS<sup>\*</sup> should form H<sub>2</sub>S and elemental sulfur S<sub>2</sub> (Equation 5). The reaction progress and intermediates can be detected by UV, IR or luminescence spectroscopy. Thiyl radicals generated in this process may also react with other molecules (Dénès *et al.*, 2014) such as NO to form SNO adducts (Madej *et al.*, 2008). This further complicates the signalling mechanisms.

$$H_2S_2 \rightarrow 2HS^{\bullet}$$
 (3)

$$HS^{\bullet} + H_2S_2 \rightarrow H_2S + HS_2^{\bullet}$$
 (4)

$$HS^{\bullet} + HS_2^{\bullet} \rightarrow H_2S + S_2$$
 (5)

The pure forms of  $H_2S_n$  (n=2-8) are found to be yellow liquids at 20°C. The intensity of their colour increases with the sulfur content. The freezing points of  $H_2S_2$ ,  $H_2S_3$  and  $H_2S_4$  are  $-90^{\circ}$ C,  $-53^{\circ}$ C and  $-85^{\circ}$ C, respectively; while their boiling points (at 1.013 bar) are estimated to be 70°C, 170°C and 240°C respectively.

The bond dissociation enthalpies for the S–S and S–H bonds of  $H_2S_n$  have been determined by high-level *ab initio* MO calculations. For  $H_2S_2$  at 0 k, D(S-H) = 313 kJ·mol<sup>-1</sup> and D(S-S) = 271 kJ·mol<sup>-1</sup> were obtained by the G2(MP2) method (Antonello *et al.*, 2002). The S–S bond dissociation energies of  $H_2S_2$ ,  $H_2S_3$  and of the central bond of  $H_2S_4$  were calculated to be 259.5, 211.8 and 168.5 kJ·mol<sup>-1</sup>, respectively, by the

 $CCSD(T)/6-311++G(2df,p)//MP2/6-311++G^{**}$  level of theory (Steudel *et al.*, 2001).

The UV-Vis spectra (200–400 nm) of  $\rm H_2S_n$  in cyclohexane have been reported (Fehér and Münzner, 1963). These molecules show strong absorption in the region 200–230 nm, and the extinction coefficients decrease with longer wavelengths. Also, longer sulfur chains resulted in a higher molar absorbance at a given wavelength and more red-shifted spectra. There is an absorption maximum or a broad plateau at 260–330 nm that becomes more and more pronounced when sulfur atoms increase.

The estimated Gibbs energies of formation of  $H_2S_2$   $\Delta_f G^o(H_2S_2)$  are  $-2 \text{ kJ} \cdot \text{mol}^{-1}$  in the gas phase and  $+5 \text{ kJ} \cdot \text{mol}^{-1}$  in water. From the  $\Delta_f G^o$  values for HSSH, HSS<sup>-</sup> and SS<sup>2-</sup>, a  $pK_a$  of 2.6 is estimated for HSSH, and a  $pK_a$  of 13 is estimated for HSS<sup>-</sup> (Koppenol and Bounds, 2017).

Redox reactions of H<sub>2</sub>S/H<sub>2</sub>S<sub>n</sub>: H<sub>2</sub>S can undergo both oneand two-electron oxidations. The HS radical (HS\*) produced by one-electron oxidation of sulfide (HS<sup>-</sup>) is a strong oxidant. When it is generated, it can participate in radical chain reactions. The reduction potential of the HS<sup>•</sup>/HS<sup>-</sup> redox couple is +920 mv versus NHE at pH 7 (Das et al., 1999). HS can react with HS<sup>-</sup> to form hydrodisulfide radical anion, which can further react with oxygen (O<sub>2</sub>) to form HSS<sup>-</sup>. The bimolecular rate constants for H<sub>2</sub>S (in the form of HS<sup>-</sup> in physiological buffers) with biologically important two-electron oxidants are  $0.73~\text{M}^{-1} \cdot \text{s}^{-1}$  for  $\text{H}_2\text{O}_2$ ;  $4.8 \times 10^3~\text{M}^{-1} \cdot \text{s}^{-1}$  for peroxynitrite (ONOOH);  $8 \times 10^7 \,\mathrm{M}^{-1} \cdot \mathrm{s}^{-1}$  (Carballal et al., 2011) or  $2 \times 10^9$ -M<sup>-1</sup>⋅s<sup>-1</sup> (Nagy and Winterbourn, 2010) for hypochlorite (HOCl) (at pH 7.4 and 37°C). The immediate products are HSOH or HSCl, which can further react with HS- to form  $H_2S_2$  (rate constant:  $1 \times 10^5 \text{ M}^{-1} \cdot \text{s}^{-1}$ ) (Carballal et al., 2011). The reactivities of H<sub>2</sub>S towards these oxidants are comparable to the rate constants of low molecular weight thiols such as cysteine and GSH. Given the very low endogenous H<sub>2</sub>S concentration (as compared to thiols) in tissues, it is unlikely these oxidations are physiologically significant. Therefore, it is unlikely H<sub>2</sub>S oxidation plays an important role for H<sub>2</sub>S<sub>n</sub> formation under normal physiological conditions.

If H<sub>2</sub>S<sub>n</sub> are generated in physiological conditions, it is expected that their aqueous solutions are formed. However, the exact species present in the solutions are still unclear. This is due to the instability and high reactivity of H<sub>2</sub>S<sub>n</sub> (or their anions) in water. Nevertheless, inorganic salts of H<sub>2</sub>S<sub>n</sub> are often used as the equivalents of H<sub>2</sub>S<sub>n</sub> for biological studies. These salts (such as Na<sub>2</sub>S<sub>n</sub> and K<sub>2</sub>S<sub>n</sub>) are yellow (or orange-yellow) hygroscopic crystalline substances, which show a pronounced thermochromic effect. It is worth noting that these salts have different stability. For example, Na<sub>2</sub>S<sub>2</sub> and Na<sub>2</sub>S<sub>4</sub> are relatively stable, but Na<sub>2</sub>S<sub>3</sub> is unstable in the solid state. Na<sub>2</sub>S<sub>3</sub> solid readily decomposes to form a eutectic mixture of Na<sub>2</sub>S<sub>2</sub> and Na<sub>2</sub>S<sub>4</sub> (El Jaroudi et al., 1999). When polysulfide salts are dissolved in water, a complex equilibrium mixture will be established with HS<sup>-</sup> and elemental sulfur being the products (Equation 6).

$$S_n^{2-} + H_2O \leftrightarrow S_{n-1} + HS^- + OH^-$$
 (6)

This instant reaction has several implications: (i) when polysulfides are formed in aqueous environments,  $HS^-$  and elemental sulfur will also be present; (ii) if  $HS^-$  (or  $H_2S$ )

coexists with elemental sulfur, polysulfides are likely to form; (iii) precipitation of elemental sulfur may be the indicator of polysulfide presence; (iv) polysulfides in aqueous solutions are likely to be the combination of  $S_n^{2-}$ ,  $HS^-$ ,  $S_n$  and  $HS_n^-$ . The actual polysulfide anions (e.g. whether n = 2, 3 or 4 in  $S_n^{2-}$ ) are difficult to determine. Because there is no direct method to determine single species either analytically or spectroscopically, the results of identification of specific polysulfides are somewhat speculative and rest on certain assumptions. For example, when mBB is used to trap polysulfides, the obtained bimane-polysulfide adducts (B-S<sub>n</sub>-B) may not actually reflect the true identity of the polysulfide species presented, as the formation of B-S<sub>n</sub>-B adducts may be stepwise and thiol exchange reactions could occur. Currently, it is impossible to completely exclude HS<sup>-</sup> and elemental sulfur from the solutions of polysulfides. This should be taken into consideration when studying the chemistry and biological functions of polysulfides. HSand elemental sulfur are stable species, and their corresponding clean solutions (without the presence of polysulfides) could be obtained. Therefore, control experiments using HS<sup>-</sup> and elemental sulfur should always be carried out to confirm the results of polysulflides, especially for in vitro studies.

### Detection methods for H<sub>2</sub>S<sub>n</sub>

UV-Vis absorption spectroscopy of aqueous polysulfide solutions have been studied (Giggenbach, 1972). Absorption bands in the range of 240-420 nm are assigned to polysulfide anions  $(S_n^{2-})$ . In the current polysulfide studies, UV absorption peaks at ~300 and ~370 nm are often used to indicate the presence of polysulfides (Nagy and Winterbourn, 2010; Greiner et al., 2013). However, this method is not particularly sensitive. In recent studies of H<sub>2</sub>S<sub>n</sub> in biological samples, especially in tissue samples, H<sub>2</sub>S<sub>n</sub> are normally derivatized with mBB to form the corresponding alkylated products, such as B-S<sub>2</sub>-B (from H<sub>2</sub>S<sub>2</sub>) or B-S<sub>3</sub>-B (from H<sub>2</sub>S<sub>3</sub>) (Scheme 2). These adducts can then be analysed and quantified by HPLC with a scanning fluorescence detector and tandem MS (MS/MS). The appropriate derivatizing conditions are to incubate H<sub>2</sub>S<sub>n</sub> with mBB for 30 min in 0.1 M phosphate buffer (pH 7.0) (Koike et al., 2017). Using this method, endogenous H<sub>2</sub>S<sub>2</sub> in mouse brain tissues was measured to be  $0.026 \, \mu \text{mol} \cdot \text{g}^{-1}$  protein. As discussed previously, the use of the mBB assay is based on the assumption that all H<sub>2</sub>S<sub>n</sub> species and other RSS such as CysSSH are alkylated by mBB with high efficiency, and the alkylation rates are faster than the dynamic interchanges within these sulfur species. This assumption should be carefully validated before it can be considered as the standard method for the identification of  $H_2S_n$ .

### Fluorescent sensors for H<sub>2</sub>S<sub>n</sub>

In order to better understand the functions of H<sub>2</sub>S<sub>n</sub>, methods that allow real-time and non-invasive detection of H<sub>2</sub>S<sub>n</sub> in biological systems are needed. In this regard, fluorescent sensors are ideal because of their high sensitivity and spatiotemporal resolution ability, as well as their ease of use (Fernández-Suárez and Ting, 2008; Lin et al., 2015). While a large number of fluorescent sensors for other RSS, such as cysteine, homocysteine, GSH and H<sub>2</sub>S, have been developed, only a small selection of H<sub>2</sub>S<sub>n</sub> sensors have been reported in the last several years (Gupta et al., 2017; Takano et al., 2017). These reported sensors are summarized in this section. Up to date, all known H<sub>2</sub>S<sub>n</sub> sensors are reaction-based fluorescent sensors. These sensors react with H<sub>2</sub>S<sub>n</sub> through certain specific chemical reactions to change their fluorescence properties, thus achieving the selective detection of H<sub>2</sub>S<sub>n</sub>. So far, three main strategies have been used in the design of H<sub>2</sub>S<sub>n</sub> sensors, which take advantage of the strong nucleophilicity and reduction ability of H<sub>2</sub>S<sub>n</sub>. These strategies are (i) H<sub>2</sub>S<sub>n</sub>-mediated aromatic substitution-cyclization reactions; (ii) H<sub>2</sub>S<sub>n</sub>-mediated ring-opening reaction of aziridine; (iii) H<sub>2</sub>S<sub>n</sub>-mediated reduction of nitro groups.

# Sensors based on $H_2S_n$ -mediated aromatic substitution-cyclization (summarized in Scheme 3)

2-Fluoro-5-nitrobenzoic ester and phenyl-2-(benzoylthio) benzoate have been used as the specific recognition units for H<sub>2</sub>S<sub>n</sub> based on aromatic substitution–cyclization reaction. In 2014, our laboratory reported the first selective fluorescent sensors for H<sub>2</sub>S<sub>n</sub>, for example, DSP1-3, which employed the 2fluoro-5-nitrobenzoic ester moiety as the H<sub>2</sub>S<sub>n</sub> recognition unit (Liu et al., 2014). The sensing mechanism is based on two-step reactions: (i) the 2-fluoro-5-nitrobenzoic ester is attacked by H<sub>2</sub>S<sub>2</sub> via aromatic nucleophilic substitution to form a -SSH-containing intermediate and (ii) the -SSH moiety undergoes an intramolecular cyclization, leading to the release of the fluorophore. Among the DSP probes, DSP-3 exhibited high sensitivity and selectivity for H<sub>2</sub>S<sub>n</sub>. It was almost non-fluorescent in buffers but when treated with Na<sub>2</sub>S<sub>2</sub>, a 137-fold fluorescence increase was observed. The detection limit was 71 nM, and DSP-3 was successfully applied to image H<sub>2</sub>S<sub>n</sub> in HeLa cells.

Several other research groups have adopted the fluoro-5-nitrobenzoic ester recognition unit and developed sensors

#### Scheme 2

Mono-bromobimane-based detection methods for H<sub>2</sub>S<sub>n</sub>.

#### Scheme 3

Fluorescent sensors based on H<sub>2</sub>S<sub>n</sub>-mediated aromatic substitution-cyclization. The detection limits (D.L.) for each sensor is shown below its structure.

with interesting fluorescence properties. For example, Chen et al. reported near-IR (NIR) fluorescent probes Mitro-ss and BD-ss (Gao et al., 2015a,b). Both probes possessed boron difluoride dipyrromethene (BODIPY) as the fluorophore and 2-fluoro-5-nitrobenzoic ester as a response site. Mitro-ss bears a triphenylphoniummoiety as the mitochondria targeting group. The probes showed almost no fluorescence due to the donor-excited photoinduced electron transfer (d-PET) process

from the excited BODIPY to the 2-fluoro-5-nitrobenzoic ester. The addition of Na<sub>2</sub>S<sub>2</sub> triggered a significant fluorescence enhancement ( $\lambda_{em}$  730 nm), suggesting the d-PET process was suppressed by deprotection. With the aid of Mitro-ss, the two possible generation mechanisms of H<sub>2</sub>S<sub>n</sub> were further demonstrated. With one mechanism, H<sub>2</sub>S<sub>n</sub> could be generated from the reaction between H2S and ROS, whereas with the other, H<sub>2</sub>S<sub>n</sub> could be produced from cystine by cystathionine γ-lyase and cystathionine  $\beta$ -synthase. Another NIR probe Cy-S<sub>n</sub> using semiheptamethine as the fluorophore was reported by Peng et al. (Ma et al., 2017). With this probe, the presence of H<sub>2</sub>S<sub>n</sub> resulted in a remarkable fluorescence enhancement while other RSS or ROS did not induce obvious fluorescence enhancement. The probe was successfully used to image endogenous H<sub>2</sub>S<sub>n</sub> in RAW264.7 macrophage cells and in mice. Han et al. also reported a NIR probe KB1, in which dicyanomethylene-benzopyran dye was employed as the fluorophore (Li et al., 2018). KB1 showed more than 30-fold fluorescence increase ( $\lambda_{em}$  682 nm) with H<sub>2</sub>S<sub>n</sub> and the detection limit of 8.2 nM. The probe was used for imaging H<sub>2</sub>S<sub>n</sub> in MCF-7 cells.

Two-photon (TP) fluorescent probes, with low-energy NIR wavelength excitation, are very useful for bio-imaging. These probes have advantages such as deep penetration in tissues, excellent 3D imaging capability and minimum photodamage to biological specimens. To date, there are several TP fluorescent probes developed for sensing  $H_2S_n$  by utilizing the 2-fluoro-5-nitrobenzoic ester moiety as the recognition site. In 2015, Liu et al. reported a TP probe QSn using 2benzothiazol-2-yl-quinoline-6-ol as the fluorophore (Zeng et al., 2015). The addition of H<sub>2</sub>S<sub>n</sub> to the QS<sub>n</sub> solution resulted in a 24-fold enhancement in fluorescence intensity at 534 nm under both one-photon ( $\lambda_{ex}$  368 nm) and TP ( $\lambda_{ex}$  730 nm). QS<sub>n</sub> was not only used to visualize exogenous and endogenous  $H_2S_n$  in HeLa cells but also applied to investigate the distribution of H<sub>2</sub>S<sub>n</sub> in living zebrafish embryos. Another TP probe GCTPOC-H<sub>2</sub>S<sub>2</sub> was reported by Lin et al. (Shang et al., 2016). The reaction between GCTPOC-H<sub>2</sub>S<sub>2</sub> and H<sub>2</sub>S<sub>n</sub> produced a product that exhibited larger TP action cross-section up to 500 GM ( $\lambda_{ex}$  780 nm). With this probe, imaging of H<sub>2</sub>S<sub>n</sub> in MCF-7 cells and in situ detecting H<sub>2</sub>S<sub>n</sub> levels in live mice were achieved. Liu and co-workers developed a naphthalimide-based TP ratiometric probe NRT-HP based on the ICT mechanism (Han et al., 2016). Upon addition of H<sub>2</sub>S<sub>n</sub> to the NRT-HP solution, the fluorescence emission at 460 nm decreased, and a new red-shifted emission at 542 nm increased simultaneously. Probe NRT-HP was successfully applied to image H<sub>2</sub>S<sub>n</sub> in different cell lines (MCF-7, A549) by TP microscopy. Furthermore, upon excitation at 800 nm, probe NRT-HP could detect H<sub>2</sub>S<sub>n</sub> in tissue up to 300 µM of penetration depth. In order to get larger emission shift to improve the measuring accuracy, Yin et al. reported a FRET-based TP probe TPR-S based on a naphthalene-rhodol dye (Zhang et al., 2016). Before adding H<sub>2</sub>S<sub>n</sub>, the rhodol moiety of TPR-S was in spiro ring-closing form and the FRET process was off, so the probe emitted only naphthalene emission at 448 nm. With the addition of H<sub>2</sub>S<sub>n</sub>, the fluorescence emission at 448 nm decreased, and a new emission at 541 nm increased. The reason for this phenomenon was that rhodol moiety was deprotected to form spiro ring-opening and the FRET was on. The efficiency of FRET from naphthalene to rhodol was estimated to be 91.3%. The probe TPR-S was able to image  $H_2S_n$  in live HeLa cells, rat liver slices and LPS-induced acute organ injury upon excitation at 740 nm with femtosecond pulses.

Although 2-fluoro-5-nitrobenzoic ester has been widely used in the design of H<sub>2</sub>S<sub>n</sub> probes, this recognition site could also react with biothiols to form thioether adducts. This problem does not affect the selectivity of the probes but could lead to the consumption of the probes in biological systems. High probe loading is usually required in actual applications. To solve this problem, our laboratory designed another strategy for H<sub>2</sub>S<sub>n</sub> sensing, which utilized phenyl 2-(benzoylthio)benzoate moiety as the recognition unit. This design takes the advantage of the dual reactivity of H<sub>2</sub>S<sub>n</sub>. It is known that H<sub>2</sub>S<sub>n</sub> are stronger nucleophiles than biothiols and H<sub>2</sub>S under physiological pH. Moreover, H<sub>2</sub>S<sub>n</sub> belong to the sulfane sulfur family. A characteristic reaction of sulfane sulfurs is that they can act as electrophiles and react with certain nucleophiles (Chen et al., 2013). Overall, H<sub>2</sub>S<sub>n</sub> have a unique dual-reactivity and can be both a nucleophile and an electrophile. Therefore, we predicted phenyl 2-(benzoylthio)benzoate-based probes (PSP) should be specific for H<sub>2</sub>S<sub>n</sub> (Scheme 3B) (Chen et al., 2015a, b). We found the substitution group (R) of the thioester moiety was critical for the probes' selectivity, and PSP3 was the most promising probe. PSP3 showed a fast response to H<sub>2</sub>S<sub>n</sub>, excellent selectivity and high sensitivity with a detection limit of 3 nM. It was used in the detection of exogenous and endogenous H<sub>2</sub>S<sub>n</sub> in different cells. Based on this design, Ma et al. further developed an NIR probe HXPI-1, which employed a hemicyanine derivative as the fluorophore ( $\lambda_{em}$  708 nm) and was used to visualize  $H_2S_n$ in mice (Fang et al., 2017). The detection limits of each sensor are provided below its structure in Scheme 3.

# Sensors based on $H_2S_n$ -mediated ring-opening reaction of aziridine (Scheme 4)

 $\rm H_2S_n$  are known to be strong nucleophiles and expected to be more reactive in certain nucleophilic reactions than  $\rm H_2S_n$  or thiols. Our group has explored some reactions of  $\rm H_2S_n$  and found that  $\rm H_2S_n$  could effectively react with aziridines. Based on this reaction, the first off–on twisted intramolecular charge transfer (TICT)-based fluorescent probe AP was developed (Chen *et al.*, 2015a,b). The probe was constructed by incorporating an aziridine group on dansyl dye to quench the fluorescence. When reacted with  $\rm H_2S_n$ , the fluorescence intensity at 530 nm increased due to the suppress of the TICT effect. The reaction product of AP with  $\rm H_2S_n$  showed not only good TP photophysical properties but also high luminescence efficiency in solid state. However, attempts to use AP for imaging  $\rm H_2S_n$  in live cells were not successful.

# Sensors based on $H_2S_n$ -mediated reduction of nitro groups (Scheme 4)

Based on the strong reducibility of  $H_2S_n$ , Chen *et al.* designed two NIR fluorescent probes Hcy-Mito and Hcy-Biot that could be used for monitoring  $O_2^{\bullet-}$  and  $H_2S_n$  in cells and *in vivo* (Huang *et al.*, 2016). Two different targeting groups were used on these probes. Hcy-Mito bearing a benzyl chloride moiety

### Scheme 4

Aziridine-based sensor AP and nitro-reduction based sensors. The detection limits (D.L.) for each sensor is shown below its structure.

could target the mitochondria, and Hcy-Biot bearing a biotin moiety could target carcinoma tissues. These probes displayed almost no fluorescence due to the destroyed polymethine conjugated system and the d-PET process from heptamethine cyanine dye to m-nitrophenol group. Addition of O<sub>2</sub><sup>•</sup> would restore the polymethine conjugated systems of Hcy-Mito and Hcy-Biot, resulting in a weak fluorescence at 780 nm, and the detection limit was 0.1  $\mu$ M. Subsequently, the addition of H<sub>2</sub>S<sub>n</sub> would reduce the nitro group to amine and trigger strong fluorescence enhancement due to the block of the d-PET process. The detection limit of H<sub>2</sub>S<sub>n</sub> was estimated to be 80 nM. Hcy-Mito was used for in situ detection of  $O_2^{\bullet-}$  and  $H_2S_n$  levels in mitochondria and endogenous  $O_2^{-}$ and H<sub>2</sub>S<sub>n</sub> crosstalk in living cells. Hcy-Biot showed high tumour-targeting ability and excellent tissue penetration in live animal models. Yang et al. reported another nitro-based probe F1 based on the flavylium fluorophore (Gong et al., 2016). The fluorescence of F1 was guenched because attaching a nitro group to flavylium blocked the ICT process. Upon treatment with H<sub>2</sub>S<sub>n</sub>, the nitro group would be reduced to amine that unblocked the ICT process, leading to restore the strong fluorescence of flavylium. It should be noted that H<sub>2</sub>S could also induce some fluorescence enhancement for these nitro-based probes. Therefore, the selectivity of these probes may not be ideal.

### Sensors for dual detection of both $H_2S$ and $H_2S_n$

H<sub>2</sub>S<sub>n</sub> and H<sub>2</sub>S are redox partners. They should work collectively to maintain a sulfur-related redox balance. In order to better understand their functions and crosstalks, it is highly desirable to develop sensors that can simultaneously detect H<sub>2</sub>S<sub>n</sub> and H<sub>2</sub>S. We recently developed such a probe, DDP-1 (Scheme 5). It employs two recognition sites in one molecule: phenyl 2-(benzoylthio)benzoate for H<sub>2</sub>S<sub>n</sub> and azide for H<sub>2</sub>S. Rhodol and coumarin were used as the fluorophores and tethered via a rigid piperazine linker (Chen et al., 2016). H<sub>2</sub>S<sub>n</sub> selectively reacted with the phenyl 2-(benzoylthio)benzoate moiety and induced a remarkable green fluorescence increase of rhodol. However, H2S promoted the reduction reaction of azide -N<sub>3</sub> to -NH<sub>2</sub>, which was accompanied by the oxidation of H<sub>2</sub>S to H<sub>2</sub>S<sub>n</sub>. This would lead to blue fluorescence of coumarin. Meanwhile, the resultant H<sub>2</sub>S<sub>n</sub> would also react with 2-(benzoylthio)benzoate to release rhodol and trigger the FRET from coumarin to rhodol. As a result, H<sub>2</sub>S could be identified by both fluorescence signals in blue and green channels. The detection limit of H<sub>2</sub>S<sub>n</sub> and H<sub>2</sub>S was calculated to be 100 and 24 nM respectively. DDP-1 is the first fluorescent probe capable of selective discrimination of H<sub>2</sub>S<sub>n</sub> and H<sub>2</sub>S.

So far, a handful of H<sub>2</sub>S<sub>n</sub> fluorescent probes have been reported, and we expect to see more being developed in the coming years. In the study of H<sub>2</sub>S<sub>n</sub> probes, researchers usually would validate their specificity for H<sub>2</sub>S<sub>n</sub> (vs. other thiols and H<sub>2</sub>S). However, their selectivity for some other important sulfur species, especially recently recognized cysteine hydropolysulfide Cys-S<sub>n</sub>SH (Ida et al., 2014; Akaike et al., 2017), is not well-defined. As one can imagine, Cys-S<sub>n</sub>SH and H<sub>2</sub>S<sub>n</sub> are likely to coexist, so one should not expect the probes to differentiate these species. Nevertheless, this should not cause a problem as Cys-S<sub>n</sub>SH and H<sub>2</sub>S<sub>n</sub> should have similar biological functions.

### Releasing agents of H<sub>2</sub>S<sub>n</sub>

In the current studies of H<sub>2</sub>S<sub>n</sub>, researchers always use their inorganic salts (Na<sub>2</sub>S<sub>2</sub>, Na<sub>2</sub>S<sub>3</sub>, etc.) as the standard H<sub>2</sub>S<sub>n</sub> equivalents. These salts (Na<sub>2</sub>S<sub>2</sub>, Na<sub>2</sub>S<sub>3</sub>, Na<sub>2</sub>S<sub>4</sub>) are commercially available by vendors like Dojindo Molecular Technologies, Inc. Due to their instability, these salts often contain other sulfur-based impurities like sulfide (S<sup>2-</sup>) and elemental sulfur (S<sub>8</sub>). This problem makes the use of these salts

### Scheme 5 Dual detection probe DDP-1.

### Scheme 6 Enzyme-triggered H<sub>2</sub>S<sub>n</sub> donors.

problematic as it is difficult to attribute the observed bioactivity solely to H<sub>2</sub>S<sub>n</sub>. Moreover, due to the high reactivity of H<sub>2</sub>S<sub>n</sub>, their biological production is expected to be a slow and steady process, which cannot be mimicked using Na<sub>2</sub>S<sub>n</sub> (these salts produce H<sub>2</sub>S<sub>n</sub> immediately upon dissolving in buffers and are considered fast and uncontrollable H<sub>2</sub>S<sub>n</sub> donors). Due to these concerns, slow and controllable H<sub>2</sub>S<sub>n</sub> donors should be useful research tools in this field. This is similar to the field of H<sub>2</sub>S donors. However, donors of H<sub>2</sub>S<sub>n</sub> are very underdeveloped. Recently, Wang and co-workers developed several such donors (Scheme 6) (Yu et al., 2018). In this work, H<sub>2</sub>S<sub>2</sub> is caged as two thiol acid groups linked by a disulfide bond, for example, acyl disulfides. A masked phenol hydroxyl acts as a latent nucleophile for initiation of H<sub>2</sub>S<sub>2</sub> release through lactonization. A 'trimethyl lock' is also employed to facilitate lactonization. Esterase-triggered donors like BW-HP-302 and phosphatasetriggered donors like BW-HP-303 have been prepared. Their enzyme-catalysed H<sub>2</sub>S<sub>2</sub> productions have been demonstrated. Initial studies showed that these donors could induce protein S-persulfidation on GAPDH. It should be noted that acyl disulfides are used as the core of these donors. It is known that acyl disulfides are highly reactive species and can easily react with nucleophiles like amines (Mali and Gopi, 2014). In biological systems, these donors may react with naturally existing nucleophiles (like amino acids) to cause off-target effects and undesired H<sub>2</sub>S<sub>2</sub> release. This possibility needs to be explored in future studies.

### **Concluding remarks**

Increasing numbers of publications have suggested H<sub>2</sub>S<sub>n</sub> are potent physiological mediators and play important roles in



sulfur-related redox biology. Nevertheless, the actual chemical species involved in those biological processes are still unclear as current conclusions are mostly based on derivatization methods, which are viewed as indirect evidence. In terms of their chemistry, H<sub>2</sub>S<sub>n</sub> are highly reactive and unstable molecules. Tracking their formation and their fates can be very difficult. Moreover, H2Sn and H2S often coexist, as H<sub>2</sub>S<sub>n</sub> are found to be the common impurities in H<sub>2</sub>S solutions (Greiner et al., 2013). Therefore, differentiation of the functions of H<sub>2</sub>S and H<sub>2</sub>S<sub>n</sub> can also be challenging. Along with further understanding their biological functions, it is also important to explore their chemical properties and reactions in biological systems. To this end, the development of chemical tools or methods for the delivery and detection of H<sub>2</sub>S<sub>n</sub> should be valuable. It is gratifying to see the development of H<sub>2</sub>S<sub>n</sub> detection sensors has made some progress in recent years and the development of H<sub>2</sub>S<sub>n</sub> donors has started emerging. We expect these will continue to be active research topics, and more interesting work will appear in the future.

### Nomenclature of targets and ligands

Key protein targets and ligands in this article are hyperlinked to corresponding entries in http://www. guidetopharmacology.org, the common portal for data from the IUPHAR/BPS Guide to PHARMACOLOGY (Harding et al., 2018), and are permanently archived in the Concise Guide to PHARMACOLOGY 2017/18 (Alexander et al., 2017a,b).

### **Acknowledgements**

This work was supported by the NIH (R01GM125968) and NSF (CHE1738305) to M.X.; the National Natural Science Foundation of China (NSFC.21602051) to H.L. and Natural Science Foundation of Guangdong Province in China (2017A030313892) to C-t.Y. This work was also supported in part by funds provided for medical and biological research by the State of Washington Initiative Measure No. 171.

### **Conflict of interest**

The authors declare no conflicts of interest.

#### References

Akaike T, Ida T, Wei FY, Nishida M, Kumagai Y, Alam M et al. (2017). Cysteinyl-tRNA synthetase governs cysteine polysulfidation and mitochondrial bioenergetics. Nat Commun 8: 1177.

Alexander SPH, Fabbro D, Kelly E, Marrion NV, Peters JA, Faccenda E et al. (2017a). The Concise Guide to PHARMACOLOGY 2017/18: Enzymes. Br J Pharmacol 174: S272-S359.

Alexander SPH, Striessnig J, Kelly E, Marrion NV, Peters JA, Faccenda E et al. (2017b). The Concise Guide to PHARMACOLOGY 2017/18: Voltage-gated ion channels. Br J Pharmacol 174: S160-S194.

Antonello S, Benassi R, Gavioli G, Taddei F, Maran F (2002). Theoretical and ectrochemical analysis of dissociative electron transfers proceeding through formation of loose radical anion species: reduction of symmetrical and unsymmetrical disulfides. J Am Chem Soc 124: 7529-7538.

Carballal S, Trujillo M, Cuevasanta E, Bartesaghi S, Möller MN, Folkes LK et al. (2011). Reactivity of hydrogen sulfide with peroxynitrite and other oxidants of biological interest. Free Radical Bio Med 50: 196-205.

Chen W, Liu C, Peng B, Zhao Y, Pacheco A, Xian M (2013). New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem Sci 4: 2892-2896.

Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M (2016). A single fluorescent probe to visualize hydrogen sulfide and hydrogen polysulfides with different fluorescence signals. Angew Chem Int Ed 55: 9993-9996.

Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M (2015a). The development of fluorescent probes for visualizing intracellular hydrogen polysulfides. Angew Chem Int Ed 54: 13961-13965.

Chen W, Rosser EW, Zhang D, Shi W, Li Y, Dong WJ et al. (2015b). A specific nucleophilic ring-opening reaction of aziridines as a unique platform for the construction of hydrogen polysulfides sensors. Org Lett 17: 2776-2779.

Cortese-Krott MM, Kuhnle GGC, Dyson A, Fernandez BO, Grman M, DuMond JF et al. (2015). Key bioactive reaction products of the NO/H<sub>2</sub>S interaction are S/N-hybrid species, polysulfides, and nitroxyl. Proc Natl Acad Sci U S A 112: E4651-E4660.

Das TN, Huie RE, Neta P, Padmaja S (1999). Reduction potential of the sulfhydryl radical: pulse radiolysis and laser flash photolysis studies of the formation and reactions of sh and hssh--in aqueous solutions. J Phys Chem A 103: 5221-5226.

Dénès F, Pichowicz M, Povie G, Renaud P (2014). Thiyl radicals in organic synthesis. Chem Rev 114: 2587-2693.

Dóka É, Pader I, Bíró A, Johansson K, Cheng Q, Ballagó K et al. (2016). A novel persulfide detection method reveals protein persulfide- and polysulfide-reducing functions of thioredoxin and glutathione systems. Sci Adv 2: e1500968.

Eberhardt M, Dux M, Namer B, Miljkovic J, Cordasic N, Will C et al. (2014). H<sub>2</sub>S and NO cooperatively regulate vascular tone by activating a neuroendocrine HNO-TRPA1-CGRP signalling pathway. Nat Commun 5: 4381.

El Jaroudi O, Picquenard E, Gobeltz N, Demortier A, Corset J (1999). Raman spectroscopy study of the reaction between sodium sulfide or disulfide and sulfur: identity of the species formed in solid and liquid phases. Inorg Chem 38: 2917-2923.

Fang Y, Chen W, Shi W, Li H, Xian M, Ma H (2017). A near-infrared fluorescence off-on probe for sensitive imaging of hydrogen polysulfides in living cells and mice in vivo. Chem Commun 53: 8759-8762.

Fehér F, Münzner H (1963). Beiträge zur chemie des schwefels, 63. zur kenntnis der jodsulfane. Chem Ber 96: 1150-1155.

Fernández-Suárez M, Ting AY (2008). Fluorescent probes for superresolution imaging in living cells. Nat Rev Mol Cell Bio 9: 929-943.

Gao M, Wang R, Yu F, You J, Chen L (2015a). A near-infrared fluorescent probe for the detection of hydrogen polysulfides



biosynthetic pathways in living cells and in vivo. Analyst 140: 3766-3772.

Gao M, Yu F, Chen H, Chen L (2015b). Near-infrared fluorescent probe for imaging mitochondrial hydrogen polysulfides in living cells and in vivo. Anal Chem 87: 3631-3638.

Garai D, Ríos-González BB, Furtmüller PG, Fukuto JM, Xian M, López-Garriga J et al. (2017). Mechanisms of myeloperoxidase catalyzed oxidation of H<sub>2</sub>S by H<sub>2</sub>O<sub>2</sub> or O<sub>2</sub> to produce potent protein Cys-polysulfide-inducing species. Free Radical Bio Med 113: 551-563.

Giggenbach W (1972). Optical spectra and equilibrium distribution of polysulfide ions in aqueous solution at 20.deg. Inorg Chem 11: 1201-1207.

Giles GI, Jacob C (2002). Reactive sulfur species: an emerging concept in oxidative stress. Biol Chem 383: 375-388.

Giles GI, Tasker KM, Jacob C (2001). Hypothesis: the role of reactive sulfur species in oxidative stress. Free Radical Bio Med 31: 1279-1283.

Gong X, Yang XF, Zhong Y, Chen H, Li Z (2016). A flavylium-based turn-on fluorescent probe for imaging hydrogen polysulfides in living cells. RSC Adv 6: 88519-88525.

Gosavi RK, DeSorgo M, Gunning HE, Strausz OP (1973). The UV absorption spectrum and geometry of the HS2 radical. Chem Phys Lett 21: 318-321.

Greiner R, Pálinkás Z, Bäsell K, Becher D, Antelmann H, Nagy P et al. (2013). Polysulfides link H<sub>2</sub>S to protein thiol oxidation. Antioxid Redox Sign 19: 1749-1765.

Gruhlke MCH, Slusarenko AJ (2012). The biology of reactive sulfur species (RSS). Plant Physiol Biochem 59: 98-107.

Gupta N, Reja SI, Bhalla V, Kumar M (2017). Fluorescent probes for hydrogen polysulfides ( $H_2S_n$ , n > 1): from design rationale to applications. Org Biomol Chem 15: 6692-6701.

Han Q, Mou Z, Wang H, Tang X, Dong Z, Wang L et al. (2016). Highly selective and sensitive one- and two-photon ratiometric fluorescent probe for intracellular hydrogen polysulfide sensing. Anal Chem 88: 7206-7212.

Harding SD, Sharman JL, Faccenda E, Southan C, Pawson AJ, Ireland S et al. (2018). The IUPHAR/BPS Guide to PHARMACOLOGY in 2018: updates and expansion to encompass the new guide to IMMUNOPHARMACOLOGY. Nucl Acids Res 46: D1091-D1106.

Huang Y, Yu F, Wang J, Chen L (2016). Near-infrared fluorescence probe for in situ detection of superoxide anion and hydrogen polysulfides in mitochondrial oxidative stress. Anal Chem 88: 4122-4129.

Ida T, Sawa T, Ihara H, Tsuchiya Y, Watanabe Y, Kumagai Yet al. (2014). Reactive cysteine persulfides and S-polythiolation regulate oxidative stress and redox signaling. Proc Natl Acad Sci U S A 111: 7606-7611.

Jarosz AP, Wei W, Gauld JW, Auld J, Özcan F, Aslan M et al. (2015). Glyceraldehyde 3-phosphate dehydrogenase (GAPDH) is inactivated by S-sulfuration in vitro. Free Radic Biol Med 89: 512-521.

Kimura H (2015). Hydrogen sulfide and polysulfides as signaling molecules. Proc Jpn Acad Ser B Phys Biol Sci 91: 131-159.

Kimura Y, Koike S, Shibuya N, Lefer D, Ogasawara Y, Kimura H (2017). 3-Mercaptopyruvate sulfurtransferase produces potential redox regulators cysteine- and glutathione-persulfide (Cys-SSH and GSSH)

together with signaling molecules H<sub>2</sub>S<sub>2</sub>, H<sub>2</sub>S<sub>3</sub> and H<sub>2</sub>S. Sci Rep 7: 10459.

Kimura Y, Toyofuku Y, Koike S, Shibuya N, Nagahara N, Lefer D et al. (2015). Identification of H<sub>2</sub>S<sub>3</sub> and H<sub>2</sub>S produced by 3mercaptopyruvate sulfurtransferase in the brain. Sci Rep 5: 14774.

Koike S, Kawamura K, Kimura Y, Shibuya N, Kimura H, Ogasawara Y (2017). Analysis of endogenous H<sub>2</sub>S and H<sub>2</sub>S<sub>n</sub> in mouse brain by high-performance liquid chromatography with fluorescence and tandem mass spectrometric detection. Free Radic Biol Med 113: 355-362

Koike S, Ogasawara Y, Shibuya N, Kimura H, Ishii K (2013). Polysulfide exerts a protective effect against cytotoxicity caused by tbuthylhydroperoxide through Nrf2 signaling in neuroblastoma cells. FEBS Lett 587: 3548-3555.

Koppenol WH, Bounds PL (2017). Signaling by sulfur-containing molecules. Quantitative aspects. Arch Biochem Biophys 617: 3-8.

Li KB, Chen FZ, Yin QH, Zhang S, Shi W, Han DM (2018). A colorimetric and near-infrared fluorescent probe for hydrogen polysulfides and its application in living cells. Sensor Actuat B Chem 254: 222-226.

Li L, Rose P, Moore PK (2011). Hydrogen sulfide and cell signaling. Annu Rev Pharmacol Toxicol 51: 169-187.

Lin VS, Chen W, Xian M, Chang CJ (2015). Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev 44: 4596-4618.

Liu C, Chen W, Shi W, Peng B, Zhao Y, Ma H et al. (2014). Rational design and bioimaging applications of highly selective fluorescence probes for hydrogen polysulfides. J Am Chem Soc 136: 7257-7260.

Ma J, Fan J, Li H, Yao Q, Xu F, Wang J et al. (2017). A NIR fluorescent chemodosimeter for imaging endogenous hydrogen polysulfides via the CSE enzymatic pathway. J Mater Chem B 5: 2574-2579.

Madej E, Folkes LK, Wardman P, Czapski G, Goldstein S (2008). Thiyl radicals react with nitric oxide to form S-nitrosothiols with rate constants near the diffusion-controlled limit. Free Radic Biol Med 44: 2013-2018.

Mali SM, Gopi HN (2014). Thioacetic acid/nash-mediated synthesis of N-protected amino thioacids and their utility in peptide synthesis. J Org Chem 79: 2377-2383.

Miyamoto R, Koike S, Takano Y, Shibuya N, Kimura Y, Hanaoka K et al. (2017). Polysulfides  $(H_2S_n)$  produced from the interaction of hydrogen sulfide (H2S) and nitric oxide (NO) activate TRPA1 channels. Sci Rep 7: 45995.

Módis K, Bos EM, Calzia E, van Goor H, Coletta C, Papapetropoulos A et al. (2014). Regulation of mitochondrial bioenergetic function by hydrogen sulfide. Part II. Pathophysiological and therapeutic aspects. Br J Pharmacol 171: 2123-2146.

Muller EF, Hyne JB (1969). Thermal decomposition of tri- and tetrasulfanes. J Am Chem Soc 91: 1907-1912.

Nagy P, Winterbourn CC (2010). Rapid reaction of hydrogen sulfide with the neutrophil oxidant hypochlorous acid to generate polysulfides. Chem Res Toxicol 23: 1541-1543.

Olson KR, Gao Y, Arif F, Arora K, Patel S, DeLeon ER et al. (2018). Metabolism of hydrogen sulfide (H2S) and production of reactive sulfur species (RSS) by superoxide dismutase. Redox Biol 15: 74-85.

### H<sub>2</sub>S<sub>n</sub> formation, function, detection and delivery



Ono K, Akaike T, Sawa T, Kumagai Y, Wink DA, Tantillo DJ et al. (2014). Redox chemistry and chemical biology of H2S, hydropersulfides, and derived species: implications of their possible biological activity and utility. Free Radic Biol Med 77:

Park CM, Weerasinghe L, Day JJ, Fukuto JM, Xian M (2015). Persulfides: current knowledge and challenges in chemistry and chemical biology. Mol Biosyst 11: 1775-1785.

Paulsen CE. Carroll KS (2013). Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. Chem Rev 113: 4633-4679.

Polhemus DJ, Lefer DJ (2014). Emergence of hydrogen sulfide as an endogenous gaseous signaling molecule in cardiovascular disease. Circ Res 114: 730-737.

Shang H, Chen H, Tang Y, Guo R, Lin W (2016). Construction of a two-photon fluorescent turn-on probe for hydrogen persulfide and polysulfide and its bioimaging application in living mice. Sensor Actuat B Chem 230: 773-778.

Steudel R (2003). Inorganic polysulfanes  $H_2S$  n with n > 1. In: Steudel R (ed). Elemental Sulfur and Sulfur-rich Compounds II, Top Curr Chem, Vol. 231. Springer Berlin Heidelberg: Berlin, Heidelberg, pp. 99-125.

Steudel R, Steudel Y, Miaskiewicz K (2001). Does the interconversion of polysulfur compounds proceed via hypervalent intermediates?— An ab initio mo study. Chem Eur J 7: 3281-3290.

Stubbert D, Prysyazhna O, Rudyk O, Scotcher J, Burgoyne JR, Eaton P (2014). Protein kinase G Iα oxidation paradoxically underlies blood pressure lowering by the reductant hydrogen sulfide. Hypertension 64: 1344-1351.

Szabo C, Ransy C, Módis K, Andriamihaja M, Murghes B, Coletta C et al. (2014). Regulation of mitochondrial bioenergetic function by

hydrogen sulfide. Part I. Biochemical and physiological mechanisms. Br J Pharmacol 171: 2099-2122.

Takano Y, Echizen H, Hanaoka K (2017). Fluorescent probes and selective inhibitors for biological studies of hydrogen sulfideand polysulfide-mediated signaling. Antioxid Redox Sign 27: 669-683.

Toohey J, Cooper A (2014). Thiosulfoxide (sulfane) sulfur: new chemistry and new regulatory roles in biology. Molecules 19: 12789-12813.

Wang R (2012). Physiological implications of hydrogen sulfide: a whiff exploration that blossomed. Physiol Rev 92: 791-896.

Yang CT, Chen L, Xu S, Day JJ, Li X, Xian M (2017). Recent development of hydrogen sulfide releasing/stimulating reagents and their potential applications in cancer and glycometabolic disorders. Front Pharmacol 8: 664.

Yu B, Zheng Y, Yuan Z, Li S, Zhu H, De La Cruz LK et al. (2018). Toward direct protein s-persulfidation: a prodrug approach that directly delivers hydrogen persulfide. J Am Chem Soc 140: 30-33.

Yukari H, Kenji T, Makoto T, Hideo K, Toshio O (2015). Polysulfide evokes acute pain through the activation of nociceptive TRPA1 in mouse sensory neurons. Mol Pain 11: 24.

Zeng L, Chen S, Xia T, Hu W, Li C, Liu Z (2015). Two-photon fluorescent probe for detection of exogenous and endogenous hydrogen persulfide and polysulfide in living organisms. Anal Chem 87: 3004-3010.

Zhang J, Zhu XY, Hu XX, Liu HW, Li J, Feng LL et al. (2016). Ratiometric two-photon fluorescent probe for in vivo hydrogen polysulfides detection and imaging during lipopolysaccharideinduced acute organs injury. Anal Chem 88: 11892-11899.