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Abstract

Planar wave trains are traveling wave solutions whose wave profiles are periodic in one spatial direction
and constant in the transverse direction. In this paper, we investigate the stability of planar wave trains in
reaction—diffusion systems. We establish nonlinear diffusive stability against perturbations that are bounded
along a line in R2 and decay exponentially in the distance from this line. Our analysis is the first to treat
spatially nonlocalized perturbations that do not originate from a phase modulation. We also consider pertur-
bations that are fully localized and establish nonlinear stability with better decay rates, suggesting a trade-off
between spatial localization of perturbations and temporal decay rate. Our stability analysis utilizes point-
wise estimates to exploit the spatial structure of the perturbations. The nonlocalization of perturbations
prevents the use of damping estimates in the nonlinear iteration scheme; instead, we track the perturbed
solution in two different coordinate systems.
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1. Introduction

In this paper, we investigate the stability of spatially periodic planar traveling waves. Consider
a planar reaction—diffusion system of the form

ur = D(uyy +uyy) + fu), (x,y)€R? >0, ueR", (1.1)

where n € N, D € R™" is a symmetric, positive-definite matrix, and f: R” — R” is a
C2-smooth nonlinearity. We are interested in planar traveling-wave solutions to (1.1) of the form
u(x,y,t) =uoso(kx — wt), where the profile u,(¢) is periodic in ¢ with period 1, k € R denotes
the spatial wave number, and w € R is the temporal frequency of the traveling wave. From now
on, we use the term wave train to refer to spatially-periodic traveling waves. We note that the
terms “rolls” and “stripes” are also used in literature to refer to planar wave trains.

Our goal is to determine whether, and in what sense, the planar wave train u(x,y,t) =
Uxo(kx — wt) is stable under perturbations of the initial condition u(x, y, 0) = uxo(kx). Part
of our motivation stems from the case of planar spiral waves that resemble planar wave trains in
the far field: understanding the stability of wave-train solutions to (1.1) is a first step towards any
nonlinear stability analysis of planar spiral waves.

Before discussing the nonlinear stability of wave trains for the planar system (1.1), we re-
view the relevant results for the spatially one-dimensional case. Note that the function u(x, ) =
Uso(kx — wt) is also a wave-train solution to the one-dimensional version

us = Duyy + f(u), xeR, t>0, uekR’ (1.2)

of (1.1). Throughout, we will assume that the wave train is spectrally stable and refer to §2.1 for
details on what this assumption entails. We then consider initial conditions of the form

u(x,0) =ucolkx + @o(x)) 4+ vo(x), 0o(x) = @t as x — +o0, (1.3)

where the perturbation vy is sufficiently small in an appropriate function space, so that we change
the phase, but not the wave number, of the wave train at time # = 0. Let #(x,t) denote the
associated solution to (1.2): we may then ask whether #(x, ) converges in an appropriate sense
to U (kx — wt), or a translate, as time ¢ goes to infinity.

More generally, we can attempt to write the solution in the form

U(x,t) =ueolkx + ¢(x, 1) — wt) 4+ terms that decay at least pointwise in time. (1.4)

For the case |¢p4+ — ¢_| < 1, it was shown in [23] that (1.4) holds for a function ¢(x, ¢) that has
an asymptotically self-similar profile as t — oo: indeed, ¢ (x, t) converges to a moving Gaussian
if ¢+ = ¢_ and to a moving error function with amplitude ¢4 — @_ in the case where 0 <
o+ — ¢_| < 1. Similar results, though without the explicit asymptotics, were also shown in [9,
13-15,24] using different methods — see Remark 1.1 below for more details. The results in [9]
were complemented with explicit asymptotics in [10], recovering the results of [23] for the case
0 < |o4 — ¢—| < 1. The restriction that |¢+ — ¢_| is small was recently removed in [8]. We
emphasize that, although the initial phase off-set ¢g can be nonlocalized, the perturbation vy
in (1.3) has to be localized in all the aforementioned papers, that is, we need to assume that
vo(x) — O sufficiently rapidly as x — Fo00.
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In this paper, we examine the nonlinear stability of planar wave trains u(x, y, t) = uo(kx —
wt) that satisfy (1.1). We note that increasing the spatial dimension from one to two improves
the decay properties on the linear level: for instance, the solutions to the heat equation

U, =Au, xeR? t>0, ueR",
decay pointwise with rate r~¢/2 so that increasing the spatial dimension d € N yields faster decay
in time. This leads to the natural question whether the additional decay can be exploited to allow
for a larger — or different — class of initial conditions. In this paper, we answer this question
in the affirmative by proving that planar wave trains are stable against a class of nonlocalized
perturbations vg(x, y) rendering our initial conditions complementary to those considered in the
literature for one spatial dimension — see Remark 1.3 below for more details.

More specifically, given initial conditions of the form

u(x,y,0) =uco(kx) +vo(x, y), (1.5)

we prove that the resulting solution ii(x, y, ) to (1.1) decays pointwise with rate #~1/2 like a
diffusive Gaussian if vg(x, y) is bounded along an arbitrary, but fixed, line in R2 and decays
exponentially in the distance from this line. We note that the obtained decay is optimal for this
class of perturbations — see Remark 5.1 below — although it is slower than one would intuitively
expect suggesting a trade-off between spatial localization of the initial perturbation and tempo-
ral decay rate. Indeed, our second result recovers the expected pointwise decay with rate !
provided vo(x, y) is sufficiently localized in all spatial directions in R?. Although this second
theorem provides an expected result, it seems not to be present in the literature at the moment —
see Remark 1.2 below.

The proofs of our main results depend on pointwise estimates that allow us to exploit the spe-
cific spatial structure of the perturbations. Therefore, we extend the pointwise Green’s function
estimates for wave trains proved in [14] in one spatial dimension to the planar case. However,
the nonlinear stability analysis in [14] — which is, in turn, based on [13] — does not extend to
our planar case: the L>-localization of the initial perturbation is utilized in [13,14] in a crucial
way in their nonlinear damping estimates, which are necessary to close the nonlinear iteration
arguments presented in [13,14]. The main challenge in our proof is to replace these damping
estimates: we rely instead on tracking the perturbed solution in two different coordinate systems,
where one of these coordinates is used to correct for the phase shift of the solution relative to the
original wave train.

We now comment briefly on open problems. A major open problem in the one-dimensional
case is the long-time dynamics of initial conditions of the form u(x, 0) = uxo(ko(x)x), which
correspond to perturbations of the wave number instead of just the phase. In the planar case, not
much is known about the linear and nonlinear stability of spiral waves. Moreover, it is unexplored
whether, and in what form, planar wave trains are stable against an initial change in phase, that is
whether, and in what form, stability holds for initial conditions of the form i (x, y, 0) = ueo (kx +
©o(x,y)) + vo(x, y) with vg possibly nonlocalized. Finally, one expects even higher decay rates
in the stability analysis of wave trains in spatial dimensions d > 3, and one could therefore
attempt studying even larger classes of initial conditions in this setting.

Remark 1.1. There are various methods to prove nonlinear stability results of wave-train so-
lutions to reaction—diffusion systems in one spatial dimension. The proofs in [8,23] are based



5318 B. de Rijk, B. Sandstede / J. Differential Equations 265 (2018) 5315-5351

on a decomposition of phase and amplitude variables as in [5], mode filters to separate critical
(translational) modes from noncritical exponentially decaying modes, and on the renormalization
group techniques developed in [2,25]. On the other hand, in [9,13], L?-estimates on the Green’s
function (again obtained by separating critical from noncritical modes) are applied in a non-
linear iteration scheme that was originally devised in shock-wave theory. The set-up in [14,15]
follows [9,13], but employs pointwise Green’s function estimates instead. The use of pointwise
Green’s function estimates was introduced in [27] and further extended in [18] to the setting of
wave trains: it has the advantage of resulting in detailed information on both temporal and spa-
tial decay. Finally, in [24], a normal form about the wave train was constructed that arises as a
conjugation of the reaction—diffusion system (1.2) with a lattice dynamical system of discrete
phase equations. The normal form exhibits a conservation law associated with the translational
symmetry, which can be exploited to gain additional decay in the nonlinear stability argument.

Remark 1.2. Although this paper seems to be the first to consider the nonlinear stability of wave
trains in planar reaction—diffusion systems (1.1), the methods for proving nonlinear stability
in one spatial dimension — see Remark 1.1 — have been applied in higher space dimensions
to different systems. For instance, the renormalization approach from [25] is used in [26] to
prove that the planar Swift—-Hohenberg equation admits nonlinearly stable wave-train solutions.
In addition, the methods in [9,13] are applied in higher space dimensions in [12,19] to prove
nonlinear stability results for wave trains in viscous systems of conservation laws. We emphasize
that, unlike in the current paper, localized perturbations were considered in these references.

Remark 1.3. In this paper, we consider initial conditions of the form (1.5), where the perturbation
vo(x, y) is bounded along a line in R? and decays exponentially in the distance from this line.
All initial conditions for one spatial dimension considered in the literature — see [9,13—15,24,23]
— are of the form (1.3), where the perturbation vg(x) is sufficiently localized and the initial phase
off-set ¢o(x) satisfies ¢o(x) — ¢+ as x — Foo. This implies that, in the limit x — o0, the
initial condition #(x, 0) converges to the translate u o (kx + ¢ ) of the wave train. In our case, the
initial condition (1.5) does not (necessarily) converge to a translate of the wave train when letting
[(x, y)| — oo over some line in R2. Indeed, we allow for instance for the perturbation vo(x, y) =
ee™ with 0 < ¢ & 1. Thus, the nonlocalization of the perturbations in this paper does not
originate from a phase modulation, and our class of initial conditions is therefore complementary
to those present in literature.

2. Main results

In this paper, we establish nonlinear diffusive stability of the planar wave-train solution
u(x,y,t) =uso(kx — wt) to (1.1) against a class of spatially localized perturbations and a class
of spatially nonlocalized perturbations under the assumption that the wave train is spectrally
stable. Our nonlinear stability results and the associated spectral assumptions are most naturally
formulated by switching to a co-moving frame ¢ = kx — wt, which yields a stationary wave-train
solution u(¢, y, t) = ueo(¢) to

ur =D (KR +yy Ju+odeu+ f@), @©»ER, 120, weR. QD

Before stating our nonlinear stability results, we disclose what spectral stability entails.
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2.1. Spectral stability

The linearization of (2.1) about u(¢, y, 1) = ueo(¢) is
wy=Lu, Lu=D (kza;; + ayy) U+ wdeu + f (oo(O))u, 2.2)

where L is a sectorial operator on L>(R?, C") — see [6,17] and note that £ is elliptic as D is a
symmetric positive-definite matrix. We apply the Fourier transform ", given by

(g, vy) = Vg, yydy,

ol
— | e
2w
R
in the transverse coordinate y to the linearization (2.2) and obtain
o= Loyt Lo =D (KRee = v2) it + 0dii + f (e (©)i, 2.3)

where L, is a sectorial operator on L*(R, C") for each vy € R. The solution operator is repre-
sented via the inverse Fourier transform as

[e“Mul(c, y) = WYLt (g, vy)dvy. (2.4)

7=l
R

Since L, is a periodic differential operator on L%*(R,C"), we can apply the Bloch transform
to (2.3) — see [5,20]. The composition ~ of the Bloch and Fourier transforms is given by

. 1 ;
i(g,v) =Y MRy +21j.vy),  F®) = > / e”VSu(t, y)dgdy,
JEL R2

where J, is the Fourier transform on R2, - denotes the dot product, v = (vy, vy) and ¢ = (£, y).
Applying the Fourier—Bloch transform to (2.2) yields

i, =Lyii,  Lyi=D (k2 (9 +ive)* — v§> i+ w0 + v+ f (oo (©))il, (2.5)

where L, is a sectorial operator on Lger([O, 1], C*) with compact resolvent for each v € Q :=
[—m, 7] x R. The solution operator is represented via the inverse Fourier—Bloch transform as

[eﬁtu](g, y) = % / VS, ¢)dv. (2.6)
Q

Furthermore, we obtain the spectral decomposition

o(L)=|JoLy. 27)

veQ

where the spectra o (L,,) are discrete for each v € Q as L,, has compact resolvent.



5320 B. de Rijk, B. Sandstede / J. Differential Equations 265 (2018) 5315-5351

Since u/, is a solution to (2.2), 0 is an eigenvalue of L. Now, provided O is simple as an
eigenvalue of L, the implicit function theorem provides a surface Ao: U — C, where U C C? is
a neighborhood of 0, such that Ao(0) = 0 and X¢(v) is a simple eigenvalue of L,, forany v € U.
By symmetry of the spectrum of the real operator £ and the decomposition (2.7), the surface
r0[2] C o (L) touches the imaginary axis generically quadratically. So, even in the most stable
scenario, where the spectrum of £ is bounded away to the left of the imaginary axis except for a
quadratic touching at the origin, there is no spectral gap. This leads to the following definition.

Definition 2.1. The planar wave train u(x, y, 1) = uso(kx — wt) to (1.1) is spectrally stable if
there exists 7, & > 0 such that

(D1) Lo has no spectrum in Re(A) > —n besides a simple eigenvalue A = 0;
(D2) It holds Re(o (Ly)) < —n|v|? for all v € Q with |v| < ¢;
(D3) Itholds Re(o(Ly)) < —n for all v € Q with |v| > ¢.

Throughout this paper we require the spectral stability assumptions (D1)—(D3) to hold true.
Similar spectral assumptions are made in one spatial dimension — see [13,14,23]. We emphasize
that spectrally-stable planar wave trains to (1.1) can be generated from spectrally-stable wave
trains to (1.2) — see §3.1. Examples of such wave trains in one spatial dimension can be found
in [4,22]. Note that by Sturm-Liouville theory wave-train solutions to (1.2) can only be spectrally
stable if n > 1, i.e. if (1.2) is a proper system of reaction—diffusion equations.

2.2. Statement of results

Our results concern nonlinear diffusive stability of spectrally-stable planar wave-train so-
lutions u(x,y,t) = uco(kx — wt) to (1.1) against classes of spatially localized and spatially
nonlocalized perturbations. In our first result, we take a unit vector w € R2? and consider nonlo-
calized W1 *°-perturbations that are bounded, when restricted to the family of lines

{zeRz:w-zza}, 4R, (2.8)

but that are exponentially localized in any other spatial direction. We establish diffusive
Gaussian-like decay of the perturbation and its derivatives with rate ~'/2. In addition, the per-
turbation stays bounded for all times ¢ > 0 on lines of the form (2.8) and exponentially localized
in any other spatial direction. If we account for translational invariance and allow for a phase
shift, it is possible to obtain decay with rate log(¢)/¢. Thus, our result is as follows.

Theorem 2.2. Assume (DI1)—(D3) hold true and let (B,y) € R2 be a unit vector. There exist
constants Eg > 0 and C, M > 1 such that for all vg € W (R?, R") satisfying

12
sup e“H (Ivo(@. Il + B vo@. ) < Eo. 2.9)
¢,yeR

there exists a solution u(t) to (2.1), with initial condition u(0) = us + v, for all time t > 0
satisfying



B. de Rijk, B. Sandstede / J. Differential Equations 265 (2018) 5315-5351 5321

_ \ﬂ{Ly(yl'jrafr\z _ |ﬂle¢«x)ﬂr\2

e t e 4
86030~ £ C D 630 — o0 | < €
la(g, y,t) oo (Ol = ey @&y, 1) 0o(£)) 7

fort,y e Randt >0, where o is as in Lemma 3.1 and ¢ € Zzzo is a multi-index with |c| = 1. In
addition, there exists a function ¥ : R>g — W3 (R2, R) such that

- log(2+¢t) _1Bs+yy+api?
lu(@ +¥ &y, 0,90 — (Ol <C————e MM

1+t
_|Betyyrapi® e
R R [ ] -
» Vs = m s Loyt s Y, < T ,

fort.yeR,1>0andbeZlwith1<[b| <3.

Next, we study the stability of the planar wave-train solution u (x, y, t) = uxo(kx —wt) to (1.1)
against exponentially localized perturbations. We obtain diffusive Gaussian-like decay of the
perturbation and its derivatives with rate ="', which can be improved to 13/ by tracking the
phase shift. Moreover, the perturbation stays exponentially localized for all time ¢ > 0. This
leads to the following result.

Theorem 2.3. Assume (D1)—(D3) hold true. There exist constants Ey > 0 and C, M > 1 such
that for all vg € W1 (R?, R") satisfying

247
sup e 7 ([lvo(¢, Ml + [8:v0(¢. »)|) < Eo. (2.10)
¢, yeR

there exists a solution u(t) to (2.1), with initial condition u(0) = u + vo, for all time t > 0
satisfying

Jeat24y? letar)2+y2

e ¢ o~ e M
o |pe @y —usen| =€

N/VSETE

~ e
a(C, y, 1) —uoc (Ol =C 51

for¢,y e Randt > 0, where o is as in Lemma 3.1 and ¢ € Z2>0 is a multi-index with |c| = 1. In
addition, there exists a function ¥ : R>g — W32 (R2, R) such that

_ ‘{Wl‘z?z
e +t
a4y, y, 0, y,1) —u <C—F—,
@G +¥ (&, y,1),y,1) — s ()l RETWiES
-l -
e g e !
el < g | se
v,y T eyt W&y RETYE]

fort.yeR,1>0andbeZlwith1<[b| <3.
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To prove Theorems 2.2 and 2.3 we decompose the temporal Green’s function associated with
the parabolic operator d; — £ and we obtain pointwise bounds on each of the components of the
Green’s function. These pointwise Green’s function estimates are given in Section 3. In Section 4,
we perturb the planar wave-train solution u (¢, y,t) = uxo(¢) to (2.1) and establish nonlinear
equations for the perturbation and its derivatives. We track the perturbed solution in two different
coordinate systems, where one of these coordinates is used to correct for the phase shift of the
solution relative to the original wave train. This leads to a closed nonlinear iteration scheme. We
apply the pointwise Green’s function bounds to this nonlinear iteration scheme in Section 5 to
prove Theorems 2.2 and 2.3.

Remark 2.4. The pointwise nonlinear stability analysis of wave-train solutions in one spatial
dimension presented in [14,15] assumes only that perturbations are algebraically localized. More
precisely, perturbations vg € H (R, R") need to satisfy only that |vg(x)| < Eo(1 + |x|)~" for
x € Rwith0 < Eg « 1 and r > 2. The associated perturbed solution then exhibits both algebraic
decay and diffusive Gaussian-like decay. By transferring the estimates in [14,15] to our setting,
we expect that the exponential weights in our main results can be replaced by algebraic weights.
However, since the estimates in [14,15] are technically quite involved and the main point of our
analysis is the possibility of nonlocalized perturbations rather than their precise decay properties,
we chose to work with exponential weights in this paper for clarity of exposition.

3. Green’s function decomposition and pointwise estimates

In this section, we show that assumptions (D1)—(D3) on the spectrum of the linearization £
of (2.1) about the wave train u(¢, y, t) = u(¢) lead to a decomposition of the associated tem-
poral Green’s function. We obtain pointwise bounds on each of the components of the Green’s
function by following the (by now seminal) approach, which was introduced in [27] and further
extended in [14,18] to the setting of wave trains in one spatial dimension. The decomposition
of and the pointwise estimates on the Green’s function are the starting point of our nonlinear
stability analysis, which is performed in the §5.

3.1. Consequences of spectral assumptions

We apply the implicit function theorem to expand the spectrum of £ about the origin. The ob-
tained control on the spectrum is crucial for the decomposition of the temporal Green’s function.

Lemma 3.1. Assume (D1). We complexify v and consider the family Ly, v € C? of operators on
L2 ([0, 1], C") given by (2.5). There exists a neighborhood U C C? of 0 and an analytic function

per
ro: U — C such that the spectrum of L, in Re(A) > —n consists of the simple eigenvalue Lo(v)

only. In addition, we have the expansion
M) =iavy —0v; —div; +HW),  v=(v,v)eU, 3.1)
with residual H: U — C satisfying |H(v)| < C|v|? for some constant C > 0 and coefficients

o =2k (fiag, Ditlg)2 +w €R,  d| = (ilag, Dily,)2 €R, 60 €R,
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where lio, € ker(Lg) is the restriction of the 1-periodic wave train us to [0, 1], tiyq is contained
in ker(L(*;) such that (flag, iiy)2 = 1 and (-, -)2 denotes the Lger([O, 1], C")-inner product.

Moreover, for all v € U the kernels of L, — Ao(v) and its adjoint (L, — Lo(v))* are spanned

by analytic eigenfunctions q: U — Lger([O, 11,C" and gaq: U — Lger([O, 1], C™"), respectively,
satisfying {(q(v), gaa))2 = 1, g(0) = @iy, and g,d(0) = flaq. Finally, the associated derivative
maps U — Lger([O, 1], C") given by v = 0:q (v) and v + 3; qad(v) are also analytic.
Proof. Since (D1) is satisfied, it follows from standard perturbation theory [16] that for v in some
neighborhood U C C? of 0 the spectrum of L, in Re(A) > —n consists of a simple eigenvalue
Ao(v) only, which depends analytically on v. The fact that the associated eigenvectors g (v) and
gad(v) and their derivatives d;q(v) and 9;q.q(v) are also analytic in v follows by writing the
eigenvalue problem (Ly — A)u = 0 as a first order system (9; — A(Z, A))g =0 with ¢ = (u, u;)
and applying perturbation results from [16].

Since 1o(v) is algebraically simple and L is Fredholm of index 0 by (D1), the inner product
of g(v) and g,q(v) cannot vanish by the Fredholm alternative for any v € U. Therefore, we can
assume without loss of generality that (g(v), gaa(v))2 = 1 and ¢(0) = @i/, for any v € U. We
define itaq = ad(0). The derivative 9, g satisfies the equation

(Ly — 20 () [3,,41(v) = [3, o]l (0)g (v) — 2k*i D(3; + iv)g(®) — wig(v), veU.

Taking the inner product with g,q(v) on both sides and evaluating at v = 0 yields [9,, A0](0) = .
Similarly, one obtains [8,)_\,)\0](0) =0, [0, Vy)»o](O) =0 and [8U)_U),k0](0) = —2d,. Since L is a
real operator, its spectrum in C is symmetric in the real axis. Therefore, the decomposition (2.7)
yields that 6 := —[d,,,, A0](0)/2 must be real. The expansion (3.1) now follows by analyticity of
M:U—C. DO

The spectral control about the origin obtained in Lemma 3.1 reduces the verification of as-
sumption (D2) to checking the signs of two Melnikov-type integrals.

Corollary 3.2. Assume (D1) is satisfied, then assumption (D2) is satisfied if and only ifd | , 6 > 0.

Notice that the linearization of the reaction—diffusion system (1.2) in one spatial dimension
about the wave train solution u(x, ) = uso(kx — wt) is given by the operator Ly — see (2.3).
Spectral stability of u(x,?) = uso(kx — wt) as a solution to (1.2), in the sense of [13,14,23],
entails that O is a simple eigenvalue of Lo and that the spectrum of Lg lies to the left of the
imaginary axis, except for a quadratic touching at the origin. This leads to the following result.

Corollary 3.3. Assume the wave train u(x,t) = us(kx — wt) is spectrally stable as solution
to (1.2), in the sense of [13,14,23]. If it holds d, > 0, then (D1)—(D2) are satisfied. Moreover,
if D =1, then the planar wave train u(x,y,t) = uso(kx — wt) is spectrally stable as solution
to (1.1).

3.2. Pointwise Green’s function estimates
We follow [14,18] and decompose the temporal Green’s function associated with the parabolic

operator d; — L in a translational mode and a residual. We obtain pointwise estimates for each of
these components of the Green’s function.
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Theorem 3.4. Assume (D1)—(D3) hold true. Let x: R>o — [0, 1] be a smooth cut-off func-
tion such that x(t) =0 for 0 <t <1 and x(t) =1 for t > 2. The temporal Green’s function
G (¢, ¢, y,t) associated with the operator 3; — L in (2.2) can be decomposed as

G, L,y 1) =ub(0)e, Ty, 1) + G, L,y 1),
x(1)  _lebre? P £, ¢, yeR, 120, (3.2)

el {,y )= ——F—=e T Mlu,Q)",

&, &, y.1) imid o ad(§)
where «,0 and d| are as in Lemma 3.1 and u,q: R — R”" is the periodic extension of the
eigenfunction u,q € Lger([O, 11, R") of the adjoint L{j (see also Lemma 3.1). For each j € Z>q

and multi-indices a, b € Z3>0 with |a| = 1 and |b| > 0, there exists C, M > 1 such that we have
the pointwise estimates

¢ —=Z+ar2+]y1?
t

|G, 2y, 0| <Cr Q4 2e

a S, : 3 le=ttarP4p? _
HDcEyG@’;’y”)HSCt ce M, .,C,yeR,t>0. (33)

PN _y_lel
| Dt olec.E v sca+n=5e

_ \z—%+%2+\y\2

To prove Theorem 3.4 we employ similar methods as in [14], where pointwise Green’s func-
tion estimates are obtained for wave-train solutions to reaction—diffusion systems in one spatial
dimension. To account for an additional spatial direction, we combine the methods in [14] with
those from [7], where pointwise bounds are established for spatially multidimensional viscous
shock fronts. Since the proof of Theorem 3.4 follows, by and large, the nontrivial, but by now

classical, approach introduced in [27], we decided to include the proof of Theorem 3.4 in Ap-
pendix A.

4. Nonlinear iteration scheme

In this section, we perturb the planar wave-train solution u(¢, y, 1) = uxo(¢) to (2.1) and we
establish nonlinear equations for the perturbation and its derivatives. To account for translational
invariance and exploit the decomposition (3.2) of the Green’s function, we introduce a phase
function that tracks the shift of the perturbed solution in space relative to the original wave train.
Our goal is to obtain a closed nonlinear iteration scheme for the perturbation and the phase
function, which will be employed in §5 to prove the nonlinear stability results in §2.2.

4.1. Perturbation equations

We consider the perturbed solution

”7(;7 Vs 1) :uoo(g) + lj(;', Y, 1),

to (2.1). The perturbation v and its derivative v satisfy
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@ —L)o=Ni,  Nii= fluoo+70) = fluco) — f'(Uoo),

N N 4.1)
@ =D =Ny Noi=(fuco+0) = f(uco)) (B¢ +ul),

where we suppress the argument (¢, y, ) of v and v; and the argument ¢ of ux and ul, for
notational convenience. Using Taylor’s Theorem, one observes that N7 is a quadratic nonlinearity
in 9, whereas A5 contains a linear term in #. More precisely, there exist constants B, C > 1 such
that as long as [|v(#)||coc < B, we have the bounds

M@y, 0] <Clv,y. ol [Ny, 0] <C(1+[ve @y, D) v, v, ol
4.2)

for ¢,y e Rand ¢t > 0, where || - || denotes the L®(R2, R")-norm. To account for translational
invariance — see Remarks 4.1 and 4.2 — we introduce another coordinatization for the perturbed
solution # to (2.1). As in [5], we write

U +vE,y, 0,91 =us(@) +v(, y, 1),

where the phase function 1 : R?> x R>o — R is to be determined later. The mean value theorem
yields the estimates

lw =) 3. Dl < ([Jute] o + 15 O] ) 1Y@y, DI
[ (ve = %) €.y 0| = (Jug ] oo + |Tec @] ) 1Y &y, DI (43)
+([Juboll o + 15 @] ) [¥e .y, 1)

)

for ¢,y € R and t > 0. Our next step is to derive an equation for the perturbation v, the phase v
and their derivatives. We introduce

w(,y, ) =u@+YE, y,1),y.1) =uc(l) +v(, y,1).

Substituting w(¢, y, t) into (2.1), while using that u(¢, y, t) solves (2.1), leads to the residue
induced by the phase

wy — D(kzw;g + wyy) —owe — f(w) =
=iy + iy + D (i — vy — Gy, — K G@ne; )

which yields

@ —L)v= fluco+v) — f(uoo) = f'(usc)v

— s + iy + D (il — oy — (), — Ko ) + @,
(4.4)
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where we suppress the arguments (¢, y, ) of v, w, ¢ and their derivatives, the arguments (¢ +
¥(¢,y,1),y,t)of i and its derivatives and the arguments ¢ of us, and its derivatives. To avoid
confusion by suppressing the arguments of iz, we denote the partial derivative of & with respect
to its j-th argument by # ;. In order to obtain a closed system in v and v, we need to eliminate
the u-terms from the right-hand side of (4.4). Therefore, we express i, i, and 3 in terms of v,
¥ and their derivatives as follows. First, we calculate

Upg +ve=we =i (1+vy), v=w =3+, vy=wy,=1is+i 1y,

yielding the identities

g(u:}o+v§) Uy =vy — g(ugo-l—vg), ﬂ3=vy_ wy{(u:)oﬁ-vg),

where we suppress the arguments again. By employing the identities
@ = £) [ulo¥] = Ll ] = D (Rl o)s + bty ) — (DRul, + o) v + e
= = D (KRuhewo)e + ¥y ) + f oe) Vg + ul i,
@ = L) [vvre ] = vy + 0¥ = D (kz (vee Ve + 200 ¥ee + v¥eee)
oy ¥ + 20y Yoy + Ul/fcyy) — o (Ve +v¥eg) = f ueo)v¥r,
and substituting (4.5) into the right hand side of (4.4), we obtain the perturbation equation
O — L) [v—uby ]| =N — (& — L) [vy], (4.6)
where the nonlinearity A is given by
N = (f oo +v) = flitos) — ' (Uoo)V) (L + ¢ ) + ve v + v — o (e Ve + viee)
-D (U (k2¢czc + chy) +og (3k21/fzc + Wyy) + 20y ey + 2P Ve + 2”0%)

+

T (2 (ul + v¢) (Wchy + kz%%z) + (5 + vee) (%2 + kzl/,gz))

D /
Ty et (0
¢
4.7

Using Taylor’s Theorem, it is relatively straightforward to observe that the nonlinearity (4.7) is
quadratic in v, v and their derivatives. More precisely, there exist constants B, C > 1 such that
as long as it holds

lole+ Y |08, 00| <5,

lal=1
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we have the bound

W@yl =C | |G yol+ Y | D8, e y.n]

1<|a|=<3

+{ @ yol+ Y ot yol| X |pe,veyn| ],
1

0=[b|<I1 <l¢|=2

4.8)
for¢,yeRandt > 0.

Remark 4.1.1In the perturbation equation (4.6) for v, we grouped terms that are nonlinear
in (v, ¥) and their derivatives on the right-hand side, whereas the left-hand side contains all
contributions that are linear in (v, ¥) and their derivatives. This decomposition suggests new
coordinates (w, ) with w = v + u_ . The advantage of working in these coordinates is
that, by choosing y appropriately, the contribution u_ Y accounts for the translational mode
ul (0e(e, ¢, v, 1) of the Green’s function in the nonlinear iteration — see Remark 4.2. The prin-
ciple of canceling the slowly decaying translational mode via these type of coordinatizations
has been developed independently in [11,13] and [5,23] using different methods — see [9, Re-
mark 5.1] for a review.

In the nonlinear right-hand side of (4.6), we introduced the term (3; — £) [v¢ | in order to
eliminate any temporal derivatives of v in the nonlinear iteration. Indeed, one observes from (4.7)
that the residual nonlinearity N contains only ¢- and y-derivatives of v. In Remark 4.3 below,
we will explain how we control spatial derivatives of v in the nonlinear iteration.

4.2. Duhamel’s integral formulation

Our goal is to obtain a closed nonlinear iteration scheme by integrating (4.6), while exploiting
the decomposition (3.2) of the Green’s function. Applying Duhamel’s formula to (4.6) yields the
equivalent integral equation

V(& 3, 0) = up(OY (&, y,0) = (&, ¥, DY (&, ¥, 1) +/G(§, £,y =¥, Do, y)dtdy

R2
(4.9)

t
+//G(¢,E,y—y,r—sW@y,s)dEdyds,

0 R2

with £,y € R, >0 and vo(¢, y) = v(¢, ¥,0). Now we define the phase function i as the solu-
tion to the integral equation

W(g,y,t):—[e(g,g,y_)_),I)UO(E,)_))dEd_)_/

R2
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t
—//e@,f,y—y,r—s)N@,y,s)dEdyds. (4.10)

0 R2

Since it holds e(¢,¢,y,0) = 0 for all ¢,¢,y € R by construction, we have thus taken
¥ (¢,y,0) =0 as initial condition for . This choice of v leads via (3.2) to the system of
integral equations

V(e y D) = — V(E e DGy ya 1)+ / G, 8.y — 5.0, didy

R2

+//é(;,5,y—y,r—s)N(E,y,sMEdyds,

0 R2
R @.11)

DY, (v, 1) =— / DY, e, B,y — 5, Du0(E, Hdidy
2

t
_/./D?,y,tg(g,g‘,y—y,t—S)N(E,)_/,s)dfdyd&

0 Rr2

with £,y e R, >0 and b € Z3>0 with 0 < |b| < 3, where we use that (¢, ¢, y,0) = 0 for all
Z, g:, y € R to determine the t-derivative of the second integral in (4.10). To obtain a closed
nonlinear iteration scheme from (4.11), we still need to control the derivatives v¢, v¢¢, vy, Uy in
the nonlinearity (4.7). Theorem 3.4 yields pointwise control over the first ¢- and y-derivative of
the Green’s functions G({ ¢,y,t)ande(Z, ¢, v, t). Therefore, integrating by parts once in (4.11)
eliminates one ¢ - or one y-derivative of v in the nonlinearity (4.7) at the expense of taking more
derivatives of the y-dependent terms. We emphasize that this elimination is only possible due
to the fact that all derivatives of v in (4.7) are paired with ¥ -terms and not with other v-terms.
Since we control also higher order ¢- and y-derivatives of the Green’s function e(¢, ¢, y, t) via
Theorem 3.4, we can apply integration by parts multiple times in the y/-equation to eliminate
all derivatives of v from the nonlinearity. All in all, exploiting that G(g“ C,y,1),e(, ¢, y,t)and
its derivatives are exponentially localized in space and assuming that there exists a bound B > 1
such that

sup [v)loo + e oo+ Y. [DE,w)| <8,

O=s=t 1<|b|<3

we integrate by parts in (4.11) to obtain the following equivalent integral system

V(g y, 1) = —v(z,y,rw;@,y,z)+/5<c,5,y—y,r)vo@,y)déd&
]RZ

t
+//5<;,E,y—y,r—swmz,y,s)dffd&ds

0 R2
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t
+f/855<;,5,y—y,r—s)Nz@,y,s)dEd&ds (4.12)
0 R2

t
4 f f 0,655,y — 5.1 — N3, 5, 5)di dids
0 R2
D, Y.y, )=~ / D{y e, 8,y =3, Dvo(C, y)didy

R2

t
+ Z //D?’y,th’ye(gi Ev y—- y9t_S)MC1(Eﬂ y,S)dEd)_/dS,
05‘&‘520 R2

with¢,yeR,t>0and b e Z;O with 0 < |b| < 3, where the nonlinearity A/ contains the term

1//2 +k21//2
DU; 2wyy + <2k2'¢fé- — yl+7lpz .
¢ /e

with a derivative of v, whereas all other terms present in V; do not depend on derivatives of v.
Similarly, the nonlinearity N> only contains the term

2 2.1.2
+k
Du; (2]€2¢Z _ u> ,

14+,

with a derivative of v, the nonlinearity N3 only contains the term

—ZDUC Wy,

with a derivative of v and the nonlinearities M contain no derivatives of v for all multi-indices
ae Zio with 0 < |a] < 2. Using Taylor’s Theorem, one readily observes that the obtained nonlin-
earities N;, M, are quadratic in v, ¥ and their derivatives. More precisely, there exist constants
B, C > 1 such that as long as

O+ Y. |DEp0| <8,

1=|b|=<2

we have the bounds
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2

Vi@l =c| [weyol+ Y |k, v o)

1<[b|<3

+ vyl X [pewe ]|,

I<|c|=2
2
IMa@ v 0l = C [ Gyl + Y |pE, ey .

1<|b|<3
(4.13)

forg,yeR,t>0,j=1,2,3andae Zio with 0 < |a| < 2. Comparing the estimates onj\fj, j=
1,2, 3 to the estimate (4.8) on A/, we observe that we have indeed gained one derivative of v.
However, the integral equations (4.12) do not give rise to a closed nonlinear iteration scheme yet,
because we still need to control the derivative v, occurring in the nonlinearities N, j=1,273.
This can be achieved by appending integral equations for the derivatives v, vz of the ‘unshifted’
perturbation v to the scheme (4.12) and employing the estimates (4.3) — see also Remark 4.3.
Applying Duhamel’s formula to (4.1) yields

8§ﬁ(§,y,t)= \/8;G(§,E,y—)_l,t)UO(E,_)_))dEdy
R2

t
+ / / 0:G((. 5.y — 5.1 — INI(E. 7. )dTdyds.
0 R (4.14)
8@'{5({7_)}7[): /‘BKG(é-VE’y_)_)vt)ag'vo(gvy)dgd)_)
]RZ

t
+ / / 0:G((. L.y — 5.1 — IN>(E. 7. )dTdyds.

0 R2

with ¢,y € R and ¢ > 0, where we used that ¥ (¢, y,0) = 0 implies vo(¢, y) = v(¢, y,0) =
v(¢,y,0) for all ¢,y € R. Observe that by (4.2) the nonlinearities N i,j = 1,2 can be esti-
mated in terms of v and v,. Thus, combining the integral equations (4.12) and (4.14) and the
estimates (4.2), (4.3) and (4.13) yields a closed nonlinear iteration scheme.

Remark 4.2. Applying Duhamel’s formula to (4.1) gives the integral equation

vy, )= /G(C, ¢,y =3, Do, y)dtdy
R2
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t
+/-/G(C,;:,y—y,t—s)ﬁl(ézvf,S)dg:d)_)ds, (4.15)

0 RrR2

with ¢, y € R and ¢ > 0. Observe that (4.15) yields a closed nonlinear iteration scheme, since the
nonlinearity M depends only on v itself. However, because N is quadratic in v in general, the
Green’s function estimate

Je=Z+ar+y2

IG@.c,y.n||<Ct™ e m ¢, yeR >0,

obtained in Theorem 3.4 is not strong enough to close a nonlinear iteration argument. The de-
composition in Theorem 3.4 factors out the translational mode u ({)e(Z, ¢, y, t) of the Green’s

function, which yields an additional decay factor ™2 in the estimate of the residual. Moreover,
the introduction of the phase function (¢, y, t) in the nonlinear iteration scheme leads to a
contribution u/ ¥ in (4.9), which cancels the translational mode of the Green’s function by a
judicious choice (4.10) of ¥. The additional decay of the residual mode of the Green’s function
can then be exploited to close the nonlinear iteration argument. The trade-off is that the introduc-
tion of the phase function ¥ (¢, y, t) yields derivatives of v in the nonlinearity, which needs to be
controlled — see also Remark 4.3.

Remark 4.3. In order to obtain a closed nonlinear iteration scheme from (4.11), one needs to
control the derivatives v¢, vy, vz, and v, in the nonlinearity (4.7). Naively, one might introduce
integral equations for the derivatives of v by differentiating (4.11). However, the second order
derivatives of the Green’s function satisfy the bound

[¢—f+ar2+]y2

[D8,Gc. .y et S5 iy Rz 0 =2

for some constants C, M > 1, which leads, after integration over ¢ and y, to the nonintegrable
factor (f — s)~! in the estimation of the integral equations for vry and vg¢. Integrating by parts
to move a derivative from the Green’s function to the nonlinearity, introduces third derivatives
of v in the nonlinearity and thus transfers the problem of controlling second derivatives of v to
controlling third derivatives of v.

The same problem occurs in the nonlinear stability analyses [9,13—15] of wave-train solu-
tions to reaction—diffusion systems in one spatial dimension. There one establishes a nonlinear
damping estimate that controls the H*-norm of the perturbation v for k > 0 by its LZ-norm and
by the H*-norm of (¥, ¥y). This yields nonlinear L' N H* — H*-stability in [13] and nonlin-
ear L' N HX — L>-stability with nonlocal phase in [9]. The damping estimate from [9,13] is
also employed in the pointwise nonlinear stability analyses in [14,15]. Since the derivatives of v
are paired with y-terms in the nonlinearity, one only needs L°°-bounds on the derivatives of v
in [14,15]. These L*°-bounds follow via Sobolev interpolation from H*-bounds on v that are
obtained using the damping estimate from [9,13].

One can establish a 2-dimensional equivalent of the damping estimate in [9,13], which
bounds the H¥(R2, R")-norm of v in terms of its L2(R2, R")-norm and the H¥(R?, R")-norm
of (¥, ¥;). However, such a damping estimate cannot be employed in our analysis, since we
allow for nonlocal perturbations. More precisely, we consider planar perturbations that are not
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in L2(R2, R"), whereas in [9,13—15] the perturbations are L2-localized on the real line (allow-
ing possibly for a nonlocal phase modulation). Since we consider perturbations that are only
nonlocalized in one spatial direction (say the y-direction), it may be possible to adapt the damp-
ing estimate in [9,13] to work in the mixed LP-space L? (R?, R"), where p is the tuple (2, 00),
endowed with the norm

1
2

llullp = sup /nu(;,y)nzdc
yeR 2

However, we expect that one needs to append a damping estimate of vy in L*(R%,R") in or-
der to control the y-derivatives in the damping estimate of v in L? (R?, R"), thus requiring the
derivatives of v to be localized in R?.

In this paper, we choose an alternative approach by appending the integral equations (4.14)
for the derivatives of the ‘unshifted’ perturbation v to the nonlinear iteration scheme (4.12). All
derivatives in the nonlinearity (4.7) vanish, when the phase function v is set to 0. Therefore, v,
and V¢, can be controlled without running into problems due to nonintegrable Green’s function
bounds. Then, estimates like (4.3) can be used to control the derivatives of v. The advantage over
a possible LP (R?, R")-damping estimate is that we do not require localization of any derivative
of v in R?. The trade-off is that the obtained estimates on v are not as strong as one might expect
due to the fact that we do not correct for a phase shift relative to the original wave train while
estimating v; and v;;. However, by combining these estimates with the ones on the integral
scheme (4.12) which does track the phase shift, they are strong enough to close the nonlinear
iteration argument — see Remark 4.2 — and only yield a possibly artificial factor log(2 + ¢) in
Theorem 2.2. Moreover, for fully exponentially localized perturbations, our method yields the
same optimal decay bounds as the ones one obtains with a damping estimate in H*¥(R?, R") —
see Theorem 2.3 and Remark 5.1.

5. Nonlinear stability analysis

We prove the nonlinear stability results stated in §2.2 by applying the pointwise Green’s func-
tion estimates from Theorem 3.4 to the nonlinear iteration scheme consisting of (4.3), (4.12)
and (4.14). We start with the proof of Theorem 2.2 concerning nonlocalized perturbations.

Proof of Theorem 2.2. In this proof, the constant M > 1 is as in Theorem 3.4, whereas C > 1
denotes a constant, which is independent of Eg, ¢, ¢, y and ¢, that will be taken larger if necessary.

Short-time existence theory for semilinear parabolic equations — see [6,17] — yields via a stan-
dard contraction-mapping argument that there exists a maximal Ty € (0, oo] such that (4.1) has
a solution (1) in W>*°(R?,R") on [0, Ty) with 5(0) = vo. The map ¢ — [[(t)l|yy2.00(r2.rm)
is continuous on [0, Tp) and, if Ty < oo, it must blow up as ¢+ — Tp. By a similar contraction-
mapping argument, the semilinear parabolic system (4.6) together with (4.10) — and hence the
integral system (4.12) — has a solution (v(z), ¥ (7)) in Xo 1= WHO(R2, R?) x W3°(R?, R)
on some maximal time interval [0, T7), T} € (0, oo] with initial condition (v(0), ¥ (0)) = (vg, 0)
such that ¢ — ||(v(t), ¥ (¢))| x, is continuous on [0, 77) and blows up as T — T if T is finite.
We conclude that the template function
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|B¢-+yy+aps| v , S
n(t):= sup e MIw) (I++) ” Iv @, y, 9 + Z HDgysW(va’S)H
0<s<t 0g(2+ys) 1<[b]<3
¢,yeR

+VT+s 0y, )N+ 1@y, )1 + s (|| @y, )| + [ve @ y.9))

is well-defined and continuous on [0, min{7p, 77}) and must blow up as ¢t — min{7p, 77} if
min{Ty, 71} is finite. Our goal is to prove that there exists constants B > 0 and C > 1 such
that for all + > 0 with n(¢) < B we have

n(t) < C (Eo +1(0?). (5.1)

Since n must be continuous as long as it remains small, we can apply continuous induction using
estimate (5.1). Thus, provided that Eg < %, it follows n(t) <2CEy for all t > 0, which readily
yields the result, except for the estimate

_ 1Betyytapr]?

” H e M(1+1) 59
v WV, )| <C——, .
y(&.y.1) 7 (5.2)
for¢,yeRandt > 0.
We prove the key estimate (5.1). We employ two integral identities
. ) _Bttyytapi
_le=harP4y-52 _pEysi2 - Mmte MU+
e M1 M dé’dy = ,
V1+t
R2
Bty ytacp 2 ©-3)
yy+apt
_ e a9 P+ly-51> _ \ﬁ{+yv+aﬂv|2 - Ma@t—s)JI+se M)
e M(t—s) M(1+s) dé’dy: )
V1+t

R2

with ¢, y,s,t € R satisfying 0 < s < . These identities are obtained by adding the fractions in
the exponent of the integrand, while recalling that (8, y) € R? is a unit vector, and applying the
(standard) formula

/eaz(zfﬂ?)dz — ﬁe*“bz, a<0,beC, (5.4)
Vlal

R

twice to evaluate the double integral.

Let B > 1 be as in §4 and assume ¢ > 0 is such that n(¢) < B. We start by bounding the
solutions to the integral system (4.12) in terms of 7(¢). By estimate (4.13) the nonlinearities
in (4.12) can be bounded as
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5 BTty +aps|?
n(t) e M(T+s)

N, 3,9 =<cC —123,
N (RN J (5.5)
.3 DO og? 2 4 sye” "I 3
ol (1+45)? , a€Zy0=<lal <2,

with ¢, 5 € R and 0 < s < r. Thus, applying the pointwise Green’s function estimates in Theo-
rem 3.4 to the integral system (4.12) and employing (5.3) and (5.5), yields

_ |Bttyytapt?

M) n(t)*log(2 + 1) L _Eo
VA (14+)/1+1t NAE

t

(. y. 0l <

1

2
—d
() , N1+ s /st —s ’

+a, ,2
<€ (B -+ n(?) REETD
1+1
- [l +s)
e og S
Iy (@&, y, 0l < C———x— [ Eo+n(1)* | ——"——ds (5.6)
V14t ; (IT+5)vV1+s
_ \ﬁ(Ly(}l‘jr:)ﬂtlz
e
SC(E n t2) S
o+n() i
- [ fe+s)
e 0 og s
D! V1 Hsc + ()2 ds
H cya¥ &y 1) NI, NI n() A+ VT +s/T+1—s
0
_ ‘ﬁ[JXd}/(yiia)IStlz
e 1
<C<E t 2) ,
< o+ n@) .

with ¢, yeRand b e Z;O with 1 < |b| < 3. Subsequently, we bound the solutions to the integral
system (4.14). As n(t) < B, estimate (4.2) yields the following bounds on the nonlinearities
in (4.14)

- 2, B
|G 5.5)] < €1

)

5.7
_ BE+yitaps? .7)
M(1+s)

~ 1 e
!_’ C 1 = 71
|G 5.9 < ( + ﬁ) =

with E, y € Rand 0 <s <t. Moreover, the pointwise Green’s function estimates in Theorem 3.4
imply
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3 le=ltasP4ly?

HDE,yG(Cv ¢, Y’S)H <CsTiem . 05, yeR 520, (5.8)

where ¢ € Z2>0 is a multi-index with [¢| = 1. Therefore, applying (5.7) and (5.8) to the integral
system (4.14) and employing (5.3), we obtain

_|Bttyytapr?
M(1+1)

e y.n] < et [ 224 (r)Z/t%ds
N e BV URVIEENGE

_ 1Bctyytapr®
+1)

<C (Eo + n(r)z) eT .

_ 1Btyytapr]?

ety < e (Eo /(1 )
b @y 0| sC——e—— | =+ [ (1+— s
el 1+t NG ; NG t—s

§C<1+%),

with ¢, y € R. Finally, we use (4.3) to bound 6({_, v,t) and v; (¢, y,t) in terms of n(t). Observe
that e(¢, ¢, y,s) = 0 by construction for all ¢,¢,y,s € R with 0 <s < 1, therefore we have
¥(,y,s) =0 for 0 <s < 1. Thus, estimate (4.3) yields using n(¢) < B and identities (5.6)
and (5.9)

152, y. DIl < v, y. DIl + (June | oo + [5: O] ) 1Y (&L y. DI

o IﬂfLV(ylif)ﬁt\z
2
=< C(Eo-i-??(f) )T,
[ve@.y.0f < e @y 0] + (Jule ] oo + [Pec @ ) 19y, 0 (5.10)

+ (o]l + 19 O] o) [ve 6. 3.0

_ 1Bc+yytapt®
M(1+1)

<C (Eo + W)z) 67

with ¢, y € R. Now, estimate (5.1) follows from (5.6), (5.9) and (5.10), which concludes the
proof except for the estimate (5.2). To establish (5.2) we differentiate (4.15) with respect to y to
obtain

dyv(g,y, 1) = /3yG(§, £,y =3, 0v0(&, y)didy

R2
(5.11)

t
+f/3yG(§,;:,y—ﬁ»t—S)J\Nfl(f»iS)d;:dids,

0 R2
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for ¢,y € R and ¢ > 0. Thus, using that n(¢) is bounded for all + > 0, we estimate (5.11) us-
ing (5.3), (5.7) and (5.8) to yield (5.2). O

The proof of Theorem 2.3 concerning exponentially localized perturbations has a similar set-
up as the proof of Theorem 2.2. However, the obtained decay estimates differ.

Proof of Theorem 2.3. In this proof, the constant M > 1 is as in Theorem 3.4, whereas C > 1
denotes a constant, which is independent of Ey, ¢, ¢, y and ¢, that will be taken larger if necessary.
Similar to the proof Theorem 2.2, we conclude that the template function

g +as|2+y2
nwi= sup e M | A+)VTHs (@ yol+ Y [Pl ¥E y.s)
0<s<t 1<|b|<3
¢, yeR

+ A+ Uy, DN+ 1Y &y, 9D + VsV T+ ([0, 5,9

+ve @y 90f) |

is well-defined and continuous on some maximal interval [0, T) with T € (0, oo] and must blow
up as t — T if T is finite. Again we prove that there exists constants B > 0 and C > 1 such that
for all r > 0 with n(¢) < B we have

10 =€ (Eo+n0?). (5.12)

Then, provided Eg < %, we have n(t) <2CEy for all t > 0 by continuous induction, which

yields the result.
Thus, we establish the key estimate (5.12) proceeding as in the proof Theorem 2.2. This time,
we employ two simpler integral identities

JetarP4y?
_letrerPay-52 2452 - Mmte  MU+D
e Mi Modidy= ————,
1+1¢
R2
(5.13)

) ) letar24y?
_le=tha=9)P+ly=51> _E4asP+i® _ M (t —s)(1 +s5)e” MAiD
e M(i—s) M(1+s) d;dyz ,

1+1¢

R2

with ¢, y,s,t € R satisfying 0 < s < ¢. These identities are obtained by factorizing the double
integral into a product of an integral over ¢ and one over y, each of which can be evaluated
using (5.4).

Let B > 1 be as in §4 and assume ¢ > 0 is such that n(¢) < B. As in the proof of Theorem 2.2,
we bound the solutions to the integral systems (4.12) and (4.14) in terms of 7n(¢). Thus, by
applying Theorem 3.4, (4.13) and (5.13) to the integral system (4.12), we obtain
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|§+ott|2+v
oyl < 0 [ 07 Fo (>2/ N
v b 9 —
Y 1+r \a+02 " i " (1+s)f T—s
_ letar?4)?
C<E N () ) e M(1+1)
= 0+7n
A+0VT+1
JgfarP4y?
¢ M) 5 1 p
VDI =C——/—m t
I, y, Dl 17 Eo+n(0) /(1+s)2 s
0
\(+at|2+)'2
<C(E n (t)z) e M(1+1)
Jefar4y?
HDb w({ t)H <C M(1+1) EO 4 (t)Z/ 1 ds
Ly VS VD = 141 Jitr " (A+5)2/T+1—>5
0
Jeat24y?
<C(E +n(t)2) c T
0 ,
14+0)V1+1¢

(5.14)

with ¢, yeRand b e Z3>0 with 1 < |b| < 3. Similarly, by applying (4.2), (5.8) and (5.13) to the
integral system (4.14), we bound

Jeer24y?
M(1+1)

|5z, y. 0] < cE—— EJ”?(I)z/;ds
I+e \ Vi J vi=s

 Jear24y?
C(E n (t)z e M(1+1)
< (ot n?)
Jeter?4y? 7
foecte. vl = 5 | e [ (14 s ) s
v » Vs =C——\ —+
66550 Y 141 NG VsVI+s) Ji—s
0
1+1 Vi)

with ¢, y € R. Finally, still following the proof of Theorem 2.2, we use ¥ (s) =0for0 <s <1,
n(t) < B, (4.3), (5.14) and (5.15) to bound

_ [e+ar2+y2
M(1+1)

lo(¢,y, 0l <C (Eo + n(t)2) elT

_ [t+ar2+y2
e M(1+1)

NOVIES,

(5.16)

Jve @, v, 0] = € (Eo+n0?)
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with ¢, y € R. Estimate (5.12) follows from (5.14), (5.15) and (5.16), which yields the result
except for the estimate on v, (¢, y, ). This estimate follows as in Theorem 2.2: using that 7 (¢) is
bounded for all # > 0, we apply (4.2), (5.3) and (5.8) to (5.11) and obtain

Jgar24y?
e M(1+1)

N/NVSETE

NI e

which concludes the proof. O

Remark 5.1. It follows from the decomposition of the Green’s function G(¢, ¢, v, t) in Theo-
rem 3.4 that the leading-order linear contribution in the integral equation (4.15) for v(¢, y, t)
comes from the term

Uoo(0) / (. 8.y — 7. Ouo (G, )dEd5, (5.17)
RZ

Using the explicit formula for the Green’s function e(¢, ¢, v, t) given in Theorem 3.4, one read-
ily observes from (5.3) and (5.13) that for vg € Wwloo(RZ R?) satisfying (2.9) the optimal decay
rate of (5.17) is 1~1/2, whereas for vy € W1 *°(R?, R") satisfying (2.10) the optimal decay rate
of (5.17)is t~!. Thus, the decay rates of 9(¢, y, 1) = ii(Z, y, 1) — so(¢) in Theorems 2.2 and 2.3
are optimal. Similarly, one can verify the optimality of the other decay rates in Theorems 2.2
and 2.3. One finds that we have obtained a (possibly) suboptimal decay rate only in the estima-
tion of v(¢, y, 1) =u(€ +¥(,y,1),y,t) —uxo(¢) in Theorem 2.2. Here, we establish a decay
rate of log(2 4 1)(1 +1)~!, whereas one would expect that the optimal decay rate is r~! from
the estimation of the leading-order linear contribution. This (possibly) artificial logarithm might
come from our approach to dealing with derivatives of the perturbation in the nonlinearity — see
Remark 4.3.

Appendix A. Proof of pointwise estimates
A.l. Approach

We prove Theorem 3.4 by employing similar methods as in [14], where pointwise Green’s
function bounds are obtained for wave trains in reaction—diffusion systems in one spatial di-
mension. In the proof, we distinguish between two different regimes, that is we obtain pointwise
Green’s function estimates for (|¢ — ¢ 4+at|+|y|)/¢ large and for bounded (|¢ — ¢ +at|+|y]) /1,
separately.

In the first regime, we proceed as in [7, Proposition 2.7]. We apply the Laplace transform
to (2.3) and write the solution operator e“»' asan integral

Lyt = / M (L, —A)‘ld)\, (A.D
ry

for vy € C, where T, is a contour in the resolvent set p(L,,) containing the spectrum o (L,,).
Consequently, the temporal Green’s function G (¢, , y, ) can be related via the Fourier and
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Laplace transforms to the resolvent kernel G, (¢, ¢) associated with the elliptic operator
Ly, — . Thus, (2.4) and (A.1) yield

G by )= — / / G, (¢, E)drdy (A2)
T anivan ) K : '

We regard the eigenvalue problem ﬁu),u = Au, associated with the resolvent kernel Gvy’ 2 (¢, E ),
as an ODE in the complex parameters vy and A. The behavior of this ODE is well-understood
when vy, and A are contained in a certain set S C C2, sufficiently far away from the origin.
Thus, for (vy, 1) € S pointwise estimates on the resolvent kernel Gy,,2 (&, §) can be obtained.
These estimates can then be employed to bound the temporal Green’s function G(¢, ¢, y,t) by
deforming the contour integrals in A and v, in (A.2) to lie in S. We emphasize that, in order to
obtain this bound on G (¢, ¢, y, t), it is crucial that (|¢ — ¢ + «ot| + |y|)/¢ is sufficiently large to
compensate for the fact that the resulting A-contour lies partly in the right half-plane, far away
from the origin, causing the factor M in (A.2) to blow-up as t — oo.

In order to obtain sharp pointwise Green’s function estimates for (| — ¢ + at| + |y|)/t
bounded, it is necessary to minimize the factor ¢ in (A.2). This can be established by choos-
ing the contour I',, C p(£,,) to lie as much into the left half plane as possible. However, since
the spectrum of Ly touches the imaginary axis at the origin, the obtained decay is not suffi-
cient to close an eventual nonlinear iteration argument — see Remark 4.2. Instead, we proceed
as in [13,14,18] and split off the slow-decaying translational mode first using the Fourier—Bloch
decomposition (2.6) of the solution operator. More precisely, we split (2.6) into an integral over a
small neighborhood Uy C €2 of 0, corresponding to the translational part, and a residual integral
over Q \ Uy to which we apply the Laplace transform. Since the resolvent set p(Ly) is contained
in Re() < —n forv € @\ Uy by (D3), we can deform the contour to obtain exponential decay
from the factor e’ in the Laplace transform formula. Finally, we approximate the translational
part by uso(¢)e(Z, ¢, y, t) using the expansion in Lemma 3.1.

This section is structured as follows. First, we establish pointwise estimates on the resolvent
kernels associated with the operators Evy — A, vy eRand L, — A,v € Q. Then, we recall some
standard, but nontrivial, integrals that we will encounter in our estimation of the Green’s function.
Finally, we obtain pointwise estimates on the temporal Green’s function for (|¢ — ¢ +at|+|y|)/¢
large and (|¢ — ¢ + at| + |y|)/t bounded, separately.

A.2. Bounds on the resolvent kernel

We obtain bounds on the Green’s function Gy, (¢, ;:) associated with the elliptic operator

L,, — A for (A, vy) in a certain subset of C2, sufficiently far away from the origin. We proceed as
in [1, Section 3.2] and obtain these bounds from the behavior of the spatial eigenvalues associated
with the temporal eigenvalue problem £, u = Au.

Lemma A.1. Complexify vy and consider the family L, vy, € C of operators on L*(R,C")
given by (2.3). Denote by G, ».(¢, ¢) the Green’s function associated with Ly, — A There exists
k1 €(0,1) and C, R, k2 > 1, such that for all (vy, X) € C? satisfying

oyl + 142 > R, Re(t) = —k1 (IRe() + Im()]) +2llmv)P, (A3)
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A is in the resolvent set p(L,,) and the Green’s function may be bounded as follows

e~ (11" +vy)ig =21/ C

: L €R, A4
T A "

|p2:G D) =cC

where a € Z2>o is a multi-index with 0 < |a|] < 1.

Proof. Throughout this proof, we denote by C > 1 a constant, which is independent of ¢, g:, A
and vy, that will be taken larger if necessary.

Let f € L?(R, C"). We rescale the inhomogeneous problem (Ly, —Mu = f by setting z =
(rY2 + [vy])¢ and ¢ = (u, 0;u). This leads to the equivalent problem

0
(0: — A vy D) 9 =8 vy V), 8wy A) = [ D7 (A4 ) 7 2) |, (A5)
(A2 4 vy 1)

where

0 I,
Alz, vy, A) = A(vy, A) + B(z,vy,2), A(vy,A) = ( k22D ) ,

1
A2+ oy T
and B is bounded on R x {(vy,1) € C?: |vy| +|A|'/? > R}. Since D! is symmetric and
positive-definite, there exists dmin > 0 such that v*D~'v > dpy, for all v € C* with |[v]| = 1.
We use the latter to explicitly bound the eigenvalues of the matrix A(vy, A), which are given by
the square roots of the eigenvalues of its lower-left block. Thus, take «; € (0, 1) and k> > 0 such
that 4«1 | D1 < min{2dmin, 1} and 2«5 > 5||D~!||. We find that for any (v, 1) € C? satisfy-
ing (A.3) it holds

1 .
[Re(a (A(vy, M))| = ﬂ\/min{i — D"« dT}

i.e. A(vy, A) is hyperbolic with (vy, A)-independent spectral gap. We apply [21, Lemma 1.2] (see
also [3]) to the homogeneous problem,

(8, — A(z, vy, 1)) @ = 0. (A.6)

Thus, taking R > 1 sufficiently large, system (A.6) has for all (vy, 1) € C? satisfying (A.3) an
exponential dichotomy on R with constants independent of A and v,. Denote by T‘fv’fa (z,z7) the
stable and unstable evolution of (A.6) under the exponential dichotomy. Variation of constants
yields that the unique solution ¢ € L>(R, C") to (A.5) is given by

Z o0

o(z, Vy’)\): / TVS\,’A(Z,Z)g(Z, Vy,)»)dZ—/TU”W;\(Z,Z)g(Z,Vy,)»)dZ.

—00 Z
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Thus, rescaling back to the original coordinates, we obtain

(GU_V,A(Z,Q ): g O
3 G, 2(8, ¢) 0o 1,
(0 _
Ty 5 (A2 4 oy 1) € (1A + 1vy1) €) <D—1 ) >1,

_ 0 -
=Tt 5 (A2 + vy ) 0 (I + Tvy]) €) (D—l ) . <,
which yields the estimates on GU_V, 2 (¢, E) and Bgva 2 (¢, E ) in (A.4). Finally, for the estimate
on agGvy,)»(g“, E) we observe that GvM(g, g:) = H,,yyx(f, £)*, where H, 5, g:) is the Green’s
function associated with the adjoint operator (£,, — A)* — see also [27, Lemma 4.3]. Analogous
to the above, one obtains

B Hy, 10, D) < Cem (M2 HmDIe=2l/C 7 e R,
; Vo

for any (vy,A) € C? satisfying (A.3) (by choosing R > 1 larger if necessary). This yields the
— - *
bound on 3; Gy, 1(¢. ) = (a,’; Hy 1 (2, g)) in(A4). O

Using the Bloch transform, Lemma A.1 yields pointwise bounds on the resolvent kernel
Gy (¢, ¢) associated with the operator L, — A given by (2.5).

Corollary A.2. There exist constants C, R > 1 and p > 0 such that for all (v, 1) € Q x C satis-

fying
4> R, ReG) = —u (v + lm@1),

X is in the resolvent set p(Ly) and the Green’s function Gy ; (¢, ¢) associated with the operator
Ly — X satisfies

swp [ DEGua D scnTL cgelon,

vy €[—m,7]

where a € Zio is a multi-index with 0 < |a|] < 1.

Proof. It holds G, ; (¢, ¢) = ei"-"(g_f)Gvy,A(g“, ) forany (v,A) € Q x C and ¢, ¢ € [0, 1]. The
result now follows from Lemma A.1. O

Remark A.3.Let K be some compact set in Q x C such that for pairs (v,2) € K it holds
A € p(Ly). By analyticity of G, 5 (¢, ¢) and its ¢ - and ¢-derivatives in A and v there exists C > 1
such that

sup HDgf‘EQu,x(C, E)H <C,
w,MeK,¢,2€[0,1] ’

where a € Z2 ; is a multi-index with 0 <|a| < 1.
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A.3. Some useful integrals

In the pointwise estimation of the Green’s function, we need to evaluate some standard, but
nontrivial, integrals. First, recall

/ p45G20) g %eabZ’ a<0.beC, (A7)
A |la

R

from §5. In addition, we use the identities

1
/ IZl%e PP dz =T (%) p—@th/2, a>0,b>0, (A.8)

R
[ebe JT
dz =—, b>0. A9
o/ﬁ =L > (A.9)

A.4. Pointwise Green’s function estimates for large (|¢ — ¢ + at| + |y|)/t

As described_ in §A.1, we obtain pointwise bounds on the Green’s function and its derivatives
for large (|¢ — ¢ +at| + |y|)/t by proceeding as in [7, Proposition 2.7].

Lemma A.4. Assume (D1)—(D3) hold true. There exist constants m >0 and S, C, M > 1 such
that for any ¢, ¢,y € R, t > 0 satisfying

¢ — ¢ +at|+ |y > St,

the Green’s function G(¢,C, y, t) associated with the operator 3; — L enjoys the estimate

z lb]
H DY. G.&.y, t)H — 1Y

je=ErarPly
Mt

where b € Z3>0 is a multi-index with 0 < |b| < 1.

Proof. Throughout this proof, we denote by C > 1 a constant, which is independent of ¢, ¢, y
and ¢, that will be taken larger if necessary.

Complexify vy and consider the family £, , vy € C of operators analytic in vy given by (2.3).
Let R, k12 > 0be as in Lemma A.l and take

(g — ¢ +at|+[y)? A
A=¢] ) Y, a=sen(y) P

where g9 > 0 is to be defined. We consider (A.2) as a complex contour integral in v,. By Cauchy’s
integral theorem we have
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- 1 o -
a_ — i(z4+ia)y+rt pya .
D{&‘G(g‘9 Z,y,t) Zﬂim/ / e D{’{Gzﬂa,k(é‘, ¢)drdz,

(A.10)
WG, C,y. 1) = / /(z +ia)e! CTOVTHG (2, 0)drdz,
where a € 72 20 is a multi-index with 0 < |a| < 1. We take the contour
={AeC:Re(A)=A— /<1(|Re(vy)|2 + [Im(M)])}.
Note that for every A € Iy, it holds
2 A —Re(X) A
[vy|” =+ |A| > max { [Re(A)], > . (A.11)
K1 14K

By (A.11) and the fact that A = k2a?, every vy € {z+ia:z€R}and A €T, satisfy (A.3) for
A > 0 sufficiently large. Therefore, every A € Iy, is in the resolvent set of ,va for Im(vy) = a.
Taking the lower bound S > 0 sufficiently large, we may assume

Iw+f—§5JH+K:C+aﬂ_M2Lﬂ+w;§+mf (A.12)

Finally, by taking &9 > O sufficiently small, we are able to estimate (A.10) using Lemma A.1 and
identities (A.8), (A.9), (A.11) and (A.12)

ID}:G(&.¢.y. 0l SC//e*“y“%“”||D;ZGZ+M,A(;,E)||d,\dz

R T,
— A r—F1/C— 2 Jaj—1
SC//e ay+At— | T [6=C1/ C—ier (IIm(0) |+ M ImGol“E dlIm(y)|dz

R

IA

C// & SO/C)(\yIH{ ftar)? Kl(llm()‘)|+22)t|1m()\')| d|Im(A)|dz
R

=

la] [£=F+er>+Iy|?
<Ct V=T e Mo

= ’

for some m > 0 and M > 1, where in the latter inequality we used that the lower bound S > 0
can be taken larger if necessary. Analogously, we estimate

19yG (&, ¢, y, 0l

SC//GM+MN””MWMMWALDMMZ
R T,
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—ay — A e—f _ 2
5Cf/(|z|+«/z)e ay+At— [ 7716 =¢1/ C—rr (IIm@Q)|+2 )I|Im()\)|_%d|lm(k)|dz

R R
= 2 (yl+He—T+ar)? 2
| = +at]) eCoeo/O 5 ——x(m@)+z1
SC// (|z|+ kAl ; J |> T d|Im(2)|dz

3 gy le=trer?4y2
<Ct 2¢™Me Mt ,

forsomem >0and M > 1. O
A.5. Pointwise Green’s function estimates for bounded (|¢ — ¢ + at| + |y|)/t

As described in §A.1, we establish pointwise bounds on the temporal Green’s function and its
derivatives for bounded (|¢ — ¢ + at| + |y[)/t following [14,18].

Lemma A.S. A_ssume (DI1)—(D3) hold true and let S > 1. There exist constants C, M > 1 such
that for any ¢,¢,y € R, t > 0 satisfying

¢ — ¢ +at]+ |y < St,

the Green’s function G(¢, ¢, y, t) associated with the operator 8; — L can be decomposed as

_\C—E+ott|2 \‘\2

_ 1
G(é',é',y,l):me 4ot My (Ouad (0 + G, L,y 1)

where G(C, E, v, t) enjoys the estimates

[e=Z+at+ly2

16@. 2,y 0] <Crt A+ e i

[e=Eter P4y
Mt

HDC{ yg(g’gv)’,t)H < Ct—%e_

where a € Z3>0 is a multi-index with |a| = 1.

Proof. Throughout this proof, we denote by C > 1 a constant, which is independent of ¢, ¢, y
and ¢, that will be taken larger if necessary.

Without loss of generality we may assume that {v € C2: |v| < 2¢} C U, where ¢ is as in
(D2)—(D3) and U C C2 is the neighborhood of 0 from Lemma 3.1. Let ¢: C%? - [0,1] be a
smooth cut-off function satisfying ¢ (v) = 1if [v| < e and p(v) = 0if [v| > 2¢. Let 87" : R — R
be the Dirac delta function centered at z € R™. Applying the Fourier—Bloch transform — see
§2.1 — yields 2782 E.0) W, ¢) = e‘“"f(S; (¢). So, using (2.6) and Lemma 3.1, we decompose the
Green’s function of problem (2.2) as

6.8y =[e"s%  Jen=1+11,

fei"'fgo(v)P(v)evaal(;)dv, I1:= b V51— ) P))e! 5L ()dv,
¢ 4772 ¢
Q Q

T 4n?
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where &£ := (¢ — ¢, y) and P(v) := (gaq(V), -)2q(v) is the spectral projection in Lger([O, 1],CM)
onto ker(Ly, — Xo(v)). By Lemma 3.1, P(v) is well-defined for any v € U and depends ana-
lytically on v. It holds P(v)elv! = ¢*0® P (v) for v € U. Thus, we calculate using (A.7) and

Lemma 3.1

a2 = [t pwpwietsly
Q

= / eVE eV g (v, £)gua (v, L) dv

[V|p2=2¢
:/eiv~§e(z’aux79v$7dlv}2,)tugo(;)uad(g)*dv
R2
. . g2 2 -
- [ et

Iv‘[RZ >2¢

b [ et (O 0 0, €)guav. £~ (0, €)gua(0. ) v

|v\]R2§28

T 7|[*2+W‘|2,ﬁ , - / /

_ e Jo1 4dﬂuoo(é-)uad(é-)*+[] + 111
ty/d 6

Letb e Z3>0 with 0 < |b| < 1. Using (A.8) we estimate

b /
H DC,f,y”

2 2
<C / (14 [l =+ vy ) =@t duvie gy

[V]R2>2e

2e
§C//(1+|ux|+|uy|)""e—e”ffdvxe—dﬂf’duy
—2e R

2¢e
2 _ 2
+c/ / (14 vel + vy ) e qu e av,

R —2¢
b

<ct! (1 +t—7)e—252min{dl,6}t’

TN L R [ e
<Ct 1772 ™, Mt ,

for some m > 0 and M > 1, using that (|¢ — ¢ + at| + |y|)/t is bounded in the latter inequality.
The estimation of 111’ is more elaborate. As in [18] define

— 7 +at
a = LN e Y G = sen(ar) min{2e, a1 2},
20t 2dt ’ ’

and abbreviate
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- . . 02 2 - -
B0, vy, 88, 3, 1) 1= e 000 (HOV ) (0, £)gua v, ) = (0, £)qua 0, D)")

We consider 111" as a double complex line integral. By Cauchy’s integral theorem the integral
of h(-, vy, ¢, E, t) over [—2¢, 2¢] equals the integral over the other three sides of the rectangle
in C formed by the points +2¢, +2¢ +ia;. Denote by I'; C C the curve consisting of these three
sides and define I'; C C similarly by the points £2¢, £2¢ + iay. Using Cauchy’s theorem twice
we rewrite 111 as

a !/ __ a_ -
Dd,ylll _//Du’yh(vx,vy,;“,g,y,t)dvydvx. (A.13)

I )

Our next step is to bound the integrand D“{ (v, vy, 8, Z,v,1) as a complex function of v €
't x I';. Forv eI’y x 'y C U we bound using Lemma 3.1

[ e)DE 5 (9(v, £)guaw, ) =

< |eH(v)t

DY (400, £)qaa(0,8)")
¢ Z’y (q(va §)Qad(‘)’ E)*)

(90, £)qaa (0, O)¥)

+ewpe; (a0, Oguaw. %) -
< C (MW — 1+ v])
< C(IH)[teMON ]+ v, )
2 2
< C (vl + 1) 1 oy | o) 0507,

Z £y (A.14)

where cq is a constant independent of ¢. By taking ¢ > 0 smaller if necessary, we may assume
2coe < 0,d . We apply the triangle inequality to (A.13) and bound the integrand using (A.14).
This leads to a sum of terms of the form

cm [ [le

ivé e(iowx —91}% —dy v%)t+cgs(v§+v)2.)t | vy |k | vy |l

ht (A.15)
=Ctm/ iV (C—Tan —(O—coe) x/ oiVsy—(di—coe)2t vyl dvy,
I I

with integers k, [, m > 0 satisfying k 4+ [ — 2m > 1. Using (A.8) and the identities
—Gyy < —-2d1 a5, —zy < —2dy|zllalt < —2d,2%,  z€[0,al,
we estimate the second factor in (A.15)

[ e

I

ivyy—(dL—coe)vit |vy|ldvy

2¢e

<c |

—2¢

. .~ o _ .~ 2 .~
ez(z+za2)) (d] —coe)(z+iax)-t |Z+l012|le
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a
+C/ ei(28+iz)y—(dL—cos)(Za-Hz)zt |2s+iz|ldz
0
i 2¢e 1 |&2|
_ ~2 _ _ 2 I _ 2 _ _ 2 R
<Ce dM2t/ZZ/e (L=coe)et |2\ =J |y | dz + Ce Zdi”Z/e (dL=coe)2 |11~  gd
J=0_"5, J=079

1 l
< CoduiBt2 Z min { 1,1~ 0H=DP2 ) } 1 p2die?)2 Z min { 1 UH=/2 }
Jj=0 Jj=0

< Ce~1@t/4 min [ 1, f(l“)/z] + e~ min l 1, t*(”l)/z}

<C( 41"+ (efdl&%t/4+efdlgzt)

[N

<Cc(+ t)*(1+l)/2e* W,

for some M > 0, using that (|¢ — ¢ + at| + |y|)/t is bounded in the latter inequality. Similarly,
one establishes the bound on the second factor in (A.15)

/

I

. Forat?
eivx({7§+at)7(97cos)v§t |vx|kdvx <C(l+ t)*(]Jrk)/ze*%’

for some M > 0. We employ the latter two estimates to bound the summands of the form (A.15)
in order to obtain

le=F+er2+Iy)?
=32

)

a /
|22, 011

5//HD?Eyh(”x’”w%f’y7f)Hdvydvxsc<1+:)
ry,

using k + 1 —2m > 1 holds in (A.15).
Next, we split /1 into two integrals

= / e""f(l—<p(u)P(v))eva55(v,;)dv

|V|R2 <¢

+ / eV (1= () P()e"'8; (v, £)dv
veQ,|v\R2 >e
=T+11.
We start estimating I1. Note that by assumption (D3) the spectrum o (Ly) is confined to Re(X) <

—n for v € Q with |v| > ¢. Combining this with Corollary A.2 yields that there exists x > 0,
independent of v and A, such that the contour

Iy = { € C: Re(d) = —« (1 +vZ + [Im()])}, (A.16)
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is contained in the resolvent set of L, for v €  with |v| > ¢. Using the Laplace transform we
rewrite /1 as

IT=— / / eVEFM (1 — ) P(1))Gy 1 (¢, O)drdy,

veQ,v|=e Iy

where G, ,.(¢, ¢) denotes the Green’s function associated with the operator L, — . Let j € {0, 1}.
Using Corollary A.2, Remark A.3 and the integral identities (A.8) and (A.9) we estimate

Jof 71| <c / / oy TeRM Gy 5 2. 2] drdy

veQ,|v|>e Ty

_ yld e moo 2
<Ce "’// — 2 (MWD g tm (L) |dv
Tm()] m()ldvy

-4
SCt 1 Ze Kt

[¢—f+ar2+]y2
Mt

< Cr1"4e e ,
for some m > 0 and M > 1, using that (| — ¢ + at| + |y|)/¢ is bounded in the latter inequality.
Letce Zzzo be a multi-index with |¢| = 1. Analogously, we estimate

logeit|=c [ [ (1l Gvate D] + |05 Gusie O] ) diav

veQ,v|>e Iy

o0
1 2
Ce™ / / <1+—)e—”<'lm<“'+”y>d|1m(x)|du
S VIIm()] g

<ct! (1 + t‘l/z) e Xt

[e—E+ar 24|y
Mt

< Ct—S/Ze—mte— ,
for some m > 0and M > 1.

For the estimation of / we note that o) =1 for |v|p2 < €. For |[v|g2 < ¢ the spectrum
of the operator L, restricted to ker(P(v)) is confined to Re(A) < —n by Lemma 3.1 (by tak-
ing n smaller if necessary), since P(v) is the spectral projection associated with the critical
eigenvalue Ag(v) of L,. Therefore, we may assume (by adapting « > O if necessary) that the
contour I'y, defined ig (A.16) lies in the resolvent set 0£ Ly lxer(pvy) for all [v|g2 < & by Corol-
lary A.2. Estimating / is therefore similar to estimating /7. Let Gy 5 (¢, ¢) be the Green’s function
associated with the operator Ly [ker(pv)) — 2. Let K be some compact set in  x C such that for
pairs (v, 1) € K it holds A € p(Ly|ker(p(v))). By analyticity of the Green’s function in A and v it
holds
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sup HD;‘.Q:@,A(C,E)HSC,
v,M)eK, ’
£.2€[0.1]

where ¢ € Zio is a multi-index with 0 < |¢| < 1. Thus, using the Laplace transform, Corollary A.2
and the integral identities (A.8) and (A.9) we estimate

[ T|=c [ [ e Gl ar

[V|g2<e Lely,|A|<R

+C / / vy |7 eR MGy 5.2, 0) || drdv

Ivig2<e A€Tw,[A[>R

_m/ / i < JIm@®)] (x)|>e_Kt(umm'H’z')d'Im@)Idvy

g =L +at>+ly2
Mt

’

1L _ _
<Ct 172

for some m > 0 and M > 1, using that (| — ¢ + at| + |y|)/¢ is bounded in the latter inequality.
Analogously, we estimate

o Tlsc [ [ o (st o]+ 0 Guse. ]

Iv|g2<e heTy.|A|<R

ve [ [ E (G D]+ D Guste. D] ) ando

[vIg2<e A€l |A|>R

m//( )eKt(lm(x)|+u§)d|1m(k)|dvy
|Im()L |

[e=Ftar2tly?
Mt

’

< Ct_%e_mte_
forsomem >0and M > 1. 0O
A.6. Proof of Theorem 3.4

We employ Lemmas A.4 and A.5 to prove Theorem 3.4. First, observe that a direct calculation
establishes the estimates in (3.3) on e({, ¢, y,t) and its derivatives. Now, let § > 1 be as in
Lemma A.4. It holds by Lemma A.5

é(é" 5’ y’ t)

le=t+arl® _ 2

G, Ty 1)+ e M ©Oua@)if I — & +ar] +1y] < 81
G(E.E, v ) —e(6.8.y,1) 10— F +at + [yl > S,
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for z,¢,y € R and t > 0. The bounds in (3.3) on G(¢,,y,t) and its derivatives follow for

£, ¢,y € Rt > 0 satisfying |¢ — ¢ + at| + |y| < St from Lemma A.4 and the fact that ¢ >

1 — x(¢) vanishes for r > 2. The bounds in (3.3) on G(¢, ¢, v, t) and its derivatives follow for

£, ¢,y eR,t>0satisfying |¢ — ¢ 4+ at| + |y| > St from Lemma A.5 and the estimate

l¢ = +or 241y 2 $2 _ le=tterPly?
Mt 2Mt s

|pg; e &vn| sca+ne <CU+n e e

where C, M > 1 are some constants, which are independent of ¢, E ,yandt. O
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