






Property extraction:
Section Title: [(entity mention: Data Offset)Data Offset] : 8 bits
Section Text: [(entity mention: Data Offset)The offset] from the start of the packet ’s DCCP [(property keyword: header length) header]
to the start of its application data area , in 32-bit words .

Property: Header Length, Data Offset

Figure 4: Example of property extraction.

Table 1: Entity Mention Identification
Approach Prec Recall F1 TP FP

O ≥ 50% 0.19 0.58 0.29 502 2147
O ≥ 70% 0.40 0.48 0.43 418 617
O ≥ 85% 0.58 0.42 0.49 363 258
O ≥ 100% 0.74 0.36 0.49 316 111
RB1 0.93 0.18 0.30 157 12
RB2 0.77 0.48 0.59 411 122
Our Approach 0.78 0.66 0.72 576 159

match each property with the entity defined in the title of the
section in which the property appears.

Dataset We annotated a set of public RFC documents.
These documents are a common form for protocol specifi-
cation and are written in plain text following a specific for-
mat. We use RFC documents for six protocols: GRE, IPv6,
IP, TCP, DCCP and SCTP. We selected these RFCs because
they specify common transport and network layer protocols
that we can test with our fuzzer.

Results For entity mentions, we measure precision, recall,
and F1. Additionally, we report the number of true positives
(TP) and false positives (FP). In the case of properties, anno-
tations often span more than one chunk. We consider a prop-
erty to be found if we classify any chunk in the annotation
span as a property. For this reason, we report the true posi-
tive rate at the span level (S-TPR). Additionally, we measure
the rate of false chunks that our classifier miss-classifies as
properties (C-FPR). We do six iterations, training with five
protocols and testing on the sixth. Tables 1 and 2 show ag-
gregated results for these six iterations. We compare our ap-
proach with a set of rule based systems.

Table 1 shows results for extracting entity mentions. The
first four rows correspond to simple string matching sys-
tems. Here, we measure the overlap O between an entity
type and the current chunk. We classify the chunk as an en-
tity mention if the overlap is at or above a certain percentage
P . The trade-off in these systems is clear. The higher P , the
higher the precision and the lower the recall. As we reduce
P , recall increases and precision suffers. The following two
approaches are rule-based systems based on our feature set.
Here, we take the same set of features used by our classifier
and weigh them manually. In RB1, we weight each feature
by its frequency of occurrence in the dataset. For each fea-
ture f we calculate pr and nr. We then give each feature f a
weight of +pr if pr > nr, a weight of −nr if nr > pr, and a
weight of 0 if pr = nr. We use a weight of −nr for the bias
term. In RB2, we weight each feature with +1 if it occurs
more often in positive examples and −1 if it occurs more
often in negative examples. We use a weight of −1 for the
bias term. While RB2 performs better than string matching,
our classifier still outperforms all baselines. In other words,

Table 2: Property Extraction
Approach S-TPR C-FPR

O ≥ 50% 0.86 0.36
O ≥ 70% 0.77 0.12
O ≥ 85% 0.77 0.11
O ≥ 100% 0.77 0.11
RB1 0.90 0.89
RB2 0.95 0.87
Our Approach 0.86 0.28

Table 3: Entity Mention Identification per Protocol
Protocol Prec Recall F1 # Inst

TCP 0.96 0.68 0.80 38
SCTP 0.70 0.60 0.64 484
IPv 0.93 0.80 0.86 127
IP 0.87 0.60 0.71 45
GRE 1.0 0.81 0.89 21
DCCP 0.85 0.73 0.79 160

Total (K) 0.78 0.66 0.72 875

Total (E) 0.73 0.53 0.62 875

there is value in both informative features and the use of our
learning framework.

For properties, results can be observed in Table 2. Simi-
larly to the entity mention case, in the first four approaches,
we measure the overlap between property key phrases and
the current chunk. We classify a chunk as a property if the
overlap is at or above a certain percentage P . These meth-
ods have a high success rate (S-TPR) while introducing less
noise (C-FPR). However, the C-FPR is too high for O ≥ 50
and the S-TPR is too low for O ≥ 70. Identifying most prop-
erties is essential for the performance of the fuzzer, while
we can live with some level of noise and rely on the post-
processing step. We find that our approach gives us a bet-
ter balance between the number of properties found and the
level of noise introduced. RB1 and RB2 are the same rule-
based methods that we considered for entity mention identi-
fication. In this case, the level of noise introduced with these
systems is too high.

On table 3 we can see the results for extracting entity men-
tions by protocol. We show that our ZSL approach general-
izes well to different, unobserved protocols. We report ag-
gregated results both assuming that the list of entity types is
known a priori (K), and when the list of entity types is ex-
tracted using the RFC format (E). Even though performance
suffers, we only need to identify a single (property, entity)
tuple, regardless of how many times it appears in the doc-
ument, to leverage this information in the fuzzer. For this
reason, the error propagation when using a fully automated
pipeline is minimized. Due to space considerations, we only
show results by protocol for entity mentions.



Table 4: Coverage Evaluation
TCP DCCP

Unique Pkt
Type Traces

Total
Strategies

Unique Pkt
Type Traces

Total
Strategies

Random 13 1000 18 1000
Manual 784 901 718 871
NLP-based 713 819 816 1022

Table 5: Attack Discovery Results
TCP DCCP

Reported
Attacks

Interesting
(Off-path)
Attacks

Unique
Attacks

Reported
Attacks

Interesting
(Off-path)
Attacks

Unique
Attacks

Random 996 0 0 992 0 0
Manual 219 63 5 209 44 2
NLP-based 220 69 5 254 47 2

Fuzzer Evaluation

SNAKE Fuzzer We demonstrate the usefulness and ef-
fectiveness of our automated protocol grammar extraction
framework by applying it to SNAKE (Jero, Lee, and Nita-
Rotaru 2015), a state-of-the-art transport protocol fuzzer.
The key component of SNAKE is a malicious proxy that
modifies and injects attack packets based on a protocol de-
scription manually specified by an expert.

Fuzzer configurations We use SNAKE to test two proto-
cols, TCP and DCCP, in a single operating system, Linux
3.0.0 in Ubuntu 11.10. We compare three different testing
configurations: Random, Manual, and NLP-based.

Random. This configuration uses a fuzzer configured
with no information about the protocol grammar. It gener-
ates tests that randomly replace a random number of the first
20 bytes of packets with random data. We only modify the
first 20 bytes to approximate the length of a typical trans-
port protocol header. Note that in any given test, the same
bytes in all packets are modified. Attack injection is on every
packet sent. We generate 1,000 test strategies in this manner
to compare with our other testing configurations.

Manual. This configuration uses the SNAKE fuzzer with
a manually created protocol grammar. For each packet type,
test strategies are created to inject new messages, modify all
packet fields, and apply all delivery actions to those pack-
ets. For modifying packet fields, tests modify fields based
on their size. Attack injection is on every sent packet.

NLP-based. This configuration uses SNAKE configured
with our automatically extracted protocol grammar, derived
from extracted entities and properties. This configuration
generates a similar set of tests that injects new packets, mod-
ifies the delivery of packets, or overwrites a single field in
packets during each test. During each test, all packets of a
particular type are modified, and attack injection is on every
packet. For each packet type, test strategies are created to in-
ject new messages, modify all packet fields, and apply all de-
livery actions to those packets. This configuration has more
information about packet fields available to it, thanks to our
pipeline. We leverage this information to apply better field
modifications. For example, from the definition of check-

sums and protocol ports, we expect that tampering with them
will result in modified packets simply being thrown away.
Thus, we can apply a single modification to fields that are
identified as checksums or ports.

Metrics To evaluate the different configurations we focus
on a number of indicators: (1) the amount of effort required
to test an implementation; (2) the coverage of the generated
tests; and (3) the overall attack discovery results.

We use the number of test strategies generated to mea-
sure the amount of effort required to test an implementa-
tion. We measure coverage as the number of unique packet
type traces observed. A packet type trace records the order
in which different types of packets are observed in a flow.
Thus, a packet type trace succinctly summarizes a protocol
connection and approximates the path traversed through the
code. To effectively test a protocol, as many unique connec-
tions, or code paths, as possible should be explored. Ideally,
we want to expend a small amount of effort while achieving
high coverage. These indicators are reported in Table 4.

The number of attacks identified indicates how many test
strategies were reported by the testing configuration as at-
tacks. Unfortunately, many of these attacks are on-path at-
tacks which are not interesting (i.e., relevant) since TCP and
DCCP do not attempt to protect against these attacks. Re-
moving these on-path attacks leaves us with the interesting
off-path attacks, which we refer to as interesting attacks.
Note that many strategies may exercise the same underlying
root vulnerability, so we perform a manual analysis of all
reported attack strategies to identify the number of unique
attacks actually identified. Attacks are reported in table 5.

Random Testing vs Grammar-based Fuzzing Table 4
compares coverage, in terms of unique packet type traces,
achieved by all three configurations. We observe that the
manual and NLP-based configurations achieve similar cov-
erage, around 700 unique traces for either protocol, while
random achieves only 13 traces for TCP and 18 for DCCP.
To achieve this coverage, all three configurations required
about 1,000 strategies. Since number of strategies is directly
equivalent to the amount of effort required for testing, we



can say that random testing is significantly less efficient than
grammar-based fuzzing.

This occurs primarily because in the random test configu-
ration all packet manipulation strategies stall the connection,
since modifying the packet corrupts the protocol checksum,
resulting in the packet being thrown away at the receiver. In
order to correct this, the fuzzer would need to know the exact
location of the checksum in the packet, which is exactly the
information provided by a protocol grammar. Similarly, all
packet delivery strategies in the random test configuration
stall the connection because they drop or delay key packets
like the TCP SYN and the DCCP Request. In order to work
around this, the fuzzer would need to know the type of each
packet, which is also supplied by a protocol grammar. All of
these connection stalls generate similar traces and traverse
similar code paths, resulting in very poor coverage.

In addition to poor coverage, Table 5 indicates that
the random test configuration also generates a significant
amount of reported attacks, but none of them are interest-
ing. This is because each of the connection stalls mentioned
above is reported as an attack on availability. Unfortunately,
these are on-path attacks, not relevant for TCP or DCCP.

NLP-based vs Manual Configurations We first consider
testing coverage, shown in Table 4, and confirm that, thanks
to the additional properties provided by our document pro-
cessing pipeline, the NLP-based configuration generates
fewer strategies than the manual configuration for TCP. This
results in a reduction in the amount of time and effort re-
quired for testing. This does result in slightly lower cover-
age, but only by about 70 traces.

Unfortunately, for DCCP our pipeline over-approximates
the number of fields in each packet, due to differences be-
tween packet types. This leads to generating more strategies
(1022 instead of 871) and an overall increase in the time and
computational effort required for testing. Note that it also
results in improved coverage by almost 100 traces.

In terms of the attacks that are reported by our testing con-
figurations, shown in Table 5, we find that our NLP-based
testing system reports a few more attacks (1 more for TCP
and 45 more for DCCP) and that more of those reported at-
tacks are interesting.

Conclusion

In this work, we proposed a methodology to extract informa-
tion from technical documents designed around the issues
of domain adaptation and minimal supervision, which are
repeating issues when using NLP in technical domains. We
build a framework to extract grammars from specification
documents automatically and combine it with a grammar-
based fuzzer to create a completely automated testing sys-
tem. Our document processing pipeline extracts protocol en-
tity types and mentions—or packet fields— and properties
from RFCs using a zero-shot learning approach. We demon-
strate the value of our approach by applying it to a transport
protocol fuzzer and comparing it to using a manual grammar
on two protocols, TCP and DCCP. We find a reduction in the
testing effort for TCP, while identifying the same set of at-
tacks and doing so in a fully automated manner for both.

References

Abdelnur, H. J.; State, R.; and Festor, O. 2007. KiF: A
stateful SIP fuzzer. In ACM IPTComm.

Banks, G.; Cova, M.; Felmetsger, V.; Almeroth, K.; Kem-
mer, R.; and Vigna, G. 2006. SNOOZE: Toward a Stateful
NetwOrk prOtocol fuzZEr. In ISC.

Cho, C. Y.; Shin, E. C. R.; Song, D.; et al. 2010. Infer-
ence and analysis of formal models of botnet command and
control protocols. In ACM CCS.

Cho, C. Y.; Babic, D.; Poosankam, P.; Chen, K. Z.; Wu,
E. X.; and Song, D. 2011. MACE: Model-inference-assisted
concolic exploration for protocol and vulnerability discov-
ery. In USENIX Security.

Comparetti, P. M.; Wondracek, G.; Kruegel, C.; and Kirda,
E. 2009. Prospex: Protocol specification extraction. In IEEE
SP.

Corbett, J. C.; Dwyer, M. B.; Hatcliff, J.; Laubach, S.;
Păsăreanu, C. S.; Bby, R.; and Zheng, H. 2000. Bandera:
Extracting finite-state models from java source code. In
ACM/IEEE ICSE.

Jero, S.; Bu, X.; Nita-Rotaru, C.; Okhravi, H.; Skowyra, R.;
and Fahmy, S. 2017. BEADS: automated attack discovery
in OpenFlow-based SDN systems. In RAID.

Jero, S.; Lee, H.; and Nita-Rotaru, C. 2015. Leveraging
state information for automated attack discovery in transport
protocol implementations. In IEEE/IFIP DSN.

Kothari, N.; Millstein, T.; and Govindan, R. 2008. Deriving
state machines from tinyos programs using symbolic execu-
tion. In IPSN.

Lie, D.; Chou, A.; Engler, D.; and Dill, D. L. 2001. A simple
method for extracting models from protocol code. In IEEE
ISCA.

Lin, Z.; Jiang, X.; Xu, D.; and Zhang, X. 2008. Automatic
protocol format reverse engineering through context-aware
monitored execution. In NDSS.

Palatucci, M.; Pomerleau, D.; Hinton, G. E.; and Mitchell,
T. M. 2009. Zero-shot learning with semantic output codes.
In NIPS.

Pandita, R.; Xiao, X.; Yang, W.; Enck, W.; and Xie, T. 2013.
Whyper: Towards automating risk assessment of mobile ap-
plications. In USENIX Security.

Wang, Y.; Zhang, Z.; Yao, D. D.; Qu, B.; and Guo, L.
2011. Inferring protocol state machine from network traces:
a probabilistic approach. In ACNS.

Wang, J.; Guo, T.; Zhang, P.; and Xiao, Q. 2013. A model-
based behavioral fuzzing approach for network service. In
IMCCC.

Witte, R.; Li, Q.; Zhang, Y.; and Rilling, J. 2008. Text Min-
ing and Software Engineering: an Integrated Source Code
and Document Analysis Approach. IET Software.

Wong, E.; Zhang, L.; Wang, S.; Liu, T.; and Tan, L. 2015.
DASE: document-assisted symbolic execution for improv-
ing automated software testing. In ACM/IEEE ICSE.


