
1

Spin-Orbit Torque Devices for Hardware Security:
From Deterministic to Probabilistic Regime

Satwik Patnaik∗, Nikhil Rangarajan∗, Johann Knechtel∗, Ozgur Sinanoglu, and Shaloo Rakheja

Abstract—Protecting intellectual property (IP) has become
a serious challenge for chip designers. Most countermeasures
are tailored for CMOS integration and tend to incur excessive
overheads, resulting from additional circuitry or device-level
modifications. On the other hand, power density is a critical
concern for sub-50 nm nodes, necessitating alternate design con-
cepts. Although initially tailored for error-tolerant applications,
imprecise computing has gained traction as a general-purpose
design technique. Emerging devices are currently being explored
to implement ultra-low-power circuits for inexact computing
applications. In this paper, we quantify the security threats of
imprecise computing using emerging devices. More specifically,
we leverage the innate polymorphism and tunable stochastic
behavior of spin-orbit torque (SOT) devices, particularly, the
giant spin-Hall effect (GSHE) switch. We enable IP protection
(by means of logic locking and camouflaging) simultaneously for
deterministic and probabilistic computing, directly at the GSHE
device level. We conduct a comprehensive security analysis using
state-of-the-art Boolean satisfiability (SAT) attacks; this study
demonstrates the superior resilience of our GSHE primitive when
tailored for deterministic computing. We also demonstrate how
probabilistic computing can thwart most, if not all, existing SAT
attacks. Based on this finding, we propose an attack scheme called
probabilistic SAT (PSAT) which can bypass the defense offered by
logic locking and camouflaging for imprecise computing schemes.
Further, we illustrate how careful application of our GSHE
primitive can remain secure even on the application of the PSAT
attack. Finally, we also discuss side-channel attacks and invasive
monitoring, which are arguably even more concerning threats
than SAT attacks.

Index Terms—Hardware security, Imprecise computing, Prob-
abilistic computing, Reverse engineering, IC camouflaging, Logic
locking, Spin-orbit torque, Giant Spin-Hall effect, Boolean satis-
fiability.

I. INTRODUCTION

THE notion of imprecise computing already took root in

1956, with the seminal work by von Neumann, where

the concept of error was introduced as an essential part of

any computing system, subject to thermodynamical theory [5].

Von Neumann further expounded on the control of errors in

simple automatons. More recently, in 2007, the ITRS report [6]

stated that “relaxing the requirement of 100% correctness

[...] may dramatically reduce costs of manufacturing, ver-

ification, and test. Such a paradigm shift is likely forced

in any case by technology scaling, which leads to more

transient and permanent failures [...].” At present, imprecise

∗S. Patnaik, N. Rangarajan, and J. Knechtel contributed equally.
This work is an extension of [1].
S. Patnaik, N. Rangarajan, and S. Rakheja are with Department of

Electrical Engineering, Tandon School of Engineering, New York Uni-
versity, Brooklyn, NY, 11201, USA. Corresponding authors: S. Pat-
naik (sp4012@nyu.edu), N. Rangarajan (nikhil.rangarajan@nyu.edu), and S.
Rakheja (shaloo.rakheja@nyu.edu).

J. Knechtel and O. Sinanoglu are with Division of Engineering, New York
University Abu Dhabi, Saadiyat Island, 129188, UAE.

Security

Probabilistic
computing

Fig. 1. Interplay between accuracy, energy consumption and security of
probabilistic logic.

circuits are primarily tailored for error-tolerant applications

including machine learning, voice recognition, and video pro-

cessing. Still, the proliferation and subsequent pervasiveness

of imprecise computing seems inevitable in the near future,

and designers have already started to embrace computational

errors as a means for achieving stringent requirements on

power dissipation [7], [8]. In this context, emerging devices

including nanowire transistors, carbon-based electronics, spin-

based computational elements, offer further reduction in power

consumption as well as higher integration density compared

to their CMOS counterparts [9].

Meanwhile, hardware security has become a major chal-

lenge due to concerns such as theft of design intellectual

property (IP), leakage of sensitive data at runtime (via side

channels or otherwise), counterfeiting of chips, or insertion of

hardware Trojans [10]. Recently it has been advocated that

emerging devices can augment CMOS technology to advance

hardware security [11]–[13], but very little focus has been

given to imprecise computing so far. Hence, it is crucial to

discuss hardware security in the context of imprecise comput-

ing systems, possibly built with emerging devices. Arguably

the most promising aspect of many emerging devices offered

toward hardware security is their functional polymorphism—a

polymorphic gate can implement different Boolean functions,

as determined by an internal/external control mechanism [13].

In this work, we consider security as an essential design

variable for emerging devices, and we examine the interplay

between security, accuracy, and energy (Fig. 1). Although

multi-functionality and polymorphism are inherent to spin-

orbit torque (SOT) devices in general, we provision the giant

spin-Hall effect (GSHE) switch [14] here without loss of

generality, since the technology of spin-Hall effect is more

mature than other charge to spin conversion devices cur-

rently [15], [16]. More specifically, we leverage the GSHE

switch demonstrated by Rangarajan et al. for energy-efficient

computing [17]. We extend the scope of this GSHE switch

toward hardware security, i.e., to build polymorphic gates for

IP protection. While doing so, we explore both the deter-

2

ministic and the probabilistic regime. The presented concepts

can be extended to other imprecise computing techniques

such as approximate computing, or circuits composed of other

emerging devices.

The structure and contributions of this paper can be sum-

marized as follows.

1) We review imprecise computing, hardware security, and

prior work in Sec. II. We note that most prior works suffer

from low security resilience and/or high layout cost.

2) We design a polymorphic, GSHE-based security primi-

tive in detail in Sec. III. The primitive provides strong

security capabilities—given two inputs, all 16 possible

Boolean functions can be packed within a single obfus-

cated instance. Besides, the primitive can readily support

deterministic and tunable probabilistic computing.

3) We elaborate on the protection provided by the primitive

against various attacks such as imaging-based reverse

engineering, side-channel attacks, and analytical SAT

attacks (Sec. IV). Regarding SAT attacks, we conduct

a comprehensive study (in the deterministic regime) to

benchmark our primitive against prior defense schemes,

which are mainly based on magnetic devices.

4) The immunity of probabilistic computing against SAT

attacks is explored in Sec. V. Most notably, here we

present an advanced SAT attack, called PSAT, which

allows tackling IP protection for probabilistic circuits.

Using conventional SAT and PSAT, we reveal the trade-

offs between accuracy, security, and energy for proba-

bilistic computing. Besides, we explore the resilience of

polymorphic circuits.

5) In Sec. VI, among other aspects, we outline the prospects

for protecting industrial circuits using a hybrid CMOS-

GSHE design style. We anticipate that our proposed

delay-aware protection can provide strong resilience

against SAT attacks with negligible layout overheads.

II. BACKGROUND AND MOTIVATION

A. Imprecise Computing

Three different branches of imprecise computing have

emerged, each leveraging unique techniques to harness noise

and error for energy-efficient design: (1) stochastic computing,

(2) approximate computing, and (3) probabilistic computing.

Stochastic computing is a paradigm that uses deterministic

logic blocks for computation, but random binary bit streams.

That is, the information is represented by statistical properties

of the random bit stream implemented in space and time [18],

[19]. This way, for example, multiplication can be achieved us-

ing a single AND gate, albeit with relatively low accuracy and

long processing times. Digital and analog blocks for stochastic

computing were introduced in [20], [21], and have since be-

come popular for not only parallel, error-tolerant applications

such as image-processing [22], neuromorphic computing [23],

but also for general-purpose low-power designs [7], [24].

Approximate computing is based on inexact logic for the

least significant bits (LSBs) of any binary operation. This

concept is implemented by altering the design at the circuit

level [18]. Using techniques such as logic reduction or pass

transistors with lower noise thresholds, approximate comput-

ing aims to forgo the accuracy of LSBs to reduce power

dissipation and circuit complexity [25]. However, note that

approximate computing does not leverage the potential for

non-determinism of the logic fabric itself. Low-power approx-

imate full adder, constructed by transistor reduction in mirror-

adder cells, and their application for signal processing were

discussed in [25], [26]. A design and optimization framework

for error and timing analysis of approximate circuits was

proposed in [27]. Authors in [28] design an energy-efficient

approximate neural network by selective replacement of least

significant neurons in the network with imprecise versions.

Probabilistic computing relies on noisy gates that exploit

the thermal randomness present in any computing system and,

hence, implement an inherently stochastic behavior [18]. Due

to the stochastic behavior, key design steps such as verification

are naturally more challenging than they are for determin-

istic computing [29]. Probabilistic computing with CMOS

logic is realized by using a noise source (often external),

which introduces metastability and error in the binary CMOS

switches [30]. Spintronic gates, such as the GSHE gate [14]

and the all-spin logic (ASL) gate [31], are intrinsically ran-

dom, without the need for external noise sources, due to

their stochastic magnetization dynamics [32], [33]. A detailed

study of probabilistic GSHE logic is presented in [17], which

quantifies the energy savings for various operating accuracies

and also outlines error models for complex logic gates.

B. Simple Case Study for Approximate Computing

Here, we present a simple case study illustrating the power-

accuracy trade-off in the GSHE device [17]. We follow the

fundamental rule of thumb for low-power approximate com-

puting, i.e., the most significant bits (MSBs) shall have a

higher priority than the LSBs while trading off computational

accuracy for power savings. By assigning probabilistic behav-

ior to the logic gates which only affect the LSBs, we restrict

the loss in computational accuracy.

Consider a 32-bit adder. For the baseline, assume the adder

is synthesized using GSHE gates that initially operate deter-

ministically. Now, the logic gates that impact the computation

of the LSBs—the lower 10 bits in this example—can be made

to behave probabilistically by operating them at sub-critical

input currents [17]. Considering an error rate of 10% for those

gates, the worst-case error for the 32-bit addition is only about

0.000024%, whereas the power savings per gate are 50%, and

in total about 5%. The GSHE gate in this work can be tuned to

incur a power consumption of 0.2125 µW for the deterministic

regime, whereas the same gate when operating with an output

accuracy of 90%, consumes only 0.1071 µW [17].

Note that this discussion covers only accuracy and power,

and the aspect of security will be introduced later.

C. Hardware Security

With the advent of globalization affecting the supply chain

of integrated circuits (ICs), hardware security has emerged as

a critical concern. The exposure to potential adversaries in

any of the third parties tasked for design, manufacturing, and

testing has escalated [10]. These adversaries may seek to (i)

reverse engineer (RE) the ICs, (ii) counterfeit the ICs, (iii)

steal the underlying intellectual property (IP), or (iv) insert

some hardware Trojans. Regarding the IP-centric threats, it

has been estimated that billions of dollars in revenue are lost

every year [34]. To mitigate these threats, several schemes have

3

been proposed; they are mostly based either on camouflaging,

logic locking, or split manufacturing.

Camouflaging seeks to mitigate RE attacks; wherein the

layout-level appearance of the IC is altered in a manner

such that it becomes intractable to decipher its underlying

functionality and IP [35]. For CMOS integration, various

techniques have been proposed, e.g., look-alike gates [36],

threshold-voltage-dependent (TVD) camouflaging [37], [38],

and camouflaging of the interconnects [39]. Emerging devices

have been recently considered for camouflaging as well, e.g.,

in [40]–[43]; see also Sec. II-E and Sec. III-B.

Logic locking (also known as logic encryption) obfuscates

the IP functionality rather than the device-level layout [44]–

[46]. Here, the designer obfuscates the netlist by inserting

additional key gates such that the original functionality can

only be restored once the correct key bits are applied. The

key bits are programmed into a tamper-proof memory after

fabrication; this is to hinder attacks during manufacturing

time as well as in the field. However, realizing tamper-proof

memories is a practical challenge [47], [48]; emerging spin

devices can be promising here as well [11].

Analytical attacks targeting camouflaged (or locked) ICs

were initially introduced in [2], [49]. Most analytical attacks

are based on some notion of Boolean satisfiability (SAT) where

a relatively small set of discriminating input patterns (DIPs)

may suffice to resolve the functionality of camouflaged gates

(or locking keys); see also Sec. II-D. Several SAT-attack re-

silient techniques were recently proposed, e.g., see [45], [46],

[50]. These works seek to impose exponential computation

complexity for the SAT solver. Still, most of these techniques

are vulnerable to some degree when subject to tailored attacks

such as [4], [51], [52]. Besides, we note that prior art on

SAT attacks tender exclusively to deterministic computing and

circuits. In this paper, among other contributions, we extend

the scope of SAT attacks to probabilistic circuits.

Physical attacks range from non-invasive (e.g., power side-

channel attacks) and semi-invasive (e.g., localized fault-

injection attacks) to invasive attacks (e.g., RE, microprobing

the frontside/backside) [53]. While such attacks require more

sophisticated tools and know-how than analytical attacks, their

potential is widely acknowledged to be more severe. Such

attacks are also promising for extracting sensitive data at

runtime, even from secured chips, e.g., [54], [55].

D. Boolean Satisfiability and Related Attacks

The problem of Boolean satisfiability (SAT) is an NP-

complete problem that determines if a given propositional

Boolean formula, usually expressed in its conjunctive normal

form (CNF), can be satisfied by any combination of values

assumed by the variables of the formula [56]. In case one

or more such combinations result in a “true” evaluation of

the Boolean formula, then it is termed satisfiable and other-

wise, unsatisfiable. A SAT solver is based on an algorithm

which heuristically sweeps through the solution space of the

Boolean formula to check if any particular combination of

variable assignments can satisfy the formula. Such SAT solvers

have become quite prevalent for machine learning, artificial

intelligence, combinatorial optimization, software verification,

and cryptanalysis applications [57], [58]. More recently, SAT

solvers have also been tailored for the field of hardware

I1

I2

I3

I4

I5

O1

O2

K1

K2

K3

X1

X2

X3

X4

X5

X6

Fig. 2. The ISCAS-85 benchmark c17 with three key gates: K1, K2, and K3.

security, namely to resolve/attack logic-locked or camouflaged

circuits [2], [49], [51], [59], [60]. Such SAT attacks are

successful once the attacker can resolve the key bits of the

locking scheme or the functionality of all the camouflaged

gates. Note that the various possible, obfuscated functionalities

for camouflaging can be modeled as key bits as well. In other

words, camouflaging and logic locking are interchangeable in

terms of analytical modeling [59], [61].

Next, we provide a simple example that illustrates how SAT

attacks decipher a locked netlist in general, namely by repeated

iterations over the key space. Consider the benchmark circuit

c17 shown in Fig. 2, which has been locked with three key bits:

K1, K2, and K3. Now, the attack procedure is to stepwise fix a

particular input pattern and then iterate over various possible

keys, eliminating those whose variable assignments cannot

satisfy the Boolean formula. For example, in Table I, the input

pattern “00100” is chosen (either randomly or heuristically)

in the first iteration. The corresponding output is “00”, as

obtained from an oracle (i.e., a working chip queried with

the input). Accordingly, some keys cannot result in satisfiable

assignments, namely k0, k2, k3, k5, k6, and k7. These keys are

pruned, and in the same way, the second iteration prunes key

k4. This leaves k1 as the last remaining key, which is returned

as the attack solution.

It is important to note that the outlined attack flow remains

purposefully generic and abstract. Actual SAT attacks all

apply various heuristics and techniques to efficiently tackle

the solution space, avoiding brute-force behavior. Interested

readers are referred to [2], [49], [51], [59], [60].

E. Prior Art and Limitations

Now, we briefly review some prior art and their limitations.

A more detailed comparison in terms of power and delay,

and (lack of) resilience against SAT attacks are provided in

Sec. III-B and Sec. IV-C (Table V), respectively.

In [40], Zhang et al. implemented a low-power and versatile

gate using a GSHE-based magnetic tunnel junction (MTJ)

as the basic switching element. However, this device is not

explicitly tailored for security; it is unable to support logic

locking by itself, as it is not polymorphic. More concerning is

the limitation to only four possible Boolean functions, which

renders this primitive weak against SAT attacks.

Alasad et al. [41] use ASL to design three different security

primitives, supporting three sets of camouflaged functionali-

ties: INV/BUF, XOR/XNOR, and AND/NAND/OR/NOR. The

layouts of the three primitives are unique; they can be readily

distinguished by imaging-based RE tools, which also eases

subsequent SAT attacks. Besides, the primitives suffer from

relatively high power consumption of ∼ 350 µW at ns delays.

Winograd et al. [42] introduced a spin-transfer torque

(STT)-based reconfigurable lookup table (LUT), explicitly

4

TABLE I
SAT ATTACK ON THE BENCHMARK c17, LOCKED AS IN FIG. 2. LABELS k0–k7 REPRESENT ALL POSSIBLE COMBINATIONS OF KEY BITS, FROM 000 TO

111, AND COLUMNS DENOTE THE CORRESPONDING OUTPUTS, WHICH ARE COMPARED WITH THE ORACLE OUTPUT. k1 IS THE CORRECT KEY.

Input

Patterns

Oracle

Output

Output for Different Key Combinations Inference

I1I2I3I4I5 O1O2 k0 k1 k2 k3 k4 k5 k6 k7

00000 00 01 00 10 11 00 01 10 11
00001 01 00 01 10 11 01 00 10 11
00010 11 10 11 01 00 10 11 00 01
00011 11 10 11 00 01 10 11 01 00
00100 00 01 00 10 11 00 01 10 11 Iteration 1: k0, k2, k3, k5, k6, k7 are pruned

00101 01 00 01 10 11 01 00 10 11
00110 11 10 11 01 00 10 11 00 01
00111 11 10 11 00 01 10 11 01 00 Iteration 2: k4 is pruned ⇒ k1 is inferred as correct key

. .
11111 10 11 10 10 11 11 10 10 11

addressing hardware security. However, their approach falls

short regarding resilience against SAT attack. Since the authors

did not report on any SAT attack themselves, we conducted

exploratory experiments ourselves. For example, we protect

the ITC-99 benchmark s38584 according to their scheme and

observe that the resulting layouts can be decamouflaged in less

than 30 seconds (i.e., average SAT runtime over 100 runs of

random gate selection according to [42]). This weak resilience

stems from the limited use of their STT-LUT primitive to curb

power, performance, and area (PPA) overheads.

Yang et al. [43] recently proposed an SOT-based design for

reconfigurable LUTs. Their concept is tailored for obfuscation;

it can support all 16 possible Boolean functions for two

inputs, like ours. However, the authors neglect powerful SAT

attacks. Based on overly optimistic assumptions regarding the

attacker’s capabilities (presumably to curb PPA cost as well),

the authors limit their study to the obfuscation of 16/32/64

gates. In experiments similar to those we conducted for [42],

we found that such small-scale obfuscation is easily resolved.

As for CMOS-centric camouflaging, most schemes are static

(i.e., not polymorphic) and tend to incur a high layout cost.

For example, the static look-alike NAND-NOR-XOR gate

proposed by Rajendran et al. [36] induces overheads of 4× in

area, 5.5× in power, and 1.6× in delay (compared to a regular

two-input NAND gate). The TVD full-chip camouflaging as

proposed in [38] still induces overheads of 14%, 82%, and

150% in PPA, respectively. As a result, such schemes are

limited to a cost-constrained and selective application, which

has severe implications for security (Sec. IV).

Finally, we acknowledge that Koteshwara et al. recently pro-

posed dynamic obfuscation at the system level [62], albeit their

work focuses only on CMOS implementation. We anticipate

that inherently polymorphic gates, such as the GSHE device,

can advance such a scheme. Furthermore, McDonald et al. [63]

advocate runtime polymorphism for IP protection, albeit with-

out any security analysis using SAT attacks and without any

implementation details toward polymorphic devices.

III. DESIGN OF A GIANT SPIN HALL EFFECT (GSHE)

SECURITY PRIMITIVE

Protection schemes based on emerging devices can be com-

petitive, even when compared to regular, unprotected CMOS

circuits. Leveraging GSHE is one approach among many to

realize SOT-based magnetic devices. The GSHE switch has

Fig. 3. Structure of the GSHE switch. The concept is derived from [17], but
here we adopt a stacked integration to maximize the dipolar coupling.

been studied for a while, and its understanding is relatively ma-

ture. The SOT phenomena has been experimentally measured

in several magnetic and non-magnetic bilayers at 300K [64],

[65]. Likewise, the read-out mechanism in the GSHE device

(see also Fig. 3) has been experimentally demonstrated in sim-

ilar magnetic structures [66], [67]. Experiments are currently

underway to integrate the read and write circuitry in the GSHE

device to realize Boolean logic [15], [16].

Note that truly polymorphic gates such as the GSHE switch

can inherently support both camouflaging and locking due to

the following reasons. First, owing to their uniform device-

level layout, the actual function of a polymorphic gate is hard

to determine from its physical implementation, particularly

when optical-imaging-based RE techniques are used. Second,

the actual function is dependent on control currents and

voltages, which can act as key inputs. Hence, the notions

of locking and camouflaging are used interchangeably in the

remainder of this work.

A. Structure and Operating Principle of the GSHE Switch

The GSHE switch, which is at the heart of the proposed

primitive, is constructed by combining a heavy-metal spin-Hall

layer, such as tantalum, tungsten, platinum or palladium, with

a magnetic tunnel junction (MTJ) arrangement (Fig. 3). Above

the heavy-metal layer are two nanomagnets for write and read

modes (W-NM and R-NM, red). The W-NM is separated from

the output terminal via an insulating oxide layer (green). On

top of the R-NM sit two fixed ferromagnetic layers (dark

green) with anti-parallel magnetization directions.

The switch relies on the spin-Hall effect [68] for generating

and amplifying the spin current input, and the magnetic dipolar

coupling phenomenon [69] to magnetically couple R-NM and

W-NM, while keeping them electrically isolated. Thereby, the

5

R-NM and W-NM are coupled. A charge current through the

bottom heavy-metal layer (along x̂) induces a spin current in

the transverse direction (along ŷ), which is used to switch the

magnetization state of the W-NM. The dipolar coupling field

then causes the R-NM to switch its orientation. That is because

in the presence of magnetic dipolar coupling, the minimum

energy state is the one in which the W-NM and the R-NM are

anti-parallel to each other [14]. The final magnetization state

of the R-NM is read off using a differential MTJ setup. The

logic (1 or 0) is encoded in the direction of the electrical output

current (+I or -I). The current direction depends on the relative

orientations of the fixed magnets in the MTJ stack with respect

to the final magnetization of the R-NM. The parallel path

offers a lower resistance for a charge current passing either

from the MTJ contact to the output terminal or vice versa

(i.e., from the output terminal to the MTJ contact). Hence,

depending on the polarity of the read-out voltage applied to

the low-resistance path (i.e., either V+ or V−), the output

current either flows inward or outward, representing the logic

encoding of the GSHE switch operation.

This basic GSHE device can readily implement a BUF

or INV gate (buffer or inverter operations). To realize more

complex multi-input logic gates, a tie-breaking control signal

X with a fixed amplitude and polarity is applied in addition

to the primary input signals at the input terminal. That is,

the input of the GSHE switch (or, more generally, any SOT-

driven magnetic switch) is additive in nature. The polarities

of the control signal and the MTJ voltage polarities are used

to permute between different Boolean operations (Fig. 4). See

also Sec. III-C and its Fig. 8 for all 16 possible Boolean gates.

The GSHE switch is a noisy polymorphic device, whose

probability for output correctness depends on the input spin

current’s amplitude and duration, i.e., the outputs generated

by the previous logic stages. In general, the control signal

X is used to set the functionality for any current stage (nth

stage), and the output correctness probability for each next

stage ((n+ 1)th stage) is as follows [17]:

P
n+1
correct = Pflip

✓

IsX + Σ
Ninput

i

β∆Gn
i V

n
i

1 + rGn
i

◆

[f] + 1. [1− f] (1)

where Pflip is the probability for flipping of the W-NM in

the (n + 1)th stage’s GSHE switch. This probability itself is

a function of the current supplied by the nth stage and the

magnitude of the control spin current IsX. The relationship

between the output current of a particular stage and the voltage

supply in the MTJ arrangement of that stage is according

to [17], wherein β is the spin-Hall current amplification factor,

Gn is the MTJ conductance for the nth stage, V n is the MTJ

voltage for the nth stage, and r is the resistance of the spin

Hall layers. The function f represents the Boolean function to

be implemented, and establishes the condition for flipping of

the magnetization state.

B. Characterization and Comparison of the GSHE Switch

The conceptual layout of the GSHE switch (Fig. 5) is drawn

based on the design rules for beyond-CMOS devices [9], i.e.,

in units of maximum misalignment length λ. The area of the

GSHE switch is accordingly estimated to be 0.0016µm2.

The material parameters for the GSHE switch considered

are given in Table II. A spin current (IS) of at least 20µA is

Fig. 4. The current-centric truth tables for NAND and NOR functionalities,
with inputs A and B (X is a control signal). As always the case for our
GSHE-based primitive, logic 1/0 is represented by an output current +I/-I.

TABLE II
MATERIAL PARAMETERS OF THE GSHE SWITCH

Parameter Value

Volume of nanomagnets (NM) (28 × 15 × 2) nm3 [17]

Saturation magnetization MS of NM
106 A/m (W-NM) [17]

5 × 105 A/m (R-NM) [17]

Uniaxial energy density Ku of NM
2.5 × 104 J/m3 (W-NM) [17]

5 × 103 J/m3 (R-NM) [17]

Spin current IS, determ. switching 20 µA [17]

Resistance area product RAP 1 Ωµm2 [70]

Tunneling magnetoresistance TMR 170% [70]

Parallel conductance GP 420 µS

Anti-parallel conductance GAP 155.6 µS

Resistivity of heavy metal (HM) ρ 5.6 × 10−7
Ω–m

Spin-Hall angle θSH of HM 0.4 [71]

Thickness tHM of HM 1 nm

Internal gain β of HM 0.4 × (15 nm/1 nm)

β = θSH × (wNM/tHM) = 6

Resistance r of HM ≈ 1 kΩ

required for deterministic computing, as compared to the sub-

critical currents sufficient for probabilistic computing [17].

The performance of the switch is determined by the nano-

magnetic dynamics, which is simulated using the stochastic

Landau-Lifshitz-Gilbert-Slonczewski equation [33]. Simulated

delay distributions are illustrated in Fig. 6, and these distribu-

tions are computed using a CUDA-C model [17]. For the prop-

agation delay for deterministic computing, we subsequently

assume a mean delay of 1.55 ns as obtained for IS = 20 µA.

Further, this delay was then used to construct a behavioral

Verilog model to obtain transient responses (see Fig. 7).

The power dissipation for the read-out phase is derived ac-

cording to the equivalent circuit shown in Fig. 5 (inset). Using

{

4 nm

IN2

GND

OUT

V+
V-

IN1 IN3

32 nm

5
0

 n
m

Heavy metal

Free magnet (W)

Insulator

Metal

Free magnet (R)

Barrier

Fixed magnet

Inset: Equivalent Circuit

V
+

V
–

GP GAP

VOUT

r

Fig. 5. The conceptual layout of the GSHE switch (main part), and the
equivalent circuit (inset, derived from [14]). The power dissipation of the latter
is dictated by the resistance r of the heavy metal as well as the conductances of
the anti-parallel, high-resistance path (GAP) and the parallel, low-resistance
path (GP) build up by the fixed ferromagnets.

6

F
ra

c
ti
o

n
 o

f
o

c
c
u

re
n

c
e

s

0

0.01

0.02

0.03 I
s

= 20 µA

I
s

= 60 µA

I
s

= 100 µA

0 1 2 3 4 5 6

Delay

(ns)

Fig. 6. Delay distributions for the GSHE switch at various spin currents (IS),
obtained from 100,000 simulations each. Note that the spread and mean delay
diminish with increasing IS , however, at the cost of higher power dissipation.
Also note that for currents below 20 µA, probabilistic switching occurs.

I1

I2

I3

Out

+I

-I

+I

-I

+I

-I

+I

-I

0 20 40 60 80 100 120 140 160

Time

(ns)

4.65 ns

I1

I2

I3

Out

X2

X4
X1

X3

Fig. 7. Transient response for all input patterns applied for an example circuit
(right top). The critical path comprises three GSHE gates, which each exhibit
a mean delay of 1.55 ns (right bottom), hence the overall delay is 4.65 ns.

the following equations and the parameters listed in Table II,

the power dissipation of the GSHE switch for deterministic

computing, including leakage, is derived as 0.2125 µW.

P =
V

2
OUT

r
+ (VSUP − VOUT)

2
GP + (VOUT + VSUP)

2
GAP (2a)

VSUP =
�

�

�
V

+/−
�

�

�
=

✓

IS

β

◆✓

1 + r(GP +GAP)

GP −GAP

◆

(2b)

VOUT =
IS r

β
(2c)

GP

GAP

= 1 + TMR; GP =
A(nanomagnets)

RAP
(2d)

In Table III, we compare the GSHE switch against those of

existing deterministically driven devices, including ones that

are not necessarily security-oriented. The switch is superior

in terms of energy/power but has a higher delay compared to

CMOS devices. Nonetheless, the GSHE-based primitive can

serve to protect industrial designs without inducing significant

delay overheads, as we will outline in Sec. VI.

As for security in terms of obfuscation, the number of

possible functions is the relevant metric—the GSHE switch

significantly outperforms most prior art. For the recent work

proposed by Yang et al. [43], we note the following. First,

their study reports relative overheads, but no absolute device-

level numbers (hence the “N/A” labels in Table III). Second, to

support all 16 possible functions while implementing an LUT,

their primitive requires multiple magnetic devices and related

peripheral circuitry. In contrast, our switch can implement

all 16 functions within one device, and we require periph-

eral circuitry only for transduction and obfuscation purposes

TABLE III
COMPARISON OF SELECTED EMERGING-DEVICE PRIMITIVES

(DETERMINISTIC REGIME, WITHOUT PERIPHERAL CIRCUITRY)

Publication Functions (2 Inputs) Energy Power Delay

[12] SiNW NAND/NOR 0.05–0.1 fJ 1.13–1.77 µW 42–56 ps

[41, a] ASL NAND/NOR/AND/OR 0.58 pJ 351.52 µW 1.65 ns

[41, b] ASL XOR/XNOR 1.16 pJ 351.52 µW 3.3 ns

[41, c] ASL INV/BUF 0.13 pJ 342.11 µW 0.38 ns

[72] DWM AND/OR 67.72 fJ 60.46 µW 1.12 ns

[13] DWM
NAND/NOR/XOR/XNOR/

N/A N/A N/A
AND/OR/INV

[40] GSHE AND/OR/NAND/NOR N/A N/A N/A

[42] STT
NAND/NOR/XOR/

N/A N/A N/A
XNOR/AND/OR

[43] SOT All 16 N/A N/A N/A

Ours GSHE All 16 0.33 fJ 0.2125 µW 1.55 ns

(Sec. III-C). Third, the primitive in [43] is not inherently

polymorphic; hence, it can only support static camouflaging.

C. GSHE Security Primitive: Protecting the Design IP

The GSHE switch is leveraged for a simple but versatile and

effective security primitive—all 16 possible Boolean functions

can be cloaked within a single device (Fig. 8). In other words,

employing this primitive instead of regular gates can hinder

RE attacks of the chip’s design IP, without the need for the

designer to alter the underlying netlist. For example, to realize

NAND/NOR using this primitive, three charge currents are fed

into the bottom layer of the GSHE switch at once (Fig. 4 and

8): two currents represent the logic signals A and B, and the

third current (X) acts as the “tie-breaking” control input.

For some functions, the logic signals have to be provided as

MTJ voltages, not as charge currents. To transduce voltage into

charge currents (as well as obtain altering current polarities),

magneto-electronic transducers can be used [73], [74]. Such

transducers can be placed in the interconnects, and they are

capable of charge current conversion (i.e., +I to -I) and voltage

to charge current conversion (i.e., high/low voltages to +/-I)

and vice versa.

Note that three wires must be used for the GSHE input

terminals (Fig. 5). This renders the primitive indistinguishable

for imaging-based RE by malicious end-users, irrespective

of the actual functionality. As such, some gates will require

dummy wires; these wires can be implemented either using

RE-resilient interconnects in the BEOL [39] or with the help

of logic locking (i.e., MUXes and key bits are used to seem-

ingly switch between real/dummy wires). Similar protection

is required for the assignment of the MTJ voltages. Figure 9

illustrates the concept for such a peripheral circuitry.

To hinder fab-based adversaries, we outline two equally

promising options for secure implementation: (a) leverage split

manufacturing [75], (b) provision for a tamper-proof memory.

For option (a), the control inputs and the MTJ terminals shall

remain protected from the untrusted FEOL fab. Hence, the

related wires have to be routed through the BEOL, which

is then manufactured by a separate, trusted fab [75]. Recent

studies have demonstrated such guided routing within the

BEOL for security considerations [76], [77]. For option (b),

a tamper-proof memory holds a secret key that defines the

correct assignment of control inputs and voltages (using some

additional circuitry). The key is loaded into the memory post-

fabrication by the IP holder or authorized parties. Both options

7

Fig. 8. All 16 possible Boolean functionalities for two inputs, A and B, implemented using the proposed primitive. If required, X serves as control signal,
not as regular input. Note that BUF and INV capture two functionalities each.

W R

K7

4 x 1V-

V+

B
B'

K8 K9

4 x 1 V-

V+

B
B'

K10

3 x 1
B

dummy

K2 K3

2 x 1
A

dummy

K1

K4

5 x 1
+3I

+I

-I
-3I

K5

dummy

K6

GSHE gate

+I / -I

B'

Fig. 9. Peripheral circuitry (the GSHE gate is laid out horizontally for clarity).
For security reasons, the MUX control signals have to connect to a tamper-
proof memory or leverage RE-resilient wiring.

represent a notable advancement over prior work related to

camouflaging, where the IP holder must trust the fab because

of the circuit-level protection mechanism. In the remainder of

this paper, we focus on malicious end-users.

IV. SECURITY ANALYSIS

Here, we elaborate on the security promises of the GSHE

primitive against various attacks. Most notably, a comprehen-

sive study for analytical SAT attacks is conducted, where we

benchmark our primitive against prior art. A key assumption

for the SAT attacks is that the GSHE primitive is applied in

the context of deterministic computing—we cover the security

analysis for probabilistic computing separately in Sec. V.

A. Threat Model

The malicious end-user is interested in resolving the un-

derlying IP implemented by the obfuscated chip. We consider

that an attacker possesses the know-how and has access to RE

equipment such as required for imaging-based RE. However,

the attacker does not have access to advanced capabilities for

invasive read-out attacks to, e.g., resolve the voltage and cur-

rent assignments for individual GSHE primitives at runtime.

(Even if so, such attacks seem practically challenging.)
In accordance with prior works, we assume that an attacker

procures multiple copies of the chip from open market; she/he

uses one for RE (which includes de-packaging, de-layering,

imaging of individual layers, stitching of these images and

final netlist extraction [78]), and another as an oracle to obtain

input-output (I/O) patterns. These patterns are then utilized for

SAT-based attacks. The attacker can also use the oracle chip

to evaluate side-channel leakage at runtime.

B. On Reverse Engineering and Side-Channel Attacks

1) Layout Identification and Read-Out Attacks: Recall that

the physical layout of the proposed primitive is uniform

(Sec. III); hence it remains indistinguishable for optical-

imaging-based RE. A more sophisticated attacker might, how-

ever, leverage electron microscopy (EM) for identification

and read-out attacks. For example, Courbon et al. [55] used

scanning EM, in passive voltage-contrast (PVC) mode, to read

out memories in supposedly secured chips. While such attacks

are yet to be demonstrated on switching devices at runtime,

we believe that the proposed primitive can thwart them for

three reasons. First, the dimensions of the GSHE switch are

significantly smaller than CMOS devices, which is a challenge

regarding the spatial resolution for EM-based analysis [55].

Second, the primitive readily supports probabilistic switching.

This implies that once an attacker can read-out the switch at

runtime, she/he still has to learn and account for the underlying

error distributions. Third, the primitive is truly polymorphic,

and its functionality may be switched at runtime; see also next.

2) Polymorphism at the System Level: Given the truly

polymorphic nature of the GSHE switch and assuming some

additional circuitry to switch their functionalities judiciously,

one can implement runtime polymorphism at the system level.

The gates’ functionalities are not static anymore, possibly even

for static input patterns, whereupon an attacker is bound to

misinterpret some parts of the layout—it seems impossible to

resolve all dynamic features on a full-chip scale at once.1

Besides hindering read-out threats, polymorphism at the

system level is also powerful to thwart SAT attacks. In fact, we

provide such a concept based on the GSHE switch in Sec. V-C.

3) Photonic Side-Channel Attacks: It is well known that

CMOS devices emit photons during operation, which makes

them vulnerable to powerful attacks [79], [80]. For example,

Tajik et al. [79] successfully conduct an optical read-out

attack against the bitstream encryption feature of a Xilinx

Kintex 7 FPGA. Contrary to CMOS, the GSHE switch itself

does not emit any photons. The fundamentally different, mag-

netic switching principle thus renders the primitive inherently

resilient against photonic side-channel attacks. We caution

that a system-level assessment against such attacks shall be

performed nevertheless (once such chips are manufactured)

since additional circuitry may or may not remain vulnerable.

4) Magnetic- and Temperature-Driven Attacks: Ghosh et

al. [11] consider and review attacks on spintronic memory

devices using external magnetic fields and malicious temper-

ature curves. As for the GSHE switch, note that it is tailored

for robust magnetic coupling (between the W and R nanomag-

nets) [17], and this coupling would naturally be disturbed by

any external magnetic fields. Hence, an attacker leveraging a

1For example, Courbon et al. [55] report that it took 50 ns to read-out one
pixel of one memory cell; this is well above the 1.55 ns switching speed for
the GSHE device for deterministic computing (recall Sec. III).

8

TABLE IV
CHARACTERISTICS OF SYNTHESIZED BENCHMARKS (ITALICS: EPFL

Suite [83]; BOLD: IBM Superblue Suite [84])

Benchmark Inputs Outputs Gates Benchmark Inputs Outputs Gates

aes core 789 668 39,014 log2 32 32 51,627

b14 277 299 11,028 sb1 8,320 13,025 856,403

b21 522 512 22,715 sb5 11,661 9,617 741,483

c7552 207 108 4,045 sb10 10,454 23,663 1,117,846

ex1010 10 10 5,066 sb12 1,936 4,629 1,523,108

pci bridge32 3,520 3,528 35,992 sb18 3,921 7,465 659,511

magnetic probe may induce stuck-at-faults which are, however,

hardly controllable due to multiple factors: the very small

size of the GSHE switch, accordingly large magnetic fields

required for the probe, the state of the nanomagnets, the

orientation of the fixed magnets, and also the voltage polarities

for the MTJ setup. Temperature-driven attacks will impact the

retention time of the GSHE switch. The resulting disturbances,

however, are stochastic due to the inherent thermal noise in the

nanomagnets; fault attacks are accordingly challenging as well.

As a result, we believe that subsequent sensitization attacks to

resolve the obfuscated IP (e.g., as proposed in [36]) will be

difficult, if practical at all.

C. Study on Large-Scale IP Protection Against SAT Attacks

1) Experimental Setup: We model the GSHE primitive and

selected prior art [12], [13], [36], [37], [40]–[42], [81] as out-

lined in [59]. More specifically, we model the GSHE primitive

as follows. The logical inputs a and b are fed in parallel into

all 16 possible Boolean gates, and the outputs of those gates

are connecting to a 16-to-1 MUX with four select/key bits. As

for other prior art with less possible functionalities, a smaller

MUX with less key bits may suffice (e.g., for [36], a 3-to-1

MUX with two key bits is used). Although the GSHE primitive

inherently supports locking as well, here we contrast it only

to camouflaging primitives, without loss of generality. Besides

emerging-device primitives, we also contrast to CMOS-centric

primitives; this is meaningful since for any IP protection

scheme the resilience against SAT attacks hinges on the

number and composition of obfuscated functionalities [2],

[39], [49], not their physical implementation.

For a fair evaluation, the same set of gates are protected;

gates are randomly selected once for each benchmark, memo-

rized, and then the same selection is reapplied across all tech-

niques. We evaluate all techniques against powerful state-of-

the-art SAT attacks [2], [4], [82], run on an Intel Xeon server

(2.3 GHz, 4 GB per task allowed). The time-out (labelled

as “t-o”) is set to 48 hours. We conduct our experiments on

traditional benchmarks suites, that is ISCAS-85, MCNC, and

ITC-99, but also on the large-scale EPFL suite [83] (and on

the industrial IBM superblue suite [84]; see Sec. VI for those

experiments). The benchmarks are summarized in Table IV.

2) Results: In Table V, we report the runtimes incurred

by the seminal attack of Subramanyan et al. [2], [82]. While

there are further metrics such as the number of clauses, attack

iterations, or number of remaining feasible assignments [59],

runtime is a straightforward yet essential indicator—either an

attack succeeds within the allocated time or not.

We observe that for the same number of gates protected,

the more functions a primitive can cloak, the more resilient it

becomes in practice. More importantly, the runtimes required

for decamouflaging—if possible at all—tend to scale exponen-

tially with the percentage of gates being camouflaged.2

In comparison with prior art, our primitive induces by far

the largest efforts across all benchmarks. Except for ex1010,

none of the benchmarks could be resolved within 48 hours

once we protect 20% or more of all gates. To confirm this

superior resilience of our primitive, we conducted further

experiments running for 240 hours with full-chip protection

(100% camouflaging)—the designs could still not be resolved.

Moreover, we also observe some computational failures (e.g.,

“internal error in ‘lglib.c’: more than 134,217,724 variables”);

this hints at practical limitations about the scalability of SAT

attacks, as one can reasonably expect [49].

We also apply Double DIP, provided by Shen et al. [4]. The

key advancement of their attack is that it rules out at least two

incorrect keys in each iteration. Conducting the very same set

of experiments as before, we observe that the runtimes are

on average even higher across all benchmarks (Table VI). For

example, decamouflaging the benchmark aes core when 10%

IP protection is applied using our primitive requires ≈7 hours

for [2], but ≈15 hours for [4]. This implies that Double DIP,

while successful for protection schemes such as SARLock [45],

cannot cope well with our large-scale camouflaging scheme.
3) On Provably Secure Versus Large-Scale Schemes: Con-

trary to provably secure schemes such as [45], [46], [50],

which are often backed by mathematical formulations, one

may find it difficult to engage in “plain” but large-scale cam-

ouflaging. The reason is that the solution space C, covering

all possible functionalities of the design after camouflaging,

is hard to quantify precisely [2], [49], [50]. More specifically,

C depends on (i) the number and composition of functions

cloaked by each primitive, (ii) the number of gates protected,

(iii) the selection of gates protected, and (iv) the intercon-

nectivity of the design. Since all aspects are interacting, SAT

attacks may or may not be able to prune C efficiently, but this

can only be evaluated by running the attacks. As shown above

for [4], some heuristics can, in fact, be counterproductive when

tackling large-scale camouflaging.

Now, also recall that prior “plain” protection schemes are

limited in both (i) and (ii) by cost considerations (Sec. II-E).3

In contrast, thanks to the innate polymorphism of the pro-

posed GSHE primitive, we are unbound toward large-scale

camouflaging with all 16 possible functionalities cloaked

within one device. As a result, we believe that our scheme

is competitive against provably secure techniques. In this

context it is important to note that provably secure schemes

have to trade-off corruptibility and resilience against SAT

attacks [51]: the larger the desired resilience, the lower the

corruptibility, and vice versa. This trade-off also implies that

a high-resilience scheme comes at the cost of effectively

protecting only a small part of the IP. For our scheme, however,

these concerns are inherently mitigated. That is, we can readily

protect all of the IP, and the resilience of our schemes relies on

incurring an excessive computational cost for the SAT solver

2Inducing prohibitive computational cost is also the primary objective for
provably secure schemes as in [45], [46], [50]. We further elaborate on
provably secure schemes versus our large-scale scheme in Sec. IV-C3.

3A massive interconnectivity may also impose a substantial cost, but more
importantly, most prior studies ignore the potential of obfuscating the intercon-
nects for IP protection to begin with. Patnaik et al. [39] proposed a dedicated
design flow for low-cost and large-scale obfuscation of interconnects.

9

TABLE V
RUNTIME FOR SAT ATTACKS [2], [82], ON SELECTED DESIGNS, IN SECONDS (TIME-OUT “T-O” IS 48 HOURS, I.E., 172,800 SECONDS)

Benchmark

10% IP Protection 20% IP Protection

[36] [37], [42] [12] [41, c], [81] [40], [41, a] [13] Our [36] [37], [42] [12] [41, c], [81] [40], [41, a] [13] Our

(3)∗ (6)∗ (4)∗† (2)∗ (4)∗ (7+1)∗‡ (16)∗ (3)∗ (6)∗ (4)∗† (2)∗ (4)∗ (7+1)∗‡ (16)∗

aes core 610 4,710 890 132 536 6,229 25,890 4,319 41,844 11,306 407 9,432 t-o t-o

b14 2,078 20,603 11,465 6,884 17,634 27,438 60,306 56,155 t-o 64,145 8,426 t-o t-o t-o

b21 7,813 162,324 45,465 3,977 24,035 t-o t-o t-o t-o t-o t-o t-o t-o t-o

c7552 37 210 74 12 66 371 2,289 169 14,575 1,153 110 1,327 172,548 t-o

ex1010 62 215 82 12 73 295 922 171 1,047 274 38 250 1,310 4,701

log2 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

pci bridge32 1,119 t-o 9,011 1,325 2,690 t-o t-o 54,577 t-o t-o t-o t-o t-o t-o

30% IP Protection 40–100% IP Protection§

aes core 17,148 t-o 31,601 2,020 26,498 t-o t-o t-o t-o t-o 8,206 t-o t-o t-o

b14 56,787 t-o t-o 38,495 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

b21 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

c7552 1,786 t-o t-o 766 t-o t-o t-o t-o t-o t-o 41,721 t-o t-o t-o

ex1010 448 4,357 938 87 719 11,736 24,727 1,703 t-o 129,290 169—7,073§ 1,950 t-o t-o

log2 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

pci bridge32 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

∗Number of cloaked functions; refer to Table III or the related publication for the actual sets of cloaked functions. Prior art covering the same set is grouped into one column.
†Here we refer to their camouflaging primitive, not the polymorphic gate reported on in Table III. ‡Here we also assume BUF to be available. §The benchmark ex1010 can be

resolved even for 100% IP protection, but only for the primitives of [41, c], [81]. The related runtime range is for 40–100% protection, whereas all other runtimes are for 40%

protection (50% protection or more ran into timeout).

TABLE VI
RUNTIME FOR Double DIP ATTACKS [4], ON SELECTED DESIGNS, IN SECONDS (TIME-OUT “T-O” IS 48 HOURS, I.E., 172,800 SECONDS)

Benchmark

10% IP Protection 20% IP Protection

[36] [37], [42] [12] [41, c], [81] [40], [41, a] [13] Our [36] [37], [42] [12] [41, c], [81] [40], [41, a] [13] Our

(3)∗ (6)∗ (4)∗† (2)∗ (4)∗ (7+1)∗‡ (16)∗ (3)∗ (6)∗ (4)∗† (2)∗ (4)∗ (7+1)∗‡ (16)∗

aes core 1,814 27,274 3,039 431 2,103 22,936 53,434 24,635 t-o 55,699 1,631 34,040 t-o t-o

b14 4,866 47,303 8,197 344 8,299 52,657 t-o 62,698 t-o 138,809 4,757 t-o t-o t-o

b21 14,671 t-o 84,483 2,095 47,937 t-o t-o t-o t-o t-o t-o t-o t-o t-o

c7552 58 763 153 19 173 1,919 23,632 639 t-o 31,485 199 111,580 t-o t-o

ex1010 126 470 194 27 153 627 1,897 396 3,280 628 94 560 4,361 11,660

log2 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

pci bridge32 5,389 t-o t-o 6,888 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

30% IP Protection 40–100% IP Protection§

aes core 59,487 t-o t-o 14,497 t-o t-o t-o t-o t-o t-o 28,228 t-o t-o t-o

b14 t-o t-o t-o 39,128 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

b21 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

c7552 t-o t-o t-o 22,521 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

ex1010 1,247 17,143 3,305 192 1,842 60,970 t-o 8,226 t-o 102,512 396—42,543§ 7,120 t-o t-o

log2 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

pci bridge32 t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o t-o

Refer to Table V for footnotes.

(as also discussed in [49]), not on low corruptibility. We have

substantiated this claim with a comprehensive study above.

V. SECURITY ANALYSIS FOR THE PROBABILISTIC REGIME

So far we have leveraged the GSHE primitive in the context

of classical, deterministic computation. In this section, we

explore the implications of probabilistic computing for IP

protection, which have been largely ignored until now.

A. Conventional SAT Attacks on Probabilistic Circuits

Consider an obfuscated, hybrid circuit in which some of the

gates are probabilistic GSHE gates, while the rest are either

implemented in CMOS or as deterministic GSHE gates (see

also Sec. VI). Any probabilistic GSHE gate might function

erroneously at any point in time, possibly corrupting the

overall circuit output. When such a probabilistic circuit is

leveraged as an oracle, it might not always faithfully produce

the originally intended I/O patterns. Which of the individual

patterns is erroneous, however, remains incomprehensible to

an attacker who has yet to resolve the obfuscated functionality

of the circuit. Without a deterministic oracle to prune only

the incorrect keys, SAT attacks may observe conflicting hints

or falsely prune the correct key—a conventional SAT attack

inevitably tends to fail for probabilistic circuits.

As for a simple example, consider c17 of Fig. 2 again, but

assume that the gate X6 is being replaced by a probabilistic

GSHE NAND gate with an error rate of 5%. Since X6 impacts

the primary output O2, the oracle will produce correct outputs

only for 95% of all inputs. Now, for a conventional SAT attack,

such I/O errors can result in false pruning of keys (Table VII).

1) Experimental Setup: To verify this intuition, we pre-

pare the following experiments (with the setup described

in Sec. IV-C1 serving as a general baseline). Without loss

of generality, we pick c432 and c880 from the ISCAS-85

benchmark suite. On those circuits, we apply a simple obfus-

cation scheme, namely a random insertion of 32 XOR/XNOR

key gates. Note that such simple obfuscation can be readily

resolved for deterministic circuits when using any SAT attack,

especially for such relatively small circuits. Next, we compile

probabilistic versions for those obfuscated circuits. To do so,

we randomly select, memorize, and replace fixed subsets of

10

TABLE VII
SAT ATTACK ON THE BENCHMARK CIRCUIT c17, LOCKED AS IN FIG. 2, BUT WITH GATE X6 NOW ACTING PROBABILISTICALLY, WITH 5% ERROR RATE.

AS IN TABLE I, THE LABELS k0–k7 REPRESENT ALL POSSIBLE COMBINATIONS OF KEY BITS, FROM 000 TO 111, AND THE COLUMNS DENOTE THE

CORRESPONDING, MOST PROBABLE OUTPUTS, WHICH ARE COMPARED WITH THE ORACLE OUTPUT. THE ORACLE OUTPUT IS NOW PROBABILISTIC.

Input

patterns

Oracle

Output

0.95%/0.05%

Most Probable Output for Different Key Combinations Inference

I1I2I3I4I5 O1O2 k0 k1 k2 k3 k4 k5 k6 k7

00000 00/01 01 00 10 11 00 01 10 11
00001 01/00 00 01 10 11 01 00 10 11
00010 11/10 10 11 01 00 10 11 00 01
00011 11/10 10 11 00 01 10 11 01 00

00100 00/ 01 01 00 10 11 00 01 10 11 Iteration 1: probabilistic oracle assumes incorrect output

⇒ k1, k2, k3, k4, k6, k7 are (falsely) pruned

00101 01/00 00 01 10 11 01 00 10 11
00110 11/00 10 11 01 00 10 11 00 01

00111 11 /00 10 11 00 01 10 11 01 00 Iteration 2: probabilistic oracle assumes correct output ⇒ k1

pruned ⇒ k5 is inferred as (only seemingly) correct key

. .
11111 10/11 11 10 10 11 11 10 10 11

0

5

10

15

20

25

30

35

40

45

99% 95% 90%

Correctness (%)

S
u

cc
e
ss

 R
a
te

 (
%

)

10%

20%

50%

99% 95% 90%

Correctness (%)

A
v
e
ra

g
e
 H

D
 (

%
)

99% 95% 90%

A
v
e
ra

g
e
 O

E
R

 (
%

)

Correctness (%)

0

5

10

15

20

0

10

20

30

40

50

60

(a) Circuit c432

99% 95% 90%

Correctness (%)

0

5

10

15

20

25

30

S
u

cc
e
ss

 R
a
te

 (
%

)

10%

20%

50%

99% 95% 90%
0

1

2

3

4

5

6

7

8

Correctness (%)

A
v
e
ra

g
e
 H

D
 (

%
)

99% 95% 90%
0

10

20

30

40

50

60

70

80

90

A
v
e
ra

g
e
 O

E
R

 (
%

)

Correctness (%)

(b) Circuit c880

Fig. 10. Success rate, average HD, and average OER for 10,000 of the conventional SAT attack [3], [82] applied on probabilistic versions of the ISCAS-85

benchmarks. The legend applies to all plots, and it represents the range of randomly selected probabilistic gates: 10%, 20%, and 50% of all gates, respectively.
The random selection is re-applied for all setups (including those in Fig. 11), for a fair comparison. Correctness is the inverse of the gate error rate; for each
setup, the respective correctness is constant for all probabilistic gates. For cases where the attack success rate is zero, HD and OER are not available.

gates (50%, 20%, and 10% of all gates) with probabilistic

GSHE gates.

We model the probabilistic gate behavior directly within the

conventional SAT attack by Subramanyan et al. [2], whose

open-source framework [82] allows for such customization.

Note that we provide our modification of [82], along with the

probabilistic benchmark versions, as open source as well [3].

We run our modified but conventional SAT attack [3] 10,000

times each on three different setups for the probabilistic cir-

cuits, assuming error rates of 1%, 5%, and 10%, respectively.

For simplicity, we assign identical error rates for all the

probabilistic gates.4 Whenever an attack is successful, we also

evaluate the Hamming distance (HD) and output error rate

(OER) between the outputs of the original but probabilistic

circuit and the probabilistic circuit as resolved after the attack.

We apply 10,000 random patterns for averaging the HD and

OER (here and for all subsequent setups). It is important to

note that HD and OER provide a combined measure of error

for both the key inferred by SAT attacks and the probabilistic

nature of the circuits under consideration.

2) Results: The outcome of these experiments is presented

in Fig. 10. Besides the aspects discussed in Sec. IV-C3, here

we further note that the success rate for the conventional SAT

attack depends on (i) the number of probabilistic gates, (ii) the

4Using our setup [3], one can, however, apply different error rates for
different gates, if considered useful for the design under consideration.

type/function of those gates, and (iii) their error rates. As ex-

pected, the success rate decreases and the average HD inflates

once the error rates are ramped up. In fact, for some cases with

error rates of 5% or 10%, the success rate is even zero (and

for such cases, HD and OER cannot be calculated). In short,

when tackling obfuscated probabilistic circuits, the capabilities

of a conventional SAT attack are drastically reduced once the

correctness of the circuit is lowered.
This finding clearly illustrates the trade-off between cor-

rectness/accuracy and security. (Also recall Sec. II-B and

Sec. III-B for the trade-off between accuracy and power.)

Hence, whenever the designer seeks to forgo accuracy (typi-

cally to reduce power), the resilience against conventional SAT

attacks is inherently boosted at the same time.

B. PSAT: Our Probabilistic SAT Attack

Having demonstrated the ineffectiveness of the conventional

SAT framework against probabilistic circuits, here we present

our advanced attack, called PSAT. As indicated above, when

tackling probabilistic circuits, the main challenge for any SAT

attack is to correctly prune the search space despite potential

errors in the oracle’s output. An attacker cannot know in

advance which output patterns are erroneous (since the circuit

is obfuscated and, hence, initially of unknown functionality).

However, she/he can apply each input pattern multiple times,

track the statistical distribution of the output patterns, and

pick only the most prevailing outputs as ground truths while

11

0

20

40

60

80

100

99% 95% 90%

Correctness (%)

S
u

cc
e
ss

 R
a
te

 (
%

)

10%

20%

50%

99% 95% 90%

Correctness (%)

A
v
e
ra

g
e
 H

D
 (

%
)

99% 95% 90%

A
v
e
ra

g
e
 O

E
R

 (
%

)

Correctness (%)

0

5

10

15

20

25

30

0

10

20

30

40

50

60

70

80

(a) Circuit c432

0

20

40

60

80

100

99% 95% 90%

Correctness (%)

S
u

cc
e
ss

 R
a
te

 (
%

)

10%

20%

50%

99% 95% 90%

Correctness (%)

A
v
e
ra

g
e
 H

D
 (

%
)

99% 95% 90%

A
v
e
ra

g
e
 O

E
R

 (
%

)

Correctness (%)

0

10

20

30

40

50

60

70

80

0

2

3

4

5

6

1

(b) Circuit c880

Fig. 11. Success rate, average HD, and average OER for 10,000 runs of our PSAT attack [3] applied on probabilistic versions of the ISCAS-85 benchmarks.
The legend applies to all plots, and it represents the range of randomly selected probabilistic gates: 10%, 20%, and 50% of all gates, respectively. The random
selection is re-applied for all setups (including those in Fig. 10), for a fair comparison. Correctness is the inverse of the gate error rate; for each setup, the
respective correctness is constant for all probabilistic gates. For cases where the attack success rate is zero, HD and OER are not available.

pruning the search space during the SAT attack. The basis for

this assumption is that, in any probabilistic circuit, the overall

error rate should be constrained such that the correct output

patterns occur more frequently than incorrect ones. Otherwise,

the circuit would become too approximate and might behave

even arbitrarily at some point.

Accordingly, the fundamental concept of PSAT is Monte

Carlo sampling. When querying the (probabilistic) oracle

during the incremental SAT attack flow, we apply each input

pattern 1,000 times, without loss of generality, and we track

all resulting outputs. Once this sampling is done, we sort

the various output patterns by their number of occurrence. In

case a dominant pattern is established, we readily select this

pattern as ground truth and proceed with the SAT attack. An

output pattern is considered dominant if and only if it occurs

at least as many times as the second and third most frequent

patterns combined. Otherwise, in case no dominant pattern is

observed, we randomly select among all observed patterns,

but while considering their occurrence statistics. For example,

if an output pattern has been observed for 27% of all oracle

queries using the same input, this particular pattern has a 27%

random chance to be selected as ground truth.

1) Experimental Setup: Similar as in Sec. V-A, we imple-

ment PSAT as an extension for the open-source framework

of [2], [82], and also here we release our PSAT extension to the

community as open source in return [3]. Along with the core

techniques of PSAT, we provide supplementary features such

as the conversion of regular gates to probabilistic/polymorphic

ones in the .bench file format, simulation of probabilis-

tic/polymorphic gates, the sampling of Hamming distances,

etc. To enable a fair comparison between the conventional SAT

attack and PSAT, we use the same probabilistic benchmark

versions as in Sec. V-A, and we execute PSAT likewise for

10,000 times.

2) Results: As can be seen from Fig. 11, PSAT is notably

more successful in resolving the obfuscation of the given prob-

abilistic circuits than the conventional attack. For example, for

50% of all gates being probabilistic ones with an error rate

of 1%, the conventional attack succeeded only for 4.3% and

0.5% of the 10,000 attack runs on c432 and c880 respectively.

In contrast, PSAT holds a success rate of 100% for those

cases. PSAT can resolve the underlying obfuscation with fewer

errors, that is, the inferred key is more accurate, and the

behavior of the recovered IP matches matches more closely

the original IP. This is particularly the case for larger ranges

of obfuscation using probabilistic gates. For example, for 50%

of all gates being probabilistic ones with an error rate of 1%,

the circuit c432 as recovered by the conventional attack has an

HD and OER of 11.5% and 33.1%, whereas the same circuit

as recovered by PSAT has an improved HD and OER of 7.5%

and 23.0%, respectively. However, also PSAT it is challenged

once the error rate of the probabilistic gates increases to 10%.

That is because, for such a large error rate, it is difficult to

establish dominant patterns from the probabilistic oracle.

These results reinforce our earlier argument on the trade-

off between accuracy, power, and security against SAT attacks.

It is important to note that with excessive errors (of 10% or

more), the computational accuracy is rather low, limiting the

practicability of such overly imprecise circuits to begin with.

C. PSAT on Polymorphic Circuits

Consider an embedded, reconfigurable design with dynamic

time-sharing circuitry. That is, a single circuit is tailored to

perform all required operations serially on a time-sharing

basis. Such “template circuitry” can be readily implemented

when leveraging the runtime polymorphism of GSHE-based

circuits. Moreover, operating the GSHE gates in the proba-

bilistic regime would reduce the power consumption as well,

rendering such circuitry a viable scheme for low-power and

error-tolerant Internet-of-Things (IoT) applications [85].

For such a scenario, even an advanced attack like PSAT may

become ineffective. That is because of the underlying principle

of Monte Carlo sampling, which renders PSAT relatively

slow, depending on how many times each input pattern is

to be evaluated and how fast the oracle can be physically

queried. Hence, for any iteration of the PSAT attack, the

reconfigurable GSHE circuitry might have already morphed

from one logic structure to another, resulting in an inconsistent

oracle behavior. In turn, this is likely to induce unsatisfiable

assignments for the SAT model, causing PSAT to fail.
1) Experimental Setup: Prior setups are used as a baseline

here. We generate polymorphic versions of the benchmark

circuits c432 and c880 as follows. First, to provide a fair

baseline, we re-apply the same random selection of gates

as when picking 10% for probabilistic gates in Sec. V-A

and Sec. V-B. Next, we configure each of those gates as

polymorphic GSHE gates, while also accounting for their true

functionality, to avoid excessive overall errors. That is, any

NAND, AND, NOR, OR, XOR, or XNOR gate is replaced

12

1 2 3 4 5 6 7 8 9

Polymorphic Gates (%)

0

20

40

60

80

100

S
u

cc
e
ss

 R
a
te

 (
%

)

8

10

12

14

16

18

20

22

24

26
c432

2

3

4

5

6

7

8

9
c880

A
v
e
ra

g
e
 H

D
 (

%
)

1 2 3 4 5 6 7 8

20

40

60

80

100

Fig. 12. Success rate (left axis, red) versus Hamming distance (HD, right axis,
blue) for PSAT tackling circuits embedded with some polymorphic gates.

by a polymorphic NAND/AND/NOR/OR/XOR/XNOR gate,

whereas the original functionality has a probability of 66.67%

assigned, and all other functions a probability of 6.67%. Like-

wise, any INV or BUF is replaced by a polymorphic INV/BUF,

whereas the original functionality has a probability of 66.67%

assigned as well. We extend our PSAT framework [3] to

account for such polymorphic behavior. Using these baseline

benchmarks containing 10% polymorphic gates, we derive

further benchmarks with 9% down to 1% polymorphic gates,

in steps of 1%. We do so by randomly selecting polymorphic

gates and reverting them to regular gates. Like in the prior

setups, we run PSAT 10,000 times for each benchmark.

2) Results: As one would expect, PSAT can successfully

resolve smaller scales of polymorphic obfuscation (Fig. 12).

For larger scales, however, the success rate is limited. For those

cases where PSAT is successful, we also observe larger HD

values than for the probabilistic scenario in Sec. V-B. That is

because polymorphic gates tend to induce larger overall errors.

Similar to the probabilistic scenario, there is a trade-off

between accuracy, power, and attack resilience. While these

experiments have shown a strong resilience against PSAT, we

caution that once polymorphic gates were used in a more

predictable manner (as for example envisioned above for some

embedded and reconfigurable design), an attacker could tailor

PSAT accordingly. Thus, once the designer seeks to employ

polymorphic gates while keeping the error in bounds, there

may be further protection measures required.

VI. DISCUSSION

A. Error Control for Probabilistic Circuits

Here we envision a mechanism to detect repetitive sampling

and to subsequently scramble the statistical properties of the

GSHE circuit at runtime. For example, consider the modified

circuit c17 in Fig. 13, with three probabilistic NAND gates.

The error rates for the primary outputs O1 and O2 can be

altered by tuning the MTJ voltages of the GSHE gate in the

previous stage (recall Sec. III-A). This feature is exploited

in the conceptional feedback mechanism in Fig. 13, where

a counter array placed at the primary inputs checks the

applied input patterns for overly repetitive patterns (or any

other deviation from the expected, application-specific inputs

distribution, for that matter). In case such suspicious behavior

is observed, the feedback mechanism shall dynamically adapt

the MTJ voltage supply for the middle GSHE gate. This would

alter this gate’s output current and, in turn, impact the error

rate for the following two GSHE gates. Those latter two gates

W R

V+ V-

W R

V+ V-

I1

I2

I3

I4

I5

O1

O2

Feedback

 circuit

GSHE gate

Counter

array

W R

V+ V-

IX

IX

IX

Fig. 13. Concept for a counter-based security mechanism. The input lines
hold a counter to monitor suspicious pattern insertion. For clarity, the GSHE
device has been laid out horizontally.

then directly impact the overall circuit error rate, which can

thwart advanced attacks such as PSAT.

The feedback mechanism itself should be implemented

using deterministic but obfuscated GSHE gates which could

help to obstruct removal attacks. Moreover, the feedback

mechanism should be integrated into the circuit in such a

way that even advanced removal attacks would result in

fully stochastic circuit behavior. For example, the mechanism

could be implemented such that removing it would also cut

off the control current for the GSHE gates, which leads to

unpredictable behavior of those gates.

B. Other Advanced Attack Schemes

Besides our PSAT framework [3], we acknowledge that

other attack schemes might be extended as well toward re-

solving obfuscation in probabilistic and polymorphic circuits.

Although tailored to attack SAT-resilient schemes, AppSAT,

which was recently proposed by Shamsi et al. [51], is of

particular interest. That is because AppSAT is based on the

probably-approximately-correct (PAC) paradigm, which can

tolerate some errors.5 However, the attack is still relying on a

consistent oracle behavior—an assumption which probabilistic

circuits do not adhere to. At the time of writing, the source

code of AppSAT has not been available to us; hence, we

were unable to incorporate modeling of probabilistic and

polymorphic circuit behavior into AppSAT.

More broadly, machine learning is increasingly being used

for both developing new attacks (e.g., [86]) and to defend

against attacks (e.g., [87]). We believe that machine learning

can be used to augment SAT attacks, to make them even

more powerful. Whether such attacks will be sufficiently

robust and capable against probabilistic and polymorphic

obfuscation schemes, however, remains to be seen. For our

scheme, we would like to point out that (i) the GSHE device

experiences thermally induced stochasticity, i.e., truly random

behavior [17], (ii) the error rate for any device can be tuned

individually, and (iii) those individual error distributions su-

perpose with each other while they propagate throughout the

entire circuit.

C. Secure and Delay-aware GSHE-CMOS Integration

Finally, we outline the prospects for securing industrial

circuits using a hybrid GSHE-CMOS approach. While the

5Shamsi et al. tackle so-called compound schemes, e.g., [45], [46]. These
schemes combine regular, large-error obfuscation techniques with provably
secure, low-error obfuscation techniques. Shamsi et al. have shown that PAC
can help to reduce these schemes to their low-error obfuscation component.

13

0 5 10 15 20 25 30

17000
34000
51000
68000
85000

1
5

10
12

18

Path delay (ns)

P
a
th

s

Ben
ch

m
ar

k

id
en

ti
er

Fig. 14. Delay distributions of selected IBM superblue circuits. For clarity,
the paths with the critical delays are marked with crosses.

manufacturing of spin devices is still in nascent stages [88]–

[90], such a hybrid approach appears practical, given the

CMOS-compatible processing of spin devices [13], [88], [91].

On the one hand, recall that the delay for the GSHE device

is larger than for regular CMOS devices (Sec. III-B). On

the other hand, note that large industrial circuits tend to

exhibit a skewed distribution of timing paths, with most paths

imposing short delays, and only a few paths inducing critical

delays (Fig. 14). Here we explore a delay-aware approach

for protecting the industrial IBM superblue circuits [84].6 In

short, we replace CMOS gates in the non-critical paths with

an obfuscated, deterministic GSHE primitive, as long as no

delay overheads are incurred. Doing so, we can obfuscate on

average 5–15% of all the gates in the benchmarks.

Conducting the conventional SAT attacks [2], [82] on those

GSHE-augmented (but fully deterministic) designs, we ob-

serve that they cannot be resolved within 240 hours. In fact,

most attack trials incur computational limitations as previously

indicated in Sec. IV-C. This suggests that the GSHE primitive

can help protecting industrial circuits without excessive layout

cost, once such GSHE-CMOS designs are fabricated.

VII. CONCLUSION

Imprecise computing is rapidly gaining traction due to its

attractive low-power characteristics. In this paper, we present

the first study exploring the hardware security prospects of

imprecise computing systems, specifically for probabilistic and

polymorphic circuits constructed with noisy GSHE gates. We

design a GSHE-based primitive for IP protection by means of

layout obfuscation. We provide not only a thorough security

analysis for this primitive, mainly using conventional SAT

attacks and our advanced attack PSAT, but we also discuss the

inherent resilience of the GSHE device against side channel

attacks. A key finding of this study is the following trade-

off: the lower the accuracy of imprecise gates, the lower their

power consumption, and the better their resilience. Since any

design may have practical limitations on the error tolerance,

we also promote large-scale obfuscation in the deterministic

regime. That is underpinned by another key finding of this

study, namely that large-scale obfuscation is competitive to

provably secure schemes. Overall, we motivate any security-

concerned designer to consider imprecise computing, magnetic

devices, and/or large-scale obfuscation for their needs.

6To process the layouts for the IBM superblue circuits, we leverage scripts
provided by Kahng et al. [92]. Being sequential circuits, we also have to
pre-process them (to mimic access to the scan chains for the SAT attacks):
the inputs (and outputs) of any flip-flop are transformed into pseudo-primary
outputs (and inputs), whereupon the flip-flops can be removed.

VIII. ACKNOWLEDGEMENTS

This work was supported in part by the Semiconductor

Research Corporation (SRC) and the National Science Foun-

dation (NSF) through ECCS 1740136. The authors also thank

the funding support from the MRSEC Program of the National

Science Foundation under Award Number DMR-1420073.

REFERENCES

[1] S. Patnaik et al., “Advancing hardware security using polymorphic and
stochastic spin-hall effect devices,” in Proc. Des. Autom. Test Europe,
2018, pp. 97–102.

[2] P. Subramanyan et al., “Evaluating the security of logic encryption
algorithms,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2015, pp.
137–143.

[3] (2018) PSAT by DfX Lab, NYUAD. The password to run the binary
is “.stoch”. [Online]. Available: https://github.com/DfX-NYUAD/PSAT

[4] Y. Shen et al., “Double DIP: Re-evaluating security of logic encryption
algorithms,” in Proc. Great Lakes Symp. VLSI, 2017, pp. 179–184.

[5] J. Von Neumann, “Probabilistic logics and the synthesis of reliable
organisms from unreliable components,” Automata Studies, vol. 34, pp.
43–98, 1956.

[6] (2007) International technology roadmap for semiconductor. ITRS.
[Online]. Available: https://www.semiconductors.org/clientuploads/
Research Technology/ITRS/2007/Design.pdf

[7] J. Sartori et al., “Stochastic computing: embracing errors in architecture
and design of processors and applications,” in Proc. Compilers, Arch.
and Synth. Emb. Sys., 2011, pp. 135–144.

[8] A. Bosio et al., “Approximate computing: Design & test for integrated
circuits,” in Proc. Lat.-Am. Test. Symp., 2017, pp. 1–1.

[9] D. E. Nikonov et al., “Overview of beyond-CMOS devices and a uniform
methodology for their benchmarking,” Proc. IEEE, vol. 101, no. 12, pp.
2498–2533, 2013.

[10] M. Rostami et al., “A primer on hardware security: Models, methods,
and metrics,” Proc. IEEE, vol. 102, no. 8, pp. 1283–1295, 2014.

[11] S. Ghosh, “Spintronics and security: Prospects, vulnerabilities, attack
models, and preventions,” Proc. IEEE, vol. 104, no. 10, pp. 1864–1893,
2016.

[12] Y. Bi et al., “Emerging technology-based design of primitives for
hardware security,” J. Emerg. Tech. Comp. Sys., vol. 13, no. 1, pp. 3:1–
3:19, 2016.

[13] F. Parveen et al., “Hybrid polymorphic logic gate with 5-terminal
magnetic domain wall motion device,” in Proc. Comp. Soc. Symp. VLSI,
2017, pp. 152–157.

[14] S. Datta et al., “Non-volatile spin switch for Boolean and non-Boolean
logic,” Appl. Phys. Lett., vol. 101, no. 25, p. 252411, 2012.

[15] A. V. Penumatcha et al., “Impact of scaling on the dipolar coupling in
magnet–insulator–magnet structures,” IEEE Trans. Magn., vol. 52, no. 1,
pp. 1–7, 2016.

[16] ——, “Spin-torque switching of a nano-magnet using giant spin hall
effect,” AIP Advances, vol. 5, no. 10, p. 107144, 2015.

[17] N. Rangarajan et al., “Energy-efficient computing with probabilistic
magnetic bits – performance modeling and comparison against prob-
abilistic CMOS logic,” IEEE Trans. Magn., vol. 53, no. 11, pp. 1–10,
2017.

[18] J. Han et al., “Approximate computing: An emerging paradigm for
energy-efficient design,” in Proc. Europe Test. Symp., 2013, pp. 1–6.

[19] A. Alaghi et al., “The promise and challenge of stochastic computing,”
TCAD, vol. 37, no. 8, pp. 1515–1531, 2018.

[20] B. R. Gaines et al., “Stochastic computing systems,” Advances in
Information Systems Science, vol. 2, no. 2, pp. 37–172, 1969.

[21] A. Alaghi et al., “Survey of stochastic computing,” Trans. Emb. Circ.
Sys., vol. 12, no. 2s, p. 92, 2013.

[22] ——, “Stochastic circuits for real-time image-processing applications,”
in Proc. Des. Autom. Conf., 2013, pp. 1–6.

[23] S. Gaba et al., “Stochastic memristive devices for computing and
neuromorphic applications,” Nanoscale, vol. 5, no. 13, pp. 5872–5878,
2013.

[24] B. Moons et al., “Energy-efficiency and accuracy of stochastic comput-
ing circuits in emerging technologies,” J. Emerg. Sel. Topics Circ. Sys.,
vol. 4, no. 4, pp. 475–486, 2014.

[25] V. Gupta et al., “Low-power digital signal processing using approximate
adders,” Trans. Comp.-Aided Des. Integ. Circ. Sys., vol. 32, no. 1, pp.
124–137, 2013.

[26] ——, “IMPACT: Imprecise adders for low-power approximate comput-
ing,” in Proc. Int. Symp. Low Power Elec. Design, 2011, pp. 409–414.

[27] R. Venkatesan et al., “MACACO: Modeling and analysis of circuits for
approximate computing,” in Proc. Int. Conf. Comp.-Aided Des., 2011,
pp. 667–673.

14

[28] S. Venkataramani et al., “AxNN: energy-efficient neuromorphic systems
using approximate computing,” in Proc. Int. Symp. Low Power Elec.
Design, 2014, pp. 27–32.

[29] N. Lee et al., “Towards formal evaluation and verification of probabilistic
design,” Trans. Comp., vol. 67, no. 8, pp. 1202–1216, 2018.

[30] S. Cheemalavagu et al., “A probabilistic CMOS switch and its realization
by exploiting noise,” in Proc. IFIP VLSI, 2005, pp. 535–541.

[31] B. Behin-Aein et al., “Proposal for an all-spin logic device with built-in
memory,” Nature Nanotechnology, vol. 5, no. 4, pp. 266–270, 2010.

[32] W. F. Brown Jr, “Thermal fluctuations of a single-domain particle,”
Physical Review, vol. 130, no. 5, p. 1677, 1963.

[33] M. dAquino et al., “Midpoint numerical technique for stochastic Landau-
Lifshitz-Gilbert dynamics,” J. Appl. Phys., vol. 99, no. 8, p. 08B905,
2006.

[34] R. Karri et al., “Physical unclonable functions and intellectual prop-
erty protection techniques,” in Fundamentals of IP and SoC Security.
Springer, 2017, pp. 199–222.

[35] A. Vijayakumar et al., “Physical design obfuscation of hardware: A
comprehensive investigation of device- and logic-level techniques,”
Trans. Inf. Forens. Sec., vol. 12, no. 1, pp. 64–77, 2017.

[36] J. Rajendran et al., “Security analysis of integrated circuit camouflag-
ing,” in Proc. Comp. Comm. Sec., 2013, pp. 709–720.

[37] I. R. Nirmala et al., “A novel threshold voltage defined switch for circuit
camouflaging,” in Proc. Europe Test. Symp., 2016, pp. 1–2.

[38] B. Erbagci et al., “A secure camouflaged threshold voltage defined logic
family,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2016, pp. 229–
235.

[39] S. Patnaik et al., “Obfuscating the interconnects: Low-cost and resilient
full-chip layout camouflaging,” in Proc. Int. Conf. Comp.-Aided Des.,
2017, pp. 41–48.

[40] Y. Zhang et al., “Giant spin hall effect (GSHE) logic design for low
power application,” in Proc. Des. Autom. Test Europe, 2015, pp. 1000–
1005.

[41] Q. Alasad et al., “Leveraging all-spin logic to improve hardware
security,” in Proc. Great Lakes Symp. VLSI, 2017, pp. 491–494.

[42] T. Winograd et al., “Hybrid STT-CMOS designs for reverse-engineering
prevention,” in Proc. Des. Autom. Conf., 2016, pp. 88–93.

[43] J. Yang et al., “Exploiting spin-orbit torque devices as reconfigurable
logic for circuit obfuscation,” TCAD, 2018.

[44] J. A. Roy et al., “Ending piracy of integrated circuits,” Computer,
vol. 43, no. 10, pp. 30–38, 2010.

[45] M. Yasin et al., “SARLock: SAT attack resistant logic locking,” in Proc.
Int. Symp. Hardw.-Orient. Sec. Trust, 2016, pp. 236–241.

[46] Y. Xie et al., “Mitigating SAT attack on logic locking,” in Proc.
Cryptogr. Hardw. Embed. Sys., 2016, pp. 127–146.

[47] P. Tuyls et al., “Read-proof hardware from protective coatings,” in Proc.
Cryptogr. Hardw. Embed. Sys., 2006, pp. 369–383.

[48] S. Anceau et al., “Nanofocused X-ray beam to reprogram secure
circuits,” in Proc. Cryptogr. Hardw. Embed. Sys., 2017, pp. 175–188.

[49] M. E. Massad et al., “Integrated circuit (IC) decamouflaging: Reverse
engineering camouflaged ICs within minutes,” in Proc. Netw. Dist. Sys.
Sec. Symp., 2015, pp. 1–14.

[50] M. Li et al., “Provably secure camouflaging strategy for IC protection,”
in Proc. Int. Conf. Comp.-Aided Des., 2016, pp. 28:1–28:8.

[51] K. Shamsi et al., “On the approximation resiliency of logic locking and
ic camouflaging schemes,” Trans. Inf. Forens. Sec., 2018.

[52] X. Xu et al., “Novel bypass attack and BDD-based tradeoff analysis
against all known logic locking attacks,” in Proc. Cryptogr. Hardw.
Embed. Sys., 2017.

[53] H. Wang et al., “Probing attacks on integrated circuits: Challenges and
research opportunities,” J. Des. Test, vol. 34, no. 5, pp. 63–71, 2017.

[54] S. Skorobogatov et al., “In the blink of an eye: There goes your AES
key,” in IACR Crypt. ePrint Arch., no. 296, 2012.

[55] F. Courbon et al., “Direct charge measurement in floating gate transistors
of flash EEPROM using scanning electron microscopy,” in Proc. Int.
Symp. Test. Failure Analys., 2016, pp. 1–9.

[56] G. Weissenbacher et al., “Boolean satisfiability: Solvers and extensions,”
Software Systems Safety, vol. 36, p. 223, 2014.

[57] M. W. Moskewicz et al., “CHAFF: Engineering an efficient SAT solver,”
in Proc. Des. Autom. Conf., 2001, pp. 530–535.

[58] I. Mironov et al., “Applications of SAT solvers to cryptanalysis of hash
functions,” in Proc. Theory Appl. SAT Test., vol. 4121. Springer, 2006,
pp. 102–115.

[59] C. Yu et al., “Incremental SAT-based reverse engineering of camou-
flaged logic circuits,” TCAD, vol. 36, no. 10, pp. 1647–1659, 2017.

[60] X. Wang et al., “A conflict-free parallelization framework for SAT-based
de-camouflaging attack,” in Proc. Asia South Pac. Des. Autom. Conf.,
2018.

[61] M. Yasin et al., “Transforming between logic locking and IC camou-
flaging,” in Proc. Des. Test Symp., 2015, pp. 1–4.

[62] S. Koteshwara et al., “Key-based dynamic functional obfuscation of in-
tegrated circuits using sequentially-triggered mode-based design,” Trans.
Inf. Forens. Sec., vol. 13, no. 1, pp. 79–93, 2018.

[63] J. T. McDonald et al., “Functional polymorphism for intellectual prop-
erty protection,” in Proc. Int. Symp. Hardw.-Orient. Sec. Trust, 2016,
pp. 61–66.

[64] I. M. Miron et al., “Current-driven spin torque induced by the rashba
effect in a ferromagnetic metal layer,” Nature materials, vol. 9, no. 3,
p. 230, 2010.

[65] S. Fukami et al., “Magnetization switching by spin–orbit torque in an
antiferromagnet–ferromagnet bilayer system,” Nature materials, vol. 15,
no. 5, p. 535, 2016.

[66] H. Almasi et al., “Enhanced tunneling magnetoresistance and perpendic-
ular magnetic anisotropy in mo/cofeb/mgo magnetic tunnel junctions,”
Appl. Phys. Lett., vol. 106, no. 18, p. 182406, 2015.

[67] P. Li et al., “Electric field manipulation of magnetization rotation
and tunneling magnetoresistance of magnetic tunnel junctions at room
temperature,” Advanced Materials, vol. 26, no. 25, pp. 4320–4325, 2014.

[68] J. Hirsch, “Spin hall effect,” Phys. Rev. Lett., vol. 83, no. 9, p. 1834,
1999.

[69] N. Kani et al., “A model study of an error-free magnetization reversal
through dipolar coupling in a two-magnet system,” IEEE Trans. Magn.,
vol. 52, no. 2, pp. 1–12, 2016.

[70] H. Maehara et al., “Tunnel magnetoresistance above 170% and
resistance–area product of 1 Ω(µm)2 attained by in situ annealing of
ultra-thin MgO tunnel barrier,” Appl. Phys. Express, vol. 4, no. 3, p.
033002, 2011.

[71] Q. Hao et al., “Giant spin hall effect and switching induced by spin-
transfer torque in a W/Co40Fe40B20/MgO structure with perpendicular
magnetic anisotropy,” Phys. Rev. Appl., vol. 3, no. 3, p. 034009, 2015.

[72] K. Huang et al., “Magnetic domain-wall racetrack memory-based
nonvolatile logic for low-power computing and fast run-time-
reconfiguration,” Trans. VLSI Syst., vol. 24, no. 9, pp. 2861–2872, 2016.

[73] S. Manipatruni et al. (2015) Spin-orbit logic with magnetoelectric
nodes: A scalable charge mediated nonvolatile spintronic logic.
[Online]. Available: https://arxiv.org/abs/1512.05428

[74] R. M. Iraei et al., “Electrical-spin transduction for CMOS-spintronic
interface and long-range interconnects,” J. Explor. Sol.-St. Comp. Dev.
Circ., vol. 3, pp. 47–55, 2017.

[75] C. McCants, “Trusted integrated chips (TIC),” Intelligence Advanced
Research Projects Activity (IARPA), Tech. Rep., 2011. [Online].
Available: https://www.iarpa.gov/index.php/research-programs/tic

[76] S. Patnaik et al., “Concerted wire lifting: Enabling secure and cost-
effective split manufacturing,” in Proc. Asia South Pac. Des. Autom.
Conf., 2018, pp. 251–258.

[77] F. Imeson et al., “Securing computer hardware using 3D integrated
circuit (IC) technology and split manufacturing for obfuscation,” in Proc.
USENIX Sec. Symp., 2013, pp. 495–510.

[78] S. E. Quadir et al., “A survey on chip to system reverse engineering,”
J. Emerg. Tech. Comp. Sys., vol. 13, no. 1, pp. 6:1–6:34, 2016.

[79] S. Tajik et al., “On the power of optical contactless probing: Attacking
bitstream encryption of FPGAs,” in Proc. Comp. Comm. Sec., 2017, pp.
1661–1674.

[80] A. Schlösser et al., “Simple photonic emission analysis of AES,” in
Proc. Cryptogr. Hardw. Embed. Sys., 2012, pp. 41–57.

[81] J. Zhang, “A practical logic obfuscation technique for hardware security,”
Trans. VLSI Syst., vol. 24, no. 3, pp. 1193–1197, 2016.

[82] P. Subramanyan. (2017) Evaluating the security of logic encryption
algorithms. [Online]. Available: https://bitbucket.org/spramod/host15-
logic-encryption

[83] L. Amarù. (2015) Majority-inverter graph (MIG) benchmark suite.
[Online]. Available: http://lsi.epfl.ch/MIG

[84] N. Viswanathan et al., “The ISPD-2011 routability-driven placement
contest and benchmark suite,” in Proc. ISPD, 2011, pp. 141–146.

[85] D. Blaauw et al., “IoT design space challenges: Circuits and systems,”
in Proc. VLSI Tech., 2014, pp. 1–2.

[86] L. Lerman et al., “Side channel attack: an approach based on machine
learning.” Center for Advanced Security Research Darmstadt, 2011,
pp. 29–41.

[87] M. Sabhnani et al., “Application of machine learning algorithms to KDD
intrusion detection dataset within misuse detection context,” in Proc.
MLMTA, 2003, pp. 209–215.

[88] S. Matsunaga et al., “Fabrication of a nonvolatile full adder based on
logic-in-memory architecture using magnetic tunnel junctions,” Applied
Physics Express, vol. 1, no. 9, p. 091301, 2008.

[89] S.-h. C. Baek et al., “Complementary logic operation based on electric-
field controlled spin-orbit torques,” Nature Electronics, vol. 1, no. 7, pp.
398–403, 2018.

[90] X. Fong et al., “Spin-transfer torque devices for logic and memory:
Prospects and perspectives,” TCAD, vol. 35, no. 1, pp. 1–22, 2016.

