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Reversal Time of Jump-Noise Dynamics for Large Nucleation
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The jump-noise is a phenomenological stochastic process used to model the thermal fluctuation of magnetization in nanomagnets.
In this work, the large nucleation regime of jump-noise dynamics is studied, and its reversal time is characterized from Monte Carlo
simulations and analysis. Results show that the reversal time of jump-noise dynamics for large nucleation is asymptotically equal
to the time constant associated with a single jump-noise scattering event from the energy minimum in the energy landscape of the
magnetization. The reversal time for large nucleation depends linearly on the height of the energy barrier for large barriers. The
significance of the large nucleation regime of jump-noise dynamics to phenomenologically explain the magnetoelectric switching of
antiferromagnetic order parameter is also prospected.
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I. INTRODUCTION

THE reversal time of magnetization is the time constant as-

sociated with the longitudinal relaxation of magnetization

in nanomagnets under the influence of thermal effects, also

known as the superparamagnetic or Néel relaxation time [1].

The reversal time provides information on the retention time

for reading or the switching speed for writing in the context of

a magnetic memory or a logic device [2], [3]. Estimating the

reversal time correctly is crucial for steady miniaturization of

such devices against the onset of thermal instability in smaller

volumes.

The jump-noise [4] is a phenomenological stochastic pro-

cess used to model the thermal fluctuation of magnetization

in nanomagnets. Unlike the classical Néel-Brown thermal

activation theory [5], [6] based on coherent rotation of mag-

netization via Landau-Lifshitz-Gilbert dynamics [7], [8], the

magnetization reversal via jump-noise dynamics [9] represents

macroscopic tunneling of magnetization [10], a low tempera-

ture (10 mK–10 K) escape rate phenomenon, without evoking

quantum mechanics [11].

Besides being used to capture thermal effects in magnetiza-

tion dynamics, the jump-noise could also model the magne-

toelectric (ME) switching of antiferromagnetic (AFM) order

parameter [12]–[14], the emerging field of antiferromagnetic

spintronics [15]. In AFMs such as Cr2O3, the ME energy

density required for domain switching is nearly four orders

of magnitude smaller than the uniaxial anisotropy energy

barrier [13]. In such materials, classical thermal activation

over the energy barrier, which depends exponentially on the

barrier height, cannot explain the broad range of fast switching

speeds reported in the literature from microsecond [16] to few

tens of nanosecond [14] to few tens of picosecond [17], [18].

The jump-noise in the large nucleation regime is expected

to phenomenologically address this anomalous switching by

virtue of it being a first-order phase transition model nucleated

by fluctuations [19]. Our prior work shows that the dynamics

of jump-noise averages to the classical theory when the

nucleation is small [9]. Hence, the case of small nucleation

is only briefly presented for the sake of completeness.
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In this paper, the jump-noise and the large nucleation regime

are first defined (Sec. II). Then, the reversal time extracted

from Monte Carlo simulations of jump-noise dynamics in

the large nucleation regime (Sec. III) is compared with that

obtained from analysis (Sec. IV).

II. THE JUMP-NOISE

For a uniformly magnetized nanomagnet with magnetization

M of magnitude Ms, the state variable is defined by the

dimensionless quantity m = M/Ms. The jump-noise is char-

acterized by the transition probability rate function S between

any two states (m1,m2) on the phase space ‖m‖ = 1, which

is given by the formula [4]

S(m1,m2) = B exp

[

−
1

2σ2
‖m1 −m2‖

2
+

eb0

2

{

g(m1)− g(m2)
}

]

; eb0 =
µ0M

2
s V

kT
, (1)

where B and σ are the nucleation parameters; g is the magnetic

free energy density; and eb0 is the energy barrier parameter,

wherein µ0 is the vacuum permeability, V is the volume of

the nanomagnet, and kT is the thermal energy. From Eq. (1),

the scattering rate λ from a state m follows

λ(m) =

∮

‖m′‖=1

S(m,m′) d2m′ . (2)

The probability density function f of a jump to occur from

mi to mi+1 at time ti is written as

f(mi,mi+1|mi) =
S(mi,mi+1)

λ(mi)
. (3)

The statistic of the jump instants ti is given as

Pr(ti+1 − ti > τ) = exp

(

−

∫ ti+τ

ti

λ(m(t))dt

)

. (4)

Equations (1)–(4) describe the jump-noise statistics. The

nucleation regime is decided by the parameter σ. A small

nucleation is such that the transition probability rate from a

state is appreciable only over an infinitesimal distance from

the state, implying that σ ≪ 1. A large nucleation means that
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Fig. 1. Equilibrium distribution of θ for uniaxial anisotropy; eb0 = 10. The
histogram of θ obtained from Monte Carlo simulation of jump-noise dynamics
eventually approaches Boltzmann distribution.

states which are farthest apart on the phase space have a non-

negligible transition probability rate. On the unit sphere phase

space, the transition probability rate between diametrically

opposite states, if energetically favorable, is at least equal to

exp
(

−2/σ2
)

. Therefore, σ ∼ O(1) for large nucleation.

III. EXTRACTION OF REVERSAL TIME

The reversal time of magnetization is extracted by perform-

ing Monte Carlo simulations on the time evolution of jump-

noise induced nucleation in nanomagnets. The nanomagnets

possess only uniaxial anisotropy, and there is no external

applied field. The simulations are implemented in MATLAB

with the help of Parallel Computing Toolbox on a server with

20-core CPU @ 2.3 GHz and 512 GB memory. The numerical

methods are presented in Ref. [9], [20]. The analysis remains

true for energy landscapes which include contributions from

shape and magnetoelastic anisotropy, as long as the energy

wells corresponding to minima are equivalent. The case of

uniaxial anisotropy is the simplest differential manifold with

minimum equivalent wells which is two.

The state variable m is represented by spherical coordi-

nates (θ, φ) such that mx = sin θ cosφ, my = sin θ sinφ,

mz = cos θ. We consider 1000 samples aligned along the

same lowest energy state mz = −1, without loss of generality,

at time t = 0, and let the ensemble evolve with time

until the ensemble equilibrates to Boltzmann distribution as

shown in Fig. 1. The energy density for uniaxial anisotropy

is g(θ) = (1/2) sin2 θ, and the corresponding Boltzmann

distribution is weq(θ) = (1/Z) exp[−eb0g(θ)] sin θ, where Z
is the normalization constant.

The reversal time τ characterizes the longitudinal relaxation

of absolute ensemble mean of the state variable as

|mz|(t) ≈ e−t/τ ; t ≫ τ. (5)

So, τ can be estimated from the asymptotic value of τ(t) =
−t/ ln[|mz|] from simulations. The reversal time extracted this

way will have some error because a finite sample size of 1000

could only allow precision upto three significant digits.

Fig. 2. Reversal time of magnetization for uniaxial anisotropy for large
nucleation; eb0 = 10, B = 1. The reversal time obtained from Eq. (7)
and from Monte Carlo simulations asymptotically converge for large σ.

IV. RESULTS AND DISCUSSION

For very large nucleation, that is σ ≫ 1, the first term in

the transition probability rate (1) vanishes, so that

S(m1,m2) ≃ B exp
[eb0

2

{

g(m1)− g(m2)
}

]

. (6)

The transition probability between two equivalent energy wells

in this case is symmetric about the location of the energy

barrier, so that the average distance of jumps occurs at the

energy maximum. As a result, the critical process of relaxation

between two equivalent energy wells against the energy barrier

happens in a single random process.

The time constant of a process is associated with the slowest

mode of relaxation. From Eq. (6), it is evident that transitions

originating from the energy minimum have the lowest escape

rate, which is expected from statistcal mechanics. Therefore,

the longitudinal relaxation of magnetization for very large nu-

cleation is characterized by jump-noise scattering process from

the energy minimum. The reversal time is simply reciprocal of

the scattering rate (2) from the energy minimum or formally

τ ≃
1

λ0

, where λ0 = λ[m = argmin g(m)]. (7)

The reversal time obtained from Eq. (7) asymptotically

converges to the reversal time extracted from Monte Carlo

simulations for large σ as shown in Fig. 2. For larger values

of σ, the statistics of the jump-noise process reduces to Eq. (6)

which is independent of σ, so the reversal time saturates. At

σ ∼ 1, there is a sharp rise in the reversal time which could

be used to model critical phenomena.

The reversal time for large nucleation varies linearly with

the energy barrier for large eb0 as shown in Fig 3. When

eb0 ≫ 1, the transition probability rate (6) behaves like a

Dirac delta function centered at the energy minimum, and the

normalization of the Dirac delta yields a linear eb0 term in the

expression of the reversal time (7). For eb0 ≪ 1, the transition

probability rate (6) is uniformly equal to B on the phase space,

and the reversal time τ = 1/(4πB).
In contrast, for the case for small nucleation, the jump-noise

dynamics averages to the classical Néel-Brown theory [9]. As

a result, the reversal time varies exponentially with σ as shown

in Fig. 4, as well as exponentially with the energy barrier [1].
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Fig. 3. Reversal time of magnetization for uniaxial anisotropy for large
nucleation; σ = 100, B = 1. The reversal time varies linearly with the
energy barrier for large eb0 and saturates to τ = 1/(4πB) for small eb0.

Fig. 4. Reversal time of magnetization for uniaxial anisotropy for small
nucleation; eb0 = 10, B = 1. The reversal time obtained from the classical
Néel-Brown theory and from Monte Carlo simulations converge for small σ.
See Ref. [9] for details on how Néel-Brown theory’s solution was obtained.

In this regard, the jump-noise dynamics for large nucleation

exhibits a unique feature.

As mentioned in the introduction, the classical Néel-Brown

theory cannot explain the fast switching speeds of AFM

domain via ME effect. We theorize that the critical phe-

nomenon of ME switching can be explained by modeling

the nucleation parameter σ as a function of the ME energy

density or the product of the electric and magnetic fields.

When the field product is below the threshold, σ and the

nucleation should be small, and as a result the reversal is

probabilistically suppressed because of the large energy barrier

due to anisotropy. At the threshold field product, σ ∼ O(1)
and the nucleation is large; consequently the reversal is more

favorable, despite the large barrier.

V. CONCLUSION

The reversal time of jump-noise induced magnetization

dynamics for large nucleation is asymptotically equal to the

time constant associated with a single scattering event from

the energy minimum. The reversal time for large nucleation

depends linearly on the energy barrier for large barriers. This

is in stark contrast with the classical Néel-Brown thermal

activation theory, where the reversal occurs coherently over

the energy barrier in infinitesimally many steps, and shows

exponential dependence on the energy barrier. In future work,

the large nucleation regime of jump-noise dynamics will

be used to phenomenologically model the magnetoelectric

switching of antiferromagnetic order parameter, an otherwise

impossible phenomenon to explain classically.
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