Reversal Time of Jump-Noise Dynamics for Large Nucleation

Arun Parthasarathy! and Shaloo Rakheja'
1Department of Electrical and Computer Engineering, New York University, Brooklyn, NY 11201, USA

The jump-noise is a phenomenological stochastic process used to model the thermal fluctuation of magnetization in nanomagnets.
In this work, the large nucleation regime of jump-noise dynamics is studied, and its reversal time is characterized from Monte Carlo
simulations and analysis. Results show that the reversal time of jump-noise dynamics for large nucleation is asymptotically equal
to the time constant associated with a single jump-noise scattering event from the energy minimum in the energy landscape of the
magnetization. The reversal time for large nucleation depends linearly on the height of the energy barrier for large barriers. The
significance of the large nucleation regime of jump-noise dynamics to phenomenologically explain the magnetoelectric switching of

antiferromagnetic order parameter is also prospected.
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I. INTRODUCTION

HE reversal time of magnetization is the time constant as-

sociated with the longitudinal relaxation of magnetization
in nanomagnets under the influence of thermal effects, also
known as the superparamagnetic or Néel relaxation time [1].
The reversal time provides information on the retention time
for reading or the switching speed for writing in the context of
a magnetic memory or a logic device [2], [3]. Estimating the
reversal time correctly is crucial for steady miniaturization of
such devices against the onset of thermal instability in smaller
volumes.

The jump-noise [4] is a phenomenological stochastic pro-
cess used to model the thermal fluctuation of magnetization
in nanomagnets. Unlike the classical Néel-Brown thermal
activation theory [5], [6] based on coherent rotation of mag-
netization via Landau-Lifshitz-Gilbert dynamics [7], [8], the
magnetization reversal via jump-noise dynamics [9] represents
macroscopic tunneling of magnetization [10], a low tempera-
ture (10 mK-10 K) escape rate phenomenon, without evoking
quantum mechanics [11].

Besides being used to capture thermal effects in magnetiza-
tion dynamics, the jump-noise could also model the magne-
toelectric (ME) switching of antiferromagnetic (AFM) order
parameter [12]-[14], the emerging field of antiferromagnetic
spintronics [15]. In AFMs such as Cr,Os3, the ME energy
density required for domain switching is nearly four orders
of magnitude smaller than the uniaxial anisotropy energy
barrier [13]. In such materials, classical thermal activation
over the energy barrier, which depends exponentially on the
barrier height, cannot explain the broad range of fast switching
speeds reported in the literature from microsecond [16] to few
tens of nanosecond [14] to few tens of picosecond [17], [18].
The jump-noise in the large nucleation regime is expected
to phenomenologically address this anomalous switching by
virtue of it being a first-order phase transition model nucleated
by fluctuations [19]. Our prior work shows that the dynamics
of jump-noise averages to the classical theory when the
nucleation is small [9]. Hence, the case of small nucleation
is only briefly presented for the sake of completeness.
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In this paper, the jump-noise and the large nucleation regime
are first defined (Sec. II). Then, the reversal time extracted
from Monte Carlo simulations of jump-noise dynamics in
the large nucleation regime (Sec. III) is compared with that
obtained from analysis (Sec. IV).

II. THE JUMP-NOISE

For a uniformly magnetized nanomagnet with magnetization
M of magnitude M, the state variable is defined by the
dimensionless quantity m = M /M. The jump-noise is char-
acterized by the transition probability rate function .S between
any two states (mj, my) on the phase space ||m|| = 1, which
is given by the formula [4]

S(my,m;) = Bexp [ |m; — my|*+
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where B and o are the nucleation parameters; g is the magnetic
free energy density; and ey is the energy barrier parameter,
wherein p is the vacuum permeability, V' is the volume of
the nanomagnet, and k7" is the thermal energy. From Eq. (1),
the scattering rate A\ from a state m follows

(D

A(m) :j{ S(m, m’) d*m’. )
[m’||=1
The probability density function f of a jump to occur from
m; to m; at time ¢; is written as

S’(mi, mi+1)
A(m;)

The statistic of the jump instants ¢; is given as

3)

flm;,m;yq1|m;) =

ti+T
Pr(tiy1 —t; > 7) = exp (—/ A(m(t))dt) @
t;

Equations (1)—(4) describe the jump-noise statistics. The
nucleation regime is decided by the parameter o. A small
nucleation is such that the transition probability rate from a
state is appreciable only over an infinitesimal distance from
the state, implying that o < 1. A large nucleation means that
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Fig. 1. Equilibrium distribution of @ for uniaxial anisotropy; epg = 10. The
histogram of 6 obtained from Monte Carlo simulation of jump-noise dynamics
eventually approaches Boltzmann distribution.

states which are farthest apart on the phase space have a non-
negligible transition probability rate. On the unit sphere phase
space, the transition probability rate between diametrically
opposite states, if energetically favorable, is at least equal to
exp(—2/0?). Therefore, o ~ O(1) for large nucleation.

III. EXTRACTION OF REVERSAL TIME

The reversal time of magnetization is extracted by perform-
ing Monte Carlo simulations on the time evolution of jump-
noise induced nucleation in nanomagnets. The nanomagnets
possess only uniaxial anisotropy, and there is no external
applied field. The simulations are implemented in MATLAB
with the help of Parallel Computing Toolbox on a server with
20-core CPU @ 2.3 GHz and 512 GB memory. The numerical
methods are presented in Ref. [9], [20]. The analysis remains
true for energy landscapes which include contributions from
shape and magnetoelastic anisotropy, as long as the energy
wells corresponding to minima are equivalent. The case of
uniaxial anisotropy is the simplest differential manifold with
minimum equivalent wells which is two.

The state variable m is represented by spherical coordi-
nates (6,¢) such that m, = sinfcos¢, m, = sinfsin ¢,
m, = cosf. We consider 1000 samples aligned along the
same lowest energy state m, = —1, without loss of generality,
at time ¢ = 0, and let the ensemble evolve with time
until the ensemble equilibrates to Boltzmann distribution as
shown in Fig. 1. The energy density for uniaxial anisotropy
is g(0) = (1/2)sin?6, and the corresponding Boltzmann
distribution is weq(0) = (1/Z) exp[—enog(8)]sinf, where Z
is the normalization constant.

The reversal time 7 characterizes the longitudinal relaxation
of absolute ensemble mean of the state variable as

mel(t) ~ e VT > 5)
So, 7 can be estimated from the asymptotic value of 7(t) =
—t/ In[|m;|] from simulations. The reversal time extracted this
way will have some error because a finite sample size of 1000
could only allow precision upto three significant digits.
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Fig. 2. Reversal time of magnetization for uniaxial anisotropy for large
nucleation; e,g = 10, B = 1. The reversal time obtained from Eq. (7)
and from Monte Carlo simulations asymptotically converge for large o.

IV. RESULTS AND DISCUSSION

For very large nucleation, that is o > 1, the first term in
the transition probability rate (1) vanishes, so that

S(mi, my) ~ Bexp [%{g(ml) - g(mg)}] . (6)

The transition probability between two equivalent energy wells
in this case is symmetric about the location of the energy
barrier, so that the average distance of jumps occurs at the
energy maximum. As a result, the critical process of relaxation
between two equivalent energy wells against the energy barrier
happens in a single random process.

The time constant of a process is associated with the slowest
mode of relaxation. From Eq. (6), it is evident that transitions
originating from the energy minimum have the lowest escape
rate, which is expected from statistcal mechanics. Therefore,
the longitudinal relaxation of magnetization for very large nu-
cleation is characterized by jump-noise scattering process from
the energy minimum. The reversal time is simply reciprocal of
the scattering rate (2) from the energy minimum or formally

T~ )\i, where Ao = A\[m = arg min g(m)]. @)
0

The reversal time obtained from Eq. (7) asymptotically
converges to the reversal time extracted from Monte Carlo
simulations for large ¢ as shown in Fig. 2. For larger values
of o, the statistics of the jump-noise process reduces to Eq. (6)
which is independent of o, so the reversal time saturates. At
o ~ 1, there is a sharp rise in the reversal time which could
be used to model critical phenomena.

The reversal time for large nucleation varies linearly with
the energy barrier for large ey as shown in Fig 3. When
epo > 1, the transition probability rate (6) behaves like a
Dirac delta function centered at the energy minimum, and the
normalization of the Dirac delta yields a linear ey term in the
expression of the reversal time (7). For ey < 1, the transition
probability rate (6) is uniformly equal to B on the phase space,
and the reversal time 7 = 1/(47B).

In contrast, for the case for small nucleation, the jump-noise
dynamics averages to the classical Néel-Brown theory [9]. As
a result, the reversal time varies exponentially with o as shown
in Fig. 4, as well as exponentially with the energy barrier [1].
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Fig. 3. Reversal time of magnetization for uniaxial anisotropy for large
nucleation; o = 100, B = 1. The reversal time varies linearly with the
energy barrier for large ey and saturates to 7 = 1/(47B) for small eyp.
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Fig. 4. Reversal time of magnetization for uniaxial anisotropy for small
nucleation; ep,g = 10, B = 1. The reversal time obtained from the classical
Néel-Brown theory and from Monte Carlo simulations converge for small o.
See Ref. [9] for details on how Néel-Brown theory’s solution was obtained.

In this regard, the jump-noise dynamics for large nucleation
exhibits a unique feature.

As mentioned in the introduction, the classical Néel-Brown
theory cannot explain the fast switching speeds of AFM
domain via ME effect. We theorize that the critical phe-
nomenon of ME switching can be explained by modeling
the nucleation parameter o as a function of the ME energy
density or the product of the electric and magnetic fields.
When the field product is below the threshold, ¢ and the
nucleation should be small, and as a result the reversal is
probabilistically suppressed because of the large energy barrier
due to anisotropy. At the threshold field product, o ~ O(1)
and the nucleation is large; consequently the reversal is more
favorable, despite the large barrier.

V. CONCLUSION

The reversal time of jump-noise induced magnetization
dynamics for large nucleation is asymptotically equal to the
time constant associated with a single scattering event from
the energy minimum. The reversal time for large nucleation
depends linearly on the energy barrier for large barriers. This
is in stark contrast with the classical Néel-Brown thermal
activation theory, where the reversal occurs coherently over
the energy barrier in infinitesimally many steps, and shows

exponential dependence on the energy barrier. In future work,
the large nucleation regime of jump-noise dynamics will
be used to phenomenologically model the magnetoelectric
switching of antiferromagnetic order parameter, an otherwise
impossible phenomenon to explain classically.
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