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Abstract Recurrent neural networks (RNNs) enable the production and processing of time-

dependent signals such as those involved in movement or working memory. Classic gradient-based

algorithms for training RNNs have been available for decades, but are inconsistent with biological

features of the brain, such as causality and locality. We derive an approximation to gradient-based

learning that comports with these constraints by requiring synaptic weight updates to depend only

on local information about pre- and postsynaptic activities, in addition to a random feedback

projection of the RNN output error. In addition to providing mathematical arguments for the

effectiveness of the new learning rule, we show through simulations that it can be used to train an

RNN to perform a variety of tasks. Finally, to overcome the difficulty of training over very large

numbers of timesteps, we propose an augmented circuit architecture that allows the RNN to

concatenate short-duration patterns into longer sequences.

DOI: https://doi.org/10.7554/eLife.43299.001

Introduction
Many tasks require computations that unfold over time. To accomplish tasks involving motor control,

working memory, or other time-dependent phenomena, neural circuits must learn to produce the

correct output at the correct time. Such learning is a difficult computational problem, as it generally

involves temporal credit assignment, requiring synaptic weight updates at a particular time to mini-

mize errors not only at the time of learning but also at earlier and later times. The problem is also a

very general one, as such learning occurs in numerous brain areas and is thought to underlie many

complex cognitive and motor tasks encountered in experiments.

To obtain insight into how the brain might perform challenging time-dependent computations,

an increasingly common approach is to train high-dimensional dynamical systems known as recurrent

neural networks (RNNs) to perform tasks similar to those performed by circuits of the brain, often

with the goal of comparing the RNN with neural data to obtain insight about how the brain solves

computational problems (Mante et al., 2013; Carnevale et al., 2015; Sussillo et al., 2015;

Remington et al., 2018). While such an approach can lead to useful insights about the neural repre-

sentations that are formed once a task is learned, it so far cannot address in a satisfying way the pro-

cess of learning itself, as the standard learning rules for training RNNs suffer from highly

nonbiological features such as nonlocality and acausality, as we describe below.

The most straightforward approach to training an RNN to produce a desired output is to define a

loss function based on the difference between the RNN output and the target output that we would

like it to match, then to update each parameter in the RNN—typically the synaptic weights—by an

amount proportional to the gradient of the loss function with respect to that parameter. The most

widely used among these algorithms is backpropagation through time (BPTT) (Rumelhart et al.,

1985). As its name suggests, BPTT is acausal, requiring that errors in the RNN output be accumu-

lated incrementally from the end of a trial to the beginning in order to update synaptic weights.

Real-time recurrent learning (RTRL) (Williams and Zipser, 1989), the other classic gradient-based
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learning rule, is causal but nonlocal, with the update to a particular synaptic weight in the RNN

depending on the full state of the network—a limitation shared by more modern reservoir comput-

ing methods (Jaeger and Haas, 2004; Sussillo and Abbott, 2009). What’s more, both BPTT and

RTRL require fine tuning in the sense that the feedback weights from the RNN output back to the

network must precisely match the readout weights from the RNN to its output. Such precise match-

ing corresponds to fine tuning in the sense that it requires a highly particular initial configuration of

the synaptic weights, typically with no justification as to how such a configuration might come about

in a biologically plausible manner. Further, if the readout weights are modified during training of the

RNN, then the feedback weights must also be updated to match them, and it is unclear how this

might be done without requiring nonlocal information.

The goal of this work is to derive a learning rule for RNNs that is both causal and local, without

requiring fine tuning of the feedback weights. Our results depend crucially on two approximations.

First, locality is enforced by dropping the nonlocal part of the loss function gradient, making our

learning rule only approximately gradient-based. Second, we replace the finely tuned feedback

weights required by gradient-based learning with random feedback weights, inspired by the success

of a similar approach in nonrecurrent feedforward networks (Lillicrap et al., 2016; Liao et al., 2016).

While these two approximations address distinct shortcomings of gradient-based learning and can

be made independently (as discussed below in Results), only when both are made together does a

learning rule emerge that is fully biologically plausible in the sense of being causal, local, and avoid-

ing fine tuning of feedback weights. In the sections that follow, we show that, even with these

approximations, RNNs can be effectively trained to perform a variety of tasks. In the Appendices,

we provide supplementary mathematical arguments showing why the algorithm remains effective

despite its use of an inexact loss function gradient.

Results

The RFLO learning rule
To begin, we consider an RNN, as shown in Figure 1, in which a time-dependent input vector xðtÞ
provides input to a recurrently connected hidden layer of N units described by activity vector hðtÞ,
and this activity is read out to form a time-dependent output yðtÞ. Such a network is defined by the

following equations:

Wij

x(t)

h(t)

y(t)
W

in

ij W
out

ij

ε(t) = y
∗(t)− y(t)

y
∗(t)-

Bij

Figure 1. Schematic illustration of a recurrent neural network. The network receives time-dependent input xðtÞ, and its synaptic weights are trained so

that the output yðtÞ matches a target function y�ðtÞ. The projection of the error "ðtÞ with feedback weights is used for learning the input weights and

recurrent weights.

DOI: https://doi.org/10.7554/eLife.43299.002
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For concreteness, we take the nonlinear function appearing in Equation (1) to be fð�Þ ¼ tanhð�Þ. The
goal is to train this network to produce a target output function y�ðtÞ given a specified input function

xðtÞ and initial activity vector hð0Þ. The error is then the difference between the target output and

the actual output, and the loss function is the squared error integrated over time:

"kðtÞ ¼ y�kðtÞ� ykðtÞ;

L¼ 1
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The goal of producing the target output function y�ðtÞ is equivalent to minimizing this loss function.

In order to minimize the loss function with respect to the recurrent weights, we take the deriva-

tive with respect to these weights:
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Next, using the update Equation (1), we obtain the following recursion relation:
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; (4)

where dja is the Kronecker delta function, uaðtÞ is the input current to unit a, and the recursion termi-

nates with qhjð0Þ=qWab ¼ 0. This gradient can be updated online at each timestep as the RNN is run,

and implementing gradient descent to update the weights using Equation (3), we have

DWab ¼�hqL=qWab, where h is a learning rate. This approach, known as RTRL (Williams and Zipser,

1989), is one of the two classic gradient-based algorithms for training RNNs. This approach can also

be used for training the input and output weights of the RNN. The full derivation is presented in

Appendix 1. (The other classic gradient-based algorithm, BPTT, involves a different approach for tak-

ing partial derivatives but is equivalent to RTRL; its derivation and relation to RTRL are also provided

in Appendix 1.)

From a biological perspective, there are two problems with RTRL as a plausible rule for synaptic

plasticity. The first problem is that it is nonlocal, with the update to synaptic weight Wab depending,

through the last term in Equation (4), on every other synaptic weight in the RNN. This information

would be inaccessible to a synapse in an actual neural circuit. The second problem is the appearance

of ðWoutÞT in Equation (3), which means that the error in the RNN output must be fed back into the

network with synaptic weights that are precisely symmetric with the readout weights. It is unclear

how the readout and feedback weights could be made to match one another in a neural circuit in

the brain.

In order to address these two shortcomings, we make two approximations to the RTRL learning

rule. The first approximation consists of dropping a nonlocal term from the gradient, so that com-

puting the update to a given synaptic weight requires only pre- and postsynaptic activities, rather

than information about the entire state of the RNN including all of its synaptic weights. Second, as

described in more detail below, we project the error back into the network for learning using ran-

dom feedback weights, rather than feedback weights that are tuned to match the readout weights.

These approximations, described more fully in Appendix 1, result in the following weight update

equations:
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dWout
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dWabðtÞ ¼ h2 B"ðtÞ½ �apabðtÞ;
dW in

abðtÞ ¼ h3 B"ðtÞ½ �aqabðtÞ; (5)

where ha are learning rates, and B is a random matrix of feedback weights. Here we have defined
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1

t
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which are the accumulated products of the pre- and (the derivative of the) postsynaptic activity at

the recurrent and input synapses, respectively. We have also defined

uaðtÞ �
P

cWachcðt� 1ÞþPcW
in
acxcðtÞ as the total input current to unit a. While this form of the update

equations does not require explicit integration and hence is more efficient for numerical simulation,

it is instructive to take the continuous-time (t� 1) limit of Equation (5) and the integral of Equa-

tion (6), which yields

dWout
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2
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dt0
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Z t

0

dt0

t

e�t
0=tf0 uaðt� t0Þð Þxbðt� t0Þ: (7)

In this way, it becomes clear that the integrals in the second and third equations are eligibility traces

that accumulate the correlations between pre- and post-synaptic activity over a time window of

duration ~t. The weight update is then proportional to this eligibility trace, multiplied by a feedback

projection of the readout error. The fact that the timescale for the eligibility trace matches the RNN

time constant t reflects the fact that the RNN dynamics are typically correlated only up to this time-

scale, so that the error is associated only with RNN activity up to time t in the past. If the error feed-

back were delayed rather than provided instantaneously, then eligibility traces with longer

timescales might be beneficial (Gerstner et al., 2018).

Three features of the above learning rules are especially important. First, the updates are local,

requiring information about the presynaptic activity and the postsynaptic input current, but no infor-

mation about synaptic weights and activity levels elsewhere in the network. Second, the updates are

online and can either be made at each timestep or accumulated over many timesteps and made at

the end of each trial or of several trials. In either case, unlike the BPTT algorithm, it is not necessary

to run the dynamics backward in time at the end of each trial to compute the weight updates. Third,

the readout error is projected back to each unit in the network with weights B that are fixed and

random. An exact gradient of the loss function, on the other hand, would lead to ðWoutÞT, where
ð�ÞT denotes matrix transpose, appearing in the place of B. As described above, the use of random

feedback weights is inspired by a similar approach in feedforward networks (Lillicrap et al.,

2016; see also Nøkland, 2016, as well as a recent implementation in feedforward spiking networks

[Samadi et al., 2017]), and we shall show below that the same feedback alignment mechanism that

is responsible for the success of the feedforward version is also at work in our recurrent

version. (While an RNN is often described as being ‘unrolled in time’, so that it becomes a feedfor-

ward network in which each layer corresponds to one timestep, it is important to note that the

unrolled version of the problem that we consider here is not identical to the feedforward case con-

sidered in Lillicrap et al. (2016) and Nøkland, 2016. In the RNN, a readout error is defined at every

‘layer’ t, whereas in the feedforward case, the error is defined only at the last layer (t ¼ T) and is fed

back to update weights in all preceding layers.)

With the above observations in mind, we refer to the above learning rule as random feedback

local online (RFLO) learning. In Appendix 1, we provide a full derivation of the learning rule, and

describe in detail its relation to the other gradient-based methods mentioned above, BPTT and

RTRL. It should be noted that the approximations applied above to the RTRL algorithm are distinct

from recent approximations made in the machine learning literature (Tallec and Ollivier, 2018;
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Mujika et al., 2018), where the goal was to decrease the computational cost of RTRL, rather than to

increase its biological plausibility.

Because the RFLO learning rule uses an approximation of the loss function gradient rather than

the exact gradient for updating the synaptic weights, a natural question to ask is whether it can be

expected to decrease the loss function at all. In Appendix 2 we show that, under certain simplifying

assumptions including linearization of the RNN, the loss function does indeed decrease on average

with each step of RFLO learning. In particular, we show that, as in the feedforward case

(Lillicrap et al., 2016), reduction of the loss function requires alignment between the learned read-

out weights Wout and the fixed feedback weights B. We then proceed to show that this alignment

tends to increase during training due to coordinated learning of the recurrent weights W and read-

out weights Wout. The mathematical approach for showing that alignment between readout and

feedback weights occurs is similar to that used previously in the feedforward case (Lillicrap et al.,

2016). In particular, the network was made fully linear in both cases in order to make mathematical

headway possible, and a statistical average over inputs (in the feedforward case) or the activity vec-

tor (for the RNN) was performed. However, because a feedforward network retains no state informa-

tion from one timestep to the next and because the network architectures are distinct (even if one

thinks about an RNN as a feedforward network ‘unrolled in time’), the results in Appendix 2 are not

simply a straightforward generalization of the feedforward case.

A number of simplifying assumptions have been made in the mathematical derivations of Appen-

dix 2, including linear dynamics, uncorrelated neurons, and random synaptic weights, none of which

will necessarily hold in a nonlinear network trained to perform a dynamical computation. Hence,

although such mathematical arguments provide reason to hope that RFLO learning might be suc-

cessful and insight into the mechanism by which learning occurs, it remains to be shown that RFLO

learning can be used to successfully train a nonlinear RNN in practice. In the following section, there-

fore, we show using simulated examples that RFLO learning can perform well on a variety of tasks.

Performance of RFLO learning
In this section we illustrate the performance of the RFLO learning algorithm on a number of simu-

lated tasks. These tasks require an RNN to produce sequences of output values and/or delayed

responses to an input to the RNN, and hence are beyond the capabilities of feedforward networks.

As a benchmark, we compare the performance of RFLO learning with BPTT, the standard algorithm

for training RNNs. (As described in Appendix 1, the weight updates in RTRL are, when performed in

batches at the end of each trial, completely equivalent to those in BPTT. Hence in this section we

compare RFLO learning with BPTT only in what follows.)

Autonomous production of continuous outputs
Figure 2 illustrates the performance of an RNN trained with RFLO learning to produce a one-dimen-

sional periodic output given no external input. Figure 2a shows the decrease of the loss function

(the mean squared error of the RNN output) as the RNN is trained over many trials, where each trial

corresponds to one period consisting of T timesteps, as well as the performance of the RNN at the

end of training. As a benchmark for comparison with the RFLO learning rule, BPTT was also used to

train the RNN. In addition, we show in Figure 2—figure supplement 1 that a variant of RFLO learn-

ing in which all outbound synapses from a given unit were constrained to be of the same sign—a

biological constraint known as Dale’s law (Dale, 1935)—also yields effective learning. (A similar

result, in this case using nonlocal learning rules, was recently obtained in other modeling work

[Song et al., 2016].)

Figure 2b shows that, in the case where the number of timesteps in the target output was not

too great, both versions of RFLO learning perform comparably well to BPTT. BPTT shows an advan-

tage, however, when the number of timesteps became very large. Intuitively, this difference in per-

formance is due to the accumulation of small errors in the estimated gradient of the loss function

over many timesteps with RFLO learning. This is less of a problem for BPTT, on the other hand, in

which the exact gradient is used.

Figure 2c shows the increase in the alignment between the vector of readout weights Wout and

the vector of feedback weights B during training with RFLO learning. As in the case of feedforward

networks (Lillicrap et al., 2016; Nøkland, 2016), the readout weights evolve over time to become
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increasingly similar to the feedback weights, which are fixed during training. In Appendix 2 we pro-

vide mathematical arguments for why this alignment occurs, showing that the alignment is not due

to the change in Wout alone, but rather to coordinated changes in the readout and recurrent

weights.

In deriving the RFLO learning rule, two independent approximations were made: locality was

enforced by dropping the nonlocal term from the loss function gradient, and feedback weights were

a

b

BPTT

BPTT

BPTT
RFLO

c d

BPTT
RF only
Local only

RFLO

RFLO

RFLO

BPTT

RFLO

BPTT

RFLO

Figure 2. Periodic output task. (a) Left panels: The mean squared output error during training for an RNN with N ¼ 30 recurrent units and no external

input, trained to produce a one-dimensional periodic output with period of duration T ¼ 20t (left) or T ¼ 160t (right), where t ¼ 10 is the RNN time

constant. The learning rules used for training were backpropagation through time (BPTT) and random feedback local online (RFLO) learning. Solid line

is median loss over nine realizations, and shaded regions show 25/75 percentiles. Right panels: The RNN output at the end of training for each type of

learning (dashed lines are target outputs, offset for clarity). (b) The loss function at the end of training for target outputs having different periods. The

colored lines correspond to the two learning rules from (a), while the gray line is the loss computed for an untrained RNN. (c) The normalized alignment

between the vector of readout weights Wout and the vector of feedback weights B during training with RFLO learning. (d) The loss function during

training with T ¼ 80t for BPTT and RFLO, as well as versions of RFLO in which locality is enforced without random feedback (magenta) or random

feedback is used without enforcing locality (cyan).

DOI: https://doi.org/10.7554/eLife.43299.003

The following figure supplements are available for figure 2:

Figure supplement 1. An RNN with sign-constrained synapses comporting with Dale’s law attains performance similar to an unconstrained RNN.

DOI: https://doi.org/10.7554/eLife.43299.004

Figure supplement 2. An RNN trained to perform the task from Figure 2 with RFLO learning on recurrent and readout weights outperforms an RNN in

which only readout weights or only recurrent weights are trained.

DOI: https://doi.org/10.7554/eLife.43299.005

Figure supplement 3. The performance of an RNN trained to perform the task from Figure 2 with RFLO learning improves with larger network sizes

and larger initial recurrent weights.

DOI: https://doi.org/10.7554/eLife.43299.006
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chosen randomly rather than tuned to match the readout weights. If these approximations are

instead made independently, which will have the greater effect on the performance of the RNN?

Figure 2d answers this question by comparing RFLO and BPTT with two alternative learning rules:

one in which the local approximation is made while symmetric error feedback is maintained, and

another in which the nonlocal part of the loss function gradient is retained but the error feedback is

random. The results show that the local approximation is essentially fully responsible for the perfor-

mance difference between RFLO and BPTT, while there is no significant loss in performance due to

the random feedback alone.

It is also worthwhile to consider the relative contributions of the two types of learning in Figure 2,

namely the learning of recurrent and of readout weights. Given that the learning rule for the readout

weights makes use of the exact loss function gradient while that for the recurrent weights does not,

it could be that the former are fully responsible for the successful training. In Figure 2—figure sup-

plement 2 we show that this is not the case, and that training of both recurrent and readout weights

significantly outperforms training of the readout weights only (with the readout fed back as an input

to the RNN for stability–see Materials and methods). Also shown is the performance of an RNN in

which recurrent weights but not readout weights are trained. In this case learning is completely

unsuccessful. The reason is that, in order for successful credit assignment to take place, there must

be some alignment between the readout weights and feedback weights. Such alignment can’t occur,

however, if the readout weights are frozen. In the case of a linearized network, the necessity of coor-

dinated learning between the two sets of weights can be shown mathematically, as done in Appen-

dix 2.

As with other RNN training methods, performance of the trained RNN generally improves for

larger network sizes (Figure 2—figure supplement 3). While the computational cost of training the

RNN increases with RNN size, leading to a tradeoff between fast training and high performance for

a given number of training trials, it is worthwhile to note that the cost is much lower than that of

RTRL ( ~N4 operations per timestep) and is on par with BPTT (both ~N2 operations per timestep, as

shown in Appendix 1).

Interval matching
Figure 3 illustrates the performance of the RFLO algorithm on a ‘Ready Set Go’ task, in which the

RNN is required to produce an output pulse after a time delay matching the delay between two pre-

ceding input pulses (Jazayeri and Shadlen, 2010). This task is more difficult than the production of

Tdelay

Tpeak

Tdelay

x(t)

y(t)

BPTT

T
p
e
a
k
/τ

Tdelay/τ

RFLO

T
p
e
a
k
/τ

Tdelay/τ

a b c

Figure 3. Interval-matching task. (a) In the task, the RNN input consists of two input pulses, with a random delay Tdelay between pulses in each trial. The

target output (dashed line) is a pulse trailing the second input pulse by Tdelay. (b) The time of the peak in the RNN output is observed after training with

RFLO learning and testing in trials with various interpulse delays in the input. Red (blue) shows the case in which the RNN is trained with interpulse

delays satisfying Tdelay � 15t (20t). (c) Same as (b), but with the RNN trained using BPTT using interpulse delays Tdelay � 25t for training and testing.

DOI: https://doi.org/10.7554/eLife.43299.007
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a periodic output due to the requirement that the RNN must learn to store the information about

the interpulse delay, and then produce responses at different times depending on what the delay

was. Figure 3b,c illustrate the testing performance of an RNN trained with either RFLO learning or

BPTT. If the RNN is trained and tested on interpulse delays satisfying Tdelay � 15t, the performance is

similarly good for the two algorithms. If the RNN is trained and tested with longer Tdelay, however,

then BPTT performs better than RFLO learning. As in the case of the periodic output task from Fig-

ure 2, RFLO learning performs well for tasks on short and intermediate timescales, but not as well as

BPTT for tasks involving longer timescales. In the following subsection, we shall address this short-

coming by constructing a network in which learned subsequence elements of short duration can be

concatenated to form longer-duration sequences.

Learning a sequence of actions
In the above examples, it was shown that, while the performance of RFLO learning is comparable to

that of BPTT for tasks over short and intermediate timescales, it is less impressive for tasks involving

longer timescales. From the perspective of machine learning, this represents a failure of RFLO learn-

ing. From the perspective of neuroscience, however, we can adopt a more constructive attitude. The

brain, after all, suffers the same limitations that we have imposed in constructing the RFLO learning

rule—namely, causality and locality—and cannot be performing BPTT for learned movements and

working memory tasks over long timescales of seconds or more. So how might recurrent circuits in

the brain learn to perform tasks over these long timescales? One possibility is that they use a more

sophisticated learning rule than the one that we have constructed. While we cannot rule out this pos-

sibility, it is worth keeping in mind that, due to the problem of vanishing or exploding gradients, all

gradient-based training methods for RNNs fail eventually at long timescales. Another possibility is

that a simple, fully connected recurrent circuit in the brain, like an RNN trained with RFLO learning,

can only be trained directly with supervised learning over short timescales, and that a more complex

circuit architecture is necessary for longer timescales.

It has long been recognized that long-duration behaviors tend to be sequences composed of

short, stereotyped actions concatenated together (Lashley, 1951). Further, a great deal of experi-

mental work suggests that learning of this type involves training of synaptic weights from cortex to

striatum (Graybiel, 1998), the input structure of the basal ganglia, which in turn modifies cortical

activity via thalamus. In this section we propose a circuit architecture, largely borrowed from

Logiaco et al. (2018) and inspired by the subcortical loop involving basal ganglia and thalamus, that

allows an RNN to learn and perform sequences of ‘behavioral syllables’.

As illustrated in Figure 4a, the first stage of learning in this scheme involves training an RNN to

produce a distinct time-dependent output in response to the activation of each of its tonic inputs. In

this case, the RNN output is a two-dimensional vector giving the velocity of a cursor moving in a

plane. Once the RNN has been trained in this way, the circuit is augmented with a loop structure,

shown schematically in Figure 4b. At one end of the loop, the RNN activity is read out with weights

Ws. At the other end of the loop, this readout is used to control the input to the RNN. The weights

Ws can be learned such that, at the end of one behavioral syllable, the RNN input driving the next

syllable in the sequence is activated by the auxiliary loop. This is done most easily by gating the

RNN readout so that it can only drive changes at the end of a syllable.

In this example, each time the end of a syllable is reached, four readout units receive input

zi ¼
PN

j¼1 W
s
ijhj, and a winner-take-all rule is applied such that the most active unit activates a corre-

sponding RNN input unit, which drives the RNN to produce the next syllable. Meanwhile, the

weights are updated with the reward-modulated Hebbian learning rule DW s
ij ¼ hsRzihj, where R ¼ 1 if

the syllable transition matches the target and R ¼ 0 otherwise. By training over many trials, the net-

work learns to match the target sequence of syllables. Figure 4c shows the output from an RNN

trained in this way to produce a sequence of reaches and holds in a two-dimensional space. Impor-

tantly, while the duration of each behavioral syllable in this example (20t) is relatively short, the full

concatenated sequence is long (160t) and would be very difficult to train directly in an RNN lacking

such a loop structure.

How might the loop architecture illustrated in Figure 4 be instantiated in the brain? For learned

motor control, motor cortex likely plays the role of the recurrent circuit controlling movements. In

addition to projections to spinal cord for controlling movement directly, motor cortex also projects
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to striatum, and experimental evidence has suggested that modification of these corticostriatal syn-

apses plays an important role in the learning of action sequences (Jin and Costa, 2010). Via a loop

through the basal ganglia output nucleus GPi and motor thalamus, these signals pass back to motor

cortex, as illustrated schematically in Figure 4. According to the model, then, behavioral syllables

are stored in motor cortex, and the role of striatum is to direct the switching from one syllable to the

next. Experimental evidence for both the existence of behavioral syllables and the role played by

striatum in switching between syllables on subsecond timescales has been found recently in mice

(Wiltschko et al., 2015; Markowitz et al., 2018). How might the weights from motor cortex in this

model be gated so that this projection is active at behavioral transitions? It is well known that dopa-

mine, in addition to modulating plasticity at corticostriatal synapses, also modulates the gain of cor-

tical inputs to striatum (Gerfen et al., 2011). Further, it has recently been shown that transient

dopamine signals occur at the beginning of each movement in a lever-press sequence in mice

(da Silva et al., 2018). Together, these experimental results support a model in which dopamine

bursts enable striatum to direct switching between behavioral syllables, thereby allowing for learned

behavioral sequences to occur over long timescales by enabling the RNN to control its own input.

Within this framework, RFLO learning provides a biologically plausible means by which the behav-

ioral syllables making up these sequences might be learned.

“Striatum”

“GPi/Thalamus”

“Motor Cortex”

W
s
ij

vx(t)

vy(t){ 20τ

1.

2.

3.

4.

a

b

c

vx(t) vy(t)

RFLO

RFLO
+Loop

BPTT

Figure 4. An RNN with multiple inputs controlled by an auxiliary loop learns to produce sequences. (a) An RNN with a two-dimensional readout

controlling the velocity of a cursor is trained to move the cursor in a different direction for each of the four possible inputs. (b) The RNN is augmented

with a loop structure, which allows a readout from the RNN via learned weights Ws to change the state of the input to the RNN, enabling the RNN

state at the end of each cursor movement to trigger the beginning of the next movement. (c) The trajectory of a cursor performing four movements and

four holds, where RFLO learning was used to train the individual movements as in (a), and learning of the weights Ws was used to join these

movements into a sequence, as illustrated in (b). Lower traces show comparison of this trajectory with those obtained by using either RFLO or BPTT to

train an RNN to perform the entire sequence without the auxiliary loop.

DOI: https://doi.org/10.7554/eLife.43299.008
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Discussion
In this work we have derived an approximation to gradient-based learning rules for RNNs, yielding a

learning rule that is local, online, and does not require fine tuning of feedback weights. We have

shown that RFLO learning performs comparably well to BPTT when the duration of the task being

trained is not too long, but that it performs less well when the task duration becomes very long. In

this case, however, we showed that training can still be effective if the RNN architecture is aug-

mented to enable the concatenation of short-duration outputs into longer output sequences. Further

exploring how this augmented architecture might map onto cortical and subcortical circuits in the

brain is an interesting direction for future work. Another promising area for future work is the use of

layered recurrent architectures, which occur throughout cortex and have been shown to be benefi-

cial in complex machine learning applications spanning long timescales (Pascanu et al., 2014).

Finally, machine learning tasks with discrete timesteps and discrete outputs such as text prediction

benefit greatly from the use of RNNs with cross-entropy loss functions and softmax output normali-

zation. In general, these lead to additional nonlocal terms in gradient-based learning, and in future

work it would be interesting to investigate whether RFLO learning can be adapted and applied to

such problems while preserving locality, or whether new ideas are necessary about how such tasks

are solved in the brain.

How might RFLO learning be implemented concretely in the brain? As we have discussed above,

motor cortex is an example of a recurrent circuit that can be trained to produce a particular time-

dependent output. Neurons in motor cortex receive information about planned actions (y�ðtÞ in the

language of the model) from premotor cortical areas, as well as information about the current state

of the body (yðtÞ) from visual and/or proprioceptive inputs, giving them the information necessary to

compute a time-dependent error "ðtÞ ¼ y�ðtÞ � yðtÞ. Hence it is possible that neurons within motor

cortex might use a projection of this error signal to learn to produce a target output trajectory. Such

a computation might feature a special role for apical dendrites, as in recently developed theories for

learning in feedforward cortical networks (Guerguiev et al., 2017; Sacramento et al., 2017), though

further work would be needed to build a detailed theory for its implementation in recurrent cortical

circuits.

A possible alternative scenario is that neuromodulators might encode error signals. In particular,

midbrain dopamine neurons project to many frontal cortical areas including prefrontal cortex and

motor cortex, and their input is known to be necessary for learning certain time-dependent behav-

iors (Hosp et al., 2011; Li et al., 2017). Further, recent experiments have shown that the signals

encoded by dopamine neurons are significantly richer than the reward prediction error that has tra-

ditionally been associated with dopamine, and include phasic modulation during movements

(Howe and Dombeck, 2016; da Silva et al., 2018; Coddington and Dudman, 2018). This interpre-

tation of dopamine as a continuous online error signal used for supervised learning would be distinct

from and complementary to its well known role as an encoder of reward prediction error for rein-

forcement learning.

In addition to the gradient-based approaches (RTRL and BPTT) already discussed above, another

widely used algorithm for training RNNs is FORCE learning (Sussillo and Abbott, 2009) and its

more recent variants (Laje and Buonomano, 2013; DePasquale et al., 2018). The FORCE algorithm,

unlike gradient-based approaches, makes use of chaotic fluctuations in RNN activity driven by strong

recurrent input. These chaotic fluctuations, which are not necessary in gradient-based approaches,

provide a temporally rich set of basis functions that can be summed together with trained readout

weights in order to construct a desired time-dependent output. As with gradient-based approaches,

however, FORCE learning is nonlocal, in this case because the update to any given readout weight

depends not just on the presynaptic activity, but also on the activities of all other units in the net-

work. Although FORCE learning is biologically implausible due to the nonlocality of the learning

rule, it is, like RFLO learning, implemented online and does not require finely tuned feedback

weights for the readout error. It is an open question whether approximations to the FORCE algo-

rithm might exist that would obviate the need for nonlocal learning while maintaining sufficiently

good performance.

In addition to RFLO learning, a number of other local and causal learning rules for training RNNs

have been proposed. The oldest of these algorithms (Mazzoni et al., 1991; Williams, 1992) operate

within the framework of reinforcement learning rather than supervised learning, meaning that only a
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scalar—and possibly temporally delayed—reward signal is available for training the RNN, rather than

the full target function y�ðtÞ. Typical of such algorithms, which are often known as ‘node perturba-

tion’ algorithms, is the REINFORCE learning rule (Williams, 1992), which in our notation gives the

following weight update at the end of each trial:

DWab ¼
h

T
ðR� �RÞ

X

T

t¼1
�aðtÞhbðtÞ; (8)

where R is the scalar reward signal (which might be defined as the negative of the loss function that

we have used in RFLO learning), �R is the average reward over recent trials, and �aðtÞ is noise current

injected into unit a during training. This learning rule means, for example, that (assuming the presyn-

aptic unit b is active) if the postsynaptic unit a is more active than usual in a given trial (i.e. �aðtÞ is
positive) and the reward is greater than expected, then the synaptic weight Wab should be increased

so that this postsynaptic unit should be more active in future trials. A slightly more elaborate version

of this learning rule replaces the summand in Equation (8) with a low-pass filtered version of this

same quantity, leading to eligibility traces of similar form to those appearing in Equation (7). This

learning rule has also been adapted for a network of spiking neurons (Fiete et al., 2006).

A potential shortcoming of the REINFORCE learning rule is that it depends on the postsynaptic

noise current rather than on the total postsynaptic input current (i.e. the noise current plus the input

current from presynaptic units). Because it is arguably implausible that a neuron could keep track of

these sources of input current separately, a recently proposed version (Miconi, 2017) replaces

�aðtÞ ! f ðuaðtÞ � �uaðtÞÞ, where f ð�Þ is a supralinear function, uaðtÞ is the total input current (including

noise) to unit a, and �uaðtÞ is the low-pass-filtered input current. This substitution is logical since the

quantity uaðtÞ � �uaðtÞ tracks the fast fluctuations of each unit, which are mainly due to the rapidly fluc-

tuating input noise rather than to the more slowly varying recurrent and feedforward inputs.

A severe limitation of reinforcement learning as formulated in Equation (8) is the sparsity of

reward information, which comes in the form of a single scalar value at the end of each trial. Clearly

this provides the RNN with much less information to learn from than a vector of errors

"ðtÞ � y�ðtÞ � yðtÞ at every timestep, which is assumed to be available in supervised learning. As one

would expect from this observation, reinforcement learning is typically much slower than supervised

learning in RNNs, as in feedforward neural networks. A hybrid approach is to assume that reward

information is scalar, as in reinforcement learning, but available at every timestep, as in supervised

learning. This might correspond to setting RðtÞ � �j"ðtÞj2 and including this reward in a learning rule

such as the REINFORCE rule in Equation (8). To our knowledge this has not been done for training

recurrent weights in an RNN, though a similar idea has recently been used for training the readout

weights of an RNN (Legenstein et al., 2010; Hoerzer et al., 2014). Ultimately, whether recurrent

neural circuits in the brain use reinforcement learning or supervised learning is likely to depend on

the task being learned and what feedback information about performance is available. For example,

in a reach-to-target task such as the one modeled in Figure 4, it is plausible that a human or nonhu-

man primate might have a mental template of an ideal reach, and might make corrections to make

the hand match the target trajectory at each timepoint in the trial. On the other hand, if only delayed

binary feedback is provided in an interval-matching task such as the one modeled in Figure 3, neural

circuits in the brain might be more likely to use reinforcement learning.

More recently, local, online algorithms for supervised learning in RNNs with spiking neurons have

been proposed. Gilra and Gerstner (2017) and Alemi et al. (2017) have trained spiking RNNs to

produce particular dynamical trajectories of RNN readouts. These works constitute a large step

toward greater biological plausibility, particularly in their use of local learning rules and spiking neu-

rons. Here we describe the most important differences between those works and RFLO learning. In

both Gilra and Gerstner (2017) and Alemi et al. (2017), the RNN is driven by an input xðtÞ as well

as the error signal "ðtÞ ¼ y�ðtÞ � yðtÞ, where the target output is related to the input xðtÞ according
to

_y�i ¼ fiðy�Þþ giðxÞ; (9)

where giðxÞ ¼ xiðtÞ in Alemi et al. (2017), but is arbitrary in Gilra and Gerstner (2017). In either

case, however, it is not possible to learn arbitrary, time-dependent mappings between inputs and
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outputs in these networks, since the RNN output must take the form of a dynamical system driven

by the RNN input. This is especially limiting if one desires that the RNN dynamics should be autono-

mous, so that xðtÞ ¼ 0 in Equation (9). It is not obvious, for example, what dynamical equations hav-

ing the form of (9) would provide a solution to the interval-matching task studied in Figure 3. Of

course, it is always possible to obtain an arbitrarily complex readout by making xðtÞ sufficiently large

such that yðtÞ simply follows xðtÞ from Equation (9). However, since xðtÞ is provided as input, the

RNN essentially becomes an autoencoder in this limit.

Two other features of Gilra and Gerstner (2017) and Alemi et al. (2017) differ from RFLO learn-

ing. First, the readout weights and the error feedback weights are related to one another in a highly

specific way, being either symmetric with one another (Alemi et al., 2017), or else configured such

that the loop from the RNN to the readout and back to the RNN via the error feedback pathway

forms an autoencoder (Gilra and Gerstner, 2017). In either case these weights are preset to these

values before training of the RNN begins, unlike the randomly set feedback weights used in RFLO

learning. Second, both approaches require that the error signal "ðtÞ be fed back to the network with

(at least initially) sufficiently large gain such that the RNN dynamics are essentially slaved to produce

the target readout y�ðtÞ, so that one has yðtÞ»y�ðtÞ immediately from the beginning of training.

(This follows as a consequence of the relation between the readout and feedback weights described

above.) With RFLO learning, in contrast, forcing the output to always follow the target in this way is

not necessary, and learning can work even if the RNN dynamics early in learning do not resemble

the dynamics of the ultimate solution.

In summary, the random feedback learning rule that we propose offers a potential advantage

over previous biologically plausible learning rules by making use of the full time-dependent, possibly

multidimensional error signal, and also by training all weights in the network, including input, output,

and recurrent weights. In addition, it does not require any special relation between the RNN inputs

and outputs, nor any special relationship between the readout and feedback weights, nor a mecha-

nism that restricts the RNN dynamics to always match the target from the start of training. Especially

when extended to allow for sequence learning such as depicted in Figure 4, RFLO learning provides

a plausible mechanism by which supervised learning might be implemented in recurrent circuits in

the brain.

Materials and methods

Source code
A Python notebook implementing a simple, self-contained example of RFLO learning has been

included as Source code 1 to accompany this publication. The example trains an RNN on the peri-

odic output task from Figure 2 using RFLO learning, as well as using BPTT and RTRL for

comparison.

Simulation details
In all simulations, the RNN time constant was t ¼ 10. Learning rates were selected by grid search

over h
1;2;3 ¼ h 2 ½10�4; 3� 10

�4; 10�3; . . . ; 3� 10
�1�. Input and readout weights were initialized ran-

domly and uniformly over ½�1; 1� and ½�1=
ffiffiffiffi

N
p

; 1=
ffiffiffiffi

N
p
�, respectively. Recurrent weights were initialized

randomly as W ~Nð0; g2=NÞ, where g ¼ 1:5 and Nð0;s2Þ is the normal distribution with zero mean

and variance s2. The fixed feedback weights were chosen randomly as Bij ~Nð0; 1Þ. The nonlinear

activation function of the RNN units was fð�Þ ¼ tanhð�Þ.
In Figure 2, the RNN size was N ¼ 30. For task durations of T ¼ ð200; 400; 800; 1600Þ timesteps,

the optimal learning rates after grid search were h ¼ ð0:03; 0:01; 0:001; 0:0003Þ for RFLO and

ð0:03; 0:03; 0:01; 0:03Þ for BPTT. The target output waveform was

y�ðtÞ ¼ sinð2pt=TÞ þ 0:5 sinð4pt=TÞ þ 0:25 sinð8pt=TÞ. The shaded regions in panels a, b, and d are 25/

75 percentiles of performance computed over nine randomly initialized networks, and the solid

curves show the median performance.

In the version of the periodic output task satisfying Dale’s law enforcing sign-constrained synap-

ses (Figure 2—figure supplement 1), half of RNN units were assigned to be excitatory and half

were inhibitory. Recurrent weights were initialized as above, with the additional step of Wij  �jjWijj,
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where �j ¼ �1 for excitatory or inhibitory units. During learning in this network, recurrent weights

were updated normally but clipped to zero to prevent the weights from changing sign.

In the version of the periodic output task in which only readout weights were trained (Figure 2—

figure supplement 2), the readout was fed back into the RNN as a separate input current to the

recurrent units via the random feedback weights B. This is necessary to stabilize the RNN dynamics

in the absence of learning of the recurrent weights, as they would be either chaotic (for large recur-

rent weights) or quickly decaying (for small recurrent weights) in the absence of such stabilization.

The RNN was initialized as described above, and the learning rate for the readout weights was

h ¼ 0:03, determined by grid search.

In Figure 3, the RNN size was N ¼ 100. The input and target output pulses were Gaussian with a

standard deviation of 15 timesteps. The RNNs were trained for 5000 trials. With BPTT, the learning

rate was h1;2;3 ¼ 0:003, while with RFLO learning it was 0:001. Rather than performing weight updates

in every trial, the updates were continuously accumulated but only implemented after batches of 10

trials.

In Figure 4, networks of size N ¼ 100 were used. In the version with the loop architecture, RFLO

learning was first used to train the network to produce a particular reach trajectory in response to

each of four tonic inputs for 10,000 trials, with a random input chosen in each trial, subject to the

constraint that the trajectory could not move the cursor out of bounds. Next, the RNN weights were

held fixed and the weights Ws were learned for 10,000 additional trials while the RNN controlled its

own input via the auxiliary loop. The active unit in ‘striatum’ was chosen randomly with probability

pexplore ¼ 0:1 and was otherwise chosen deterministically based on the RNN input via the weights W s,

again subject to the constraint that the trajectory could not move the cursor out of bounds. In the

comparison shown in subpanel (c), RNNs without the loop architecture were trained for 20,000 trials

with either RFLO learning or BPTT to autonomously produce the entire sequence of 160t timesteps.
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Appendix 1

DOI: https://doi.org/10.7554/eLife.43299.011

Gradient-based RNN learning and RFLO learning
In the first subsection of this appendix, we begin by reviewing the derivation of RTRL, the

classic gradient-based learning rule. We show that the update equation for the recurrent

weights under the RTRL rule has two undesirable features from a biological point of view.

First, the learning rule is nonlocal, with the update to weight Wij depending on all of the other

weights in the RNN, rather than just on information that is locally available to that particular

synapse. Second, the RTRL learning rule requires that the error in the RNN readout be fed

back into the RNN with weights that are precisely symmetric with the readout weights. In the

second subsection, we implement approximations to the RTRL gradient in order to overcome

these undesirable features, leading to the RFLO learning rules.

In the third subsection of this appendix, we review the derivation of BPTT, the most widely

used algorithm for training RNNs. Because it is the standard gradient-based learning rule for

RNN training, BPTT is the learning rule against which we compare RFLO learning in the main

text. Finally, in the final subsection of this appendix we illustrate the equivalence of RTRL and

BPTT. Although this is not strictly necessary for any of the results given in the main text, we

expect that readers with an interest in gradient-based learning rules for training RNNs will be

interested in this correspondence, which to our knowledge has not been very clearly

explicated in the literature.

Real-time recurrent learning
In this section we review the derivation of the real-time recurrent learning (RTRL) algorithm

(Williams and Zipser, 1989) for an RNN such as the one shown in Figure 1. This rule is

obtained by taking a gradient of the mean-squared output error of the RNN with respect to

the synaptic weights, and, as we will show later in this appendix, is equivalent (when

implemented in batches rather than online) to the more widely used backpropagation through

time (BPTT) algorithm.

The standard RTRL algorithm is obtained by calculating the gradient of the loss function

Equation (2) with respect to the RNN weights, and then using gradient descent to find the

weights that minimize the loss function (Goodfellow et al., 2016). Specifically, for each run of

the network, one can calculate qL=qWab and then update the weights by an amount

proportional to this gradient: DWab ¼ �hqL=qWab, where h determines the learning rate. This

can be done similarly for the input and output weights, W in
ab and Wout

ab , respectively. This results

in the following update equations:

DWout
ab ¼

h
1

T

X

T

t¼1
"aðtÞhbðtÞ;

DWab ¼
h2

T

X

T

t¼1

X

N

j¼1
ðWoutÞT"ðtÞ
h i

j

qhjðtÞ
qWab

;

DW in
ab ¼

h
3

T

X

T

t¼1

X

N

j¼1
ðWoutÞT"ðtÞ
h i

j

qhjðtÞ
qW in

ab

: (10)

In these equations, ð�ÞT denotes matrix transpose, and the gradients of the hidden layer

activities with respect to the recurrent and input weights are given by
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P
j
abðtÞ ¼ 1� 1

t

� �

P
j
abðt� 1Þþ 1

t

X

k

f0 ujðtÞ
� �

WjkP
k
abðt� 1Þ

þ 1

t

djaf
0 uaðtÞð Þhbðt� 1Þ;

Q
j
abðtÞ ¼ 1� 1

t

� �

Q
j
abðt� 1Þþ 1

t

X

k

f0 ujðtÞ
� �

WjkQ
k
abðt� 1Þ

þ 1

t

djaf
0 uaðtÞð Þxbðt� 1Þ; (11)

where we have defined

P
j
abðtÞ �

qhjðtÞ
qWab

;

Q
j
abðtÞ �

qhjðtÞ
qW in

ab

; (12)

and uðtÞ is the total input to each recurrent unit at time t:

uiðtÞ ¼
X

N

j¼1
Wijhjðt� 1Þþ

X

Nx

j¼1
W in

ij xjðtÞ: (13)

The recursions in Equation (11) terminate with

qhjð0Þ
qWab

¼ 0;

qhjð0Þ
qW in

ab

¼ 0: (14)

As many others have recognized previously, the synaptic weight updates given in the

second and third lines of Equation (10) are not biologically realistic for a number of reasons.

First, the error is projected back into the network with the particular weight matrix ðWoutÞT, so
that the feedback and readout weights must be related to one another in a highly specific

way. Second, the terms involving W in Equation (11) mean that information about the entire

network is required to update any given synaptic weight, making the rules nonlocal. In

contrast, a biologically plausible learning rule for updating a weight Wab or W
in
ab ought to

depend only on the activity levels of the pre- and post-synaptic units a and b, in addition to

the error signal that is fed back into the network. Both of these shortcomings will be

addressed in the following subsection.

Random feedback local online learning
In order to obtain a biologically plausible learning rule, we can attempt to relax some of the

requirements in the RTRL learning rule and see whether the RNN is still able to learn

effectively. Inspired by a recently used approach in feedforward networks (Lillicrap et al.,

2016), we do this by replacing the ðWoutÞT appearing in the second and third lines of

Equation (10) with a fixed random matrix B, so that the feedback projection of the output

error no longer needs to be tuned to match the other weights in the network in a precise way.

Second, we simply drop the terms involving W in Equation (11), so that nonlocal information

about all recurrent weights in the network is no longer required to update a particular synaptic

weight. In this case we can rewrite the approximate weight-update equations as

Murray. eLife 2019;8:e43299. DOI: https://doi.org/10.7554/eLife.43299 17 of 25

Research article Neuroscience

https://doi.org/10.7554/eLife.43299


DWout
ab ¼

1

T

X

T

t¼1
dWout

ab ðtÞ;

DWab ¼
1

T

X

T

t¼1
dWabðtÞ;

DW in
ab ¼

1

T

X

T

t¼1
dW in

abðtÞ; (15)

where

dWout
ab ðtÞ ¼ h1"aðtÞhbðtÞ;

dWabðtÞ ¼ h2 B"ðtÞ½ �apabðtÞ;
dW in

abðtÞ ¼ h3 B"ðtÞ½ �aqabðtÞ: (16)

Here we have defined rank-2 versions of the eligibility trace tensors from (12):

pabðtÞ ¼
1

t

f0 uaðt� 1Þð Þhbðt� 1Þþ 1� 1

t

� �

pabðt� 1Þ;

qabðtÞ ¼
1

t

f0 uaðt� 1Þð Þxbðt� 1Þþ 1� 1

t

� �

qabðt� 1Þ: (17)

As desired, the Equation (15) are local, depending only on the pre- and post-synaptic

activity, together with a random feedback projection of the error signal. In addition, because

all of the quantities appearing in Equation (15) are computed in real time as the RNN is run,

the weight updates can be performed online, in contrast to BPTT, for which the dynamics over

all timesteps must be run first forward and then backward before making any weight updates.

Hence, we refer to the learning rule given by (15 - 12) as random feedback local online (RFLO)

learning.

Backpropagation through time
Because it is the standard algorithm used for training RNNs, in this section we review the

derivation of the learning rules for backpropagation through time (BPTT) (Rumelhart et al.,

1985) in order to compare it with the learning rules presented above. The derivation here

follows Lecun (1988).

Consider the following Lagrangian function:

L h;z;W;Win;Wout; t
� �

¼
X

i

ziðtÞ hiðtÞ� hiðt� 1Þþ 1

t

hiðt� 1Þ�f Whðt� 1ÞþWinxðtÞ
� �

i

� �h i

� �

þ 1

2

X

i

y�i ðtÞ� WouthðtÞ
� �

i

� �2

: (18)

The second line is the cost function that is to be minimized, while the first line uses the

Lagrange multiplier zðtÞ to enforce the constraint that the dynamics of the RNN should follow

Equation (1). From Equation (18) we can also define the following action:

S h;z;W;Win;Wout
� �

¼ 1

T

X

T

t¼1
L h;z;W;Win;Wout; t
� �

: (19)

We now proceed by minimizing Equation (19) with respect to each of its arguments. First,

taking qS=qziðtÞ just gives the dynamical Equation (1). Next, we set qS=qhiðtÞ ¼ 0, which yields

ziðtÞ ¼ 1� 1

t

� �

ziðtþ 1Þþ 1

t

X

j

zjðtþ 1Þf0 WhðtÞþWinxðtþ 1Þ
� �

j

� �

Wjiþ ðWoutÞT"ðtÞ
h i

i
; (20)

which applies at timesteps t ¼ 1; . . . ; T � 1. To obtain the value at the final timestep, we take

qS=qhiðTÞ, which leads to
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ziðTÞ ¼ ðWoutÞT"ðTÞ
� �

i
: (21)

Finally, taking the derivative with respect to the weights leads to the following:

qS

qWij

¼� 1

Tt

X

T

t¼1
ziðtÞf0 Whðt� 1ÞþWinxðtÞ

� �

i

� �

hjðt� 1Þ

qS

qW in
ij

¼� 1

Tt

X

T

t¼1
ziðtÞf0 Whðt� 1ÞþWinxðtÞ

� �

i

� �

xjðtÞ

qS

qWout
ij

¼� 1

T

X

T

t¼1
"iðtÞhjðtÞ: (22)

Rather than setting these derivatives equal to zero, which may lead to an undesired

solution that corresponds to a maximum or saddle point of the action and would in any case

be intractable, we use the gradients in Equation (22) to perform gradient descent, reducing

the error in an iterative fashion:

DWij ¼
h2

Tt

X

T

t¼1
ziðtÞf0 Whðt� 1ÞþWinxðtÞ

� �

i

� �

hjðt� 1Þ

DW in
ij ¼

h
3

Tt

X

T

t¼1
ziðtÞf0 Whðt� 1ÞþWinxðtÞ

� �

i

� �

xjðtÞ

DWout
ij ¼

h1

T

X

T

t¼1
"iðtÞhjðtÞ; (23)

where hi are learning rates.

The BPTT algorithm then proceeds in three steps. First, the dynamical Equation (1) for hðtÞ
are integrated forward in time, beginning with the initial condition hð0Þ. Second, the auxiliary

variable zðtÞ is integrated backwards in time using Equation (20), using with the hðtÞ saved
from the forward pass and the boundary condition zðTÞ from Equation (21). Third, the weights

are updated according to Equation (23), using hðtÞ and zðtÞ saved from the preceding two

steps.

Note that no approximations have been made in computing the gradients using either the

RTRL or BPTT procedures. In fact, as we will show in the following section, the two algorithms

are completely equivalent, at least in the case where RFLO weight updates are performed only

at the end of each trial rather than at every timestep.

A unified view of gradient-based learning in recurrent
networks
As pointed out previously (Beaufays and Wan, 1994; Srinivasan et al., 1994), the difference

between RTRL and BPTT can ultimately be traced to distinct methods of bookkeeping in

applying the chain rule to the gradient of the loss function. (Thanks to A. Litwin-Kumar for

discussion about this correspondence). In order to make this explicit, we begin by noting that,

when taking implicit dependences into account, the loss function defined in Equation (2) has

the form

L¼ L h0; . . . ;ht W;ht�1 W;ht�2ð. . .Þ
� �� �

; . . .
� �

: (24)

In this section, we write ht � hðtÞ for notational convenience, and consider only updates to

the recurrent weights W, ignoring the input xðtÞ to the RNN. In any gradient-based learning

scheme, the weight update DWab should be proportional to the gradient of the loss function,

which has the form
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qL

qWab

¼
X

t

qL

qht �
qht

qWab
: (25)

The difference between RTRL and BPTT arises from the two possible ways of keeping track

of the implicit dependencies from Equation (24), which give rise to the following equivalent

formulations of Equation (25):

qL

qWab

¼
P

t
qLð...;ht ;...Þ

qht � qhtðW;ht�1ðW;ht�2ð...ÞÞÞ
qWab

; RTRL

P

t

qL ...;ht W;ht�1ð...Þð Þ;htþ1 W;htð...Þð Þ;...ð Þ
qht � qhtðW;ht�1Þ

qWab
: BPTT

8

<

:

(26)

In RTRL, the first derivative is simple to compute because loss function is treated as an

explicit function of the variables ht. The dependence of ht on W and ht0 (where t0<t) is then
taken into account in the second derivative, which must be computed recursively due to the

nested dependence on W. In BPTT, on the other hand, the implicit dependencies are dealt

with in the first derivative, which in this case must be computed recursively because all terms

at times t0>t depend implicitly on ht. The second derivative then becomes simple since these

dependencies are no longer present.

Let us define the following:

Pi
abðtÞ �

qhtiðW;ht�1ðW;ht�2ð. . .ÞÞÞ
qWab

;

ziðtÞ ��
qL . . . ;ht W;ht�1 W;ht�2ð. . .Þ

� �� �

; . . .
� �

qhti
: (27)

Then, using the definition of L from Equation (2) and the dynamical Equation (1) for ht to

take the other derivatives appearing in Equation (26), we have

qL

qWab

¼ �1TPt

P

i ðWoutÞT"ðtÞ
� �

i
Pi
abðtÞ; RTRL

�1tTPt zaðtÞf0ðuaðtÞÞht�1b : BPTT

(

(28)

The recursion relations follow from application of the chain rule in the definitions from

Equation (27):

Pi
abðtÞ ¼ 1� 1

t

� �

Pi
abðt� 1Þþ 1

t

X

j

f0ðuiðt� 1ÞÞWijP
j
abðt� 1Þþ 1

t

diaf
0ðuaðtÞÞhbðt� 1Þ;

ziðtÞ ¼ 1� 1

t

� �

ziðtþ 1Þþ 1

t

X

j

f0ðujðtþ 1ÞÞWjizjðtþ 1Þþ
X

j

Wout
ji "jðtÞ: (29)

These recursion relations are identical to those appearing in Equation (11) and

Equation (20). Notably, the first is computed forward in time, while the second is computed

backward in time. Because no approximations have been made in computing the gradient in

either case for Equation (28), the two methods are equivalent, at least if RTRL weight updates

are made only at the end of each trial, rather than online. For this reason, only one of the

algorithms (BPTT) was compared against RFLO learning in the main text.

As discussed in previous sections, RTRL has the advantages of obeying causality and of

allowing for weights to be continuously updated. But, as discussed above, RTRL has the

disadvantage of being nonlocal, and also features a greater computational cost due to the

necessity of updating a rank-3 tensor Pi
abðtÞ rather than a vector ziðtÞ at each timestep. By

dropping the second term in the first line of Equation (29), RFLO learning eliminates both of

these undesirable features, so that the resulting algorithm is causal, online, local, and has a

computational complexity ( ~N2 per timestep, vs. ~N4 for RTRL) on par with BPTT.
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Appendix 2

DOI: https://doi.org/10.7554/eLife.43299.011

Analysis of the RFLO learning rule
Given that the learning rules in Equation (7) do not move the weights directly along the

steepest path that would minimize the loss function (as would the learning rules in

Equation (10)), it is worthwhile to ask whether it can be shown that these learning rules in

general decrease the loss function at all. To answer this question, we consider the change in

weights after one trial lasting T timesteps, working in the continuous-time limit for

convenience, and performing weight updates only at the end of the trial:

DW¼ 1

T

Z T

0

dtdWðtÞ;

DWout ¼ 1

T

Z T

0

dtdWoutðtÞ (30)

where dW and dWout are given by Equation (7). For simplicity in this section we ignore the

updates to the input weights, since the results in this case are very similar to those for

recurrent weight updates.

In the first subsection of this appendix, we show that, under some approximations, the loss

function tends to decrease on average under RFLO learning if there is positive alignment

between the readout weights Wout and the feedback weights B. In the second subsection, we

show that this alignment tends to increase during RFLO learning.

Decrease of the loss function
We first consider the change in the loss function defined in Equation (2) after updating the

weights:

DL¼ 1

2T

Z T

0

dt "2ðt;WþDW;WoutþDWoutÞ� "2ðt;W;WoutÞ
� �

: (31)

Assuming the weight updates to be small, we ignore terms beyond leading order in DW

and DWout. Then, using the update rules in Equation (30) and performing some algebra,

Equation (31) becomes

DL¼�h
1

T

X

ab

Z T

0

dt

T
"aðtÞhbðtÞ

� �2

�h2

T

Z T

0

dt

T

Z T

0

dt0

T

X

ab

X

ijk

Wout
ij Bak"iðtÞPj

abðtÞ"kðt0Þpabðt0Þ

�DLð1ÞþDLð2Þ: (32)

Clearly the first term in Equation (32) always tends to decrease the loss function, as we

would expect given that the precise gradient of L with respect to Wout was used to determine

this part of the learning rule. We now wish to show that, at least on average and with some

simplifying assumptions, the second term in Equation (32) tends to be negative as well.

Before beginning, we note in passing that this term is manifestly nonpositive like the first term

if we perform RTRL, in which case
P

k Bak"kðt0Þpabðt0Þ !
P

kl W
out
kl "kðt0ÞPl

abðt0Þ in Equation (32),

making the gradient exact.

In order to analyze DLð2Þ, we will assume that the RNN is linear, with fðxÞ ¼ x. Further, we

will average over the RNN activity hðtÞ, assuming that the activities are correlated from one

timestep to the next, but not from one unit to the next:
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hhiðtÞhjðt0Þih ¼ dijCðt� t0Þ: (33)

The correlation function should be peaked at a positive value at t � t0 ¼ 0 and decay to 0 at

much earlier and later times. Finally, because of the antisymmetry under x! �x, odd powers

of h will average to zero: hhiih ¼ hhihjhkih ¼ 0.

With these assumptions, we can express the activity-averaged second line of Equation (32)

as hDLð2Þih ¼ F1 þ F2, with

F1 ¼�
h2

T
N
X

ajkl

Wout
kj Bal

Z T

0

dt

T

Z T

0

dt0

T
y�kðtÞy�l ðt0Þ

�
Z t

0

du

t

eð1�WÞðu�tÞ=t
h i

ja

Z t0

0

du0

t

e�u
0=tCðt0� u0� uÞ; (34)

and

F2 ¼�
h2

T
N
X

ajklm

Wout
kj Wout

kl BamW
out
ml

Z T

0

dt

T

Z T

0

dt0

T

Z t

0

du

t

Z t0

0

du0

t

� e�u
0=t eð1�WÞðu�tÞ=t
h i

ja
Cðt� t0ÞCðt0� u0� uÞþOðN0Þ: (35)

In order to make further progress, we can perform an ensemble average over W, assuming

that Wij ~Nð0; g2=NÞ is a random variable, which leads to

h eð1�WÞðu�tÞ=t
h i

ja
iW ¼ djae

ðu�tÞ=tþOðg2=NÞ: (36)

This leads to

F1 ¼�
h
2

T
N

Z T

0

dt

T

Z T

0

dt0

T
½y�ðtÞ�TWoutBy�ðt0Þ

�
Z t

0

du

t

Z t0

0

du0

t

eð�tþu�u
0Þ=tCðt0� u0� uÞþOðN0Þ; (37)

and

F2 ¼�
h2

T
NTr ðWoutÞTWoutBWout

h i

Z T

0

dt

T

Z T

0

dt0

T

Z t

0

du

t

Z t0

0

du0

t

� eð�tþu�u
0Þ=tCðt� t0ÞCðt0� u0� uÞþOðN0Þ: (38)

Putting Equation (37) and Equation (38) together, changing one integration variable, and

dropping the terms smaller than OðNÞ then gives

hDLð2Þih;W ¼�
h
2

T
N

Z T

0

dt

T

Z T

0

dt0

T

Z t

0

du

t

Z t0

0

dv

t

eð�t�t
0þuþvÞ=tCðu� vÞ

� ½y�ðtÞ�TWoutBy�ðt0ÞþCðt� t0ÞTr ðWoutÞTWoutBWout
h in o

: (39)

Because we have assumed that CðtÞ � 0, the sign of this quantity depends only on the sign

of the two terms in the second line of Equation (39).

Already we can see that Equation (39) will tend to be negative when Wout is aligned with

B. To see this, suppose that B ¼ aWout, with a>0. Due to the exponential factor, the

integrand will be vanishingly small except when t » t0, so that the first term in the second line in

this case can be written as »ajðWoutÞTy�ðtÞj2 � 0. The second term, meanwhile, becomes

aCðt � t0ÞTr ððWoutÞTWoutÞ2
h i

� 0.

The situation is most transparent if we assume that the RNN readout is one-dimensional, in

which case the readout and feedback weights become vectors wout and b, respectively, and

Equation (39) becomes
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hDLð2Þih;W ¼�
h2

T
N

Z T

0

dt

T

Z T

0

dt0

T

Z t

0

du

t

Z t0

0

dv

t

eð�t�t
0þuþvÞ=tCðu� vÞ

� y�ðtÞy�ðt0Þwout �bþCðt� t0Þjwoutj2wout �b
n o

: (40)

In this case it is clear that, as in the case of feedforward networks (Lillicrap et al., 2016),

the loss function tends to decrease when the readout weights become aligned with the

feedback weights. In the following subsection we will show that, at least under similar

approximations to the ones made here, such alignment does in fact occur.

Alignment of readout weights with feedback weights
In the preceding subsection it was shown that, assuming a linear RNN and averaging over

activities and recurrent weights, the loss function tends to decrease when the alignment

between the readout weights Wout and the feedback weights B becomes positive. In this

subsection we ask whether such alignment does indeed occur.

In order to address this question, we consider the quantity TrðWoutBÞ and ask how it

changes following one cycle of training, with combined weight updates on W and Wout. (As in

the preceding subsection, external input to the RNN is ignored here for simplicity.) The effect

of modifying the readout weights is obvious from Equation (15):

DTrðWoutBÞ ¼TrððDWoutÞBÞ

¼ h
1

X

ab

Bba

Z T

0

dt

T
"aðtÞhbðtÞ: (41)

The update to the recurrent weights, on the other hand, modifies hðtÞ in the above

equation. Because we are interested in the combined effect of the two weight updates and

are free to make the learning rates arbitrarily small, we focus on the following quantity:

G� q
2

qh1qh2

j h1;h2¼0DTrðW
outBÞ

¼ q

qh2

jh2¼0
X

ab

Bba

Z T

0

dt

T
"aðtÞhbðtÞ: (42)

The goal of this subsection is thus to show that (at least on average) G>0.

In order to evaluate this quantity, we need to know how the RNN activity hðtÞ depends on
the weight modification DW. As in the preceding subsection, we will assume a linear RNN and

will work in the continuous-time limit (t� 1) for convenience. In this case, the dynamics are

given by

t

d

dt
hðtÞ ¼ ðWþDWÞhðtÞ: (43)

If we wish to integrate this equation to get hðtÞ and expand to leading order in DW, care

must be taken due to the fact that W and DW are non-commuting matrices. Taking a cue

from perturbation theory in quantum mechanics (Sakurai, 1994), we can work in the

‘interaction picture’ and obtain

hðtÞ ¼ eWt=teDŴt=thð0Þ; (44)

where

DŴ� e�Wt=t
DWeWt=t: (45)

We can now expand Equation (44) to obtain
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hðtÞ ¼ eWt=tþ t

t

DWeWt=tþOðh2

2
Þ

h i

hð0Þ: (46)

For a linear network, the update rule for W from Equation (15) is then simply

DWab ¼ h2

Z T

0

dt

T

X

c

Bac"cðtÞ�hbðtÞ; (47)

where the bar denotes low-pass filtering:

�hðtÞ ¼
Z t

0

dt0

t

e�t
0=thðt� t0Þ: (48)

Combining (Equations (46–48)), the time-dependent activity vector to leading order in h2

is

hiðtÞ ¼ ĥiðtÞþh2

t

t

X

jk

Bik

Z T

0

dt0

T

Z t0

0

dt00

t

e�t
00=t y�kðt0Þ�

X

l

Wout
kl ĥlðt0Þ

" #

ĥjðt0� t00ÞĥjðtÞ; (49)

where ĥðtÞ is the unperturbed RNN activity vector (i.e. without the weight update DW). With

this result, we can express Equation (42) as G ¼ G1 þ G2, where

G1 ¼
X

ab

X

ij

BbaBbj

Z T

0

dt

T

Z T

0

dt0

T

t

t

Z t0

0

dt00

t

e�t
00=t"̂aðtÞ"̂jðt0ÞĥiðtÞĥiðt0� t00Þ (50)

and

G2 ¼�
X

ab

X

ijk

BbaBikW
out
ai

Z T

0

dt

T

Z T

0

dt0

T

t

t

Z t0

0

dt00

t

e�t
00=tĥbðtÞ"̂kðt0ÞĥjðtÞĥjðt0� t00Þ: (51)

Here we have defined "̂ðtÞ � y�ðtÞ �WoutĥðtÞ.
In order to make further progress, we follow the approach of the previous subsection and

perform an average over RNN activity vectors, which yields

hG1iĥ ¼
N

t

Z T

0

dt

T
t

Z T

0

dt0

T
fy�ðtÞ �BTB �y�ðt0Þ

Z t0

0

dt00

t

e�t
00=tCðt� t0þ t00Þ

þTr BTBWoutðWoutÞT
h i

Z t0

0

dt00

t

e�t
00=tCðt� t0ÞCðt� t0þ t00ÞþOð1=NÞg (52)

and

hG2iĥ ¼
N

t

TrðBWoutBWoutÞ
Z T

0

dt

T
t

Z T

0

dt0

T

Z t0

0

dt00

t

e�t
00=t Cðt� t0ÞCðt� t0þ t00ÞþOð1=NÞ½ �: (53)

Similar to the integral in Equation (39), both of these quantities will tend to be positive if

we assume that CðtÞ � 0 with a peak at t ¼ 0, and note that the integrand is large only when

t » t0.

In order to make the result even more transparent, we can again consider the case of a

one-dimensional readout, in which case Equation (52) becomes

hG1iĥ ¼
Njbj2
t

Z T

0

dt

T
t

Z T

0

dt0

T

Z t0

0

dt00

t

e�t
00=t½y�ðtÞy�ðt0ÞCðt� t0þ t00Þ

þ jwoutj2Cðt� t0ÞCðt� t0þ t00ÞþOð1=NÞ� (54)

and
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hG2iĥ ¼
N

t

ðwout �bÞ2
Z T

0

dt

T
t

Z T

0

dt0

T

Z t0

0

dt00

t

e�t
00=t Cðt� t0ÞCðt� t0þ t00ÞþOð1=NÞ½ � (55)

This version illustrates even more clearly that the right hand sides of these equations tend

to be positive.

Equation (52) (or, in the case of one-dimensional readout, Equation (54)) shows that the

overlap between the readout weights and feedback weights tends to increase with training.

Equation (39) (or Equation (40)) then shows that the readout error will tend to decrease

during training given that this overlap is positive. While these mathematical results provide a

compelling plausibility argument for the efficacy of RFLO learning, it is important to recall that

some limiting assumptions were required in order to obtain them. Specifically, we assumed

linearity of the RNN and vanishing of the cross-correlations in the RNN activity, neither of

which is strictly true in a trained nonlinear network. In order to show that RFLO learning

remains effective even without these limitations, we must turn to numerical simulations such as

those performed in the main text.
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