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A B S T R A C T

Environmental heat is a growing public health concern in cities. Urbanization and global climate change
threaten to exacerbate heat as an already significant environmental cause of human morbidity and mortality.
Despite increasing risk, very little is known regarding determinants of outdoor urban heat exposure. To provide
additional evidence for building community and national-scale resilience to extreme heat, we assess how US
outdoor urban heat exposure varies by city, demography, and activity. We estimate outdoor urban heat exposure
by pairing individual-level data from the American Time Use Survey (2004–2015) with corresponding me-
teorological data for 50 of the largest metropolitan statistical areas in the US. We also assess the intersection of
activity intensity and heat exposure by pairing metabolic intensities with individual-level time-use data. We
model an empirical relationship between demographic indicators and daily heat exposure with controls for
spatiotemporal factors. We find higher outdoor heat exposure among the elderly and low-income individuals,
and lower outdoor heat exposure in females, young adults, and those identifying as Black race. Traveling, lawn
and garden care, and recreation are the most common outdoor activities to contribute to heat exposure. We also
find individuals in cities with the most extreme temperatures do not necessarily have the highest outdoor heat
exposure. The findings reveal large contrasts in outdoor heat exposure between different cities, demographic
groups, and activities. Resolving the interplay between exposure, sensitivity, adaptive capacity, and behavior as
determinants of heat-health risk will require advances in observational and modeling tools, especially at the
individual scale.

1. Introduction

Cities face warmer futures as a consequence of continued urbani-
zation and global-scale climate change, and health needs related to heat
may grow independently of projected warming as urban populations
grow and age (McCarthy et al., 2010). Heat already ranks as a leading
weather-related cause of human mortality and morbidity in the US
(Berko et al., 2014), and improved planning, preparedness, and re-
sponse strategies are required now and into the coming decades.
The immediate impacts of heat on human health and well-being

span a wide range of events and outcomes, including thermal dis-
comfort, fatigue and exhaustion, cardiovascular and respiratory dis-
tress, and heat stroke. Beyond these immediate effects, heat has the

potential to disrupt other health-promoting activities. In some regions,
heat may deter or constrain outdoor physical activity (Obradovich and
Fowler, 2017; Zivin and Neidell, 2014), which has been widely linked
to physical (Sallis et al., 1998) and mental health benefits (Frumkin
et al., 2017). Furthermore, if heat affects how and where people choose
to spend their time, downstream impacts on public transportation,
tourism, commerce, and other sectors could occur. Thus, there should
be wide interest in understanding more precisely the nature of people's
experiences with heat in cities, not only to reduce adverse health
events, but also to help cities achieve other goals related to economic
growth, efficiency, equity, and overall quality of life.
Vulnerability to heat and other hazards is often defined as a function

of exposure, sensitivity, and adaptive capacity (Eisenman et al., 2016;
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Turner et al., 2003). Regardless of the specific framing used to define
risk or vulnerability, exposure is a critical link in the causal pathway
that connects environmental heat to societal outcomes of interest. At
the population scale, there have been significant advances over the past
several decades in understanding how weather conditions contribute to
mortality and morbidity in cities (Anderson and Bell, 2009; Eisenman
et al., 2016; Gasparrini et al., 2015; Saha et al., 2013). The repeated
identification of temperature-mortality and temperature-morbidity as-
sociations across the world points to the obvious importance of ex-
posure. Previous literature has widely established the link between
lower socioeconomic status and increased risk of negative heat-related
health outcomes (Eisenman et al., 2016; Harlan et al., 2013; Pickett and
Pearl, 2001; Reid et al., 2009; Uejio et al., 2011). Characteristics such as
higher rates of pre-existing health conditions, lower quality housing,
less access to cooling resources, and low surrounding vegetation are
common determinants of increased risk. Individuals living in poverty
have higher rates of pre-existing health conditions (Joseph et al., 2007;
Phelan et al., 2010) and decreased ability to access necessary medical
care or cooling resources (Balbus and Malina, 2009), leading to in-
creased risk (Kovats and Hajat, 2008). However, the specifics of po-
pulation heat exposure—necessitating contact between individuals and
the environment—has rarely been considered in heat-health risk as-
sessments as it has been in other environmental topics such as pollution
exposure (Ott, 1985). Understanding the circumstances by which
people are exposed to heat and how this exposure varies at scales
ranging from person-to-person to city-to-city may offer new insights
into the risk mitigation and adaptation strategies that might be most
efficient or beneficial.
Assessment of heat exposure at the individual level can be difficult,

and consequently much research focuses on place-based rather than
person-based assessments. Personal heat exposure is defined as contact
between an individual and an indoor or outdoor environment that poses
a risk of thermal discomfort and/or an increase in core body tem-
perature (Kuras et al., 2017). Thus, assessment of personal heat ex-
posure requires not only information about environmental conditions,
but also information about people and their time-activity patterns. Al-
though observational and simulation data related to human time-ac-
tivity patterns are at the core of exposure assessment for other hazards
such as air pollutants (Jerrett et al., 2005; Park and Kwan, 2017), such
data have infrequently been collected or examined to understand the
nature of health risks associated with heat. The research that does exist
spans case study approaches using wearable sensors (Bernhard et al.,
2015; Kuras et al., 2015); city-scale assessments using simulation tools
(Glass et al., 2015; Karner et al., 2015; Swarup et al., 2017), and ana-
lysis of national-scale survey data (Obradovich and Fowler, 2017; Zivin
and Neidell, 2014). In addition to heat exposure, activity intensity can
also influence heat stress; higher physical exertion (i.e. increased me-
tabolic rates) can accelerate heat exhaustion (Armstrong et al., 2007;
Havenith et al., 1998). However, heat exposure research lacks quanti-
fication of the intensity of physical activity during hot weather despite
clear guidelines to avoid high intensity physical activity when heat
stress is possible (OSHA, 2017). As a result, there is opportunity to
evaluate activity intensity alongside heat exposure to identify if activity
intensity is an overlooked factor when evaluating heat exposure.
To address these research gaps, we focus on two main research

questions: 1) How does human activity lead to different levels of out-
door heat exposure in the US urban population? and, 2) How does
accumulated heat exposure vary amongst population subgroups in US
urban areas?

2. Methodology

To evaluate the relationship of heat exposure with activity, urban
location, and demography across the contiguous US, individual-level
time-activity data from the American Time Use Survey (ATUS, years
2004–2015) are combined with weather data for major metropolitan

statistical areas (MSAs) in the US. Heat exposure during activities is
assessed using measures of metabolic intensity, activity duration, and
regional apparent temperature.

2.1. Activity data

Administered by the Bureau of Labor Statistics (BLS), the ATUS is an
annual and ongoing survey that estimates national trends in labor,
health, and social activity. Time use data from the ATUS are compiled
to identify historical activity patterns in the urban US Individuals age
15 or older are eligible, and questions are asked via computer-assisted
telephone interviewing about time use, socioeconomic status, and
characteristics of their household (BLS and US Census Bureau, 2016).
The survey of respondent's time use encompasses all activities during a
pre-determined 24-h date. We choose the ATUS to evaluate individual
heat exposure because it comprehensively documents daily personal
time use over a long period for many individuals living in different
cities. Activity records are temporally explicit, allowing regional tem-
peratures to be matched with each activity to estimate heat exposure
for activities that occur outdoors. We focus on aggregation of ATUS
records at the MSA level to compare regional patterns in exposure. This
is the smallest spatial scale at which sufficient sample sizes exist for a
multi-city analysis, allowing for comparisons across activity times and
types, demographic groups, and MSAs. The ATUS has been conducted
since 2003, but data utilized is from July 2004 to December 2015 due
to significant changes in the survey in mid-2004.
To identify geographic locations of activities, ATUS records are

matched to records from the Current Population Survey (CPS) to
identify the corresponding MSA of residence for each household (Flood
et al., 2015). We choose 50 of the most populous MSAs for evaluation
such that a high sample of outdoor activities during hot weather across
multiple climates could be assessed. Supplementary Information (SI)
Tables S1 and S2 summarize the MSAs included, and Fig. 1 displays a
US map with climate zone classifications and MSAs locations. We group
MSAs according to the US Department of Energy climate zone classifi-
cations (Baecheler et al., 2010) to compare urban heat exposure pat-
terns across contiguous US climates. As this classification system is at
the county level, we aggregate up to the MSA level. Of the MSAs in this
analysis, 12 have inter-county, intra-MSA climate zone classifications.
In these cases, the dominant climate zone by population cover is chosen
(see SI Table S3 for details).

2.2. Classifying outdoor activities

This analysis focuses on outdoor activity and its associated heat
exposure and metabolic intensity. ATUS activity types and location
codes were reviewed to determine which activities occur indoors,
outdoors, or at an unknown location, following a similar approach to
Zivin and Neidell (2014). As this classification scheme is conservative
with marking activities as occurring outdoors, actual time spent out-
doors by ATUS respondents may be underestimated.
Activities (ATUS variable TRCODEP) are coded as occurring out-

doors or elsewhere (inside or unknown) based on the activity descrip-
tion. Activities are coded as occurring indoors or outdoors if they are
explicitly described as such or are highly probable to occur indoors (
P Pindoor outdoor) or outdoors ( P Pindoor outdoor). Note that probabilities
for these activities to occur indoors or outdoors are not explicit but used
as examples for context. For activities that usually occur indoors but
may occur outdoors depending on circumstance ( >P Pindoor outdoor), a
classification of ‘indoors’ is chosen. For remaining cases, such as ac-
tivities that could reasonably occur either indoors or outdoors
(P Pindoor outdoor), or locations with vague descriptions, a classification
of unknown is chosen. The distinction between indoor activities and
activities with an unknown location is trivial for this analysis because
only outdoor heat exposure is being investigated, but indoor and un-
known activity locations are still differentiated for clarity. Examples of
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probable indoor activities are “laundry”, “bowling”, and “computer
use;” examples of probable outdoor activities are “exterior [household]
cleaning”, “hiking,” and “golfing;” examples of activities with unknown
indoor/outdoor classifications are “traveling”, “tobacco and drug use”,
and “playing basketball”. Some examples of activities that are coded as
indoors under the assumption the activity usually occurs indoors are
“eating and drinking”, “watching football”, and “playing with children
(not sports).” For a full list of how ATUS activities are classified, see SI
Section 1.2.
A separate variable, activity location (TEWHERE), is also coded as

indoors, outdoors, or unknown using the same above classification
scheme independent of the activity type. For the given activity loca-
tions, only “walking,” “biking,” “outdoors away from home,” and
“boat/ferry” are classified as outdoor locations while all other locations
are indoors or unknown (e.g. “bus”, “library,” and “bank” are indoors;
“unspecified place” and “other mode of transportation” are unknown).
This approach is used so that in cases where the location is unknown
based on activity type (e.g. “playing basketball”), the activity can still
be marked as indoors or outdoors when the activity location is known
(e.g. “outdoors away from home”) and vice versa. In cases where the
activity type and location have conflicting indoor/outdoor codes, a
code of outdoors is assigned. This is done because the coding is con-
servative in assigning outdoor activities, therefore an outdoors code is
assumed dominant (e.g. “eating and drinking” is coded occurring in-
doors but would be coded outdoors if it occurs “outdoors away from
home”).
Across all work-related activities, less than half a percent occurred

“outdoors away from home,” and 72% occurred at “the respondent's
workplace,” the latter of which does not differentiate between indoor
and outdoor presence (and thus, were not coded as occurring outdoors
in our analysis). Therefore, work-related outdoor heat exposure is likely
under captured in the ATUS, and this analysis focuses on non-work
related activities.

2.3. Weather data

Weather data are obtained from the US National Centers for
Environmental Information for each MSA at hourly and sub-hourly
times coincident with the ATUS records. Consistent with other multi-
city scale assessments of temperature-health risks, meteorological

stations are chosen based on completeness of weather records and
proximity to MSA population centers with use of one station per MSA.
Outdoor environmental heat is quantified using apparent tempera-

ture (TA). Apparent temperature is commonly used as a combined
temperature-humidity index that is intended to represent thermal stress
associated with environmental heat as perceived by a human body
(Brooke Anderson et al., 2013; Zanobetti and Schwartz, 2008). TA is
estimated using the National Weather Service (NWS) parameterization
of the original Steadman (1979) apparent temperature algorithms
(NWS, 2016; Rothfusz, 1990). For more details of apparent temperature
estimation via this method, refer to SI Section 2. For each activity re-
cord, all TA observations occurring during an activity are matched
based on date, time, and MSA. For activities occurring during times
with gaps in weather observations, the nearest weather observation to
the activity time is used if the time difference is under three hours
apart. For this approach, only 0.31% (n=210) of outdoor activities
have unavailable weather observations within this window, which are
omitted.

2.4. Evaluating individual exposure and activity intensity

The NWS heat index (‘likeliness of heat disorders with prolonged
exposure or strenuous activity’) is referenced to evaluate severity of
heat exposure for air temperatures above 27 °C (80°F) with relative
humidity above 40% (NWS, 2017). Heat risk and recommended pre-
ventative measures elevate with the NWS heat index as follows:
27–33 °C TA (80–91°F TA) require caution; 33–39 °C TA (91–103°F TA)
require extreme caution; and 39 °C+TA (103°F+ TA) are associated
with danger. Although there is a fourth heat index threshold indicating
extreme danger (52 °C TA and above), it is omitted from this analysis
because outdoor activity above 39 °C is rarely captured in the ATUS; out
of all outdoor activities, only 0.64% (n= 417) occurred above 39 °C,
and no activities were observed above 52 °C. To improve the accuracy
of exposure estimates for outdoor activities, outdoor exposure is a time-
weighted function of all TA observations for the duration of each ac-
tivity.
As high physical exertion increases likelihood of heat stress because

of internal heat production, metabolic equivalent of task (MET) data for
ATUS activity types estimated by Tudor-Locke et al. (2009) are linked
to each activity to assess intensity and exposure simultaneously. One

Fig. 1. Metropolitan Statistical Areas studied with climate zones classifications. MSAs included in this analysis are hatched in black. For a list of the MSAs, please see
the SI. Note that the ‘Very Cold’ climate zone is not represented as a dominant climate zone for any MSA studied.
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MET is defined as the energy to lie or sit quietly and is equivalent to a
metabolic rate of consuming 3.5mL O2/kg/minute. For example, “re-
laxing and thinking” is 1.2 MET, “lawn, garden, and houseplant care” is
3.66 MET, and “biking” is 8.0 MET (see SI Section 1.2 for full details).
ATUS activities have a range of 0.9–10.0 MET. As physical exertion,
activity duration, and temperature are important factors when con-
sidering heat stress, heat exposure is evaluated as both activity in-
tensity-time (MET-minutes) within NWS heat index levels, and as MET-
degree-minutes (MDMs) above 27 °C TA (80°F TA). Fig. 2 demonstrates
how activities of varied intensity and duration translate to exposure
intensity (MDMs above 27 °C TA) as TA increases.
We evaluate exposure differences between demographic subgroups

to determine if previously established at-risk demographics are more
likely to accumulate heat exposure. Socioeconomic status has been
widely connected to health outcomes (Pickett and Pearl, 2001), and
heat-related social vulnerability has been well documented (Eisenman
et al., 2016; Harlan et al., 2013; Reid et al., 2009; Uejio et al., 2011).
Lower socioeconomic status is linked to higher rates of pre-existing
health conditions, lower quality and higher density housing with less
tree cover (Iverson and Cook, 2000; Martin et al., 2004), and lower
access to air-conditioning and cooling (Fraser et al., 2016; O’Neill et al.,
2005), all of which can contribute to increased risk of heat stress
(Kovats and Hajat, 2008). To ensure income is consistent across years,
income levels are adjusted to $2015 based on the BLS monthly histor-
ical Cost Price Index for urban US Consumers (US BLS, 2018). Elderly
individuals are often cited as the most vulnerable demographic to heat
stress, especially those 65 years of age or older (Gosling et al., 2009;
Grundy, 2006; Hondula et al., 2012; Whitman et al., 1997). We
therefore define elderly individuals as age 65 and older. Race and heat-
related mortality have also been linked in some analyses with those
identifying as Black often deemed most at risk (O’Neill et al., 2005;
Whitman et al., 1997), indicating race is an important factor to include
in assessments of heat exposure.
To identify significant predictors of exposure intensity at the po-

pulation level, we empirically model exposure intensity using a fixed
effects linear model fitted using weighted least squares. Predictor
variables tested focus on demographic, geographic, and temporal in-
fluences on activity behavior and climate. Exposure is non-normally
distributed; therefore, we choose the best performing model that pre-
dicts logarithmic, daily MDMs for ATUS respondents who spent any

time outdoors above 27 °C TA. The relationship of interest focuses on
categorical demographic indicators for age group, gender, household
income, and race with additional indicator variables to control for cli-
mate zone, geographic region (MSA), calendar date, and season. This
relationship is modeled as:

= + + + +

+

log MDM Age Gender Income Race( )i c d m s A G I R c d m s

i c d m s

, , , , , , ,

, , , , (1)

where i represents the individual, c represents the climate zone, d re-
presents the calendar date, m represents the MSA, and s represents
season. The demographic terms (e.g. Age, Gender) represent a vector of
categorical indicators with corresponding coefficients for each sub-
group level (e.g.

A1
for age group 1; ages 15–24). The Term

c d m s, , ,

represents a matrix of indicator variables included to control for un-
observed effects across the spatiotemporal indicators (climate, date,
MSA, and season). To further control for intra-MSA and intra-season
correlation, standard errors are clustered on both the MSA and the
season. A weighted least squares approach is utilized to incorporate the
ATUS individual-level weights to adjust for non-response, strata over-
sampling, and response variance (US BLS and US CB, 2017).
With time-use data, meteorological data, and activity intensity data

combined, we compare aggregated exposure patterns across activity
types, demographic groups, and cities. We evaluate environmental ex-
posure across major activity types (work, travel, household, etc.). These
activity groupings by type are simplified from the ATUS coding and
allow for simple differentiation across relevant outdoor activities.

3. Results

Over the 11.5-year sample period, 73,121 respondents engaged in
1.42 million total activities across the 50 examined MSAs. We estimate
3,486 respondents engaged in 6,666 activities outdoors above the 27 °C
TA threshold in this sample, totaling 6,302 hours, or 0.36% of all ob-
served activity time in the sample period. Results are primarily pre-
sented in MET-degree-minutes (MDMs) above 27 °C TA and activity
intensity-time (MET-minutes) above 27 °C TA to examine the combi-
nation of heat exposure and activity intensity across urban populations.
The mean person-day outdoor exposure for all individuals engaging in
at least one activity above 27 °C TA is 415 deg-min above 27 °C TA, and

Fig. 2. MET-degree-minutes for sample activities and
durations. Note that the y-axis scales logarithmically.
Relaxing (full description: relaxing and thinking) is 1.21
MET and represents a low intensity activity. Lawn care
(full description: lawn, garden, and houseplant care) is
3.66 MET and represents a medium intensity activity.
Biking is 8.0 MET and represents a high intensity activity.
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the mean person-day exposure intensity is 1,581 MDMs above 27 °C TA.
Summaries of population, total activities, outdoor activities, and tem-
peratures by MSA can be found in SI Table S2.

3.1. Outdoor heat exposure and activity intensity by demographics

Heat exposure intensity per person per day varies across demo-
graphic groups with at least one subgroup in each demographic in-
dicator being significant at the p=0.05 level. When controlling for
other factors, we estimate females had 36.5% less intense exposure than
males (CI: −46.0%, −25.4%; p < 0.001). Those identifying as Black
race had 34.2% less intense exposure (CI: −46.2%, −19.5%;
p < 0.001) compared the control (White), while Asian and other races
were not significant. Two of five age groups were found to be sig-
nificant: the elderly (ages 65 and over) accumulate 29.5% more ex-
posure intensity (CI: 2.49%, 63.6%; p=0.0304) relative to the control
group (ages 35–44), while young adults (ages 25–34) accumulate
19.2% less exposure intensity (CI: −27.3%, −10.3%; p < 0.001) re-
lative to the control group. Table 1 summarizes the results of model.
Fig. 3 shows activity intensity-time for three of the significant demo-
graphic comparisons across NWS heat index thresholds, displaying
trends of differing exposure between relevant demographic groups.
The activity “lawn, garden, and houseplant care” is the most sig-

nificant activity that contributes to total population exposure above
27 °C TA, and it is the main factor of higher elderly exposure: 46% of
total exposure intensity above 27 °C TA among the elderly are during
“lawn, garden, and houseplant care” compared to only 30% of exposure
intensity for the non-elderly population. This discrepancy of time spent
engaging in plant-related care is also a component of lower exposure in
the Black population; only 25% of outdoor activities above 27 °C TA are
plant-related care compared to 30% for non-Blacks. It should be ac-
knowledged that the ‘houseplant care’ portion of this activity would
occur indoors, while ‘lawn and garden care’ would occur outdoors.
Despite houseplant care occurring indoors, we argue it accounts for a
minimal portion of the total exposure. The median activity duration of
“lawn, garden, and houseplant care” occurring above 27 °C TA is
60 min. If we assume every “lawn, garden, and houseplant care” activity
dedicated an average of 5min of the total activity time to (indoor)

‘houseplant care’ with all remaining time dedicated to (outdoor) ‘lawn
& garden care,’ 95% of the total outdoor exposure would still be at-
tributed to ‘lawn & garden care.’ If instead every instance of the activity
dedicated an average of 20min to ‘houseplant care,’ 79% of total out-
door exposure would still be attributed to ‘lawn & garden care.’
Therefore, we believe ‘houseplant care’ does not significantly affect the
trends in outdoor exposure as it is appears unlikely that individuals
caring for houseplants would take up a significant amount of time in-
doors relative to the outdoor portions of ‘lawn and garden care.’
Less time spent working is casually related to an increase in ex-

posure as individuals may choose to speed more time engaging in
outdoor leisure and discretionary activities. We define discretionary
activities as activities where postponing or altering the time of occur-
rence is largely driven by personal preference. For example, one factor
that contributes to lower exposure in young adults is an elevated time
spent working compared to other age groups. For individuals engaging
in at least one outdoor activity above 27 °C TA, young adults (ages
25–34) spent 23% more time engaged in work-related activities than all
other individuals. The reverse is true in the elderly who spend more
time engaging in leisure activities due to a large majority of individuals
age 65 and over being retired or working less than full time. As a result,
elderly exposure is slightly elevated compared to young populations.
Additionally, heat exposure on weekends is higher relative to weekdays
due to less individuals engaging in work-related activities on weekends
(see SI Fig. S1).

3.2. Outdoor heat exposure and activity intensity by activity type

Discretionary activities (e.g. gardening, sports) dominate high
urban outdoor heat exposure as opposed to non-discretionary activities
(e.g. care for others, civic obligations). Fig. 4 shows outdoor heat ex-
posure time by activity type across the 50 studied major US urban
areas. Exposure above 27 °C TA most commonly occurs during the dis-
cretionary activities “lawn, garden, and houseplant care” (18% of total
outdoor activities), and “walking for exercise or leisure” (5.4% of total
outdoor activities). Outdoor travel, which may be less discretionary
depending on purpose (e.g. travel for work is less flexible while travel
for leisure is more flexible), is the most frequent activity type to acquire
heat exposure above 27 °C TA (37% of all activities). However, because
travel durations are often short (the 90th percentile outdoor travel time
is 20min), total exposure from travel is lower than other activities.
As heat approaches extremes, there are a smaller number and a

smaller proportion of individuals engaging in outdoor activities. This
decrease results from both decreased frequency and decreased duration
of outdoor activities, most notably for activities of typically longer
durations or higher intensities (e.g. activities occurring in the top
quantile in Fig. 4). Because outdoor activities are not frequently ob-
served at extreme temperatures, and extreme temperatures are rarely
reached even in the hottest climates, ‘extreme’ outdoor heat exposure
observed via the ATUS is rare. Despite this rarity, there are still many
observations of potentially high-risk activities during high tempera-
tures; we observed 719 outdoor activities above 27 °C TA that occurred
above the 90th percentile exposure intensity (2,563 MDMs>27 °C TA).
If we apply the individual-level survey weights to estimate the total
population surpassing this threshold on a hot summer day, this would
be equivalent to approximately 12 million people across the 50 studied
MSAs (6.7% of the 2016 MSA populations).

3.3. Heat exposure by urban region and climate

Heat exposure is partially driven by region and climate; comparing
exposure across the MSAs indicates that urban populations experience
different cumulative daily exposure during days with TA above 27 °C.
Personal daily MDMs above 27 °C TA for 39 of the studied MSAs are

Table 1
Summary results for fixed effects model predicting daily exposure intensity for
respondents who engaged in outdoor activities above 27 °C TA. Predicted per-
cent increase in daily MDMs is estimated by transforming regression coeffi-
cients using e( 1)*100%.

Variable Predicted % increase in daily MDMs p-value

Age (control: 35−44, n=721)
15–24 (n=401) 2.85% (−22.7%, 36.8%) 0.847
25–34 (n=541) − 19.2% (−27.3%, −10.3%) < 0.001
45–54 (n=622) 16.2% (−4.05%, 40.7%) 0.124
55–64 (n=513) −4.63% (−24.4%, 20.4%) 0.690
65+ (n=688) 29.5% (2.49%, 63.6%) 0.0304

Gender (control: Male, n=1746)
Female (n= 1740) − 36.5% (−46%, −25.4%) < 0.001

Household Income (control: $50,000 – $74,999, n=617)
< $15,000 (n=470) 15.7% (0.314%, 33.4%) 0.0453
$15,000 - $29,999 (n= 551) −3.07% (−14.9%, 10.4%) 0.639
$30,000 - $49,999 (n= 695) 1.94% (−19.9%, 29.8%) 0.876
$75,000 - $99,999 (n= 432) −1.39% (−18%, 18.6%) 0.882
≥ $100,000 (n= 721) 4.96% (−37%, 74.8%) 0.852

Race (control: White, n=2813)
Asian (n=112) − 51.1% (−77.5%, 6.68%) 0.0724
Black (n= 489) − 34.2% (−46.2%, −19.5%) < 0.001
Other / Mixed Race (n= 72) 35.7% (−10.4%, 106%) 0.150

Multiple R2: 0.627; Adjusted R2: 0.349
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displayed in Fig. 5 (MSAs with less than 30 samples are not displayed;
for more detailed results, including all MSAs studied, see SI Table S7).
Individuals in southern US MSAs more commonly experienced higher
daily exposure intensities with New Orleans, LA and Birmingham, AL
having the highest median and mean MDM per day, and the most ex-
treme case of exposure intensity occurred in Phoenix, AZ.
Despite climate being a significant predictor in exposure, it is clear

that other factors across MSAs contribute to varied regional exposure.
In model evaluation, we included measures of regional sprawl (MSA
sprawl index via Hamidi and Ewing, 2014) to evaluate if urban form is a
predictor of exposure intensity. When controlling for geographic region
as a random effect in mixed effects models, MSA sprawl was found to be
a statistically significant but very low magnitude predictor. Therefore,
we conclude that sprawl was not a significant influence on exposure
intensity across the measured urban population, but future work should
explore additional urban form metrics to improve understanding of
inter-urban influences on extreme exposure.

4. Discussion

Few studies have investigated the effect of hot days on outdoor
activity at the level of the individual. Understanding individually ex-
perienced heat exposure during activities is difficult for many reasons:
difficulty in obtaining a large sample size (especially for the most ex-
treme temperatures); low spatial or temporal resolution in temperature
data (especially in urban microclimates); and low spatial or temporal
resolution activity data. Some previous research has evaluated the

effect of temperature on personal activity and behavior using survey
data. Obradovich and Fowler (2017) estimated change in likeliness to
be physically active in a month and found that individuals in the US
typically become less active as temperature reaches extremes. Zivin and
Neidell (2014) estimated change in average time spent outdoors due to
temperature, finding that less time is spent outdoors for days with more
extreme temperatures. However, these studies focus on monthly and
daily summary temperatures rather than individually experienced
temperatures during activities and do not estimate personal heat ex-
posure. This study improves our understanding of individually experi-
enced heat exposure for a large, heterogeneous population sample and
identifies disparities in accumulated heat exposure.
Various demographic subgroups such as those in poverty or the

elderly are often cited as more vulnerable to heat stress due to reduced
access to cooling, and in some cases, race has also been linked to in-
creased negative heat-related health outcomes (Eisenman et al., 2016).
These results provide further evidence of heat-vulnerability in low-in-
come and elderly individuals as we find they accumulate higher ex-
posure intensity when controlling for other factors. On the other hand,
black individuals have lower exposure intensity than other races despite
often having higher rates of heat-related morbidity and mortality
compared to the general population. Males were found to accumulate
more heat exposure relative to females, and males are observed to en-
gage in activities during hot weather more often than females (54% of
males engaged in outdoor activities when temperatures are above 27 °C
TA versus 46% of females). This agrees with past research that indicates
males are exposed to heat more than females and may be at more risk

Fig. 3. Weighted outdoor activity intensity-times for significant demographic groupings of elderly ages vs. non-elderly ages (a), Black race vs. non-Black race (b), and
gender (c) under different heat thresholds for the 50 studied MSAs. Note that the y-axis scales logarithmically. Boxplots are for the interquartile range (IQR) and
lines/dots extend to the minima and maxima. TA ranges 21–27 °C represent a baseline, 27–33 °C represent heat index warning ‘caution,’ 33–39 °C represent heat index
warning ‘extreme caution,’ 39 °C and above represent heat index warnings ‘danger.’ The number of outdoor activities for each grouping is given by ‘n’ at the bottom of
the figure.

C.G. Hoehne et al. Health and Place 54 (2018) 1–10

6



(Kovats and Hajat, 2008). Although the most extreme exposure cases
may be atypical and uncharacteristic of a demographic cohort, outdoor
heat exposure and activity intensity quantified in this study (excluding
work-related activities) are not solely sufficient to explain heat-related
health outcomes.
Climate acclimatization and abnormally hot periods relative to ty-

pical regional weather may increase heat exposure especially if in-
dividuals engaging in moderate to high intensity activities do not re-
duce their activity time or physical activity intensity. After heat waves,
individually perceived thermal comfort may increase due to short-term
acclimatization (Lam et al., 2018). In this study, we used an absolute,
fixed temperature threshold across all cities to quantify how exposure
varies across cities or population groups. Future work might extend this
approach to consider city-specific temperature thresholds derived as a
function of local climatology, to account for possible regional accli-
matization in activity patterns and/or health risks (e.g., Anderson and
Bell, 2009; Grundstein et al., 2015). Although heat exposure may be
perceived as more severe in hotter and more humid regions, outdoor
heat exposure for some individuals may be comparable across regions
with varied climates. This also further highlights the potential threat of
increased severity and intensity of heat waves on unacclimated in-
dividuals (e.g. tourists, visitors), and individuals living in areas with
less access to cooling infrastructure. However, the issue of smaller
samples of extreme exposure in temperate and colder climates persists,
limiting our understanding of extreme heat exposure in these regions
despite continued warming in cities (McCarthy et al., 2010; Mora et al.,
2017).
The inclusion of activity intensity (metabolic equivalent of task)

allows for additional perspective in assessing heat exposure. In this

analysis, the contrasts in heat exposure intensity (MDMs) among sub-
groups are primarily driven by the contrasts in heat exposure. Contrasts
in physical activity intensity are only significant between men and
women (males: 5.50 mean MET above 27 °C TA; females: 5.14;
p < 0.001). Although variation in MDMs is mainly driven by apparent
temperature and exposure duration, we consider it important to eval-
uate heat exposure as a function of environmental heat, activity dura-
tion, and activity intensity to identify all causal factor that may influ-
ence the intensity of personal heat exposure. This is especially
important in understanding extreme and atypical cases of exposure.
Future work should explore the relationship between heat exposure,
activity intensity, and health outcomes to better understand the role of
physical activity intensity in heat-related health outcomes.

4.1. Limitations

The approach in this analysis and the nature of the survey data
inherently limits our ability to fully understand urban outdoor activity
exposure. In particular, important elements not captured in the ATUS
are outdoor work, omission of homeless individuals, and potential
sampling biases. Additionally, outdoor thermal conditions are hetero-
geneous within a MSA, but only one meteorological station was used
per MSA.
Heat exposure among working people is a very important global

concern (Kjellstrom et al., 2009), but the ATUS is poorly structured to
evaluate individual level heat exposure in occupational settings. To
assess heat exposure during work more accurately, more robust survey
data are required that closely monitor activity intensity and duration.
The ATUS coding limits the ability to determine if work related

Fig. 4. Weighted outdoor activity intensity-times by activity type and heat thresholds for the 50 studied MSAs. Note that the y-axis scales logarithmically. Boxplots
are for the IQR and lines/dots extend to the minima and maxima. TA ranges 21–27 °C represent a baseline, 27–33 °C represent heat index warning ‘caution,’ 33–39 °C
represent heat index warning ‘extreme caution,’ 39 °C and above represent heat index warnings ‘danger.’ The number of outdoor activities for each grouping is given
by ‘n’ at the bottom of the figure. ‘Work’ activities are excluded due to very low sample size. Activities in the ‘Other’ category include personal care, education,
consumer purchases, giving and receiving services, civic obligations, eating and drinking, religious activities, volunteering, and telephone calls.
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activities occurred outdoors; only 0.47% of work related activities were
confidently coded as outdoors, regardless of temperature. As a result,
samples of outdoor work may significantly under represent outdoor
workplace behavior because ATUS reporting options obfuscate indoor
versus outdoor presence during work. If work occurred outdoors and
away from the respondent's household, a more appropriate response to
location could arguably be “outdoors away from home” instead of “at
the respondents workplace.” Zivin and Neidell (2014) identify certain
industries as more vulnerable to high temperatures, and Eisenman et al.
(2016) correlated higher mortality risk for industries with higher rates
of outdoor work, but there is little knowledge on the frequency of high
heat outdoor work itself.
The ATUS inherently excludes homeless individuals, as it is a

household study. Heat-related morbidity and mortality among the
homeless can be disproportionately higher due to extended time out-
doors in the heat (Yip et al., 2008) along with other exacerbating fac-
tors related to health status and access to healthcare. Quantifying urban
heat exposure in the homeless population is vital, but it must be done
using different approaches.
Biases in survey response rates may prevent researchers from fully

understanding total population heat exposure via survey data. Between
2004 and 2015, the ATUS survey response rate was 54% (US BLS
and US CB, 2017). Regarding sampling bias, Abraham et al. (2006)
found certain subsets of individuals are more likely to reject partici-
pation in the ATUS (e.g. higher education and income individuals have
higher response rates). However, their analysis focused only on the
second survey year of data (2004) in the middle of which the survey
methodology was changed. The use of ATUS person-level weights in
this analysis should minimize these sampling biases as they correct for
non-response, but we acknowledge that some unrecognizable biases
may arise and under-represent exposure for certain sub-populations or
activities. We caution the development of local policies and interven-
tion programs without more detailed consideration of the sampling
limitations. One other minor sampling limitation in this analysis is the
banding of activity times. This occurs because activities are reported as
‘round’ or ‘convenient’ as respondents do not record exact durations but
only estimate them after the activities have occurred (e.g. respondents
most commonly report time spent traveling as 15, 30, or 45min).
Throughout an urban region, individually experienced temperatures

can vary due to complex microclimates and heterogeneity of urban

Fig. 5. Personal daily outdoor MET-degree-minutes (above 27 °C TA) for 39 of the most populated Metropolitan Statistical Areas. Note the x-axis scales logarith-
mically. Only MSAs with exposure significant at p= 0.05 are retained. Boxplots are for the IQR and lines/dots extend to the minima and maxima. All individuals in
an MSA that reported at least one outdoor activity above the 27 °C TA threshold are included. On the right of the figure, the number of person-days or each MSA is
given by ‘n.’.
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form (Hart and Sailor, 2009; Kuras et al., 2015; Middel et al., 2014,
2016, 2017; Stewart and Oke, 2012). To test sensitivity of personal
exposure due to varied urban climates, weather data inputs were varied
for the Los Angeles MSA - a large geographic metropolitan area with
diverse microclimates. Exposure patterns did not appear to change
significantly, but sample sizes did decrease with use of more coastally
located meteorological stations. Use of coastal temperatures (Los An-
geles International Airport, 2 miles from coast) reduced the observed
number of outdoor activities above 27 °C TA to 0.8% of all outdoor
observations (n = 5,022). Conversely, when using observations further
inland (Ontario International Airport, 35 miles from coast), 12% of
outdoor activities would be classified above 27 °C TA. This however, is
an extreme example; most regions (especially non-coastal regions) have
far less variation in temperatures, and inter-MSA temperature varia-
tions may have negligible impacts on time use (Zivin and Neidell,
2014).
Although this study does not consider indoor heat exposure, indoor

environments can also play a significant role in accumulated heat ex-
posure at the individual level (Quinn et al., 2014; White-Newsome
et al., 2012). Coastal and temperate urban regions can have vastly
different air conditioning (AC) penetration than regions with more
uniform heat. In 2015, only 53% of urban households in the Marine
climate zone had any AC while 94% of households in Hot-Humid cli-
mates had any AC (US EIA, 2015). Fraser et al. (2016) assessed dif-
ferences in AC penetration between Los Angeles and Phoenix and found
that approximately 95% of metropolitan Phoenix households had cen-
tral AC while “less than 50%” of households in Los Angeles had central
AC. Additionally, lower income households are less likely to have
adequate cooling alternatives (US EIA, 2015), making it more difficult
to cool off.

5. Conclusion

With the threat of increased severity and frequency of extreme heat
events and subsequent adverse impacts on the health and well-being of
urban residents, improvements in the strategies that cities use to miti-
gate and adapt to heat are needed. We contribute to the improvement of
heat response policies and initiatives with new evidence concerning the
drivers of urban outdoor heat exposure in the contiguous US and
variability across cities and demographic groups. Using the ATUS, we
found that many outdoor activities occur in US cities under conditions
deemed hazardous to human health based on the heat index.
Discretionary activities were a substantial contributor to exposure
under high heat conditions. Inter-city comparison of aggregated per-
sonal exposure metrics revealed that cities with the most extreme
temperatures do not necessarily have the highest outdoor heat ex-
posure. Although heat exposure can vary significantly person-to-person,
disproportionately high heat exposure is not necessarily exhibited in
groups known to be at higher risk of adverse heat-health outcomes.
Overall, the results highlight how diversity of activity types, demo-
graphic groups, and geographic regions can significantly vary outdoor
urban heat exposure. Continued work in estimating heat exposure at
the individual level is needed; there are still gaps in understanding how
(and at what level) heat exposure for an individual could translate to
increased risk for negative heat related health outcomes. More refined,
spatially explicit analysis of exposure patterns and microclimate
variability within cities can help provide a clearer perspective of the
circumstances, people, and places where targeted mitigation and
adaptation strategies will be most effective.
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