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ABSTRACT: Recent work on four dimensional effective descriptions of the heterotic string
has identified the moduli of such systems as being given by kernels of maps between or-
dinary Dolbeault cohomology groups. The maps involved are defined by the supergravity
data of the background solutions. Such structure is seen both in the case of Calabi-Yau
compactifications with non-trivial constraints on moduli arising from the gauge bundle
and in the case of some non-Kéhler compactifications of the theory. This description of the
moduli has allowed the explicit computation of the moduli stabilization effects of a wide
range of non-trivial gauge bundles on Calabi-Yau three-folds. In this paper we examine
to what extent the ideas and techniques used in this work can be extended to the case of
flux compactifications of Type IIB string theory. Certain simplifications arise in the Type
IIB case in comparison to the heterotic situation. However, complications also arise due
to the richer supergravity data of the theory inducing a more involved map structure. We
illustrate our discussion with several concrete examples of compactification of Type II1B
string theory on conformal CICY three-folds with flux.
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1 Introduction

In a series of recent work, it has been shown that the moduli of compactifications of the
heterotic string can frequently be written as sums of kernels of maps between Dolbeault
cohomology groups [1-5]. Cases studied include non-trivial slope zero poly-stable holo-
morphic vector bundles over Calabi-Yau threefolds, and more general non-Kahler solutions
satisying the 00-lemma. The kernels in question typically live inside the naive cohomology
groups one would associate with the massless degrees of freedom of a Calabi-Yau compacti-
fication, H'(TX), HY(TX") and H'(Endy(V)). The maps are determined by supergravity
field strengths of different types. Thus, more complicated sets of fluxes, such as those seen
in non-Kéhler compactifications, lead to a more complicated series of maps [5] (see [6, 7]
for related work).

The procedure to derive such a description of the massless degrees of freedom of a
theory is rather straightforward. Massless moduli are in one-to-one correspondence with
linear fluctuations of the fields which satisfy the higher dimensional equations of motion.
Thus, one can simply perform such a perturbation and then see if the resulting ‘allowed
fluctuations’ can be written as the kernel of maps between Dolbeault cohomology groups.

Practically there are great advantages to writing the massless degrees of freedom of a
theory in this language. At least in the case of vector bundles over Calabi-Yau three-folds,
many examples have been given where the relevant kernels can be computed explicitly [1-4]
(a dearth of background solutions still plagues the subject of non-Kéhler compactifications
despite interesting recent work [8-11]). Indeed, the allowed complex structure fluctuations
can be computed in a sufficiently concrete fashion that the restriction on the coefficients



in a set of polynomial defining equations can be described precisely in complete intersec-
tion examples. Such concreteness of description makes it possible to go further and ask
about the effect of stabilization on questions such as the matter spectrum, which is itself
determined by complex structure dependent Dolbeault cohomology groups. Most of the
examples that have been provided so far in this work have been couched in the language
of complete intersections in products of projective spaces [12], although generalizations to
other constructions such as toric hypersurfaces would be straightforward.

In this paper, we wish to address the question of how much of the technology that
has been developed in the heterotic literature, in particular with regard to computing
moduli explicitly in examples, can be directly applied to the case of flux compactifications
of Type IIB string theory. It should be noted that there is a large and well established
literature featuring a plethora of sophisticated approaches to moduli identification and
effective theory derivation in a wide variety of Type IIB compactifications. We will not
attempt a systematic review of this vast literature here and instead simply direct the reader
to some examples of such work that are most relevant to the current paper [13-48|. In this
work we will simply focus on those cases in which the computational power for dealing with
examples, seen in the heterotic work, can be utilized. As such, we will focus on cases where
the moduli can be shown to be described as kernels of maps between ordinary Dolbeault
cohomology groups, which will require us in particular to, as in the heterotic case, impose
the 00-lemma. After a general analysis of how this occurs, we wish to try and construct
explicit examples and see what simplifications and complications arise in comparison to
the heterotic case.

The rest of this paper is organized as follows. In section 2 we will review moduli iden-
tification in heterotic theories. We will begin by discussing a general analysis, valid for any
compactification of a given type. We will then discuss in detail the types of calculations
that have been achieved in explicit examples and the structure that has been seen therein.
In section 3 we will perform the corresponding general analysis in the Type IIB case, fluc-
tuating the equations of motion to linear order and interpreting the resulting equations in
terms of maps between Dolbeault cohomology groups. In section 4 we will study two explicit
examples of the previous general analysis, both based upon conformal Calabi-Yau compact-
ifications. The first example will be centered around a simple freely acting quotient of the
quintic Calabi-Yau threefold. The second will utilize a somewhat more complicated case in
order to show that the techniques being discussed are not restricted to such trivial exam-
ples. We will discuss the differences, both positive and negative, that we find between the
Type IIB and heterotic string theory cases. Finally, we conclude our discussion in section 5.

2 Review of the heterotic case

2.1 General analysis

Let us begin with the simplest example of the type of structure we are interested in [1, 3, 4].
In an N = 1 compactification of the heterotic string to four dimensions on a Calabi-Yau
threefold, the gauge connection must obey the so called Hermitian Yang-Mills equations.

g"F;=0, Fp=F;=0 (2.1)



These supersymmetric constraints are well known to be the higher dimensional antecedents
of requiring D- and F-flatness respectively in the associated four-dimensional theory [49, 50].
In this paper we will focus on F-flatness conditions.

One can ask, in a situation where one has a supersymmetric vacuum, what are the
constraints on fluctuations around that vacuum such that supersymmetry is preserved.
Such fluctuations will correspond to the massless degrees of freedom of the associated four
dimensional effective theory. For the case of the holomorphy constraint Iz = 0, these
conditions are easy to compute. We must vary all of the degrees of freedom appearing in
the equation: in this case the gauge field (with fluctuation 0 A) and the complex structure
tensor (with fluctuation 6.7). The following constraints are obtained [1, 3].

dp©) | 0 cq
0T By +iDg 0.4y =0 (2.2)

Thus, a complex structure fluctuation 6.7 € H' (T X) is a true low energy degree of freedom
iff there exists a A which solves (2.2). If this is not the case then, under such a change in
complex structure of the base manifold, the bundle associated to the heterotic compact-
ification can not adjust so as to remain holomorphic. The quantity dA, in an instance
where (2.2) has a solution, forms part of the dimensional reduction ansatz used to obtain
the four dimensional heterotic effective theory.

The equation (2.2) can be interpreted as saying that the allowed complex structure
fluctuations (those which correspond to massless modes in the low energy theory) are
described by the following kernel of a map between cohomology groups [1, 3].

1 FO o
ker <H (TX) — H (Endo(V))> (2.3)
The map in (2.3) is defined in terms of the unperturbed field strength via the first term in
equation (2.2) which can be verified to indeed provide a well defined map in cohomology.
The fact that this must be canceled by the second term, which is exact, then tells us that
allowed complex fluctuations will map to the trivial cohomology class, as indicated by the
kernel in (2.3).

The gauge field fluctuations are much easier to interpret in this case. The other type
of solution we can have to (2.2) is to set §J = 0 and take a closed dA. After removing a
redundancy due to gauge transformations, this simply states that the allowed fluctuations
in the gauge connection lie in H'(Endy(V)), as would naively be thought.

Such a discussion is very well known in the mathematics literature and is the mani-
festation in effective field theory of Atiyah’s analysis of the tangent space to the moduli
space of holomorphic bundles. In fact the combined allowed complex structure and bundle
moduli can be described as H'(Q) where Q is defined by the following short exact sequence.

0 — Endo(V) = Q = TX = 0 (2.4)

Taking the long exact sequence in cohomology associated to (2.4), we then find the
following,

HY(Q) = H'(Endy(V)) @ ker (Hl(TX) F Hz(Endo(V))> (2.5)

which matches the above analysis of the allowed fluctuations.



Those degrees of freedom associated to the complex structure of the base X which are
removed from the massless spectrum by the kernel constraint (2.3) often obtain masses
close to the compactification scale, and thus should not be considered as fields in the
four dimensional effective theory. In special cases, however, these masses might be lower
and in such instances we can easily see that the constraints (2.3) are simply the higher
dimensional manifestation of the F-flatness condition for massless degrees of freedom in
the four dimensional theory. Indeed, that this is so might be guessed from the holomorphic
nature of the equation being varied.

To see this connection to F-flatness directly one can simply consider the variation of
the Gukov-Vafa-Witten (GVW) superpotential [51]. The heterotic superpotential is well
known to contain a term of the following form.

WB/H/\Q (2.6)
X

Here 2 is the holomorphic three form and, locally at least, the field strength appearing is
given in terms of the Yang-Mills and Lorentz Chern-Simons terms, w3Y™ and w3, by
H=dB -~ (WM — W3 (2.7)
V2
The scalar components of the matter fields are obtained as fluctuations in the gauge
degrees of freedom. Thus, the superpotential (2.6) depends upon the matter fields of the
theory C; solely through the term including w3¥™. Using this information, it is easy to
see that one of the conditions for a four dimensional supersymmetric Minkowski vacuum
becomes the following.

ow 3a/ O3 M

oC; \/5 X oC;
Varying this supersymmetry condition with respect to both the complex structure and
perturbations in the gauge field, as we did for the ten dimensional equations above, we
then arrive at the following expression [1].
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Here, the T’s are gauge generators and w* is the one form associated to the matter field C;.
We see immediately that this F-flatness condition is satisfied, under a variation of the fields
if the condition (2.2) holds. The constraints on massless modes we have been discussing
are indeed associated to F-Flatness.

The type of general analysis of the F-flat moduli space, in terms of kernels of maps
between Dolbeault cohomology groups, that we have pursued above can also be carried out
in the case of Non-Kéahler compactifications of Heterotic theories. The steps in the anal-
ysis are very similar, although the resulting map structure is somewhat more involved [5]
(see [6, 7] for related work).



2.2 Computing in an example

The above general considerations are useful in gaining an understanding of the nature of
the moduli of a heterotic Calabi-Yau compactification. However, to compute more explicit
details we must specialize our analysis to a given example. In particular, we must specify
a Calabi-Yau threefold and a holomorphic, slope poly-stable bundle over it.

As a simple example consider the following Calabi-Yau manifold, defined as a complete
intersection in a product of projective space (or “CICY”), and SU(2) bundle, defined as
an extension of two line bundles [1].

3,75
Pl|2

X = | P2 : 0LV LY =0 (2.10)
P?|3

Here the line bundle £ is taken to be £L = Ox(—2,—1,2) and V is indeed poly-stable in
appropriate regions of Kahler moduli space [1].

One could study the F-flat moduli space of this theory by pursuing the above approach
of perturbing around a good choice of complex structure and bundle moduli. However, this
would only give us a limited view into the full moduli space of the system, restricted to
the neighborhood of that starting choice. In addition, guessing a suitable initial point to
perturb about can be difficult in many cases.

Instead we can use the structure of bundles, such as that in (2.10), in order to obtain a
more global view of the F-flat moduli space. The non-trivial extensions we are considering
here are controlled by the extension group Ext!(£Y,£) = H'(X,£?). This cohomology
group actually vanishes for a generic choice of the complex structure of X. Thus generically,
no such holomorphic SU(2) bundle exists. However, for sub-loci of complex structure
moduli space, the cohomology H'(X,L£?) can jump in dimension to a non-zero value.
On such loci, one can define a non-trivial holomorphic SU(2) bundle of the type desired.
One may then posit that if we consider a complex structure perturbation which takes the
system off of this “jumping locus” that, because the above SU(2) bundle can no longer
remain holomorphic, the holomorphic restriction we studied at the start of this section
would make such a degree of freedom massive. This is indeed the case as was shown
in [1, 3]. Thus, in order to study the F-flat complex structure moduli space in such an
example, we simply need to ascertain the loci where the cohomology H'(X, £?) jumps.

The jumping locus of a line bundle cohomology over a Calabi-Yau threefold can readily
be obtained by making use of the Koszul sequence. For this codimension one example we
have the following short exact sequence.

0= NY@L: - LY = L% =0 (2.11)

Here A denotes the ambient space P! x P! x P2 and N the normal bundle, O 4(2,2,3) in this
case. The short exact sequence (2.11) has an associated long exact sequence in cohomology.
Using the fact that, for the £ and N given above, H'(A, £?) = H3(A,NY ® £L2) = 0 we
can write the following.

0— HYX, L£2) » H2(ANY @ £2) 25 H2(A, £2) — HX(X,L2) — 0 (2.12)



Here P is the map defined by the defining relation of the Calabi-Yau threefold. Using the
theorem of Bott-Borel-Weil [12], we can describe H2(A, NV ® £2) = H?(A, O(—6,—4,1))
as the space of linear combinations of monomials of degree [—4,—2,1] in the homoge-
nous coordinates of the ambient space P! x P! x P2, Likewise, the space H?(A, £?) =
H?(A,O(—4,—2,4) can be described as the space of linear combinations of monomials of
degree [—2,0,4]. With these explicit descriptions of the source and target spaces of (2.12),
together with the explicit form of the map P, it is then easy to find a description of
H'(X, L£?) by taking the kernel of the mapping.
We describe the general element of the source by

b;S' € H*(ANY @ L?) (2.13)

where the S° are a basis of monomials of the right degree and the b; are coefficients. We
then multiply this general element of the source by the defining equation,

P=c,M*, (2.14)

where the ¢, are coefficients (actually a redundant description of the complex structure
moduli space) and the M are a basis of degree [2,2, 3] monomials. We then set to zero
any term in the resulting expression which is not of the degree [—2,0,4] corresponding to
the target space and this gives the image of the map in (2.12). Setting to zero the coefficient
of each monomial in this image then gives us the conditions on the b; and the ¢, for a given
set of source coefficients to give rise to an element of the kernel, that is H'(X, £?), for a
given complex structure of the base Calabi-Yau manifold. The resulting equations take the
following bilinear form.

Abica =0 (2.15)

Here the index I runs over the dimension of the target of the map and the A’s are simply
constants. The equations (2.15) contain all of the information about what elements of
H2(A,NY @ L) give rise to elements of H!(X, £?), and thus possible extensions classes
for the bundle V, for all possible values of the complex structure.

The set of equations (2.15), describes a reducible algebraic variety in the combined
space of source coefficients and complex structure, as depicted in figure 1. We can regard
the source space as the space of potential elements of the kernel, with the actual elements
of H'(X, L?) being picked out by the solutions to these equations for a given complex
structure. This algebraic variety can be broken up into its irreducible components by
performing a primary decomposition on the ideal whose generators are given by (2.15). This
gives us one set of equations for each irreducible piece of the variety. By then performing
an algebraic elimination of the b’s on each irreducible variety we can find a set of loci purely
in complex structure moduli space, as parameterized by the ¢’s. This process of primary
decomposition and elimination, when applied to the toy example depicted in figure 1, is
depicted in figure 2. These are then the loci in complex structure moduli space that the
system can be stabilized to, by the effects described in the previous subsection. The system
will be stabilized to a particular locus if an extension class lying in the associated set of
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Figure 1. A depiction of the reducible variety given by the system (2.15). This variety lives in the
combined space of complex structure, ¢,, and source coefficients, b;, of the map P in (2.12).

b, b,
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Figure 2. A depiction of the process of primary decomposition and then elimination as applied
to the variety pictured in figure 1. The red lines are the final loci obtained in complex structure
moduli space.

possible b’s, corresponding to points on that irreducible variety, is chosen. By applying
the methodology described here one can map out the whole moduli space associated to
a given vector bundle, including all branches which are present due to different jumping
phenomena in cohomology. For each irreducible variety in complex structure moduli space
which is obtained in this manner, we must finally check that the Calabi-Yau threefold
under consideration remains smooth for a generic complex structure on that locus.



In many examples, the structure of loci in complex structure moduli space to which
the system can be stabilized turns out to be rather rich. For example, a simple case is
given in [4] for which 25 non-trivial loci are found. Of these, all but one correspond to
a singular Calabi-Yau initially, although it is demonstrated that some of the rest can be
smoothed out by an appropriate geometrical transition.

One thing which is important to note is that, in the above, it is vital to begin by
choosing a type of bundle construction with which to work. The details of which values
the complex structure get stabilized to will depend upon the structure of the bundles in
question, which is not uniquely determined by topological invariants such as Chern classes.

The case of moduli stabilization due to (or more precisely moduli identification in the
presence of ) a holomorphic vector bundle over a Calabi-Yau threefold is just one example of
how such analyses have been applied in a heterotic setting. More generally, for example, the
same type of reasoning has been used to determine the F-flat moduli space of the Strominger
system [53], for cases where the compactification manifold obeys the d9-lemma [5]. The
question we will try to address in the following sections is how much of this technology
can be taken across to a Type IIB setting? In particular we will be interested in what
simplifications we observe relative to the heterotic case and what additional complications
arise in implementing such an approach to moduli identification. For simplicity, we will
confine ourselves in what follows to the closed string sector.

3 Fluctuation analysis in Type IIB and cohomological interpretation

3.1 Background solutions

The solutions to the Killing spinor equations for compactifications of Type II theories that
lead to A/ = 1 theories with a four-dimensional Minkowski vacuum have been studied in
quite some detail (see for example [52] and references therein). We will consider a spacetime
that is a warped product of four-dimensional Minkowski space and an internal manifold
admitting an SU(3) structure. Focussing on Type IIB string theory, the two 16 component
Majorana-Weyl spinors are then decomposed as follows.

e =al Ny +al_ @n- (3.1)
=06 @y +bE @0

Here &, and 7y are positive chirality spinors in four and six dimensions respectively,
¢ =&, and - =73, and a and b are complex functions on the internal six manifold. The
vacua that preserve such a set of supersymmetries have been analyzed in great detail using
a plethora of different techniques. Here we will only need the results of those analyses in
one particular form [16].

Given our choice of a warped product of Minkowski space and a compact manifold
admitting an SU(3) structure, the metric can be written as

ds? = eQA(y)an:U“d:L‘” + gmndy™dy"™ , (3.2)



where the internal manifold has an associated J and € specifying the SU(3) structure in
question.

dJ = —%Im(W19)+W4AJ+W3 (3.3)
dAQ=WiJANJ+WoAJ+Ws5AQ
Here,
JANQ=0, Ws AT =WsAQ=WoAJAJ=0 (3.4)

and W) is a complex function, Wy is a complex (1,1) form, W3 is a real form with (1,2)
and (2,1) components, Wy is a real one-form, and W; is a complex (0, 1) form.

Fluxes in such a background can be decomposed according to how they transform under
the structure group of the internal space. For example, we can write, in a decomposition
very similar to that seen for dJ above,

H= —glm(H“)ﬁ) +HO AT+ HO, (3.5)

Here, H( is in a singlet representation under the SU(3) structure group, H®)

is in the
fundamental representation and H(®) is in the two-index symmetric representation. Similar
decompositions can be made for the other form field degrees of freedom that appear in
Type II theories.

Three special cases, corresponding to restrictions on the possible choices of a and
b in (3.1), give rise to particularly simple forms for equations for a SUSY preserving

vacuum [16].

Case A. If a = 0 or b = 0 then we obtain the following conditions. This is the Type IIB
analogue of the Strominger system solutions of Heterotic string theory.

Wy =FY = B =Wy = B =94 = 8a = 9b =0 (3.6)
Wy =+ (1 + B
W5 = 2W, = 72iH") = 20

Case B. If a = £ib then we obtain the two following subcases.

e First, we have the subcase that corresponds to conformally Calabi-Yau solutions

Wy =FY = HY = Wy = W3 = 9¢ = 0 (3.7)
e?F® = 1« 5 (3.8)
R = §¢W5 = iW, = —2i0A = —4idloga (3.9)

e Second, we have the subcase that corresponds to so called ‘F-theory like’
solutions.

wy=FY =HY =W, =W; =0 (3.10)
e?F® = £« HY
PP = 2e0FS) = (W5 = iW, = ide



Cases C. Finally, if a = +b then we obtain the following conditions.

Wy =F = Y =w, = HY =W, =0 (3.11)
Wy =+« (B + F”)

+e? PP = 25 = —2i9A = —4idloga = —i0p

Any fluxes or torsion classes that are not mentioned in the above are set to zero in the
associated solutions. In all of the cases above there are additional constraints that take the
form of primitivity conditions. In each instance, there is one combination of forms which
must be (2,1) and primitive. In Case A this is d.J & iHj3, in Case B Fs F ie"?H3 and in
Case C d(e=?J) +iF3.

In addition to the above conditions, in the following sections, we will impose an extra
condition upon the compactification manifolds following the analogous constraint that was
imposed in [5]. We will require that the compact manifold be a d9-manifold. The 90-
Lemma simply states the following.

Lemma. Let X be a compact Kihler manifold. For A a d-closed (p,q) form, the following
statements are equivalent,

A=0C o A=0C"=A=dC" & A=00C < A=0C +8C (3.12)
for some C, ", C", C, C and C.
We then call a manifold, Kihler or not, a 99-manifold if it satisfies these conditions.

3.2 Fluctuation analysis and cohomological interpretation

The analysis of moduli by fluctuating the equations of Case A of the previous subsection
is in fact largely identical to the heterotic computation carried out in [5], once one sets
the gauge field degrees of freedom to zero. Let us therefore start instead with Case B,
concentrating initially on the first sub-case, corresponding to conformal Calabi-Yau com-
pactifications.

Combining (3.8) with the fact that Hy()l) = H§3) = 3(1) = 353) = 0 leads to the
following equation.

€¢F3 =1 (H(LQ) - H(Q,l)) (313)

Here H; ;) corresponds to the components specified in the subscript of the relevant three-
form. We will consider the fluctuation of this equation first.

As in section 2, we do not wish to write eq. (3.13) in complex coordinates in order
to perform the fluctuation, as the natural complex coordinates will change as we vary the
complex structure. We therefore follow the usual procedure of defining projectors,

) = 1 (1+47), (3.14)

N |
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and then rewrite eq. (3.13) as,
Jipr(-)k (3.15)

(_
m n m n

¢* Fimn = z’(Hl(*)iH( GOk 4 GOk 4

L EOX) (G L (oL V(G 3) (SO Hl(—)iﬂgjb‘)jl'[?({%)k) Hijy, -

l m

Fluctuating the complex structure J, the two form potentials Bs and C5, the dilaton
and the potential Cj, one then obtains the desired result, which we write in terms of the
original, unperturbed complex coordinates. From the (1,2) components of equation (3.13)
one obtains the following.

e

abc

+ 207 Hejaa = (960) (3.16)

The (0,3) component of the fluctuation results in no non-trivial constraint. The (2,1)
and (3,0) components of the fluctuation of (3.13) are, of course, simply conjugate to these.
The (0, 3) component of the fluctuation of the equation H ?El) = 0 also results in a non-trivial

constraint, which is as follows.
) d —
20T Hygy = O (0Bygy ) (3.17)

In deriving (3.16) and (3.17), we have used the Bianchi identities for the form fields,
which imply in particular that 6 F3 = d6Cs — 6CoH3z — Cpdd Bo, the fact that ¢ and Cy are
constant in background, the definition of 7 = Cy + ie~® and the 99-lemma. The quantity
dA is a combination of forms which is implicit due to the use of the d9-lemma and whose
exact form will not be needed. Note that the fluctuations of the equation F3(1) = 0 is built
into the above analysis and does not result in any further constraints.

In both equations the left hand side represents a mapping between Dolbeault coho-
mology groups, as in section 2. To show that these maps are well defined, we must show
that the left hand sides of equations (3.17) and (3.16) are 0 closed, and that shifting 6.7
by an 0 exact piece only changes these combinations by an exact piece. For case B we have
from (3.7) that Wy, = Wy = 0, telling us that the manifold is complex and §7 € H'(T X).
This, combined with the Bianchi identity for H, is enough to ensure that the left hand
side of (3.16) is closed. Similarly, using that F; = 0 and d7 = 0, together with the Bianchi
identities for F' and H, one can easily show that the left hand side of (3.16) is closed.
Exactness of the left hand side of these equations under an exact shift in 4.7 is equally
easy to prove and we need only use the Bianchi identity for H to see this directly.

Given this analysis, we can see the left hand sides of equations (3.17) and (3.16) as
representing maps between Dolbeault cohomology groups. The right hand sides of these
equations being exact then tell us that the fluctuations of 7 and 7 which solve the equations
of motion are those which are correspond to the kernel of these maps. Thus we have the
constraint that allowed moduli of the system must be in the following two kernels.

ker (Hl(TX) fuy H3(X)> (3.18)

F, H
(1,2)557(2,1)
H

ker <H0(X) ® HYTX) HQ(TXV)> (3.19)

Note here that, since 9¢ = Fy = 0 we can regard 7 as an element of H°(X).

- 11 -



One may ask why a constraint such as (3.18) does not appear in the Strominger system
case [5]. After all, we see from (3.6) that this also has Hj (3) = 0. The difference occurs
because in the Strominger system case H(; o) = 50.J. In such a case, one can show [5], that

0T iy = %5qg(aj)gz} 0= —0ad Ty (3.20)
In such a situation, the analogue of (3.17) is always soluble, being manifestly exact on
both sides, and simply becomes an equation that links the fluctuations of certain (0,2)
components of fields. In the case at hand, H is related to e?F via (3.13), not 4J. In
such a situation no such simplification can be achieved and an extra constraint is indeed
imposed. This distinction will be important in the next section when we match the above
map structure to very well known results in Calabi-Yau compactifications of Type I1B
string theory.

For the remaining equations in this case, W3 = W5 = 0 have already been included
above, telling us that the perturbations must maintain the complex nature of the compact-
ification manifold. The constraints on W3, Wy, W5 and F5(3) we expect to correspond to
D-term type constraints in the effective theory and, as such, we don’t consider these here.
We expect this as writing these constraints in terms of fields appearing in the theory, one
finds that they all involve contractions with the metric (cf. (2.1) and the surrounding dis-
cussion). In addition, we will see further evidence that the F-term constraints are captured
by the equations considered above in section 3.3. The equality relating A and a finally,
does not affect the physical spectrum directly.

Before moving on to Case C we should briefly mention the second subcase of Case
B found in (3.10). This case is almost identical in its analysis to the first subcase just
considered. This is because the differences between the two cases are largely found in the
terms that we expect to be associated to D-terms and thus do not analyse. One exception
to this is the constraint on F1(3) , which may be rewritten as follows.

—1 (F(l,()) - F(O,l)) = d(6_¢) (321)
Perturbing as before we then find the following constraint.
STt = B, (5¢e—¢ + 2'500) (3.22)

Equation (3.22) can be reinterpreted as the following kernel constraint on the complex
structure moduli.

ker (HY(TX) — H'(X)) (3.23)

Note that in many cases of interest in dimensional reduction one would chose to work on
manifolds where h!'(X) = 0 and in such a case this additional kernel would provide no
additional constraint.

The fluctuation of the supersymmetry conditions corresponding to Case C follows a
similar methodology to the cases discussed above. In particular, the equations involving
Wy, Wy and FS(S) all correspond to what we are referring to as ‘D-term constraints’ and so
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are not considered in this paper. The remaining equations, involving Fg(l), H:.El), H§6) and
F§6) are of interest to us, however, and we analyze these now. We start with the equation
involving Féﬁ).

W3 = +e » (F§6) + Fg@) . (3.24)
Using that Ws = W) = 0 and that F3(6) is primitive, we can rewrite (3.24) as follows.
a7 = +e’i (B + F”) (3.25)
Using the fact that F?fl) = 0, we can then obtain

dJp) = Fie? <F3 —JA F?E?’)) - (iie¢F3 F A a¢) (3.26)

(2,1) (2,1)
where in the second equality we have used ie¢F§3) = 10¢ from (3.11). Performing some
elementary algebra we then arrive at the following expression.

Fyo1) = Ti (d(e—¢J)) oy = = +i(@— 9)(e ) (3.27)
This equation is now in an analogous form to (3.13), and we can analyze its fluctuations

in the same manner. From the (1,2) component of the fluctuation one finds the following
constraint.

6T (<iFy a0 F Dale ™)) = F2i0ad(e =)y, (3.28)

From the (0, 3) component we do not obtain another independent constraint. Both sides of
the relevant perturbation equation are manifestly exact upon using the equations of motion
and we are left with a simple linking of the fluctuations of certain (0, 2) components of fields.
In a manner analogous to what is seen in the Strominger system case, the equation F. 351) =0
does not lead to any further constraints once one utilizes (3.27). It is also easy to see that
the equations telling us that H3 = 0 do not lead to a non-trivial constraint in this case.
In terms of cohomology, our single constraint (3.28) can be recast in the following form,

e—9¢
ker <H1(TX) T H2(TXV)> , (3.29)

in complete analogy to the examples we have already seen.

It is interesting to note that in all three cases, the map whose source is simply H'(TX)
is defined by the quantity which is primitive in that type of compactification, as described
just under (3.11). This is in direct analogy to what was seen in section 2 for the case of the
Atiyah class. Note also that we would not expect fluctuations to be able to take the system
between the different cases listed above. We have not needed to mention the quantization
of the background fluxes in the above analysis, but such quantization is indeed in effect
in these compact solutions. Since the flux quanta are different in Cases A, B and C and
can’t be changed under an infinitesimal fluctuation, such cross-talk between these three
possibilities should not in general occur.
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3.3 Relationship to Gukov-Vafa-Witten superpotentials

It should be noted that the constraints on the allowed field fluctuations satisfying the equa-
tions of motion such as (3.18) and (3.19) are associated with the compactification scale.
That is, degrees of freedom not living in these kernels would be expected to have a mass of
that magnitude and thus should not be included in a description of the four dimensional ef-
fective theory. Nevertheless, there can arise special circumstances (c.f the heterotic case [1])
where the mass scale associated to these heavy degrees of freedom is parametrically lower for
some reason. In such instances, one can regard these constraints as coming from a Gukov-
Vafa-Witten superpotential [51] induced mass term. This also clarifies the terminology of
‘F-term’ and ‘D-term’ constraints that has been employed previously in this paper.

In fact, it is very well known that the susy equations in Type II can be derived from
the Gukov-Vafa-Witten superpotential (see for example [54]), and this fact is of course not
changed by writing the potential minimizing degrees of freedom in terms of kernels of maps
between Dolbeault cohomology groups. Given this, we will simply content ourselves with
showing how a single example, Case B, is reproduced by an analysis of the superpotential
and note that the other cases can be obtained in a directly analagous manner.

The relevant superpotential in this case is

W > / (F3 - z’e*¢H3) AQ. (3.30)

Note that here we have neglected to include terms proportional to dJ. This is because,
due to the fact that W7 = 0 in Case B, dJ A 2 = 0 in these examples making this term in
the superpotential vanish. This vanishing is preserved under fluctuation.

Taking the derivative of this superpotential with respect to the four-dimensional axio-
dilaton we obtain the following expression.

8I/V:—/I‘Ig/\ﬂ (331)
or

Here we have used the fact that ¢ = F; = 0 in Case B to isolate the obvious zero mode
descending from 7 and have called the resulting four dimensional field by the same name
in a slight abuse of notation. Similarly, taking the derivative of the superpotential with
respect to the four-dimensional complex structure moduli we obtain the following.

%V; - / (5~ 713) A (0:02) (3.32)
Here we have expanded a fluctuation in the complex structure tensor as §.7 = z'v; where
the v; are a basis of H'(TX), the field strength Fj is the object for which dF3 = 0, and
(U’iLQ)Ebc = viadebC'

Varying all of the fields in (3.31) and using all of the same information that was used
to derive (3.17) we arrive at the following expression.

0 (8811/> T / 366566%09%0 [;5‘7adebc +0a (5B2 56) (3.33)
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Likewise, varying all of the fields in (3.32) we arrive at the following.

(3.34)

abe

ow j o B
’ (&zi > - _% /26_¢6ab06abcgabw?“ [i57—62¢Fa52 - 25‘75dHEad — (0A)

We see that asking that a variation of the fields preserves %VZ = ‘gg = 0 leads directly

to the constraints (3.18) and (3.19) as expected. This is directly analogous to what was

seen in the heterotic case in (2.9).

4 Conformal Calabi-Yau examples with flux

A simple case where the maps in cohomology described in section 3.2 can be performed
explicitly is furnished by the conformal Calabi-Yau compactifications associated to Case B
in that section. There we saw that the subset of the axio-dilaton and complex structure
degrees of freedom that are true moduli are given by the following kernels of maps.

H12
-

ker <H1(TX) H3(X)> (4.1)

Fiq o),H,
ker <H°(X) o HY(TX) W25y

H2(TXV)> (4.2)
Here, the maps themselves are valued in the sheaf cohomology groups H?(TX") and
(H(TXY), H (A’TX")) respectively.

For generic enough choices of maps in (4.1) and (4.2) one might expect that these
kernels will be empty. This is simply the usual statement that one generically expects all
of the complex structure and the axio-dilaton to be stabilized by flux [55-58]. In the current
context this can be seen by the fact that the dimension of the target spaces in the maps are
1 and h'(TX) respectively, and thus one might assume that these maps generically lead to
a number of constraints equal to the number of complex structure moduli plus one (for the
axio-dilaton). More generally, however, we might wish to know if this generic statement
actually holds true for a particular flux, and if not which moduli are stabilized and which
are not fixed. It is to this question that we turn in specific examples in this section.

We can explicitly describe the various spaces involved in the computation, as detailed
above, using standard techniques from computational algebraic geometry. In this paper we
will illustrate this with examples based on complete intersections in products of projective
spaces, or CICYs [59-63].1 Similar techniques could easily be applied in any case where
one has enough control over the relevant cohomology groups. A CICY is described by a
configuration matrix of the following form.

niy q% e q}(
Myx=| :|: - (4.3)

Nm|q1" - QR

!The type of computations being considered here could easily be extended to the case of generalized
CICYs [64]. See [65—67] for related work. Many of the computations in the following were carried out using
the “CICY Package” [68].
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Here, the first column in Mx describes an ambient product of m projective spaces,
P™ x ... x P™». The remaining columns each describe one of K defining equations which
specify the Calabi-Yau manifold within the ambient space. The integers g specify the multi
degree of each defining relation in terms of the homogeneous coordinates of the ambient
project space factors.

In order to obtain a description of the cohomologies appearing in (4.1) and (4.2) on a
CICY of the form (4.3), we will make use of the following exact sequences.

e The adjunction sequence,

0—->TX —-TA|lx - Nx — 0. (4.4)

e The Euler sequence for the tangent bundle to the ambient product of projective

spaces, restricted to the Calabi-Yau.

0— 0% = O0x(1,0,...,0)9™ ... & 0x(0,0,...,1)%™ - TA|lx — 0 (4.5)

e The Koszul sequence relating sheaves over the ambient space and sheaves over the
Calabi-Yau threefold.

0= VOANNY S VRAFINY 5 S VAN 5V S V|[x =0 (4.6)

e The exterior power sequence which is defined as follows. Given a short exact sequence:
0—-A—-B—-C—0 (4.7)

the exterior power sequence is given by
0—S*A - S 1A B = S*2A0A’2B— ... - A*B = AFC =0 (4.8)

for any k. A similar sequence exists with the symmetric and antisymmetric products
interchanged.

e The dual sequences of all those listed above.

Splitting these sequences up into short exact pieces using kernels and cokernels, we can then
take the associated long exact sequences in cohomology. Sequence chasing can then be used
to relate the cohomologies of interest to simply ambient space line bundle cohomologies.
These in turn can then be described by use of the theorem due to Bott, Borel and Weil [12].
Finally, in the examples we give, we will consider smooth quotients of CICYs rather than
CICYs themselves in order to facilitate computation. We will thus be interested in the
invariant parts of these cohomology groups under the group action induced on them from
the quotiented symmetry.

Below, we will illustrate all of this with two examples. For simplicity, we begin with
an example which is a freely acting quotient of the famous quintic Calabi-Yau threefold.
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4.1 A simple quintic example

We will begin with a simple example defined as a quotient of the quintic Calabi-Yau
threefold, described by the following configuration matrix,

My = [P4]5] (4.9)

by a freely acting Zs x Zs symmetry. The configuration matrix (4.9) indicates that X is
defined as the zero locus of a degree 5 polynomial inside P*. We will denote the homoge-
neous coordinates on P* as x; where i = 0,...4. The freely acting Zs x Zs symmetry by
which we will quotient X has generators given by

g1 1w = W' (4.10)

g2 1 Ti — Ti41

where w is a fifth root of unity and we define x5 = z¢. The quotient manifold X/Zs x Zs
is a smooth Calabi-Yau threefold, for sufficiently generic choices of complex structure, and
has A1 =1 and h>! =5 [69, 71-74].

Using the sequences mentioned at the start of this section, one can compute that the
complex structure moduli are encoded by the following description of the first tangent
bundle valued cohomology group.

Coker [C — [5]]

HI(TX) = Coker [C — [1]97] (411)

Here the map used in defining the quotient is given by dP (the derivative of the defining

relations), that in the numerator is given by P (the defining relations themselves) and that

in the denominator is given by the homogeneous coordinates of the ambient space. The

symbols [n] where n is an integer denote the spaces of polynomials of degree n. More

precisely, they are those such polynomials that are invariant under the Zs x Zs action.
Similarly we have that

H2(TXY) = Ker [Ker[[—5] — €] 25 Ker[[-1)%° — C]] (4.12)

where the map in the first kernel is given by the defining relation and that in the second
is given by the homogeneous coordinates. The symbols [n] where n is a negative integer
here denote spaces of rational functions of a given degree. More precisely, [—|n|] denotes
the space of rational functions constructed as a sum of terms, each of which is a rational
monomial of the given degree. As in the [|n|] case, only those functions that are invariant
under the group action are included.

Finally, we will require the following description of this tangent bundle valued
cohomology.

HY(A2TXV) =Ker | Ker {[~10] — [~5]} — Ker [Ker{[—ﬁ] S -1} S Ker {[-5] — «:}H
(4.13)
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Once more the maps in this expression are described by P, dP and the homogeneous
coordinates, with which map is to be used being determined by which has the appropriate
by degree.

With these descriptions of the relevant cohomologies in hand, let us proceed to compute
the first kernel, given in (4.1). First, for simplicity in this initial example, we will choose
our defining relation to be the Fermat quintic.

P =z} 423 + 25 + 25 + x5 (4.14)
We take a general element of H!(TX), as described by (4.11).

CLT0T1T2T3T4 + C2 (237325 + T§T125 + T30 + TOTTAT + 2F3TA) (4.15)
2 2 2 2 2.2 2.2 2 2
+ c3 (:coazgxl + x5r427 + 232521 + X0X5T3 + x0z2m4) +cy (l‘gngtg + xlxga:o + xg:mxo

3 3 3 3 3 3 3
+ T1T2Ty + m1x3x4) + ¢ (x1$4x0 + x3xyx0 + TiT2X0 + T1THT3 + x2x3x4)

Note that this description of H'(7T'X) is in terms of degree five polynomials. As such this
formulation of the complex structure is extremely easy to interpret. The elements of this
space which lie in both of the kernels (4.1) and (4.2) are the fluctuations of the complex
structure moduli allowed by the equations of motion. Small multiples of these polynomials
can then be added to the initial defining relation (4.14) to see which family of Calabi-Yau
hypersurfaces is left unstabilized by the given choice of fluxes.

To perform the mapping in (4.1) we will need a choice of flux H; 5). This should be an
element of H?(TX") and thus we describe it as in (4.12). In fact, we should be cautious as
the flux we choose should be primitive according to the supergravity equations of motion
(F3Fie~?Hs is primitive as mentioned in section 3.1 and the relevant components of F3 and
Hj are proportional as seen in (3.13)). Fortunately a big simplification occurs here with
respect to the heterotic case. In the heterotic examples of section 2.2, it is not guaranteed
that for a choice of map cohomology class, a poly-stable holomorphic vector bundle exists
whose field strength gives rise to that map. For fluxes in Type IIB string theory, however,
the situation is quite different.

Consider a (2,1) field strength in any given cohomology class. The question we wish
to know the answer to is, is there a field strength in the same cohomology class which is
primitive? That is, if we have H such that [H] € H>!(X) does there exist H' satisfying
[H'] = [H] such that H' A J =07

For the case at hand, that where X is a Calabi-Yau threefold, H A J is an element
of H3?(X). Since h3?(X) = 0 for such a manifold we know that H A J = A for some
four-form A. In fact, we know a little more than this, thanks to some very well know results.

The Hard Lefschetz theorem states that the map

LF: HR(X) — HIR(X) (4.16)

is an isomorphism. Here d is the complex dimension of X and L is the map on cohomology
induced by the operation of performing a wedge product with the Kéhler form. Taking
the case where k = 2 we see that L? : H'(X) — H?(X) is an isomorphism. That is, any
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element of H?(X) can be written as J A J A « for some «. This implies that the same is
true for H32(X) and thus, in the notation of the proceeding paragraph, A = J A J A Oy
for some function ~ (using the fact that h'(X) = 0).

Using this information we can now easily see the desired result. By definition,
H' =H+08 for some two-form . Then JAH' =JAH+JINOB=JANJAOy+JAOB and we
see that an appropriate choice of 3 (namely 8 = —J A ) renders H' primitive as desired.

Thus, which ever class in H2(TX") we choose, a suitable choice of primitive flux will
exist within that class. An exactly analogous argument can be made for H'(A2TXV).
The kernel computations we are performing here only depend upon the class of the map
elements being used, and as such we do not need to know the exact form of the primitive
representative to proceed.

In the case at hand, the most general possible map appearing in (4.1), as described
by (4.12) and depending upon h?(TX") = 5 parameters my, is given explicitly as follows.

mi (1 1 1 1
m

4.17
LT 1T2T3Ta 5ot 55— T 2 ( )

+
2

1 1 1 1
+my 3+ 31T 3 +
TOTITR  ToTHT4 — TIT3T4 x1:z2x4 xoxgxg

1 1 1 1
+ ms 5—+ = +—=—+
T1THT3 x0x1x4 .%'2:B3$4 $0x3x4 xoxlxg

1 1 1 1
+m + + +
’ <x0x%x§ pirdxy  adzoxt  ma3ad xoxlxg,)

We multiply such a map by the general source element given in (4.15) and trim the
result to only include constants - the relevant description of the target space in (4.1),
H3(X). We find that, for a fluctuation of the form (4.15) to appear in the kernel (4.1) the
following constraint on the coefficients ¢; must hold.

cimi + beamo + besmsg + Heamy + Hesms =0 (4.18)

So for example, if we choose the map corresponding to m; = 5, mg = 3, m3 = 4,
my = 10 and ms = 6, then the most general fluctuation of the defining relation of the
quotiented quintic which is allowed by the first constraint (4.1) is as follows.

2.2 2. .2 2.2 2.2 2.2
co (z3aias + xjw s + 215wy — 3T021T3T4T2 + ToTTTY + TET5T4) (4.19)
+c3 (x%xga:% + x%mx% + x%xixl — dxoror3TaT] + xoa:%azg + a:%xgxi)
+cq (:r;2x3:r3 + xl.’rgxo + :r%:mxo — 10z 20732420 + :rlxgxi + :U:{’xgu)

+ c5 (x1x4:c8 + x;;xixo + 17:{)3521,‘0 — 6x1T2T3T4T0 + x1x§x3 + x2x§x4)

We see that we get one constraint on the general five parameter possible complex structure
fluctuation as should be the case.

As we have seen, the first map is easily implemented, and the constraint on moduli
it corresponds to can be mapped out explicitly. We now move on to consider the second
kernel condition (4.2). Here we will see a complication in comparison to the heterotic case.
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In the case of the second kernel condition the source space is the direct sum of (4.15),
the complex structure fluctuations (which must also be constrained by the first condition),
and the constants (which is the relevant description of H°(X)). The target space is de-
scribed by an expression of the form (4.17). Finally, the map is described by an element of
H?(TXV) as in (4.17) (which maps the H°(X) piece of the source to the target) together
with an element of H*(A?T'X") (which maps the H'(TX) piece of the source to the target).
The relevant description of this last cohomology group, depending upon h'(A2TXY) =5
parameters ng, is given explicitly as follows.

1 1 1 1 1
ni - + + + 4.20
<$3x§w§$i sgafrie]  agatadad  wfeiaial  wfvivied (420

1 1 1 1
+n2< + + + +
3..3.2..2 2.3 123 02 32.02,..3 2..2..3..3 2 123 103 n2
$0$1$2$4 $1$2$3$4 $0$1$3$4 $0$2$3$4 $0$1$2$3

N 1 N 1 N 1 N 1 N 1
ns
$%$1$%$g$4 $0$?$%$3$i $%$1$%$3$2 $0$%$2$g$2 $%$?$2$§$4

1
+ ny + + + +
xox?x%xgu 1‘31‘1.%‘2.%%33‘3 l‘%xi’xg.%gl‘i 1‘033‘1.7}%.%%333 1‘31‘%3}%.%3334
ns
woaiadrie]

The complication here arises in that the two components of this map can not be chosen
independently from the map, already specified in (4.1). The component living in H?(TX")
should be proportional to the map already chosen and so this is relatively easy to determine.
The component living in H'(A?TX") is more problematic. In terms of differential forms,
this map component should be the complex conjugate of the one appearing in (4.1). The
problem is that these cohomologies are being described here in algebro-geometric terms
and this process of complex conjugation is not transparent in such a formulation. Thus
it is rather difficult to know which component of H(A?TX") should be selected. Such
a complication does not arise in the heterotic Atiyah class setting where there is a single
map composed of a single component and no complex conjugation is required.

Note that this obstruction can be overcome in cases where the metric on complex
structure moduli space [75] is known for the Calabi-Yau in question in an appropriate form
(see for example [76]). In such an instance one can combine this knowledge with the natural
pairing

HYA*TXY) x H*(TXY) - C (4.21)

in order to isolate the correct conjugate pairing. The point is that this pairing and the
metric are essentially the same quantity up to an overall scale, and (4.21) can be computed
explicitly for the polynomial descriptions of the cohomologies being utilized in this section.
If the complex structure moduli space metric is given in bases for the barred and unbarred
indices that are known to be conjugate, then the problem becomes soluble by performing a
basis change on the cohomological spaces to match the pairing (4.21) with that metric. Such
an involved computation is beyond the scope of this paper, and indeed it is dissatisfying
that one needs to compute a Kéhler potential in order to learn about flat directions of
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a superpotential in this approach. Nevertheless, in a case where one wished to have full
control of the low energy theory, the Kahler potential would be required anyway and the
above obstruction would be naturally overcome.

In short, one can easily determine the constraint from either (4.1) or (4.2) where the
dilaton is taken to be fixed, but a complete analysis combining both constraints would
require this more subtle information. Let us give an example of the type of constraint on
pure complex structure fluctuations that can arise from (4.2) in order to illustrate the more
complex moduli stabilization results that can arise in this setting.

Let us choose as an example of the class of the (2,1) field strength in (4.2) the element
of (4.20) where ng = ngy = nz = 0 and n; = ny = 1. Then, performing the map from
HYTX) to H*(TXV) following a methodology analogous to that described above, we
find the following for the allowed fluctuations of the defining relation (that is the complex
structure).

Phuctuation = .11?8 + l’? + l‘g + :Bg + .CEZ + 0xor1T2T3T4 (4.22)

Here 4 is the fluctuation parameter. We see that this map does not give a generic result for
the number of unconstrained moduli. The target space H?(T X") is of the same dimension
as H'(TX) and thus we might naively expect all of the complex structure to be stabilized.
With the above direct computation for this choice of map, however, we can see that this
is not the case.

4.2 A more complex example

In this subsection we will present a slightly more complex example of the kernel computa-
tions we have been discussing. This will illustrate both that the approach being presented
is not restricted to quotients of the quintic, and some more of the features of these analyses.

We will consider a quotient of the following CICY, number 7669 in the canonical
list [59-63],

P2111
My = |P?111]. (4.23)
P2111

We will quotient by a freely acting Z3 symmetry [69-71]. Defining z,; to be the homoge-
neous coordinates on the a’th P! factor of the ambient space, the group action is defined
as follows.

g:%ai = Tatl (4.24)

Here we define x4 ; =1 ;. The quotient manifold X/Z3 is a smooth Calabi-Yau threefold, for
sufficiently generic choices of complex structure, and has h'' =1 and h?!' =16 [69, 71-74].
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Using the sequences mentioned at the start of this section, one can compute the com-
plex structure moduli are encoded by the following description of the first tangent bundle
valued cohomology group.

Coker [C*¥ — [1,1,1]%3]

HYTX) = 4.2
(TX) Coker [C®3 — [1,0,0]%3 & [0, 1,0]93 @ [0, 0, 1]93] (4.25)

Here the map defining the quotient is given by the derivative of the defining equations dP,
the map in the numerator is determined by the defining relations P themselves, and the
map in the denominator is determined by the homogeneous coordinates of the ambient
space projective space factors.

Another cohomology that we will need is H2(TX"), for which we find the following
description.

®3
H2(TX) = Ker [Ker ([—1, -1,-1 -5 [0,0,0]@3) 9P, Ker [[—1, 0,0/ @ (4.26)
0,—1,0]%3 @ [0,0, —1]®3 = (C@ﬂ ]

Since the analysis is becoming repetitive we have simply denoted the quantities relevant
to this expression over the maps that they define.

The final cohomology, whose description we require to define the map in (4.2) has a
more complex description, given as follows.

HY(A2TXV) = Ker [Ker [([—2, —2,-2] & [-1, 1,18 (4.27)

Ker (/cl — Ker [[~1,-1,—-1] = [0,0, 0]@3}@9) - C@G}

In the above, Ky is defined by the following set of kernels.

Ky = (ker [~2,—1,—1] = [=1,0,01%%]) ¥ & (ker [[-1, 2, — 1] — [0, —1,0] %] ) **

EB(ker [[—1’—17_2] N [0’0’_1]@3”@9

(4.28)

While most of the maps in this expression can be obviously constructed from P and dP, the
final map, to C8 is more subtle in nature and deserves a little further discussion. This final
map in (4.27) is, of course, crucial in obtaining a correct description of H'(A2TX"). In
particular taking the kernel of this map removes precisely one degree of freedom to correctly
leave a 16 dimensional space. Unlike the other maps that appear in these expressions,
however, it may not be immediately obvious how it is to be constructed. It maps sets
of polynomials of degree [—2, —2, —2] to constants but is not built out of products of two
defining relations as one might naively expect from the degrees in (4.27) (such a map is in
fact the trivial map between the two relevant spaces here).

The space Ker [([-2, -2, -2] = [-1, -1, —1]%%)%0] arises from H?(X,S*N'V) in the
sequence chasing, whereas the C®% target arises from H°(X, 52((9??3)). The maps separat-
ing these two quantities, from which we must construct the composite map that appears
in (4.27), are built from the data dP and z (the derivatives of the defining relations and
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the homogeneous coordinates of the ambient space). Examining the structure of the se-
quence (4.8) applied to this example, we expect the quantity dP to appear quadratically in
the resulting composite map. Note that we can not simply combine dP and x in the obvious
manner to obtain polynomials of degree [1,1,1] that can then be combined quadratically
to define the map. Such quantities are quadratic in defining relations P and thus, given
the structure of the kernel Ker [([-2, =2, —2] — [-1, =1, —1]%3)%0]  these act as the zero
map on this space.

We require, then, a map defined, loosely speaking, from H?(X, S?NV) to H°(X, S?(0%?))
using simply homogeneous coordinates of the ambient space and dP. To describe this map
we will need several pieces. We define a tensor of numbers, dP,ga)ij , as the coefficients of
the derivative of the defining relations.

AP = AP\ pz; (4.29)

Here 4, j, k are now composite indices that run over all of the homogeneous coordinates of
the ambient space and « runs over the defining relations themselves. We also define the
(A)
ijk
ambient space and the tensor is zero unless all indices i, j, k are taken from the associated

antisymmetric tensors € Here, the index A runs over the projective space factors of the
projective space and is the Levi-Civita symbol in that case.
With these definitions in place, we can define the map using the following objects.

A B i1J 2]
Z wklmkG ez(li)zk?,Eglj)zk4dpl£5a)“jldplgf)mjz (4'30)
k1,k2

The quantity given in (4.30) constitutes a piece of the image of the map. The ¢ are
the coefficients of the degree [—2, —2, —2] polynomials of the source written as a tensor,
similarly to what was seen for dP in (4.29). Each of the Ox in H(X, S?(O%?)) corresponds
to one of the ambient space factors. Depending upon which piece of this cohomology we
are describing the map to, we pick A and B accordingly. Similarly the source space
of H3(X,S?N"V) breaks up into pieces labeled by two defining relation counting indices.
Depending upon which piece of this cohomology we are describing the map from, we pick «
and g accordingly. Combining all of these pieces together, a full mapping can be obtained.

Using this map we can show that the image obtained is correctly equivariant. In
addition, the further sequence chasing reveals that the cokernel of this map should give a
description of H?(A2TXV) = H??2, that is, the cohomology associated to the single Kéhler
modulus of the quotiented manifold. The cohomology describing the Kéhler modulus,
obtained from the map described above, is then built from a sum of identical pieces, one
for each projective space factor, as the nature of the group action (4.24) would suggest.
Finally, taking the kernel does indeed remove one degree of freedom giving rise to a 16
parameter description of the cohomology H'(A?TXY) which is invariant under the Zg
group action induced from (4.24).

Given the descriptions given in equations (4.25), (4.26) and (4.27) of the necessary
cohomologies one can now analyze the allowed moduli fluctuations, as described by equa-
tions (4.1) and (4.2) in exactly the same way as was discussed in the previous example. For
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example, one can pick the following initial defining relations, which can be easily shown to
define a smooth Calabi-Yau threefold by employing standard methods [62].

Py =1 0%2,073,0+T1,1%2,03,0 +T1,272,073,0 +T1,002,173,0 +T1,172,173,0 +T1,0T2,273,0
+21,2T2,2%3,0+21,072,003,1 T21,172,03,1 +21,022,173,1+T1,122,1T3,1 +T1,2%2 2731
+21,002,003,2+2%1,2T2,0T3,2+21,202,123,2+21,0L2,23,2+L1,1T2,223,2

Py =21,122,2%3,0+%1,2%2,073,1 +T1,2T2,173,1 +21,1%2,223,1 +T1,0T2,1T3,2+21,122,1%3,2
+SC1721‘2721‘372 (431)

P3 =11 972,0%3,0+%1,172,173,0 +T1,002,223,0+%1,1%2,273,0 +T1,272,273,0+21,1%2,073,1
+21,2%2,023,1+21,002,123,1+21,222,123,1+21,122,223,1 +21,0L2,0C3,2+21,222,0L3,2

+21,0T2,1%3,2+%1,1T2,1732+21,022,2T3,2

Computing the form of a general element of the description of H'(TX) given
in (4.25), we then find the following parametrization of the infinitesimal complex structure
fluctuations.

0P = s16 T1,0T2,023,0+S15 ($1,1$2,01U3,0 +21,002,123,0 +£U1.,09C2,0$3,1) (4-32)
+513 (21,1%2,123,0+ 21,122,031 +21,002.123,1) + 514 (Z1,2%2,023,0+21,022,223,0+21,022,073,2)
+512 (21,2%2,103,0+21,02,2%3,1+21,122,023,2) +510 (T1,222,123,1 +T1,1T2,223,1 +T1,102,173,2)
+511 (21,2%2,2%3,0F 21,202,023 2+ X1,002,223,2) +S9 (T1,2%2 23 1 + 21,202,123 2+T1,1L2,273,2)

0P, =sg ($1,1$2,0$3,0 +21,002,123,0 +351,0962,0$3,1)+86 (£U1,1$2,11C3,0+$1,1$2,0$3,1 +$1,0$2,13U3,1)
+57 (21,2%2,023,0+ 21,022,230+ T1,0T2,0T3,2) + 54 (T1,22 13,0+ T1,0T2,2T3,1+T1,122,023,2)
+55(21,1%2,2%3,0+21,2%2,0%3,1 +T1,0T2,123,2) + 53 (1,202,283 0+ X1 202,003 2+ L1,0%2,273,2)
+52 (21,202,203 1 +21,2T21L3 2+T1,1L2,273,2)

0P3 =51 ($1,1$2,()$3,0 +21,002,123,0 +$1,0$2,0$3,1)

It should be noted that the apparent asymmetry between the d P; above is due, in part, to
choice of conventions made in parameterizing the cokernels in question. For example, one
could add an arbitrary combination of the s’s multiplied by the associated defining relation
to one of these fluctuations and obtain an equally valid result.

With a good description of the complex structure fluctuations (4.32) in hand we can
now either compute the kernel in (4.1) or that in (4.2) with the dilaton taken to be fixed.
As in the previous example, computing both maps simultaneously would require an un-
derstanding of how the various choices of maps are linked in the descriptions we are using.
Here we will focus on (4.2) as this is the richer case, corresponding as it does (generically)
to more than just one constraint.

The explicit expressions for the spaces (4.26) and (4.27), for the complex structure
given in (4.31) and using the map defined using the quantities in (4.30), can easily be
computed explicitly and shown to depend upon the right number (16) of independent
parameters. The expressions, while easily manipulated with a computer are too large to
be included here and so we will content ourselves with discussing some of the results that
can be obtained by using them.

The first observation that we can make in this more complicated example is that it very
hard to find a flux that doesn’t stabilize all of the complex structure moduli via (4.2) when
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the dilaton is held fixed. From a Type IIB perspective this is completely expected, as the
number of constraints being imposed, as determined by the target of the map, is the same as
the number of degrees of freedom that we would wish to be fixed (16 in this case). Indeed,
given that a general element of the cohomology class describing the map from H!(X, TX)
in (4.2) can consistently be chosen as the flux, we would indeed expect generally to obtain
a surjective map (and thus vanishing kernel). This is, however, somewhat different to the
heterotic case. The heterotic example given in section 2.2 is in fact of a similar nature.
The target space in question is h?(X, Endg(V)) = 17 dimensional and indeed 17 complex
structure moduli are stabilized. More generally, however, the heterotic literature is full
of examples where equation counting of this nature does not give the right answer. For
example, in [3] an explicit SU(2) bundle is given for which the target space in the Atiyah
calculation is 359 dimensional but only 80 complex structure moduli are fixed. It would be
interesting to know if this break down in counting of constraints, or equivalently common
non-genericity of the Atiyah map (2.3) in examples, is an artifact of the common bundle
constructions that are used in the literature or a fairly generic feature of the holomorphic
poly-stable bundles that can appear in heterotic compactifications.

Rather than simply picking a flux as an element of (4.27) and computing the kernel of
the map (4.2) with the dilaton fixed, one can perform the computation with a general map
depending on 16 unspecified parameters. The result of this computation is too large to
include here for this more complicated example being a set of 81 equations each with over
154 terms. This set of equations is bilinear in the complex structure fluctuation parameters
in (4.32) and the 16 parameters describing the possible fluxes.

Angs; (4.33)

Here the index I runs over the 81 equations in the set.

It might be tempting to view these equations as analogous to the varieties obtained
in (2.15) in the heterotic case and to perform primary decomposition and elimination
on (4.33). The structure here is not the same however. The flux is not really allowed to
vary in a continuous manner. It is, rather quantized, in a manner that we have largely
ignored in this paper. This means that elimination is not the correct tool as this would tell
us which complex structures could be accessed if the flux were allowed to vary smoothly
and continuously.

The root of this difference to the heterotic case is that in Type IIB we have not provided
a “starting point” independent analysis of this system. Here we have simply picked an
initial complex structure and have calculated a set of constraints linking the choice of flux
to the allowed fluctuations in the complex structure moduli. This is somewhat different to
the more global view on the moduli space that was afforded by the use of the extension
construction in section 2.2. Thus the system of equations (4.33) is not really analogous
to (2.15) but rather to a set of equations that could be obtained involving possible choices
of quantized cohomology class of field strength for the gauge bundle. It seems harder to
obtain a true analog of (2.15) in the Type IIB case as the analog of a bundle construction
that is manifestly complex structure dependent does not seem obvious. One would need a
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description of the holomorphy of the flux that was global in moduli space, rather than just
being analyzed by fluctuation around a single configuration as we have above.

As a final note, one might also worry in analyzing the equations of the form (4.33) in
the Type IIB string theory case that they are not valid for arbitrary values of the complex
structure, but rather for infinitesimal values of the fluctuations s;. In fact, this is not an
issue as the equations are linear in the s;. Therefore, for any solution that is found one
can simply multiply all of the s; by an arbitrarily small number and obtain a valid solution
where the fluctuations are small.

5 Conclusions

The question that was asked in the introduction to this paper was to what extent techniques
of moduli identification that have been developed in examples of heterotic compactifica-
tions can be utilized in the case of compactifications of Type IIB string theory. We have
seen that these techniques can be applied to this case quite easily. Indeed in many situa-
tions the unstabilized moduli do correspond to kernels of maps between ordinary Dolbeault
cohomology groups, with the maps being defined by the supergravity data of the compact-
ification of interest. The main differences to the heterotic case arise once one attempts to
compute these kernels in explicit examples.

We have seen that it is indeed possible to compute map kernels in examples based upon
compactification on conformal CICY three-folds. Using a description of the cohomologies
involved in terms of polynomials of ambient space homogeneous coordinates, the maps
concerned can be carried out explicitly. Computing the relevant kernels is then straight
forward and leads to an extremely explicit description of the unstabilized moduli, if any.
In the case of complex structure moduli, for example, the unstabilized degrees of freedom
can be described as unrestricted coeflicients in the polynomial defining relations of the
Calabi-Yau in the ambient product of projective spaces.

There are, however, two important differences that arise to the heterotic case in per-
forming this analysis. Firstly, a simplification occurs in that, in the polynomial description
of the cohomologies in which the relevant maps live, any map can correspond to an allowed
supergravity flux. In the case of heterotic Calabi-Yau compactifications, where the relevant
map is defined by the field strength of a non-abelian gauge field, the same is not true and
there may be no appropriate bundle corresponding to a given choice of map. Secondly,
a complication arises in the map structure we find in comparison to the heterotic case.
The same field strength appears in two different maps in some examples, but in the form
of its complex conjugate in one case. This leads to a difficulty in performing complete
computations as identifying the complex conjugate elements in the two relevant spaces of
maps is difficult in a description of the cohomologies based upon holomorphic polynomials.
Nevertheless, this difficulty can be overcome in situations where the metric on complex
structure moduli space is known in enough detail.

As in the heterotic case, the techniques presented here apply generally to manifolds
described as complete intersections in simple ambient spaces. Thus they generalize easily
to other popular constructions, such as that of hypersurfaces in toric varieties. It should
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be noted, however, that although the general analysis can be applied in many cases there
still exists a dearth of suitable explicit examples to analyze in the case of compactifications
that are not at least conformally Calabi-Yau.

Finally, it is interesting to ask whether the particular F-flat moduli spaces we have
discussed here can be described in terms of the ordinary Dolbeault cohomology of a specific
bundle with structure analogous to (for example) (2.4) as seen in the heterotic setting. One
might expect that this indeed could be the case given the importance of Courant algebroids
in the study of generalized complex structures [77, 78] and the structure of the N' = 1 vacua
being discussed here in terms of generalized Calabi-Yau manifolds [18, 52]. We leave such
an investigation for future work.
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