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1 Introduction

In a series of recent work, it has been shown that the moduli of compactifications of the

heterotic string can frequently be written as sums of kernels of maps between Dolbeault

cohomology groups [1–5]. Cases studied include non-trivial slope zero poly-stable holo-

morphic vector bundles over Calabi-Yau threefolds, and more general non-Kähler solutions

satisying the ∂∂-lemma. The kernels in question typically live inside the naive cohomology

groups one would associate with the massless degrees of freedom of a Calabi-Yau compacti-

fication, H1(TX), H1(TX∨) and H1(End0(V )). The maps are determined by supergravity

field strengths of different types. Thus, more complicated sets of fluxes, such as those seen

in non-Kähler compactifications, lead to a more complicated series of maps [5] (see [6, 7]

for related work).

The procedure to derive such a description of the massless degrees of freedom of a

theory is rather straightforward. Massless moduli are in one-to-one correspondence with

linear fluctuations of the fields which satisfy the higher dimensional equations of motion.

Thus, one can simply perform such a perturbation and then see if the resulting ‘allowed

fluctuations’ can be written as the kernel of maps between Dolbeault cohomology groups.

Practically there are great advantages to writing the massless degrees of freedom of a

theory in this language. At least in the case of vector bundles over Calabi-Yau three-folds,

many examples have been given where the relevant kernels can be computed explicitly [1–4]

(a dearth of background solutions still plagues the subject of non-Kähler compactifications

despite interesting recent work [8–11]). Indeed, the allowed complex structure fluctuations

can be computed in a sufficiently concrete fashion that the restriction on the coefficients
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in a set of polynomial defining equations can be described precisely in complete intersec-

tion examples. Such concreteness of description makes it possible to go further and ask

about the effect of stabilization on questions such as the matter spectrum, which is itself

determined by complex structure dependent Dolbeault cohomology groups. Most of the

examples that have been provided so far in this work have been couched in the language

of complete intersections in products of projective spaces [12], although generalizations to

other constructions such as toric hypersurfaces would be straightforward.

In this paper, we wish to address the question of how much of the technology that

has been developed in the heterotic literature, in particular with regard to computing

moduli explicitly in examples, can be directly applied to the case of flux compactifications

of Type IIB string theory. It should be noted that there is a large and well established

literature featuring a plethora of sophisticated approaches to moduli identification and

effective theory derivation in a wide variety of Type IIB compactifications. We will not

attempt a systematic review of this vast literature here and instead simply direct the reader

to some examples of such work that are most relevant to the current paper [13–48]. In this

work we will simply focus on those cases in which the computational power for dealing with

examples, seen in the heterotic work, can be utilized. As such, we will focus on cases where

the moduli can be shown to be described as kernels of maps between ordinary Dolbeault

cohomology groups, which will require us in particular to, as in the heterotic case, impose

the ∂∂-lemma. After a general analysis of how this occurs, we wish to try and construct

explicit examples and see what simplifications and complications arise in comparison to

the heterotic case.

The rest of this paper is organized as follows. In section 2 we will review moduli iden-

tification in heterotic theories. We will begin by discussing a general analysis, valid for any

compactification of a given type. We will then discuss in detail the types of calculations

that have been achieved in explicit examples and the structure that has been seen therein.

In section 3 we will perform the corresponding general analysis in the Type IIB case, fluc-

tuating the equations of motion to linear order and interpreting the resulting equations in

terms of maps between Dolbeault cohomology groups. In section 4 we will study two explicit

examples of the previous general analysis, both based upon conformal Calabi-Yau compact-

ifications. The first example will be centered around a simple freely acting quotient of the

quintic Calabi-Yau threefold. The second will utilize a somewhat more complicated case in

order to show that the techniques being discussed are not restricted to such trivial exam-

ples. We will discuss the differences, both positive and negative, that we find between the

Type IIB and heterotic string theory cases. Finally, we conclude our discussion in section 5.

2 Review of the heterotic case

2.1 General analysis

Let us begin with the simplest example of the type of structure we are interested in [1, 3, 4].

In an N = 1 compactification of the heterotic string to four dimensions on a Calabi-Yau

threefold, the gauge connection must obey the so called Hermitian Yang-Mills equations.

gabFab = 0 , Fab = Fab = 0 (2.1)
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These supersymmetric constraints are well known to be the higher dimensional antecedents

of requiring D- and F-flatness respectively in the associated four-dimensional theory [49, 50].

In this paper we will focus on F-flatness conditions.

One can ask, in a situation where one has a supersymmetric vacuum, what are the

constraints on fluctuations around that vacuum such that supersymmetry is preserved.

Such fluctuations will correspond to the massless degrees of freedom of the associated four

dimensional effective theory. For the case of the holomorphy constraint Fab = 0, these

conditions are easy to compute. We must vary all of the degrees of freedom appearing in

the equation: in this case the gauge field (with fluctuation δA) and the complex structure

tensor (with fluctuation δJ ). The following constraints are obtained [1, 3].

δJ d
[a F

(0)

b]d
+ iD

(0)
[a δAb] = 0 (2.2)

Thus, a complex structure fluctuation δJ ∈ H1(TX) is a true low energy degree of freedom

iff there exists a δA which solves (2.2). If this is not the case then, under such a change in

complex structure of the base manifold, the bundle associated to the heterotic compact-

ification can not adjust so as to remain holomorphic. The quantity δA, in an instance

where (2.2) has a solution, forms part of the dimensional reduction ansatz used to obtain

the four dimensional heterotic effective theory.

The equation (2.2) can be interpreted as saying that the allowed complex structure

fluctuations (those which correspond to massless modes in the low energy theory) are

described by the following kernel of a map between cohomology groups [1, 3].

ker

(
H1(TX)

F (0)

−→ H2(End0(V ))

)
(2.3)

The map in (2.3) is defined in terms of the unperturbed field strength via the first term in

equation (2.2) which can be verified to indeed provide a well defined map in cohomology.

The fact that this must be canceled by the second term, which is exact, then tells us that

allowed complex fluctuations will map to the trivial cohomology class, as indicated by the

kernel in (2.3).

The gauge field fluctuations are much easier to interpret in this case. The other type

of solution we can have to (2.2) is to set δJ = 0 and take a closed δA. After removing a

redundancy due to gauge transformations, this simply states that the allowed fluctuations

in the gauge connection lie in H1(End0(V )), as would naively be thought.

Such a discussion is very well known in the mathematics literature and is the mani-

festation in effective field theory of Atiyah’s analysis of the tangent space to the moduli

space of holomorphic bundles. In fact the combined allowed complex structure and bundle

moduli can be described as H1(Q) where Q is defined by the following short exact sequence.

0→ End0(V )→ Q→ TX→ 0 (2.4)

Taking the long exact sequence in cohomology associated to (2.4), we then find the

following,

H1(Q) = H1(End0(V ))⊕ ker

(
H1(TX)

F (0)

−→ H2(End0(V ))

)
(2.5)

which matches the above analysis of the allowed fluctuations.
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Those degrees of freedom associated to the complex structure of the base X which are

removed from the massless spectrum by the kernel constraint (2.3) often obtain masses

close to the compactification scale, and thus should not be considered as fields in the

four dimensional effective theory. In special cases, however, these masses might be lower

and in such instances we can easily see that the constraints (2.3) are simply the higher

dimensional manifestation of the F-flatness condition for massless degrees of freedom in

the four dimensional theory. Indeed, that this is so might be guessed from the holomorphic

nature of the equation being varied.

To see this connection to F-flatness directly one can simply consider the variation of

the Gukov-Vafa-Witten (GVW) superpotential [51]. The heterotic superpotential is well

known to contain a term of the following form.

W 3
∫
X
H ∧ Ω (2.6)

Here Ω is the holomorphic three form and, locally at least, the field strength appearing is

given in terms of the Yang-Mills and Lorentz Chern-Simons terms, ω3YM and ω3L, by

H = dB − 3α′√
2

(
ω3YM − ω3L

)
. (2.7)

The scalar components of the matter fields are obtained as fluctuations in the gauge

degrees of freedom. Thus, the superpotential (2.6) depends upon the matter fields of the

theory Ci solely through the term including ω3YM . Using this information, it is easy to

see that one of the conditions for a four dimensional supersymmetric Minkowski vacuum

becomes the following.

∂W

∂Ci
= −3α′√

2

∫
X

Ω ∧ ∂ω
3YM

∂Ci
= 0 (2.8)

Varying this supersymmetry condition with respect to both the complex structure and

perturbations in the gauge field, as we did for the ten dimensional equations above, we

then arrive at the following expression [1].

δ

(
∂W

∂Ci

)
=

∫
X
εabcεabcΩabc2ω

i
ctr(TxTy)

(
δJ d

[a F
(0)

b]d
+ iD

(0)
[a δAb]

)
(2.9)

Here, the T ’s are gauge generators and ωi is the one form associated to the matter field Ci.

We see immediately that this F-flatness condition is satisfied, under a variation of the fields

if the condition (2.2) holds. The constraints on massless modes we have been discussing

are indeed associated to F-Flatness.

The type of general analysis of the F-flat moduli space, in terms of kernels of maps

between Dolbeault cohomology groups, that we have pursued above can also be carried out

in the case of Non-Kähler compactifications of Heterotic theories. The steps in the anal-

ysis are very similar, although the resulting map structure is somewhat more involved [5]

(see [6, 7] for related work).
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2.2 Computing in an example

The above general considerations are useful in gaining an understanding of the nature of

the moduli of a heterotic Calabi-Yau compactification. However, to compute more explicit

details we must specialize our analysis to a given example. In particular, we must specify

a Calabi-Yau threefold and a holomorphic, slope poly-stable bundle over it.

As a simple example consider the following Calabi-Yau manifold, defined as a complete

intersection in a product of projective space (or “CICY”), and SU(2) bundle, defined as

an extension of two line bundles [1].

X =

P1 2

P1 2

P2 3


3,75

, 0→ L → V → L∨ → 0 (2.10)

Here the line bundle L is taken to be L = OX(−2,−1, 2) and V is indeed poly-stable in

appropriate regions of Kähler moduli space [1].

One could study the F-flat moduli space of this theory by pursuing the above approach

of perturbing around a good choice of complex structure and bundle moduli. However, this

would only give us a limited view into the full moduli space of the system, restricted to

the neighborhood of that starting choice. In addition, guessing a suitable initial point to

perturb about can be difficult in many cases.

Instead we can use the structure of bundles, such as that in (2.10), in order to obtain a

more global view of the F-flat moduli space. The non-trivial extensions we are considering

here are controlled by the extension group Ext1(L∨,L) = H1(X,L2). This cohomology

group actually vanishes for a generic choice of the complex structure of X. Thus generically,

no such holomorphic SU(2) bundle exists. However, for sub-loci of complex structure

moduli space, the cohomology H1(X,L2) can jump in dimension to a non-zero value.

On such loci, one can define a non-trivial holomorphic SU(2) bundle of the type desired.

One may then posit that if we consider a complex structure perturbation which takes the

system off of this “jumping locus” that, because the above SU(2) bundle can no longer

remain holomorphic, the holomorphic restriction we studied at the start of this section

would make such a degree of freedom massive. This is indeed the case as was shown

in [1, 3]. Thus, in order to study the F-flat complex structure moduli space in such an

example, we simply need to ascertain the loci where the cohomology H1(X,L2) jumps.

The jumping locus of a line bundle cohomology over a Calabi-Yau threefold can readily

be obtained by making use of the Koszul sequence. For this codimension one example we

have the following short exact sequence.

0→ N∨ ⊗ L2 → L2
A → L2

X → 0 (2.11)

Here A denotes the ambient space P1×P1×P2 and N the normal bundle, OA(2, 2, 3) in this

case. The short exact sequence (2.11) has an associated long exact sequence in cohomology.

Using the fact that, for the L and N given above, H1(A,L2) = H3(A,N∨ ⊗ L2) = 0 we

can write the following.

0→ H1(X,L2)→ H2(A,N∨ ⊗ L2)
P−→ H2(A,L2)→ H2(X,L2)→ 0 (2.12)
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Here P is the map defined by the defining relation of the Calabi-Yau threefold. Using the

theorem of Bott-Borel-Weil [12], we can describe H2(A,N∨ ⊗ L2) = H2(A,O(−6,−4, 1))

as the space of linear combinations of monomials of degree [−4,−2, 1] in the homoge-

nous coordinates of the ambient space P1 × P1 × P2. Likewise, the space H2(A,L2) =

H2(A,O(−4,−2, 4) can be described as the space of linear combinations of monomials of

degree [−2, 0, 4]. With these explicit descriptions of the source and target spaces of (2.12),

together with the explicit form of the map P , it is then easy to find a description of

H1(X,L2) by taking the kernel of the mapping.

We describe the general element of the source by

biS
i ∈ H2(A,N∨ ⊗ L2) (2.13)

where the Si are a basis of monomials of the right degree and the bi are coefficients. We

then multiply this general element of the source by the defining equation,

P = caM
a , (2.14)

where the ca are coefficients (actually a redundant description of the complex structure

moduli space) and the Ma are a basis of degree [2, 2, 3] monomials. We then set to zero

any term in the resulting expression which is not of the degree [−2, 0, 4] corresponding to

the target space and this gives the image of the map in (2.12). Setting to zero the coefficient

of each monomial in this image then gives us the conditions on the bi and the ca for a given

set of source coefficients to give rise to an element of the kernel, that is H1(X,L2), for a

given complex structure of the base Calabi-Yau manifold. The resulting equations take the

following bilinear form.

ΛiaI bica = 0 (2.15)

Here the index I runs over the dimension of the target of the map and the Λ’s are simply

constants. The equations (2.15) contain all of the information about what elements of

H2(A,N∨ ⊗ L2) give rise to elements of H1(X,L2), and thus possible extensions classes

for the bundle V , for all possible values of the complex structure.

The set of equations (2.15), describes a reducible algebraic variety in the combined

space of source coefficients and complex structure, as depicted in figure 1. We can regard

the source space as the space of potential elements of the kernel, with the actual elements

of H1(X,L2) being picked out by the solutions to these equations for a given complex

structure. This algebraic variety can be broken up into its irreducible components by

performing a primary decomposition on the ideal whose generators are given by (2.15). This

gives us one set of equations for each irreducible piece of the variety. By then performing

an algebraic elimination of the b’s on each irreducible variety we can find a set of loci purely

in complex structure moduli space, as parameterized by the c’s. This process of primary

decomposition and elimination, when applied to the toy example depicted in figure 1, is

depicted in figure 2. These are then the loci in complex structure moduli space that the

system can be stabilized to, by the effects described in the previous subsection. The system

will be stabilized to a particular locus if an extension class lying in the associated set of
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b1

c1

c2

Figure 1. A depiction of the reducible variety given by the system (2.15). This variety lives in the

combined space of complex structure, ca, and source coefficients, bi, of the map P in (2.12).

b1

c1

c2

b1

c1

c2

Figure 2. A depiction of the process of primary decomposition and then elimination as applied

to the variety pictured in figure 1. The red lines are the final loci obtained in complex structure

moduli space.

possible b’s, corresponding to points on that irreducible variety, is chosen. By applying

the methodology described here one can map out the whole moduli space associated to

a given vector bundle, including all branches which are present due to different jumping

phenomena in cohomology. For each irreducible variety in complex structure moduli space

which is obtained in this manner, we must finally check that the Calabi-Yau threefold

under consideration remains smooth for a generic complex structure on that locus.
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In many examples, the structure of loci in complex structure moduli space to which

the system can be stabilized turns out to be rather rich. For example, a simple case is

given in [4] for which 25 non-trivial loci are found. Of these, all but one correspond to

a singular Calabi-Yau initially, although it is demonstrated that some of the rest can be

smoothed out by an appropriate geometrical transition.

One thing which is important to note is that, in the above, it is vital to begin by

choosing a type of bundle construction with which to work. The details of which values

the complex structure get stabilized to will depend upon the structure of the bundles in

question, which is not uniquely determined by topological invariants such as Chern classes.

The case of moduli stabilization due to (or more precisely moduli identification in the

presence of) a holomorphic vector bundle over a Calabi-Yau threefold is just one example of

how such analyses have been applied in a heterotic setting. More generally, for example, the

same type of reasoning has been used to determine the F-flat moduli space of the Strominger

system [53], for cases where the compactification manifold obeys the ∂∂-lemma [5]. The

question we will try to address in the following sections is how much of this technology

can be taken across to a Type IIB setting? In particular we will be interested in what

simplifications we observe relative to the heterotic case and what additional complications

arise in implementing such an approach to moduli identification. For simplicity, we will

confine ourselves in what follows to the closed string sector.

3 Fluctuation analysis in Type IIB and cohomological interpretation

3.1 Background solutions

The solutions to the Killing spinor equations for compactifications of Type II theories that

lead to N = 1 theories with a four-dimensional Minkowski vacuum have been studied in

quite some detail (see for example [52] and references therein). We will consider a spacetime

that is a warped product of four-dimensional Minkowski space and an internal manifold

admitting an SU(3) structure. Focussing on Type IIB string theory, the two 16 component

Majorana-Weyl spinors are then decomposed as follows.

ε1 = a ξ+ ⊗ η+ + ā ξ− ⊗ η− (3.1)

ε2 = b ξ+ ⊗ η+ + b̄ ξ− ⊗ η−

Here ξ+ and η+ are positive chirality spinors in four and six dimensions respectively,

ξ− = ξ+ and η− = η+, and a and b are complex functions on the internal six manifold. The

vacua that preserve such a set of supersymmetries have been analyzed in great detail using

a plethora of different techniques. Here we will only need the results of those analyses in

one particular form [16].

Given our choice of a warped product of Minkowski space and a compact manifold

admitting an SU(3) structure, the metric can be written as

ds2 = e2A(y)ηµνdx
µdxν + gmndy

mdyn , (3.2)

– 8 –
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where the internal manifold has an associated J and Ω specifying the SU(3) structure in

question.

dJ = −3

2
Im(W1Ω) +W4 ∧ J +W3 (3.3)

dΩ = W1J ∧ J +W2 ∧ J +W 5 ∧ Ω

Here,

J ∧ Ω = 0 , W3 ∧ J = W3 ∧ Ω = W2 ∧ J ∧ J = 0 (3.4)

and W1 is a complex function, W2 is a complex (1, 1) form, W3 is a real form with (1, 2)

and (2, 1) components, W4 is a real one-form, and W5 is a complex (0, 1) form.

Fluxes in such a background can be decomposed according to how they transform under

the structure group of the internal space. For example, we can write, in a decomposition

very similar to that seen for dJ above,

H = −3

2
Im(H(1)Ω) +H(3) ∧ J +H(6) . (3.5)

Here, H(1) is in a singlet representation under the SU(3) structure group, H(3) is in the

fundamental representation and H(6) is in the two-index symmetric representation. Similar

decompositions can be made for the other form field degrees of freedom that appear in

Type II theories.

Three special cases, corresponding to restrictions on the possible choices of a and

b in (3.1), give rise to particularly simple forms for equations for a SUSY preserving

vacuum [16].

Case A. If a = 0 or b = 0 then we obtain the following conditions. This is the Type IIB

analogue of the Strominger system solutions of Heterotic string theory.

W1 = F
(1)
3 = H

(1)
3 = W2 = F

(6)
3 = ∂A = ∂a = ∂b = 0 (3.6)

W3 = ± ∗
(
H

(6)
3 +H

(6)
3

)
W 5 = 2W4 = ∓2iH

(3)
3 = 2∂φ

Case B. If a = ±ib then we obtain the two following subcases.

• First, we have the subcase that corresponds to conformally Calabi-Yau solutions

W1 = F
(1)
3 = H

(1)
3 = W2 = W3 = ∂φ = 0 (3.7)

eφF
(6)
3 = ∓ ∗H(6)

3 (3.8)

eφF
(3)
5 =

2

3
iW 5 = iW4 = −2i∂A = −4i∂ log a (3.9)

• Second, we have the subcase that corresponds to so called ‘F-theory like’

solutions.

W1 = F
(1)
3 = H

(1)
3 = W2 = W3 = 0 (3.10)

eφF
(6)
3 = ∓ ∗H(6)

3

eφF
(3)
1 = 2eφF

(3)
5 = iW 5 = iW4 = i∂φ

– 9 –
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Cases C. Finally, if a = ±b then we obtain the following conditions.

W1 = F
(1)
3 = H

(1)
3 = W2 = H

(6)
3 = W4 = 0 (3.11)

W3 = ±eφ ∗
(
F

(6)
3 + F

(6)
3

)
±eφF (3)

3 = 2iW 5 = −2i∂A = −4i∂ log a = −i∂φ

Any fluxes or torsion classes that are not mentioned in the above are set to zero in the

associated solutions. In all of the cases above there are additional constraints that take the

form of primitivity conditions. In each instance, there is one combination of forms which

must be (2, 1) and primitive. In Case A this is dJ ± iH3, in Case B F3 ∓ ie−φH3 and in

Case C d(e−φJ)± iF3.

In addition to the above conditions, in the following sections, we will impose an extra

condition upon the compactification manifolds following the analogous constraint that was

imposed in [5]. We will require that the compact manifold be a ∂∂-manifold. The ∂∂-

Lemma simply states the following.

Lemma. Let X be a compact Kähler manifold. For A a d-closed (p, q) form, the following

statements are equivalent,

A = ∂C ⇔ A = ∂C ′ ⇔ A = dC ′′ ⇔ A = ∂∂C̃ ⇔ A = ∂Ĉ + ∂Č (3.12)

for some C, C ′, C ′′, C̃, Ĉ and Č.

We then call a manifold, Kähler or not, a ∂∂-manifold if it satisfies these conditions.

3.2 Fluctuation analysis and cohomological interpretation

The analysis of moduli by fluctuating the equations of Case A of the previous subsection

is in fact largely identical to the heterotic computation carried out in [5], once one sets

the gauge field degrees of freedom to zero. Let us therefore start instead with Case B,

concentrating initially on the first sub-case, corresponding to conformal Calabi-Yau com-

pactifications.

Combining (3.8) with the fact that H
(1)
3 = H

(3)
3 = F

(1)
3 = F

(3)
3 = 0 leads to the

following equation.

eφF3 = i
(
H(1,2) −H(2,1)

)
(3.13)

Here H(i,j) corresponds to the components specified in the subscript of the relevant three-

form. We will consider the fluctuation of this equation first.

As in section 2, we do not wish to write eq. (3.13) in complex coordinates in order

to perform the fluctuation, as the natural complex coordinates will change as we vary the

complex structure. We therefore follow the usual procedure of defining projectors,

Π(±) =
1

2
(11± iJ ) , (3.14)
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and then rewrite eq. (3.13) as,

eφFlmn = i
(

Π
(−)i
l Π(−)j

m Π(+)k
n + Π

(−)i
l Π(+)j

m Π(−)k
n + Π

(+)i
l Π(−)j

m Π(−)k
n (3.15)

−Π
(+)i
l Π(+)j

m Π(−)k
n −Π

(+)i
l Π(−)j

m Π(+)k
n −Π

(−)i
l Π(+)j

m Π(+)k
n

)
Hijk .

Fluctuating the complex structure J , the two form potentials B2 and C2, the dilaton

and the potential C0, one then obtains the desired result, which we write in terms of the

original, unperturbed complex coordinates. From the (1, 2) components of equation (3.13)

one obtains the following.

iδτe2φFabc + 2δJ d
[b
Hc]ad = (∂δΛ)abc (3.16)

The (0, 3) component of the fluctuation results in no non-trivial constraint. The (2, 1)

and (3, 0) components of the fluctuation of (3.13) are, of course, simply conjugate to these.

The (0, 3) component of the fluctuation of the equation H
(1)
3 = 0 also results in a non-trivial

constraint, which is as follows.

− i
2
δJ d

[aHbc]d = ∂[a

(
δB2 bc]

)
. (3.17)

In deriving (3.16) and (3.17), we have used the Bianchi identities for the form fields,

which imply in particular that δF3 = dδC2 − δC0H3 −C0dδB2, the fact that φ and C0 are

constant in background, the definition of τ = C0 + ie−φ and the ∂∂-lemma. The quantity

δΛ is a combination of forms which is implicit due to the use of the ∂∂-lemma and whose

exact form will not be needed. Note that the fluctuations of the equation F
(1)
3 = 0 is built

into the above analysis and does not result in any further constraints.

In both equations the left hand side represents a mapping between Dolbeault coho-

mology groups, as in section 2. To show that these maps are well defined, we must show

that the left hand sides of equations (3.17) and (3.16) are ∂ closed, and that shifting δJ
by an ∂ exact piece only changes these combinations by an exact piece. For case B we have

from (3.7) that W1 = W2 = 0, telling us that the manifold is complex and δJ ∈ H1(TX).

This, combined with the Bianchi identity for H, is enough to ensure that the left hand

side of (3.16) is closed. Similarly, using that F1 = 0 and ∂τ = 0, together with the Bianchi

identities for F and H, one can easily show that the left hand side of (3.16) is closed.

Exactness of the left hand side of these equations under an exact shift in δJ is equally

easy to prove and we need only use the Bianchi identity for H to see this directly.

Given this analysis, we can see the left hand sides of equations (3.17) and (3.16) as

representing maps between Dolbeault cohomology groups. The right hand sides of these

equations being exact then tell us that the fluctuations of J and τ which solve the equations

of motion are those which are correspond to the kernel of these maps. Thus we have the

constraint that allowed moduli of the system must be in the following two kernels.

ker

(
H1(TX)

H(1,2)−→ H3(X)

)
(3.18)

ker

(
H0(X)⊕H1(TX)

F(1,2),H(2,1)−→ H2(TX∨)

)
(3.19)

Note here that, since ∂φ = F1 = 0 we can regard τ as an element of H0(X).

– 11 –



J
H
E
P
0
7
(
2
0
1
8
)
1
5
8

One may ask why a constraint such as (3.18) does not appear in the Strominger system

case [5]. After all, we see from (3.6) that this also has H3 (3,0) = 0. The difference occurs

because in the Strominger system case H(1,2) = i
2∂J . In such a case, one can show [5], that

δJ d
[aHbc]d =

i

2
δJ d

[a (∂J)bc]d = −∂[aδJbc] . (3.20)

In such a situation, the analogue of (3.17) is always soluble, being manifestly exact on

both sides, and simply becomes an equation that links the fluctuations of certain (0, 2)

components of fields. In the case at hand, H is related to eφF via (3.13), not ∂J . In

such a situation no such simplification can be achieved and an extra constraint is indeed

imposed. This distinction will be important in the next section when we match the above

map structure to very well known results in Calabi-Yau compactifications of Type IIB

string theory.

For the remaining equations in this case, W1 = W2 = 0 have already been included

above, telling us that the perturbations must maintain the complex nature of the compact-

ification manifold. The constraints on W3, W4, W5 and F
(3)
5 we expect to correspond to

D-term type constraints in the effective theory and, as such, we don’t consider these here.

We expect this as writing these constraints in terms of fields appearing in the theory, one

finds that they all involve contractions with the metric (cf. (2.1) and the surrounding dis-

cussion). In addition, we will see further evidence that the F-term constraints are captured

by the equations considered above in section 3.3. The equality relating A and a finally,

does not affect the physical spectrum directly.

Before moving on to Case C we should briefly mention the second subcase of Case

B found in (3.10). This case is almost identical in its analysis to the first subcase just

considered. This is because the differences between the two cases are largely found in the

terms that we expect to be associated to D-terms and thus do not analyse. One exception

to this is the constraint on F
(3)
1 , which may be rewritten as follows.

−i
(
F(1,0) − F(0,1)

)
= d(e−φ) (3.21)

Perturbing as before we then find the following constraint.

δJ b
a Fb = ∂a

(
δφe−φ + iδC0

)
(3.22)

Equation (3.22) can be reinterpreted as the following kernel constraint on the complex

structure moduli.

ker
(
H1(TX)→ H1(X)

)
(3.23)

Note that in many cases of interest in dimensional reduction one would chose to work on

manifolds where h1(X) = 0 and in such a case this additional kernel would provide no

additional constraint.

The fluctuation of the supersymmetry conditions corresponding to Case C follows a

similar methodology to the cases discussed above. In particular, the equations involving

W4, W5 and F
(3)
3 all correspond to what we are referring to as ‘D-term constraints’ and so
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are not considered in this paper. The remaining equations, involving F
(1)
3 , H

(1)
3 , H

(6)
3 and

F
(6)
3 are of interest to us, however, and we analyze these now. We start with the equation

involving F
(6)
3 .

W3 = ±eφ ∗
(
F

(6)
3 + F

(6)
3

)
. (3.24)

Using that W4 = W1 = 0 and that F
(6)
3 is primitive, we can rewrite (3.24) as follows.

dJ = ±eφi
(
F

(6)
3 + F

(6)
3

)
(3.25)

Using the fact that F
(1)
3 = 0, we can then obtain

dJ(2,1) = ±ieφ
(
F3 − J ∧ F (3)

3

)
(2,1)

=
(
±ieφF3 + J ∧ ∂φ

)
(2,1)

(3.26)

where in the second equality we have used ±eφF (3)
3 = i∂φ from (3.11). Performing some

elementary algebra we then arrive at the following expression.

F3 (2,1) = ∓i
(
d(e−φJ)

)
(2,1)
⇒ F3 = ±i(∂ − ∂)(e−φJ) (3.27)

This equation is now in an analogous form to (3.13), and we can analyze its fluctuations

in the same manner. From the (1, 2) component of the fluctuation one finds the following

constraint.

δJ d
[a

(
−iF3 b]dc ∓ ∂|d(e

−φJ)c|b]

)
= ∓2i∂[aδ(e

−φJ)b]c (3.28)

From the (0, 3) component we do not obtain another independent constraint. Both sides of

the relevant perturbation equation are manifestly exact upon using the equations of motion

and we are left with a simple linking of the fluctuations of certain (0, 2) components of fields.

In a manner analogous to what is seen in the Strominger system case, the equation F
(1)
3 = 0

does not lead to any further constraints once one utilizes (3.27). It is also easy to see that

the equations telling us that H3 = 0 do not lead to a non-trivial constraint in this case.

In terms of cohomology, our single constraint (3.28) can be recast in the following form,

ker

(
H1(TX)

∓∂(e−φJ)−→ H2(TX∨)

)
, (3.29)

in complete analogy to the examples we have already seen.

It is interesting to note that in all three cases, the map whose source is simply H1(TX)

is defined by the quantity which is primitive in that type of compactification, as described

just under (3.11). This is in direct analogy to what was seen in section 2 for the case of the

Atiyah class. Note also that we would not expect fluctuations to be able to take the system

between the different cases listed above. We have not needed to mention the quantization

of the background fluxes in the above analysis, but such quantization is indeed in effect

in these compact solutions. Since the flux quanta are different in Cases A, B and C and

can’t be changed under an infinitesimal fluctuation, such cross-talk between these three

possibilities should not in general occur.
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3.3 Relationship to Gukov-Vafa-Witten superpotentials

It should be noted that the constraints on the allowed field fluctuations satisfying the equa-

tions of motion such as (3.18) and (3.19) are associated with the compactification scale.

That is, degrees of freedom not living in these kernels would be expected to have a mass of

that magnitude and thus should not be included in a description of the four dimensional ef-

fective theory. Nevertheless, there can arise special circumstances (c.f the heterotic case [1])

where the mass scale associated to these heavy degrees of freedom is parametrically lower for

some reason. In such instances, one can regard these constraints as coming from a Gukov-

Vafa-Witten superpotential [51] induced mass term. This also clarifies the terminology of

‘F-term’ and ‘D-term’ constraints that has been employed previously in this paper.

In fact, it is very well known that the susy equations in Type II can be derived from

the Gukov-Vafa-Witten superpotential (see for example [54]), and this fact is of course not

changed by writing the potential minimizing degrees of freedom in terms of kernels of maps

between Dolbeault cohomology groups. Given this, we will simply content ourselves with

showing how a single example, Case B, is reproduced by an analysis of the superpotential

and note that the other cases can be obtained in a directly analagous manner.

The relevant superpotential in this case is

W 3
∫ (

F3 − ie−φH3

)
∧ Ω . (3.30)

Note that here we have neglected to include terms proportional to dJ . This is because,

due to the fact that W1 = 0 in Case B, dJ ∧ Ω = 0 in these examples making this term in

the superpotential vanish. This vanishing is preserved under fluctuation.

Taking the derivative of this superpotential with respect to the four-dimensional axio-

dilaton we obtain the following expression.

∂W

∂τ
= −

∫
H3 ∧ Ω (3.31)

Here we have used the fact that ∂φ = F1 = 0 in Case B to isolate the obvious zero mode

descending from τ and have called the resulting four dimensional field by the same name

in a slight abuse of notation. Similarly, taking the derivative of the superpotential with

respect to the four-dimensional complex structure moduli we obtain the following.

∂W

∂zi
= − i

2

∫ (
F̂3 − τH3

)
∧ (vixΩ) (3.32)

Here we have expanded a fluctuation in the complex structure tensor as δJ = zivi where

the vi are a basis of H1(TX), the field strength F̂3 is the object for which dF̂3 = 0, and

(vixΩ)abc ≡ v d
i a Ωdbc.

Varying all of the fields in (3.31) and using all of the same information that was used

to derive (3.17) we arrive at the following expression.

δ

(
∂W

∂τ

)
= −

∫
3εabcεabcΩabc

[
i

2
δJ d

a Hdbc + ∂a
(
δB2 bc

)]
(3.33)
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Likewise, varying all of the fields in (3.32) we arrive at the following.

δ

(
∂W

∂zi

)
= − i

2

∫
2e−φεabcεabcΩabcv

a
i a

[
iδτe2φFabc + 2δJ d

b
Hcad − (∂Λ)abc

]
(3.34)

We see that asking that a variation of the fields preserves ∂W
∂τ = ∂W

∂zi
= 0 leads directly

to the constraints (3.18) and (3.19) as expected. This is directly analogous to what was

seen in the heterotic case in (2.9).

4 Conformal Calabi-Yau examples with flux

A simple case where the maps in cohomology described in section 3.2 can be performed

explicitly is furnished by the conformal Calabi-Yau compactifications associated to Case B

in that section. There we saw that the subset of the axio-dilaton and complex structure

degrees of freedom that are true moduli are given by the following kernels of maps.

ker

(
H1(TX)

H(1,2)−→ H3(X)

)
(4.1)

ker

(
H0(X)⊕H1(TX)

F(1,2),H(2,1)−→ H2(TX∨)

)
(4.2)

Here, the maps themselves are valued in the sheaf cohomology groups H2(TX∨) and

(H2(TX∨), H1(∧2TX∨)) respectively.

For generic enough choices of maps in (4.1) and (4.2) one might expect that these

kernels will be empty. This is simply the usual statement that one generically expects all

of the complex structure and the axio-dilaton to be stabilized by flux [55–58]. In the current

context this can be seen by the fact that the dimension of the target spaces in the maps are

1 and h1(TX) respectively, and thus one might assume that these maps generically lead to

a number of constraints equal to the number of complex structure moduli plus one (for the

axio-dilaton). More generally, however, we might wish to know if this generic statement

actually holds true for a particular flux, and if not which moduli are stabilized and which

are not fixed. It is to this question that we turn in specific examples in this section.

We can explicitly describe the various spaces involved in the computation, as detailed

above, using standard techniques from computational algebraic geometry. In this paper we

will illustrate this with examples based on complete intersections in products of projective

spaces, or CICYs [59–63].1 Similar techniques could easily be applied in any case where

one has enough control over the relevant cohomology groups. A CICY is described by a

configuration matrix of the following form.

MX =

 n1 q1
1 . . . q1

K
...

...
. . .

...

nm qm1 . . . qmK

 (4.3)

1The type of computations being considered here could easily be extended to the case of generalized

CICYs [64]. See [65–67] for related work. Many of the computations in the following were carried out using

the “CICY Package” [68].
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Here, the first column in MX describes an ambient product of m projective spaces,

Pn1 × . . .× Pnm . The remaining columns each describe one of K defining equations which

specify the Calabi-Yau manifold within the ambient space. The integers q specify the multi

degree of each defining relation in terms of the homogeneous coordinates of the ambient

project space factors.

In order to obtain a description of the cohomologies appearing in (4.1) and (4.2) on a

CICY of the form (4.3), we will make use of the following exact sequences.

• The adjunction sequence,

0→ TX → TA|X → NX → 0 . (4.4)

• The Euler sequence for the tangent bundle to the ambient product of projective

spaces, restricted to the Calabi-Yau.

0→ OmX → OX(1, 0, . . . , 0)⊕n1 . . .⊕OX(0, 0, . . . , 1)⊕nk → TA|X → 0 (4.5)

• The Koszul sequence relating sheaves over the ambient space and sheaves over the

Calabi-Yau threefold.

0→ V ⊗ ∧kN∨ → V ⊗ ∧k−1N∨ → . . .→ V ∧N∨ → V → V|X → 0 (4.6)

• The exterior power sequence which is defined as follows. Given a short exact sequence:

0→ A→ B → C → 0 (4.7)

the exterior power sequence is given by

0→ SkA→ Sk−1A⊗B → Sk−2A⊗ ∧2B → . . .→ ∧kB → ∧kC → 0 (4.8)

for any k. A similar sequence exists with the symmetric and antisymmetric products

interchanged.

• The dual sequences of all those listed above.

Splitting these sequences up into short exact pieces using kernels and cokernels, we can then

take the associated long exact sequences in cohomology. Sequence chasing can then be used

to relate the cohomologies of interest to simply ambient space line bundle cohomologies.

These in turn can then be described by use of the theorem due to Bott, Borel and Weil [12].

Finally, in the examples we give, we will consider smooth quotients of CICYs rather than

CICYs themselves in order to facilitate computation. We will thus be interested in the

invariant parts of these cohomology groups under the group action induced on them from

the quotiented symmetry.

Below, we will illustrate all of this with two examples. For simplicity, we begin with

an example which is a freely acting quotient of the famous quintic Calabi-Yau threefold.
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4.1 A simple quintic example

We will begin with a simple example defined as a quotient of the quintic Calabi-Yau

threefold, described by the following configuration matrix,

MX =
[
P4 5

]
(4.9)

by a freely acting Z5 × Z5 symmetry. The configuration matrix (4.9) indicates that X is

defined as the zero locus of a degree 5 polynomial inside P4. We will denote the homoge-

neous coordinates on P4 as xi where i = 0, . . . 4. The freely acting Z5 × Z5 symmetry by

which we will quotient X has generators given by

g1 : xi → ωixi (4.10)

g2 : xi → xi+1

where ω is a fifth root of unity and we define x5 = x0. The quotient manifold X/Z5 × Z5

is a smooth Calabi-Yau threefold, for sufficiently generic choices of complex structure, and

has h1,1 = 1 and h2,1 = 5 [69, 71–74].

Using the sequences mentioned at the start of this section, one can compute that the

complex structure moduli are encoded by the following description of the first tangent

bundle valued cohomology group.

H1(TX) =
Coker [C→ [5]]

Coker [C→ [1]⊕5]
(4.11)

Here the map used in defining the quotient is given by dP (the derivative of the defining

relations), that in the numerator is given by P (the defining relations themselves) and that

in the denominator is given by the homogeneous coordinates of the ambient space. The

symbols [n] where n is an integer denote the spaces of polynomials of degree n. More

precisely, they are those such polynomials that are invariant under the Z5 × Z5 action.

Similarly we have that

H2(TX∨) = Ker
[
Ker[[−5]→ C]

dP−→ Ker[[−1]⊕5 → C]
]

(4.12)

where the map in the first kernel is given by the defining relation and that in the second

is given by the homogeneous coordinates. The symbols [n] where n is a negative integer

here denote spaces of rational functions of a given degree. More precisely, [−|n|] denotes

the space of rational functions constructed as a sum of terms, each of which is a rational

monomial of the given degree. As in the [|n|] case, only those functions that are invariant

under the group action are included.

Finally, we will require the following description of this tangent bundle valued

cohomology.

H1(∧2TX∨) = Ker
[
Ker{[−10]→ [−5]}→Ker

[
Ker{[−6]→ [−1]}⊕5→Ker{[−5]→C}

]]
(4.13)
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Once more the maps in this expression are described by P , dP and the homogeneous

coordinates, with which map is to be used being determined by which has the appropriate

by degree.

With these descriptions of the relevant cohomologies in hand, let us proceed to compute

the first kernel, given in (4.1). First, for simplicity in this initial example, we will choose

our defining relation to be the Fermat quintic.

P = x5
0 + x5

1 + x5
2 + x5

3 + x5
4 (4.14)

We take a general element of H1(TX), as described by (4.11).

c1x0x1x2x3x4 + c2

(
x3x

2
4x

2
2 + x2

0x1x
2
2 + x2

1x
2
3x2 + x0x

2
1x

2
4 + x2

0x
2
3x4

)
(4.15)

+ c3

(
x2

0x3x
2
1 + x2

2x4x
2
1 + x2

3x
2
4x1 + x0x

2
2x

2
3 + x2

0x2x
2
4

)
+ c4

(
x2x3x

3
0 + x1x

3
3x0 + x3

2x4x0

+ x1x2x
3
4 + x3

1x3x4

)
+ c5

(
x1x4x

3
0 + x3x

3
4x0 + x3

1x2x0 + x1x
3
2x3 + x2x

3
3x4

)
Note that this description of H1(TX) is in terms of degree five polynomials. As such this

formulation of the complex structure is extremely easy to interpret. The elements of this

space which lie in both of the kernels (4.1) and (4.2) are the fluctuations of the complex

structure moduli allowed by the equations of motion. Small multiples of these polynomials

can then be added to the initial defining relation (4.14) to see which family of Calabi-Yau

hypersurfaces is left unstabilized by the given choice of fluxes.

To perform the mapping in (4.1) we will need a choice of flux H(1,2). This should be an

element of H2(TX∨) and thus we describe it as in (4.12). In fact, we should be cautious as

the flux we choose should be primitive according to the supergravity equations of motion

(F3∓ie−φH3 is primitive as mentioned in section 3.1 and the relevant components of F3 and

H3 are proportional as seen in (3.13)). Fortunately a big simplification occurs here with

respect to the heterotic case. In the heterotic examples of section 2.2, it is not guaranteed

that for a choice of map cohomology class, a poly-stable holomorphic vector bundle exists

whose field strength gives rise to that map. For fluxes in Type IIB string theory, however,

the situation is quite different.

Consider a (2, 1) field strength in any given cohomology class. The question we wish

to know the answer to is, is there a field strength in the same cohomology class which is

primitive? That is, if we have H such that [H] ∈ H2,1(X) does there exist H′ satisfying

[H′] = [H] such that H′ ∧ J = 0?

For the case at hand, that where X is a Calabi-Yau threefold, H ∧ J is an element

of H3,2(X). Since h3,2(X) = 0 for such a manifold we know that H ∧ J = ∂Λ for some

four-form Λ. In fact, we know a little more than this, thanks to some very well know results.

The Hard Lefschetz theorem states that the map

Lk : Hd−k(X)→ Hd+k(X) (4.16)

is an isomorphism. Here d is the complex dimension of X and L is the map on cohomology

induced by the operation of performing a wedge product with the Kähler form. Taking

the case where k = 2 we see that L2 : H1(X) → H5(X) is an isomorphism. That is, any
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element of H5(X) can be written as J ∧ J ∧ α for some α. This implies that the same is

true for H3,2(X) and thus, in the notation of the proceeding paragraph, ∂Λ = J ∧ J ∧ ∂γ
for some function γ (using the fact that h1(X) = 0).

Using this information we can now easily see the desired result. By definition,

H′=H+∂β for some two-form β. Then J∧H′=J∧H+J∧∂β=J∧J∧∂γ+J∧∂β and we

see that an appropriate choice of β (namely β = −J ∧ γ) renders H′ primitive as desired.

Thus, which ever class in H2(TX∨) we choose, a suitable choice of primitive flux will

exist within that class. An exactly analogous argument can be made for H1(∧2TX∨).

The kernel computations we are performing here only depend upon the class of the map

elements being used, and as such we do not need to know the exact form of the primitive

representative to proceed.

In the case at hand, the most general possible map appearing in (4.1), as described

by (4.12) and depending upon h2(TX∨) = 5 parameters mα, is given explicitly as follows.

m1

x0x1x2x3x4
+m2

(
1

x2
1x2x2

3

+
1

x2
0x

2
3x4

+
1

x0x2
1x

2
4

+
1

x2
2x3x2

4

+
1

x2
0x1x2

2

)
(4.17)

+m3

(
1

x0x2
2x

2
3

+
1

x2
1x

2
2x4

+
1

x2
0x2x2

4

+
1

x1x2
3x

2
4

+
1

x2
0x

2
1x3

)
+m4

(
1

x0x1x3
3

+
1

x0x3
2x4

+
1

x3
1x3x4

+
1

x1x2x3
4

+
1

x3
0x2x3

)
+m5

(
1

x1x3
2x3

+
1

x3
0x1x4

+
1

x2x3
3x4

+
1

x0x3x3
4

+
1

x0x3
1x2

)
We multiply such a map by the general source element given in (4.15) and trim the

result to only include constants - the relevant description of the target space in (4.1),

H3(X). We find that, for a fluctuation of the form (4.15) to appear in the kernel (4.1) the

following constraint on the coefficients ci must hold.

c1m1 + 5c2m2 + 5c3m3 + 5c4m4 + 5c5m5 = 0 (4.18)

So for example, if we choose the map corresponding to m1 = 5, m2 = 3, m3 = 4,

m4 = 10 and m5 = 6, then the most general fluctuation of the defining relation of the

quotiented quintic which is allowed by the first constraint (4.1) is as follows.

c2

(
x3x

2
4x

2
2 + x2

0x1x
2
2 + x2

1x
2
3x2 − 3x0x1x3x4x2 + x0x

2
1x

2
4 + x2

0x
2
3x4

)
(4.19)

+ c3

(
x2

0x3x
2
1 + x2

2x4x
2
1 + x2

3x
2
4x1 − 4x0x2x3x4x1 + x0x

2
2x

2
3 + x2

0x2x
2
4

)
+ c4

(
x2x3x

3
0 + x1x

3
3x0 + x3

2x4x0 − 10x1x2x3x4x0 + x1x2x
3
4 + x3

1x3x4

)
+ c5

(
x1x4x

3
0 + x3x

3
4x0 + x3

1x2x0 − 6x1x2x3x4x0 + x1x
3
2x3 + x2x

3
3x4

)
We see that we get one constraint on the general five parameter possible complex structure

fluctuation as should be the case.

As we have seen, the first map is easily implemented, and the constraint on moduli

it corresponds to can be mapped out explicitly. We now move on to consider the second

kernel condition (4.2). Here we will see a complication in comparison to the heterotic case.
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In the case of the second kernel condition the source space is the direct sum of (4.15),

the complex structure fluctuations (which must also be constrained by the first condition),

and the constants (which is the relevant description of H0(X)). The target space is de-

scribed by an expression of the form (4.17). Finally, the map is described by an element of

H2(TX∨) as in (4.17) (which maps the H0(X) piece of the source to the target) together

with an element of H1(∧2TX∨) (which maps the H1(TX) piece of the source to the target).

The relevant description of this last cohomology group, depending upon h1(∧2TX∨) = 5

parameters nα, is given explicitly as follows.

n1

(
1

x3
0x

3
2x

2
3x

2
4

+
1

x2
0x

3
1x

3
3x

2
4

+
1

x2
0x

2
1x

3
2x

3
4

+
1

x3
1x

2
2x

2
3x

3
4

+
1

x3
0x

2
1x

2
2x

3
3

)
(4.20)

+ n2

(
1

x3
0x

3
1x

2
2x

2
4

+
1

x2
1x

3
2x

3
3x

2
4

+
1

x3
0x

2
1x

2
3x

3
4

+
1

x2
0x

2
2x

3
3x

3
4

+
1

x2
0x

3
1x

3
2x

2
3

)
+ n3

(
1

x2
0x1x3

2x
3
3x4

+
1

x0x3
1x

3
2x3x2

4

+
1

x3
0x1x2

2x3x3
4

+
1

x0x2
1x2x3

3x
3
4

+
1

x3
0x

3
1x2x2

3x4

)
+ n4

(
1

x0x3
1x

2
2x

3
3x4

+
1

x3
0x1x2x3

3x
2
4

+
1

x2
0x

3
1x2x3x3

4

+
1

x0x1x3
2x

2
3x

3
4

+
1

x3
0x

2
1x

3
2x3x4

)
+

n5

x2
0x

2
1x

2
2x

2
3x

2
4

The complication here arises in that the two components of this map can not be chosen

independently from the map, already specified in (4.1). The component living in H2(TX∨)

should be proportional to the map already chosen and so this is relatively easy to determine.

The component living in H1(∧2TX∨) is more problematic. In terms of differential forms,

this map component should be the complex conjugate of the one appearing in (4.1). The

problem is that these cohomologies are being described here in algebro-geometric terms

and this process of complex conjugation is not transparent in such a formulation. Thus

it is rather difficult to know which component of H1(∧2TX∨) should be selected. Such

a complication does not arise in the heterotic Atiyah class setting where there is a single

map composed of a single component and no complex conjugation is required.

Note that this obstruction can be overcome in cases where the metric on complex

structure moduli space [75] is known for the Calabi-Yau in question in an appropriate form

(see for example [76]). In such an instance one can combine this knowledge with the natural

pairing

H1(∧2TX∨)×H2(TX∨)→ C (4.21)

in order to isolate the correct conjugate pairing. The point is that this pairing and the

metric are essentially the same quantity up to an overall scale, and (4.21) can be computed

explicitly for the polynomial descriptions of the cohomologies being utilized in this section.

If the complex structure moduli space metric is given in bases for the barred and unbarred

indices that are known to be conjugate, then the problem becomes soluble by performing a

basis change on the cohomological spaces to match the pairing (4.21) with that metric. Such

an involved computation is beyond the scope of this paper, and indeed it is dissatisfying

that one needs to compute a Kähler potential in order to learn about flat directions of
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a superpotential in this approach. Nevertheless, in a case where one wished to have full

control of the low energy theory, the Kähler potential would be required anyway and the

above obstruction would be naturally overcome.

In short, one can easily determine the constraint from either (4.1) or (4.2) where the

dilaton is taken to be fixed, but a complete analysis combining both constraints would

require this more subtle information. Let us give an example of the type of constraint on

pure complex structure fluctuations that can arise from (4.2) in order to illustrate the more

complex moduli stabilization results that can arise in this setting.

Let us choose as an example of the class of the (2, 1) field strength in (4.2) the element

of (4.20) where n3 = n4 = n5 = 0 and n1 = n2 = 1. Then, performing the map from

H1(TX) to H2(TX∨) following a methodology analogous to that described above, we

find the following for the allowed fluctuations of the defining relation (that is the complex

structure).

Pfluctuation = x5
0 + x5

1 + x5
2 + x5

3 + x5
4 + δx0x1x2x3x4 (4.22)

Here δ is the fluctuation parameter. We see that this map does not give a generic result for

the number of unconstrained moduli. The target space H2(TX∨) is of the same dimension

as H1(TX) and thus we might naively expect all of the complex structure to be stabilized.

With the above direct computation for this choice of map, however, we can see that this

is not the case.

4.2 A more complex example

In this subsection we will present a slightly more complex example of the kernel computa-

tions we have been discussing. This will illustrate both that the approach being presented

is not restricted to quotients of the quintic, and some more of the features of these analyses.

We will consider a quotient of the following CICY, number 7669 in the canonical

list [59–63],

MX =

P2 1 1 1

P2 1 1 1

P2 1 1 1

 . (4.23)

We will quotient by a freely acting Z3 symmetry [69–71]. Defining xa,i to be the homoge-

neous coordinates on the a’th P1 factor of the ambient space, the group action is defined

as follows.

g : xa,i → xa+1,i (4.24)

Here we define x4,i=x1,i. The quotient manifold X/Z3 is a smooth Calabi-Yau threefold, for

sufficiently generic choices of complex structure, and has h1,1 =1 and h2,1 =16 [69, 71–74].
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Using the sequences mentioned at the start of this section, one can compute the com-

plex structure moduli are encoded by the following description of the first tangent bundle

valued cohomology group.

H1(TX) =
Coker

[
C⊕9 → [1, 1, 1]⊕3

]
Coker [C⊕3 → [1, 0, 0]⊕3 ⊕ [0, 1, 0]⊕3 ⊕ [0, 0, 1]⊕3]

(4.25)

Here the map defining the quotient is given by the derivative of the defining equations dP ,

the map in the numerator is determined by the defining relations P themselves, and the

map in the denominator is determined by the homogeneous coordinates of the ambient

space projective space factors.

Another cohomology that we will need is H2(TX∨), for which we find the following

description.

H2(TX∨) = Ker

[
Ker

(
[−1,−1,−1]

P−→ [0, 0, 0]⊕3
)⊕3 dP−→ Ker

[
[−1, 0, 0]⊕3 ⊕ (4.26)

[0,−1, 0]⊕3 ⊕ [0, 0,−1]⊕3 x−→ C⊕3
] ]

Since the analysis is becoming repetitive we have simply denoted the quantities relevant

to this expression over the maps that they define.

The final cohomology, whose description we require to define the map in (4.2) has a

more complex description, given as follows.

H1(∧2TX∨) = Ker
[
Ker

[(
[−2,−2,−2]→ [−1,−1,−1]⊕3

)⊕6 → (4.27)

Ker
(
K1 → Ker

[
[−1,−1,−1]→ [0, 0, 0]⊕3

]⊕9
)]
→ C⊕6

]
In the above, K1 is defined by the following set of kernels.

K1 =
(
ker
[
[−2,−1,−1]→ [−1,0,0]⊕3

])⊕9⊕
(
ker
[
[−1,−2,−1]→ [0,−1,0]⊕3

])⊕9
(4.28)

⊕
(
ker
[
[−1,−1,−2]→ [0,0,−1]⊕3

])⊕9

While most of the maps in this expression can be obviously constructed from P and dP , the

final map, to C6 is more subtle in nature and deserves a little further discussion. This final

map in (4.27) is, of course, crucial in obtaining a correct description of H1(∧2TX∨). In

particular taking the kernel of this map removes precisely one degree of freedom to correctly

leave a 16 dimensional space. Unlike the other maps that appear in these expressions,

however, it may not be immediately obvious how it is to be constructed. It maps sets

of polynomials of degree [−2,−2,−2] to constants but is not built out of products of two

defining relations as one might naively expect from the degrees in (4.27) (such a map is in

fact the trivial map between the two relevant spaces here).

The space Ker
[
([−2,−2,−2]→ [−1,−1,−1]⊕3)⊕6

]
arises from H3(X,S2N∨) in the

sequence chasing, whereas the C⊕6 target arises from H0(X,S2(O⊕3
X )). The maps separat-

ing these two quantities, from which we must construct the composite map that appears

in (4.27), are built from the data dP and x (the derivatives of the defining relations and
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the homogeneous coordinates of the ambient space). Examining the structure of the se-

quence (4.8) applied to this example, we expect the quantity dP to appear quadratically in

the resulting composite map. Note that we can not simply combine dP and x in the obvious

manner to obtain polynomials of degree [1, 1, 1] that can then be combined quadratically

to define the map. Such quantities are quadratic in defining relations P and thus, given

the structure of the kernel Ker
[
([−2,−2,−2]→ [−1,−1,−1]⊕3)⊕6

]
, these act as the zero

map on this space.

We require, then, a map defined, loosely speaking, from H3(X,S2N∨) to H0(X,S2(O⊕3X ))

using simply homogeneous coordinates of the ambient space and dP . To describe this map

we will need several pieces. We define a tensor of numbers, dP
(α)ij
k , as the coefficients of

the derivative of the defining relations.

dP
(α)
k = dP

(α)ij
k xixj (4.29)

Here i, j, k are now composite indices that run over all of the homogeneous coordinates of

the ambient space and α runs over the defining relations themselves. We also define the

antisymmetric tensors ε
(A)
ijk . Here, the index A runs over the projective space factors of the

ambient space and the tensor is zero unless all indices i, j, k are taken from the associated

projective space and is the Levi-Civita symbol in that case.

With these definitions in place, we can define the map using the following objects.∑
k1,k2

ψk1...k6 ε
(A)
i1i2k3

ε
(B)
j1j2k4

dP
(α)i1j1
k5

dP
(β)i2j2
k6

(4.30)

The quantity given in (4.30) constitutes a piece of the image of the map. The ψ are

the coefficients of the degree [−2,−2,−2] polynomials of the source written as a tensor,

similarly to what was seen for dP in (4.29). Each of the OX in H0(X,S2(O⊕3
X )) corresponds

to one of the ambient space factors. Depending upon which piece of this cohomology we

are describing the map to, we pick A and B accordingly. Similarly the source space

of H3(X,S2N∨) breaks up into pieces labeled by two defining relation counting indices.

Depending upon which piece of this cohomology we are describing the map from, we pick α

and β accordingly. Combining all of these pieces together, a full mapping can be obtained.

Using this map we can show that the image obtained is correctly equivariant. In

addition, the further sequence chasing reveals that the cokernel of this map should give a

description of H2(∧2TX∨) = H2,2, that is, the cohomology associated to the single Kähler

modulus of the quotiented manifold. The cohomology describing the Kähler modulus,

obtained from the map described above, is then built from a sum of identical pieces, one

for each projective space factor, as the nature of the group action (4.24) would suggest.

Finally, taking the kernel does indeed remove one degree of freedom giving rise to a 16

parameter description of the cohomology H1(∧2TX∨) which is invariant under the Z3

group action induced from (4.24).

Given the descriptions given in equations (4.25), (4.26) and (4.27) of the necessary

cohomologies one can now analyze the allowed moduli fluctuations, as described by equa-

tions (4.1) and (4.2) in exactly the same way as was discussed in the previous example. For
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example, one can pick the following initial defining relations, which can be easily shown to

define a smooth Calabi-Yau threefold by employing standard methods [62].

P1 =x1,0x2,0x3,0+x1,1x2,0x3,0+x1,2x2,0x3,0+x1,0x2,1x3,0+x1,1x2,1x3,0+x1,0x2,2x3,0

+x1,2x2,2x3,0+x1,0x2,0x3,1+x1,1x2,0x3,1+x1,0x2,1x3,1+x1,1x2,1x3,1+x1,2x2,2x3,1

+x1,0x2,0x3,2+x1,2x2,0x3,2+x1,2x2,1x3,2+x1,0x2,2x3,2+x1,1x2,2x3,2

P2 =x1,1x2,2x3,0+x1,2x2,0x3,1+x1,2x2,1x3,1+x1,1x2,2x3,1+x1,0x2,1x3,2+x1,1x2,1x3,2

+x1,2x2,2x3,2 (4.31)

P3 =x1,2x2,0x3,0+x1,1x2,1x3,0+x1,0x2,2x3,0+x1,1x2,2x3,0+x1,2x2,2x3,0+x1,1x2,0x3,1

+x1,2x2,0x3,1+x1,0x2,1x3,1+x1,2x2,1x3,1+x1,1x2,2x3,1+x1,0x2,0x3,2+x1,2x2,0x3,2

+x1,0x2,1x3,2+x1,1x2,1x3,2+x1,0x2,2x3,2

Computing the form of a general element of the description of H1(TX) given

in (4.25), we then find the following parametrization of the infinitesimal complex structure

fluctuations.

δP1 = s16x1,0x2,0x3,0+s15 (x1,1x2,0x3,0+x1,0x2,1x3,0+x1,0x2,0x3,1) (4.32)

+s13 (x1,1x2,1x3,0+x1,1x2,0x3,1+x1,0x2,1x3,1)+s14 (x1,2x2,0x3,0+x1,0x2,2x3,0+x1,0x2,0x3,2)

+s12 (x1,2x2,1x3,0+x1,0x2,2x3,1+x1,1x2,0x3,2)+s10 (x1,2x2,1x3,1+x1,1x2,2x3,1+x1,1x2,1x3,2)

+s11 (x1,2x2,2x3,0+x1,2x2,0x3,2+x1,0x2,2x3,2)+s9 (x1,2x2,2x3,1+x1,2x2,1x3,2+x1,1x2,2x3,2)

δP2 = s8 (x1,1x2,0x3,0+x1,0x2,1x3,0+x1,0x2,0x3,1)+s6 (x1,1x2,1x3,0+x1,1x2,0x3,1+x1,0x2,1x3,1)

+s7 (x1,2x2,0x3,0+x1,0x2,2x3,0+x1,0x2,0x3,2)+s4 (x1,2x2,1x3,0+x1,0x2,2x3,1+x1,1x2,0x3,2)

+s5 (x1,1x2,2x3,0+x1,2x2,0x3,1+x1,0x2,1x3,2)+s3 (x1,2x2,2x3,0+x1,2x2,0x3,2+x1,0x2,2x3,2)

+s2 (x1,2x2,2x3,1+x1,2x2,1x3,2+x1,1x2,2x3,2)

δP3 = s1 (x1,1x2,0x3,0+x1,0x2,1x3,0+x1,0x2,0x3,1)

It should be noted that the apparent asymmetry between the δPi above is due, in part, to

choice of conventions made in parameterizing the cokernels in question. For example, one

could add an arbitrary combination of the s’s multiplied by the associated defining relation

to one of these fluctuations and obtain an equally valid result.

With a good description of the complex structure fluctuations (4.32) in hand we can

now either compute the kernel in (4.1) or that in (4.2) with the dilaton taken to be fixed.

As in the previous example, computing both maps simultaneously would require an un-

derstanding of how the various choices of maps are linked in the descriptions we are using.

Here we will focus on (4.2) as this is the richer case, corresponding as it does (generically)

to more than just one constraint.

The explicit expressions for the spaces (4.26) and (4.27), for the complex structure

given in (4.31) and using the map defined using the quantities in (4.30), can easily be

computed explicitly and shown to depend upon the right number (16) of independent

parameters. The expressions, while easily manipulated with a computer are too large to

be included here and so we will content ourselves with discussing some of the results that

can be obtained by using them.

The first observation that we can make in this more complicated example is that it very

hard to find a flux that doesn’t stabilize all of the complex structure moduli via (4.2) when
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the dilaton is held fixed. From a Type IIB perspective this is completely expected, as the

number of constraints being imposed, as determined by the target of the map, is the same as

the number of degrees of freedom that we would wish to be fixed (16 in this case). Indeed,

given that a general element of the cohomology class describing the map from H1(X,TX)

in (4.2) can consistently be chosen as the flux, we would indeed expect generally to obtain

a surjective map (and thus vanishing kernel). This is, however, somewhat different to the

heterotic case. The heterotic example given in section 2.2 is in fact of a similar nature.

The target space in question is h2(X,End0(V )) = 17 dimensional and indeed 17 complex

structure moduli are stabilized. More generally, however, the heterotic literature is full

of examples where equation counting of this nature does not give the right answer. For

example, in [3] an explicit SU(2) bundle is given for which the target space in the Atiyah

calculation is 359 dimensional but only 80 complex structure moduli are fixed. It would be

interesting to know if this break down in counting of constraints, or equivalently common

non-genericity of the Atiyah map (2.3) in examples, is an artifact of the common bundle

constructions that are used in the literature or a fairly generic feature of the holomorphic

poly-stable bundles that can appear in heterotic compactifications.

Rather than simply picking a flux as an element of (4.27) and computing the kernel of

the map (4.2) with the dilaton fixed, one can perform the computation with a general map

depending on 16 unspecified parameters. The result of this computation is too large to

include here for this more complicated example being a set of 81 equations each with over

154 terms. This set of equations is bilinear in the complex structure fluctuation parameters

in (4.32) and the 16 parameters describing the possible fluxes.

ΛiαI nαsi (4.33)

Here the index I runs over the 81 equations in the set.

It might be tempting to view these equations as analogous to the varieties obtained

in (2.15) in the heterotic case and to perform primary decomposition and elimination

on (4.33). The structure here is not the same however. The flux is not really allowed to

vary in a continuous manner. It is, rather quantized, in a manner that we have largely

ignored in this paper. This means that elimination is not the correct tool as this would tell

us which complex structures could be accessed if the flux were allowed to vary smoothly

and continuously.

The root of this difference to the heterotic case is that in Type IIB we have not provided

a “starting point” independent analysis of this system. Here we have simply picked an

initial complex structure and have calculated a set of constraints linking the choice of flux

to the allowed fluctuations in the complex structure moduli. This is somewhat different to

the more global view on the moduli space that was afforded by the use of the extension

construction in section 2.2. Thus the system of equations (4.33) is not really analogous

to (2.15) but rather to a set of equations that could be obtained involving possible choices

of quantized cohomology class of field strength for the gauge bundle. It seems harder to

obtain a true analog of (2.15) in the Type IIB case as the analog of a bundle construction

that is manifestly complex structure dependent does not seem obvious. One would need a
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description of the holomorphy of the flux that was global in moduli space, rather than just

being analyzed by fluctuation around a single configuration as we have above.

As a final note, one might also worry in analyzing the equations of the form (4.33) in

the Type IIB string theory case that they are not valid for arbitrary values of the complex

structure, but rather for infinitesimal values of the fluctuations si. In fact, this is not an

issue as the equations are linear in the si. Therefore, for any solution that is found one

can simply multiply all of the si by an arbitrarily small number and obtain a valid solution

where the fluctuations are small.

5 Conclusions

The question that was asked in the introduction to this paper was to what extent techniques

of moduli identification that have been developed in examples of heterotic compactifica-

tions can be utilized in the case of compactifications of Type IIB string theory. We have

seen that these techniques can be applied to this case quite easily. Indeed in many situa-

tions the unstabilized moduli do correspond to kernels of maps between ordinary Dolbeault

cohomology groups, with the maps being defined by the supergravity data of the compact-

ification of interest. The main differences to the heterotic case arise once one attempts to

compute these kernels in explicit examples.

We have seen that it is indeed possible to compute map kernels in examples based upon

compactification on conformal CICY three-folds. Using a description of the cohomologies

involved in terms of polynomials of ambient space homogeneous coordinates, the maps

concerned can be carried out explicitly. Computing the relevant kernels is then straight

forward and leads to an extremely explicit description of the unstabilized moduli, if any.

In the case of complex structure moduli, for example, the unstabilized degrees of freedom

can be described as unrestricted coefficients in the polynomial defining relations of the

Calabi-Yau in the ambient product of projective spaces.

There are, however, two important differences that arise to the heterotic case in per-

forming this analysis. Firstly, a simplification occurs in that, in the polynomial description

of the cohomologies in which the relevant maps live, any map can correspond to an allowed

supergravity flux. In the case of heterotic Calabi-Yau compactifications, where the relevant

map is defined by the field strength of a non-abelian gauge field, the same is not true and

there may be no appropriate bundle corresponding to a given choice of map. Secondly,

a complication arises in the map structure we find in comparison to the heterotic case.

The same field strength appears in two different maps in some examples, but in the form

of its complex conjugate in one case. This leads to a difficulty in performing complete

computations as identifying the complex conjugate elements in the two relevant spaces of

maps is difficult in a description of the cohomologies based upon holomorphic polynomials.

Nevertheless, this difficulty can be overcome in situations where the metric on complex

structure moduli space is known in enough detail.

As in the heterotic case, the techniques presented here apply generally to manifolds

described as complete intersections in simple ambient spaces. Thus they generalize easily

to other popular constructions, such as that of hypersurfaces in toric varieties. It should

– 26 –
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be noted, however, that although the general analysis can be applied in many cases there

still exists a dearth of suitable explicit examples to analyze in the case of compactifications

that are not at least conformally Calabi-Yau.

Finally, it is interesting to ask whether the particular F-flat moduli spaces we have

discussed here can be described in terms of the ordinary Dolbeault cohomology of a specific

bundle with structure analogous to (for example) (2.4) as seen in the heterotic setting. One

might expect that this indeed could be the case given the importance of Courant algebroids

in the study of generalized complex structures [77, 78] and the structure of the N = 1 vacua

being discussed here in terms of generalized Calabi-Yau manifolds [18, 52]. We leave such

an investigation for future work.
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