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It is found that the vast majority of the non-simply connected manifolds studied exhibit

multiple different genus one fibrations — echoing a similar ubiquity of such structures

that has been observed in other data sets. The results are available at [1]. The possible
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exhibit multiple fibers and are of interest in F-theory as backgrounds leading to theories

with superconformal loci and discretely charged matter.

Keywords: Differential and Algebraic Geometry, F-Theory, Superstring Vacua

ArXiv ePrint: 1805.05497

Open Access, c© The Authors.

Article funded by SCOAP3.
https://doi.org/10.1007/JHEP08(2018)128

mailto:lara.anderson@vt.edu
mailto:jamesgray@vt.edu
mailto:bh@vt.edu
https://arxiv.org/abs/1805.05497
https://doi.org/10.1007/JHEP08(2018)128


J
H
E
P
0
8
(
2
0
1
8
)
1
2
8

Contents

1 Introduction 1

2 CICYs, fibrations, symmetries, and quotients 4

2.1 CICY three-folds 4

2.2 Discrete symmetries and quotients of CICY three-folds 5

2.3 Fibrations of CICY three-folds 7

2.4 Fibrations in CICY quotients 8

3 Results:obvious fibrations 10

4 Obvious vs. Kollár fibrations: an illustration 13

5 Conclusions 16

1 Introduction

The study of Calabi-Yau (CY) manifolds has long been a central topic in the study of string

compactifications. In recent years, the fibration structures exhibited by these manifolds

have been extensively studied for a number of reasons. First, in F-theory genus one fibra-

tions are essential to capture the “geometrized” axio-dilaton of Type IIB string theory [2],

describing this physical degree of freedom as the complex structure of a Torus fiber of a

Calabi-Yau manifold. The structure of the low energy effective physics seen in F-theory

compactifications is therefore crucially linked to the nature of the genus one fibrations of

Calabi-Yau spaces. Second, fibrations of various dimensionalities in Calabi-Yau manifolds

play a crucial role in the subject of string dualities. They are central in heterotic/Type

IIA duality, heterotic/F-theory duality and F-/M-theory duality, and many others.

Mathematically, genus one fibered geometries are also important because they supply

a foothold into attempts to classify all Calabi-Yau manifolds in fixed dimension. The set

of genus one fibered Calabi-Yau three-folds is proven to be finite [3]. More recent work [4]

has investigated similar results for genus one fibered Calabi-Yau four-folds and five-folds.

A key motivation for these classifications [3, 5] is the hope that they could be used as a first

step in establishing the finiteness of all Calabi-Yau manifolds of a given dimension. Despite

this, and despite the clear utility of fibered Calabi-Yau manifolds in the subject of string

dualities, it was historically thought that fibration structures (which include genus-one, K3

or abelian surface fibrations), would likely be rare within the set of all such geometries.

Recent studies have shown that, in fact, nearly all known Calabi-Yau manifolds are

genus-one fibered [6–12]. Indeed, generically, it appears that almost all Calabi-Yau man-

ifolds which have been constructed using standard methods can be written as genus-one

fibrations, generically in multiple, inequivalent ways, over potentially topologically distinct
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base manifolds [6, 10, 11, 13]. A Calabi-Yau manifold can be called multiply elliptically

fibered (or genus one fibered in the case where the fibration does not admit a section1) if

it admits multiple descriptions of the form πi : Xn −→ B
(i)
n−1 where the generic fiber is

elliptic (or genus-one) E(i)b = π−1(b ∈ B(i)
n−1) (denoted succinctly by πi : Xn

E(i)−→ B
(i)
n−1). In

other words, we can draw a diagram such as the following.

Xn

E(1)

zz
E(2)

��

E(i)

$$
B

(1)
n−1 B

(2)
n−1 . . . B

(i)
n−1

(1.1)

For each different fibration, πi, the associated Weierstrass model [16], the structure of

the singular fibers, the discriminant locus, fibral divisors, the topology of the base manifolds

B
(i)
n−1 and the Mordell-Weil group can all be different [11, 12]. These prolific and ubiquitous

multiple fibration structures were also studied for CICY four-folds in [10, 17, 18].2

In the present work, it is our aim to extend the results above by studying fibrations

in a different class of Calabi-Yau geometries. Although it is true that the vast majority of

manifolds that have been studied have displayed a rich and ubiquitous multiple fibration

structure, all of these manifolds have been constructed in a similar manner and it is possible

that they suffer from a “lamp post” effect. One common property of the fibered manifolds

studied to date has been that almost all are simply connected.3 Given this, it is of interest

to ask whether the results about CY fibrations that have been obtained in the literature

thus far carry over to other constructions and, in particular, to the case of non-simply

connected manifolds?

The simplest way in which to construct a large class of non-simply connected Calabi-

Yau three-folds is to take an existing simply connected dataset of manifolds and quotient

them by freely acting discrete symmetries, Γ (note that such quotients are not Calabi-Yau

manifolds in even dimensions and thus we can not follow such a route in those cases). If

|Γ| = n, the relationship between the “upstairs” manifold X (simply connected) and its

“downstairs” quotient, X̂ is that of an n-sheeted covering:

q : X → X̂ = X/Γ . (1.2)

Thus, in this work we will focus on studying a particular dataset of genus one fibered Calabi-

Yau three-folds — non-simply connected manifolds that are constructed as smooth quotients

of Calabi-Yau three-folds by a freely acting discrete automorphism. To this end, we have

employed the only dataset of three-folds for which a large class of discrete automorphisms

has been classified [22] — the Calabi-Yau three-folds defined as complete intersections in

products of ordinary projective spaces [23].

1See [14, 15] for some of the physical distinctions between compactifications on elliptically or genus one

fibered three-folds.
2The full list of CICY four-fold configuration matrices and their Euler characteristics can be downloaded

at [19].
3Within the Kreuzer-Skarke database [20] all but 16 of the hypersurfaces in toric varieties are simply

connected [21].
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The genus one fibration structures of these geometries is virtually unexplored. In ad-

dition, the physical properties of effective theories obtained by F-theory compactifications

on these spaces has only recently begun to be studied [24]. In these geometries, although

the base of the fibration is generically singular, the total space is smooth. This smooth

total space is possible due to the presence of multiple fibers over the singular points on the

base. The combination of singular base manifolds to the fibration and isolated multiple

fibers leads to interesting physics: namely the presence of superconformal sectors in the

lower dimensional effective field theory, coupled to discretely charged matter. It should be

noted that if the discrete symmetry, Γ, being employed in the quotient (1.2) does not act

in a simple toric fashion, then the quotient manifolds being constructed are not themselves

obviously describable in terms of a hypersurface or complete intersection in a toric variety,

and thus the manifolds constructed are quite distinct from the usual complete intersection

datasets and could provide novel features.

In studying these geometries, we aim to achieve two goals. First, we would like to

answer the question does the trend of ubiquitous genus one fibrations seen in other con-

structions of Calabi-Yau manifolds continue in this non-simply connected data set? More-

over, are virtually all of the manifolds multiply genus one fibered as seen in other cases?

Second, we hope to provide a large class of examples for researchers who wish to study

the physics associated to F-theory compactifications on non-simply connected total spaces

with multiple fibers [24].

Our results include the following:

• We study the fibrations of 1,695 non-simply connected Calabi-Yau three-folds. A

scan for obvious fibrations descending from the covering spaces yields 17,161 fibra-

tions for the dataset. These are fibrations that can be easily be identified from the

configuration matricies of the upstairs geometries and which survive quotienting to

persist as fibrations in the non-simply connected Calabi-Yau manifolds. As with

other datasets of Calabi-Yau three-folds, we find that once again nearly all mani-

folds (more than 95% in this dataset) appear to admit at least one (and generically

multiple) descriptions as genus one fibrations.

• With a view towards F-theory compactifications, we characterize the maximal dis-

crete symmetry orders that are compatible with quotienting and fibration structures

in this dataset, as well as the possible base manifolds that can occur.

The rest of this paper is structured as follows. In the next section, we review the

CICY construction, discrete symmetries of CICYs, fibrations in CICYs, and how it can

be determined whether fibration and symmetry structures are compatible, leading to non-

simply connected manifolds in (1.2) that are genus one fibered. In section 3, we provide the

results of an exhaustive study of the obvious fibration structures associated to quotients

of CICY three-folds. In section 4 we briefly discuss alternative ways to determine all (not

necessarily obvious) fibration structures in this context. Finally in section 5 we provide

our conclusions and some possible future directions for research.
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2 CICYs, fibrations, symmetries, and quotients

In the following subsections we will provide a rapid review of the necessary geometric

ingredients for the present study. Our focus will be on properties of Calabi-Yau three-folds

defined as complete intersections in products of project spaces. On these covering spaces

we will consider genus one fibrations, as well as discrete automorphisms, Γ, of the Calabi-

Yau manifold, which we will use to construct non-simply connected Calabi-Yau three-folds

defined as quotients, q : X → X/Γ.

2.1 CICY three-folds

In this paper we will consider Calabi-Yau three-folds constructed as complete intersections

in products of projective spaces (CICYs). The notation employed in our discussion will

largely follow that of the original papers on the subject [23, 25–27] and the text [28].

A family of CICYs is defined by a configuration matrix of the following form.

[n|q] ≡

 n1 q1
1 . . . q1

K
...

...
. . .

...

nm qm1 . . . qmK

 (2.1)

In this matrix the entries qrα are positive semi-definite and the nα are strictly positive

(see [29] for information on how these constraints can be relaxed). The first column of (2.1)

specifies the dimension of the projective spaces, the product of which forms the ambient

manifold. The remaining columns then specify the degree of the K defining relations of

the complete intersection, with respect to the homogeneous coordinates of the projective

space factors. In what follows we will label these defining relations pα. Note that in the

above we have used the indices r, s, . . . = 1, . . . ,m to label the ambient projective space

factors Pnr and the indices α, β . . . = 1, . . . ,K to label the defining relations pα.

For the matrix (2.1) to define a three-fold we require that 3 =
∑m

r=1 nr − K, given

that the manifold is a complete intersection. The Calabi-Yau condition of vanishing first

Chern class is satisfied if,

K∑
α=1

qrα = nr + 1 . (2.2)

It is clear that a configuration matrix of the form (2.1) defines a family of manifolds in

that it only specifies the degree of the defining relations and not specific polynomials. The

possible choices of coefficients in the defining polynomials form a redundant description

of, in general part of, the complex structure moduli space of the CICY. It can be shown

that, for sufficiently general choices of complex structure, any configuration matrix defines

a smooth complete intersection [26, 28].

It is clear that there are an infinite number of configuration matrices (2.1) that describe

CICY three-folds. In particular, one can keep making the ambient space bigger, while

increasing the number of constraints K, in order to maintain a three dimensional space.

Nevertheless, the set of Calabi-Yau three-folds described by the CICY construction is
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finite. Many different configuration matrices can describe the same Calabi-Yau manifold,

and if these redundancies in description can be removed to a sufficient degree then an

exhaustive classification can be made of the dataset. In particular there exists a set of

7,890 configuration matrices such that any three-fold of this type is described by at least

one such matrix [23]. An alternative complete list of three-fold configuration matrices

has recently been derived wherein more of the properties of the Calabi-Yau manifolds in

question descend in a simple way from the ambient space, leading to a higher degree of

computational control [12]. The CICY four-folds have also been classified in a similar

manner [10, 30]. The topology (Hodge numbers, Chern classes, etc.) of CICY three-folds

is well known (see for example [28]) and can be readily computed from the integer data in

the configuration matrices given in (2.1).

2.2 Discrete symmetries and quotients of CICY three-folds

All of the CICY n-folds can be shown to be simply connected [28]. For odd dimensional

cases, non-simply connected Calabi-Yau manifolds can be obtained from this construction

by quotienting by an appropriate freely acting symmetry. Those freely acting symmetries

which descend from a linear action on the homogeneous coordinates of the ambient spaces

in the original CICY list of 7,890 matrices, and for which the symmetry restricted defining

relation still generically leads to a smooth Calabi-Yau three-fold, have been classified in [22]

(see [31–35] for studies of the properties of these manifolds).

We will begin with an example. Consider the following Calabi-Yau three-fold (#6826

in the standard list4).

X =

P1 0 0 2

P1 0 0 2

P4 2 2 1

 (2.3)

This CICY’s ambient space admits the following linear action on its homogeneous coordi-

nates.

g : xi,a → (−1)a+1xi,a (2.4)

g : yA → (−1)A+1yA

Here the xi,a’s are the homogeneous coordinates on the two P1 factors with i = 1, 2 labeling

the projective factors and a = 0, 1 labels the homogeneous coordinates on each of those two

P1’s. The yA are the homogeneous coordinates on the P4 factor of the ambient space. This

symmetry action has fixed points on the P1 × P1 × P4 ambient space but these generically

miss the Calabi-Yau hypersurface. The generic set of defining relations that are invariant

under (2.4), if one takes the final equation to transform with an over all negative sign, leads

to a smooth variety. Thus defining such a quotient of the complete intersection described

by (2.3) by the symmetry action (2.4) leads to a smooth Calabi-Yau three-fold X̂ with

π1(X̂) = Z2.

4The original list of CICY three-folds found in ref. [23] can be downloaded at [36].

– 5 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
8

Given a quotient and its covering space q : X → X̂ = X/Γ, the Chern classes and

triple intersection numbers of X̂ can be readily computed in terms of those associated to

X. In general, a bundle V on X is called equivariant if it satisfies V = q∗(V̂ ) for some

bundle V̂ on X̂. The bundle-valued cohomology of V̂ on X/Γ is precisely the Γ-invariant

part5 of that on X. That is,

H i(X̂, V̂ ) = H i
inv(X,V ) . (2.5)

For example, applying this to the holomorphic tangent bundle V = TX yields the Hodge

numbers of X̂. The Hodge numbers of the CICY quotients of the form described above

were calculated in [31–35].

Chern classes have the following simple property under pull-back maps

ci(q
∗(V̂ )) = q∗(ci(V̂ )) . (2.6)

Labeling an integral basis of H2(X,Z) by Jr, where r = 1 . . . h1,1(X), and letting Ĵa be the

generators of H2(X̂,Z), with a = 1, . . . h1,1(X̂), the relationship (2.5) above implies that

we can express the relationship between these sets of basis forms as

q∗(Ĵa) = Kr
aJr , (2.7)

for some matrix of integers Kr
a. Thus for an equivariant bundle V = q∗(V̂ ),

c1(q∗(V̂ ))rJr = c1(q∗(V̂ )) = q∗(c1(V̂ )aĴa) = c1(V̂ )aKr
aJr . (2.8)

The coefficients of the first Chern classes of V and V̂ are related then as

c1(q∗(V̂ ))r = c1(V̂ )aKr
a . (2.9)

Likewise, a similar analysis [37] yields that

c2(V̂ )cbd̂cba =
1

|Γ|
c2(q∗(V̂ ))tsdtsrK

r
a (2.10)

where dtsr and d̂cba are the triple intersection numbers on X and X̂ respectively. Similarly,

the third Chern class has the following simple relationship∫
X
c3(q∗(V̂ )) =

∫
X
q∗(c3(V̂ )) = |Γ|

∫
X/Γ

c3(V̂ ) (2.11)

Finally, the triple intersection numbers of X are defined as drst =
∫
X Jr ∧ Js ∧ Jt.∫

X
q∗(Ĵa) ∧ q∗(Ĵb) ∧ q∗(Ĵc) =

∫
X
q∗(Ĵa ∧ Ĵb ∧ Ĵc) = |Γ|

∫
X/Γ

(Ĵa ∧ Ĵb ∧ Ĵc) . (2.12)

Expanding both sides and using (2.7) leads to

Kr
aK

s
bK

t
cdrst = |Γ|

∫
X/Γ

(Ĵa ∧ Ĵb ∧ Ĵc) = |Γ|d̂abc (2.13)

We will illustrate these formulae for explicit examples in the following sections.

5Here invariance is relative to the group action induced from the equivariant structure on the bundle V .

We will not go into details here and refer the reader to [37, 38] for a full disussion.
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2.3 Fibrations of CICY three-folds

Extensive recent studies have shown that nearly all of the CICYs are multiply genus one

fibered [10–12, 39, 40]. Two types of fibration have been studied in this context. The

first are “obvious” fibrations, that is, fibrations that can be observed to be present purely

by a simple examination of the configuration matrix. The second type of fibrations that

have been studied, which form an exhaustive set, are those classified by divisors satisfying

certain properties: so called Kollár fibrations.

Obvious fibrations of a CICY can be observed by simple manipulations of configuration

matrices such as (2.3). It is possible to perform arbitrary row and column permutations

on a configuration matrix without changing the geometry that is described. Row permu-

tations correspond to a simple reordering of the Pnr ambient space factors while column

permutations are a relabeling of the defining equations. Using such operations, one can

ask whether the configuration matrix can be put in the following form:

Xobv =

[
A1 0 F
A2 B T

]
. (2.14)

In (2.14), A1 and A2 are products of projective spaces and F ,B and T are block sub-

matrices. If a configuration matrix can be put in such a form then the associated manifold

can be described as a fibration of the variety described by [A1|F ] over a base space described

by [A2|B] with the “twisting” of the fibre over the base being determined by the matrix

T [10]. The fiber in such a case is always Calabi-Yau, and thus in the case that the fiber

is one dimensional this corresponds to a torus fibration of the original manifold. In fact,

a given configuration matrix can often be put in the form (2.14) in multiple inequivalent

ways. Such analysis shows that the vast majority of CICY n-folds can be written in

multiple inequivalent ways as Calabi-Yau fibrations of different types [10, 12]. Note that it

is important to check that the Calabi-Yau fiber is connected as it is possible to obtain, for

example, fibers that are multiple tori embedded differently within the ambient space [12].

Only connected fibers are considered in this work.

As an example of the above, the configuration matrix given in (2.3) exhibits a rather

sparse torus fibration structure and can only be written as an obvious genus one fibration

in two inequivalent ways

X =

P4 2 2 1

P1 0 0 2

P1 0 0 2

 and X =

P1 0 0 2

P1 0 0 2

P4 2 2 1

 . (2.15)

Note that in the first case above the matrix block B in (2.14) is trivial and thus the base of

the fibration is simply P1×P1. In the second case the base is described by the configuration

matrix
[
P4 2 2

]
, which is a representation of dP5.

All of the fibrations of a CICY, not just the obvious ones, can be obtained if one

has enough control over the divisor and cone structure of the manifold [12, 41–43]. For a

Calabi-Yau n-fold, the existence of a genus-one fibrations has been conjectured by Kollár

to be determined by the following criteria [41].
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Conjecture. Let X be a Calabi-Yau n-fold. Then X is genus-one fibered if and only if

there exists a (1, 1)-class D in H2(X,Q) such that

D · C ≥ 0 for every algebraic curve C ⊂ X

Ddim(X) = 0 (2.16)

Ddim(X)−1 6= 0 .

For Calabi-Yau three-folds, it can be shown that one only need consider effective

divisors in the above and in this case Oguiso and Wilson have proven that these conditions

are sufficient to find all fibrations [42, 43]. The conditions in Kollár’s conjecture have a

clear intuitive origin. We can think of D as a divisor in the base of the fibration such that

Ddim(X)−1 gives a point in that base. This then picks out the fiber of the fibration for us

when these divisors are pulled back to the total space.

In general the obvious fibrations are a subset of these Kollár fibrations. For example,

the configuration (2.3), while only exhibiting the 2 obvious fibrations given in (2.15), in

fact has 414 fibrations in total [12].

2.4 Fibrations in CICY quotients

In this section we will study the compatibility of fibrations of CICYs and quotients of them

by freely acting discrete groups. In particular, one might be interested in which obvious

fibrations exist in the quotiented, non simply-connected, geometry. Consider a symmetry

action on a manifold described by a configuration matrix of the form (2.14). If the action

is “block diagonal”, in that it does not transform coordinates in A1 into those of A2 and

vice versa, then fiber and base directions are not being mixed and one might think that the

fibration survives a quotienting of the manifold by the symmetry group. To see that this

is true is straightforward. Firstly, the projection map before quotienting simply consists

of deleting the coordinates of A1 in describing a point on the manifold that solves the

defining relations. This projection map is compatible with a symmetry action of the form

described above in that points on the total space of the manifold that are related to each

other by the symmetry action project to points on the base which are also related by the

restriction of the symmetry action to that space. Thus in grouping points on the manifold

into equivalence classes related by the symmetry when taking the quotient, the original

projection induces a natural such map on the quotient. Thus the following diagram is

commutative and the quotiented manifold is a well defined fibration.

X
g−→ X̂

π ↓ ↓ π̂
B

g̃−→ B̂ .

(2.17)

In the above π denotes the projection map on the upstairs manifold, π̂ denotes the induced

projection map on the quotiented manifold, g denotes the quotient by the group action on

the upstairs manifold and g̃ denotes the quotient of the induced group action on the base.

The question remains as to what the generic fiber looks like for X̂. Fortunately this

is easy to decide. Since we are quotienting by a finite group, the dimension of the fiber is

– 8 –
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obviously unchanged. Since the total space, for an odd dimensional Calabi-Yau manifold,

is still a Calabi-Yau n-fold, the fibers must be Calabi-Yau as well. Thus, if the upstairs

space was fibered by Calabi-Yau m-folds, so too is the quotiented manifold. In particular,

if we start with a torus fibration then the quotient will be torus fibered too. Note that

an argument of this type works quite generally, including for non-complete intersections of

the form (2.14) in arbitrary ambient spaces A1 and A2 with an appropriate block diagonal

group action.

For the obvious fibrations of the example given in (2.3) the fibration structure is clearly

preserved under quotienting by the action (2.4). The group action acts within projective

space ambient factors and does not transform one Pnr into another. Thus this symmetry

action is indeed of the block diagonal form described above. It should be noted that the

base of the fibrations obtained in this manner are singular in general, being P1 × P1/Z2

and dP5/Z2 respectively in this case. The total space is still smooth by construction,

however. This is possible due to multiple fibers appearing over the orbifold singularities in

the base [24].

As one further illustration, consider the tetra-quadric three-fold defined as a single

hypersurface with Hodge numbers (h1,1, h2,1) = (2, 68)

X =


P1 2

P1 2

P1 2

P1 2

 . (2.18)

This geometry exhibits several different descriptions as a genus one fibration, π : X →
P1 × P1. For illustration, let us take the first two rows to describe a genus one fiber of

multi-degree {2, 2} in P1 × P1 and the latter two columns to give rise to the base P1 × P1.

With that fiber/base in mind, we can consider discrete symmetry actions on X and

their relationship with the fibration chosen above. For example, the generators of two

different symmetries, acting on the eight projective coordinates of the four ambient P1

factors are given by

Z2 :



−1 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 1 0 0 0 0

0 0 0 0 −1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 1


and Z4 :



0 0 0 0 1 0 0 0

0 0 0 0 0 −1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0


. (2.19)

In the first case of the given Z2 symmetry, the decomposition between fiber and base de-

scribed above is preserved and as argued above, this fibration will descend to the quotient

geometry. However, for the Z4 symmetry on the other hand, the chosen fiber and base are

non-trivially identified under the discrete group action, since the symmetry relates points in
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Figure 1. The frequency (“Abundance”) with which a non-simply connected Calabi-Yau manifold

with a given number of obvious genus one fibrations appears in the data set described in the text.

the first and third (and second and forth) ambient P1 factors. In this latter case, this par-

ticular fibration structure is not preserved in passing to the quotient manifold, X̂ = X/Z4.

In the rest of this paper we will classify which obvious fibrations of the CICY three-

folds are preserved by which of the freely acting symmetries on those manifolds descending

from linear actions on the ambient space. It is important to note in this context that we will

be using the original symmetry classification of [22]. As such, new possible linear actions

associated to the new “maximally favorable CICY list” found in [12] are not considered.

We will also discuss the preservation of more general Kollár fibrations in this context.

3 Results:obvious fibrations

Of the 7,890 CICY configuration matrices in the standard list [23], 195 have symmetries

that descend from linear actions on the ambient space [22]. These 195 configuration ma-

trices exhibit a total of 1,695 symmetries and 1,600 obvious fibrations. The number of

symmetry-fibration pairs is 20,700. This is the data set with which we shall work.

Of the 20,700 fibration-symmetry pairs, 17,161, that is 83%, are compatible in the

sense that quotienting by the symmetry preserves the fibration. Of the 1,600 fibrations on

the original upstairs CICYs, all but 361, that is 77% are preserved on quotienting by at

least one symmetry. Of the 1,695 quotient CICYs, 63 are not obviously fibered upstairs. Of

the remaining 1,632, all but 80, that is 95% preserve at least one obvious fibration. A plot

of the number of quotiented CICYs exhibiting a given number of fibrations can be found

in figure 1. It is interesting to note that all quotients, X̂, which have the same value for

h1,1 as the upstairs parent manifold, X, as computed using the techniques in [35], preserve

all obvious fibrations. This might be expected given the discussion of when fibrations are

preserved in the previous section and the fact that symmetries that do not reduce h1,1 tend

to have an action that is block diagonal in the projective space ambient factors.
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Symmetry Abundance Fibration Compatible

Z2 9276 8812

Z3 376 175

Z4 364 120

Z5 30 0

Z6 500 62

Z8 32 0

Z10 20 0

Z12 52 0

Z2 × Z2 9199 7711

Z3 × Z3 176 176

Z4 × Z2 305 105

Z4 × Z4 30 0

Z8 × Z2 48 0

Q8 90 0

Q8 × Z2 62 0

Z3 o Z4 52 0

Z4 o Z4 48 0

Z8 o Z2 30 0

Z10 × Z2 10 0

Table 1. The number of fibrations that are compatible with each symmetry that appears in Braun’s

classification [22]. “Abundance” denotes the number of fibrations appearing in CICYs admitting a

given symmetry, and “Fibration Compatible” details how many of these fibrations are compatible

with the symmetry and thus descend to the quotiented manifold.

The number of fibrations preserved depends strongly on the type of symmetry being

quotiented by. In table 1 we give the number of fibration/symmetry pairs for each type of

symmetry present and how many of these pairs are compatible. It is interesting to note

that no non-abelian symmetries preserve any fibrations in the list. In addition, any single

factor above rank 6 results in no fibrations being preserved. This result is compatible with

known hints towards the maximal degree of quotient singularities in the base of F-theory

models [44, 45].

In table 2 we present the base manifolds that appear in obvious fibrations of the

quotient CICY three-folds, together with the number of cases in the list in which each

individual base appears. Note that all of the bases are quotients of either P1 × P1 or del

Pezzo surfaces.

In every case where a fibration is preserved, the group which appears in the quotient

defining the base is precisely the same as the group appearing in the definition of the total

space (and not a proper subgroup).
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Base Abundance

(P1 × P1)/Z2 7589

(P1 × P1)/Z2 × Z2 6610

(P1 × P1)/Z4 72

(P1 × P1)/Z4 × Z2 83

P2/Z3 90

P2/Z3 × Z3 104

dP3/Z2 912

dP3/Z3 51

dP3/Z6 62

dP5/Z2 258

dP5/Z4 18

dP5/Z2 × Z2 1059

dP6/Z3 16

dP7/Z2 21

dP9/Z2 32

dP9/Z3 18

dP9/Z4 30

dP9/Z2 × Z2 42

dP9/Z3 × Z3 72

dP9/Z4 × Z2 22

Table 2. All of the base manifolds, B̂ of genus one fibrations, π̂ : X̂ → B̂, which appear in the

quotient CICY dataset being considered. Abundance refers to the number of different fibrations in

which the associated base appears.

��������� {������� → �� ������ → �� ������ → �� �������� → ����
������� → ��� ���� → {{�� �� �}� {{�}� {�}� {�}}}� ����������� →
{{{-�� �� �� �� �� �}� {�� �� �� �� �� �}� {�� �� -�� �� �� �}� {�� �� �� �� �� �}�

{�� �� �� �� -�� �}� {�� �� �� �� �� �}}}� ����������� → ��� ������� → ����}

Figure 2. An example of the data describing a fibration of a quotiented CICY.

The data of the fibrations of the quotiented CICYs can be found at this web address [1].

The data is presented in a Mathematica readable format in a plain text file. The data is

in the form of a list of lists. Each entry corresponds to a given fibration/symmetry pair

and is of the form shown in figure 2. The first three entries give the CICY number of the

parent configuration [36], the fibration number according to the standard list,6 and the

symmetry number given in the standard list [36]. The fourth entry gives the name of the

surface which is quotiented to obtain the base of the fibration. The fifth entry gives the

6The standard list of CICY three-fold fibrations, first produced in [12] can be found at [46].
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�������� {������� → ����� ������ → ��� ������ → �� �������� → �����
������� → ��� ���� → {}� ����������� → {}� ����������� → {}� ������� → �����}

Figure 3. An example of the data describing a fibration of a quotiented CICY where the fibration

and symmetry being considered are not compatible.

name of the symmetry being quotiented by, the sixth entry gives the description of the

base that appears, first as a list of the dimensions of the projective space factors and then

as a matrix giving the degrees of the defining relations. The “Baseactions” entry describes

how the symmetry acts on the base configuration and the “Basesymname” entry describes

the symmetry that the base is quotiented by. Finally, the last entry in the list says whether

the fibration and symmetry are compatible, in other words whether this fibration of the

CICY is associated with a fibration of the quotiented Calabi-Yau as well.

If the fibration is not compatible with the symmetry some of these entries will be the

empty list, as shown in figure 3, for obvious reasons.

Finally, we should mention that if the base is a simple description of P1×P1 or P2 and

does not have any defining relations then the “Base” entry will contain an empty matrix.

Thus, in the case of a simple P1 × P1 base we will have the entry Base→ {{1, 1}, {{}}}.

4 Obvious vs. Kollár fibrations: an illustration

In the previous section we have characterized some of the genus one fibrations of the

dataset of 1,695 CY three-folds constructed as quotients of CICYs by freely acting discrete

automorphisms. These so-called “obvious” fibrations are clearly plentiful and natural to

consider because of the covering space structure of X̂. However, past experience [12] has

shown that for some manifolds, the obvious fibrations may in fact be a very small subset

of the total number of such fibrations that exist. Indeed, for the CICY three-folds there

are examples where the non-obvious fibrations number in the thousands, or in one case,

even lead to a countably infinite set of fibrations. With that in mind, in this section we

would like to turn our attention to the counting of obvious vs. Kollár fibrations in CICY

quotients, q : X → X̂ = X/Γ. It is beyond the scope of this work to perform a full

fibration scan along the lines of [12] (as the structure of the Kähler and Mori cones of

CICY quotients remains unknown in some cases), however we provide a simple case study

below to illustrate the essential ideas.

Consider the following CICY three-fold

X =


P1 1 1 0 0 0 0 0 0

P1 0 0 1 1 0 0 0 0

P1 0 0 0 0 1 1 0 0

P1 0 0 0 0 0 0 1 1

P7 1 1 1 1 1 1 1 1

 , (4.1)

This manifold has (h1,1(X), h2,1(X)) = (5, 37) and admits a freely acting Z8 symmetry.

Labeling the coordinates of the four P1 factors as xi, yi, zi, wi with i = 0, 1 and that of P7
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as ua with a = 0, . . . 7, the generator of Z8 acts on the coordinates of the ambient product

of projective spaces as

xi → (−1)izi , yi → wi , zi → yi , wi → xi (4.2)

ua → (−1)aua for a = 0,1 (4.3)

ua → (−1)ae
2πi
4 for a = 2,3 (4.4)

ua → (−1)ae
2πi
8 for a = 4,5 (4.5)

ua → (−1)ae
6πi
8 for a = 6,7 . (4.6)

This action is coupled to a non-trivial action on the defining equations (equivalently a

non-trivial equivariant action on the normal bundle, N =
⊕

i Li with i = 1, . . . 8 associated

to the columns of (4.1)) given by

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0


. (4.7)

By defining the smooth quotient X̂ = X/Z8 associated to the symmetry given above,

we arrive at a new geometry [22] with Hodge numbers [35] (h1,1(X̂), h2,1(X̂)) = (2, 6).

It is straightforward to verify using the observations of section 2 that this manifold

admits six obvious fibrations. Furthermore, from [12] it is known that these are in fact all

of the genus one fibrations of this geometry. Each of these six distinct fibrations takes the

form π : X → P1 × P1. The six are obtained by considering all possible pairs of ambient

space P1 factors in (4.1) to be the base. For example, taking the first two P1 factors as the

base yields a genus one fiber whose form is given by the CICY configuration matrixP1 0 0 0 0 1 1 0 0

P1 0 0 0 0 0 0 1 1

P7 1 1 1 1 1 1 1 1

 =

 P1 1 1 0 0

P1 0 0 1 1

P3 1 1 1 1

 , (4.8)

After the analysis of section 3 we find that none of these fibrations are compatible with

the Z8 symmetry given above. By inspection, this is not surprising since it is clear that

the action given in (4.2) non-trivially “glues” together all four of the ambient P1 factors,

spoiling the fiber/base decomposition of each of the six fibrations.

However, with these observations in hand, it is natural to ask whether X̂ could still

be a genus one fibered geometry. Is it possible that the quotient manifold gains fibration

structures not inherited from its covering space? We can answer this question by consider-

ing a full fibration analysis using the Kollár criteria in (2.16). To this end we must consider

– 14 –



J
H
E
P
0
8
(
2
0
1
8
)
1
2
8

a basis of divisors D̂a on X̂ and their intersection numbers. Such information will make it

possible to determine whether any divisors satisfying the Kollár criteria in (2.16) exist.

The Picard group of X̂ is spanned by D̂1, D̂2 which are related to divisors on X as

q∗(D̂1) = D1 +D2 +D3 +D4 (4.9)

q∗(D̂2) = D5 (4.10)

where Dr, with r = 1, . . . 5 correspond to the hyperplanes associated to the projective space

appearing in the r-th row of (4.1). Using the dual cohomology description this gives us a

basis of Kähler (1, 1)-forms Ĵa on X̂.

Following the discussion of section 2.2 we can compute the intersection numbers on X̂.

On X itself the standard formulas (see e.g. [28]) yield

drst = {{{0, 0, 0, 0, 0}, {0, 0, 2, 2, 4}, {0, 2, 0, 2, 4}, {0, 2, 2, 0, 4}, {0, 4, 4, 4, 8}}, (4.11)

{{0, 0, 2, 2, 4}, {0, 0, 0, 0, 0}, {2, 0, 0, 2, 4}, {2, 0, 2, 0, 4}, {4, 0, 4, 4, 8}},
{{0, 2, 0, 2, 4}, {2, 0, 0, 2, 4}, {0, 0, 0, 0, 0}, {2, 2, 0, 0, 4}, {4, 4, 0, 4, 8}},
{{0, 2, 2, 0, 4}, {2, 0, 2, 0, 4}, {2, 2, 0, 0, 4}, {0, 0, 0, 0, 0}, {4, 4, 4, 0, 8}},
{{0, 4, 4, 4, 8}, {4, 0, 4, 4, 8}, {4, 4, 0, 4, 8}, {4, 4, 4, 0, 8}, {8, 8, 8, 8, 16}}}

Then, applying the formulae of section 2.2, (2.13) it is straightforward to verify that the

triple intersection numbers of X̂ in terms of the basis given in (4.9) are

d̂abc = {{{6, 6}, {6, 4}}, {{6, 4}, {4, 2}}} (4.12)

Now, with these pieces in place, one can ask whether or not there exist any divisors

satisfying D̂2 6= 0 and D̂3 = 0 where

D̂ = aD̂1 + bD̂2 (4.13)

and a, b ∈ Z. If a solution of this type can be obtained it must further be checked whether

D̂ is nef on X̂. However, in this case the answer is straightforward. There are no non-trivial

solutions to the Kollär criteria that D̂2 6= 0 and D̂3 = 0 on X̂ for the intersection numbers

in (4.12). As a result, we can conclusively state that X̂ is not genus one fibered. In this

case, the obvious fibration result gives a complete answer for the fibrations of X̂.

Likewise, for each manifold/symmetry pair in consideration in this work, a comprehen-

sive analysis of fibrations on X/Γ is possible in principle. One reason to consider such a scan

is to determine what percentage of this dataset of non-simply connected CY three-folds is

genus one fibered. As described in section 3 above, by considering the obvious fibrations

alone, it is clear that this set of CY three-folds follows the same patterns observed within

all known datasets of CY three-folds — namely that nearly all of these manifolds admit

multiple descriptions as a genus one fibration. In the case of these CICY quotients with

π1(X̂) 6= 0, the fraction of fibered geometries is ≥ 95% from the obvious fibrations alone.

Within all known datasets, the remaining small set of manifolds that are not fibered

are all geometries with small values of h1,1. Intriguingly, within the set of 7,890 CICY
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covering spaces, the highest Hodge number observed for a geometry that is not fibered is

h1,1(X) = 4. Within the present scan however, we find one apparent quotient manifold

which admits no obvious fibrations with h1,1(X̂) = 6 (and h2,1(X̂) = 6). In this case

however, there is some reason to believe that an analysis like the one above will give a

different answer and bring to light non-obvious fibrations. The three-fold in question is a

Z4 quotient of a CICY with Hodge numbers (h1,1(X), h2,1(X)) = (19, 19) — the so-called

“Schoen” [47] or “split bi-cubic” three-fold [23]. This manifold is in fact known to have

an infinite number of inequivalent, non-obvious genus one fibrations (see e.g. [12]). So it

is certainly possible that one of these non-obvious fibrations descends to the quotient X̂.

Furthermore, there is an even stronger hint that this manifold may be genus one fibered.

Within the CICY dataset there exists another Z4 quotient of the Schoen manifold which

yields a quotient manifold with the same Hodge numbers of (h1,1(X), h2,1(X)) = (6, 6)

which does admit an obvious fibration. Interestingly this is not a proof that the original

Schoen quotient is genus one fibered since even the same discrete group, acting on the

same manifold could lead to a different quotient three-fold via a distinct linear realization

in a CICY description. However, it is a strong hint that once again as h1,1 increases past

a low bound (of order ∼ h1,1 = 4) all non-simply connected three-folds in this set appear

to admit genus one fibrations.

5 Conclusions

In this work we have systematically investigated genus one fibrations within a dataset of

non-simply connected Calabi-Yau three-folds. The manifolds we consider are constructed

as quotients of simply connected manifolds (constructed algebraically as complete inter-

sections) by freely acting discrete automorphisms. The only dataset for which discrete

automorphisms have been systematically studied is the 7,890 manifolds constructed as

complete intersections in products of projective spaces. For this set, all freely acting dis-

crete symmetries realized via a linear action on the coordinates of the ambient product of

projective spaces have been classified [22]. Using this set of manifolds we construct the

smooth quotient geometries, q : X → X̂ = X/Γ, and investigate the presence of genus one

fibrations. We have produced a dataset of 17,161 “obvious” genus one fibrations which

descend from fibrations of the simply connected covering spaces.

There are a number of open questions leading on from this study and aspects of physical

interest that it would be useful to explore further. We list a few of these below:

• It would be interesting to extend a study such as this to a larger set of non-simply

connected Calabi-Yau three-folds. At present though, such examples remain rare.

A recent study of linearly realized discrete symmetry actions on a subset of the

toric hypersurfaces [48] yielded only a handful of manifolds beyond those considered

here. It would be fruitful to potentially extend this set further to include mani-

folds constructed via non-Abelian GLSMs (see e.g. [49–52]) and the recent gCICY

construction [29].
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• Here we have focused primarily on genus one fibrations of CY three-folds. Our

techniques could be similarly applied to study K3 (or Abelian surface) fibrations

of CY manifolds. This would be interesting to study in the context of non-simply

connected CY three-folds as such manifolds remain largely unexplored in the context

of string dualities. In particular, heterotic/F-theory duality on these backgrounds (in

compactifications to either 6 or 4 dimensions) could yield novel structure.

• In this work we have not attempted to characterize which genus one fibered geometries

also admit a section (i.e. which are also elliptically fibered). Naively it seems that all

non-simply connected CY manifolds constructed as smooth quotients in this way will

be genus one fibered (i.e. fail to have a section to the fibration). This expectation arises

from the fact that generically the base manifolds within this set will be singular.7 In

order to preserve the smoothness of the total CY three-fold, multiple fibers have been

observed over the singular points in the base. It is known that such isolated multiple

fibers are incompatible with the existence of a section [53]. Certainly within the

dataset in hand, cursory inspections fail to find elliptically fibered quotient manifolds.

However, it would be good to study these properties more carefully and prove the

statements above in general.

• It would be interesting to consider the quotient geometries described here as potential

backgrounds for T-brane solutions [54–58]. In particular the role of π1(X) 6= 0 in

this context would be interesting to explore.

• Perhaps most importantly, the manifolds/fibrations cataloged here have recently been

shown to provide novel vacua for F-theory compactifications to 6 dimensions [24] .

The pairing of smooth CY total spaces with singular base manifolds bring to light

the relationship between geometric features (including multiple fibers and orbifold

singularities in the base manifold) and effects in the physical theory (such as super-

conformal loci and discretely charged superconformal matter).

Within this context, a number of open questions remain. It was observed in [24] that

the Tate-Schaferavich group (more generally the group of CY torsors) associated to

the non-simply connected genus one fibered manifolds is frequently linked to the order

of the discrete group Γ used to construct the geometries as quotients. However the

exact relationship remains unexplored. Furthermore, it is expected that the number

of superconformal loci that can be coupled to a supergravity theory (realized as

orbifold singularities in the base of a compact CY manifold) and the discrete charges

of the associated matter fields are bounded. To date, the exact bounds are not yet

known. We hope that this dataset may shed further light on these questions

It is our hope that this dataset will provide an explicit playground in which to inves-

tigate these and other questions. We plan to continue exploring the physics associated to

such geometries in future work.

7Note that an exception to this general observation is the case when the base manifold is an Enriques

surface (see e.g. [3]).
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