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Across neuroscience, large-scale data recording and
population-level analysis methods have experienced explosive
growth. While the underlying hardware and computational
techniques have been well reviewed, we focus here on the
novel science that these technologies have enabled. We detail
four areas of the field where the joint analysis of neural
populations has significantly furthered our understanding of
computation in the brain: correlated variability, decoding,
neural dynamics, and artificial neural networks. Together, these
findings suggest an exciting trend towards a new era where
neural populations are understood to be the essential unit of
computation in many brain regions, a classic idea that has been
given new life.
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Introduction

The neuron has been heralded as the structural and
functional unit of neural computation for more than a
hundred years [1-3], and this doctrine has driven a vast
array of our field’s most important discoveries [4]. Increas-
ingly prevalent, however, is the idea that populations of
neurons may in fact be the essential unit of computation
in many brain regions [4-6]. Certainly the idea of infor-
mation being encoded in an ensemble of neurons is not a
new one. In fact, the conflict between single neurons and
populations of neurons as the perceptual, behavioral, and
cognitive unit of computation dates back to the beginning
of the 20th century [4,6], with the first concrete theories of
networks of neurons introduced in the 1940s [7,8]. The
ideas, while being novel, were not testable due to the
technological shortcomings of both recording techniques
and computational resources. However, we currently find

ourselves in the ideal era for scientific discovery, given the
astounding progresses in  both these enabling
technologies.

Electrophysiology recordings have been the hallmark of
neuronal recordings over the last 80 years — extracellular
recordings of one or multiple electrodes, each capturing
up to a few neurons. More recently, multi-electrode arrays
and 1maging techniques (optical, and more recently volt-
age) have been used to efficiently capture the simulta-
necous activity of hundreds and thousands of neurons, with
this number steadily growing using tools such as the
Neuropixel [9]. In tandem, the increase in computational
resources has led to the development of efficient and
scalable statistical and machine learning methods; see the
methodological reviews [10,11].

As our ability to simultaneously record from large popula-
tions of neurons is growing exponentially [9,12], the
analysis of the covariation of populations of neurons
has provided us with scientific insights in many domains.
Here, we highlight several recent findings in four domains
of neuroscience where the joint analysis of a population of
ncurons has been central to scientific discovery that
would not be possible using single neurons alone. Firstly,
trial-to-trial ‘noise’ correlations have been shown to influ-
ence the information carrying capacity of a neural circuit.
Secondly, decoding of behavior using correlated popula-
tions of neurons can yield levels of accuracy beyond what
would be anticipated from single neurons alone. Thirdly,
the dynamic analysis of stimulus-driven population
recordings over time can be projected into a lower dimen-
sional subspace to reveal computational strategies
employed by different brain regions. Lastly, artificial
ncural networks (ANNs) can aid in simulations that
reproduce population structure, as well as directly model-
ing neuronal activity. We focus on the analysis of a
population of N neurons in ‘state space’, where each
neuron’s activity at any time point is represented as a
dot in either the N dimensional observation space or in a
lower dimensional subspace.

We pinpoint one or two recent studies in each domain
that stand out (indicated using “and 7). Unlike previous
reviews on population-level neuroscience [10,11], we
focus here not on the data analysis methodologies, but
rather the notable scientific findings that have resuleed.
These scientific findings are, first, reshaping the way the
field thinks about computation, and, second, fundamen-
tally population-based. Taken together, these two fea-
tures point to a future where the central scientific theme
is not the neuron doctrine, but the newral population
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doctrine. We conclude with topics that we think future
studies may nced to address.

Correlated trial-to-trial variability in
populations of neurons is a key indicator for
behavioral states

As we gain the ability to simultaneously record the
activity of more and more neurons, we must ask how
much information we can hope to achieve by doing so,
that is what is the information gained per added neuron?
Generally speaking, ‘signal’ correlations, or tuning curves,
are useful in terms of decoding as well as understanding
the dynamics of neural population over time. However, in
the pursuit of this specific question, the systematic study
of covariation in the activity of pairs of neurons during
repeated presentations of the same stimulus (‘noise’
correlation) has also been a well-studied and particularly
tractable analysis tool (Figure 1a).

In fact, a tremendous amount of research has led to the
fundamental belief that correlations are linked to the
information carrying capacity of the brain, which itself
has widely been postulated to be directly related to the
level of performance of an individual on a given task
[13,14]. One metric for the information carrying capacity
is the linear Fisher information, which is a measure of the
smallest change in the stimulus that can be distinguished
with an optimal linear decoder of the neuronal population
response. It has been shown that under certain assump-
tions on the distribution of the neuronal populations, and
assuming homogenous tuning curves, the presence of
correlations causes the linear Fisher information of the
neurons to saturate as N— oo (i.e. a growing number of
neurons V) [13,15,16]. In fact, pairwise correlations in

various brain arcas are affected by attention, learning,
arousal, and adaptation (see [17] for a review).

Recently, in an important study [18°°], Ni ¢ a/. showed
that the correlated variability in V4 neurons during atten-
tion and learning — processes that have inherently dif-
ferent timescales — robustly decreases (Figure 1b). They
also found that the correlated variability is strongly cor-
related with performance, across learning and attention
conditions. In this study, in addition to mean pairwise
correlation, the authors demonstrated the use of a truly
population-based metric, that is percentage of variance
explained in the first principal component (PC) of simul-
tancously recorded neurons, to further quantify the
decrease in correlated variability. Moreover, they showed
that a ‘choice’ decoder built on neural activity in the first
PC performs as well as one built on the full dataset,
suggesting that the relationship of neural variability to
behavior lies in a relatively small subspace of the state
space. These findings reinforce the viewpoint that the
relevant unit of computation may be a subspace of the
neural activity. As a next step, it would be interesting to
examine whether the decrease in correlated variability
between learning and attention happens in the same
dimensions, that is do the neurons decrease their vari-
ability #n the same way during both processes. However,
this requires the simultaneous recording of a population
of neurons over long time periods.

Experimental findings in this field highlight the impor-
tance of advancing the theory on correlated variability,
especially in the small N regime, in order to better
understand the mechanisms that lead to a decrease in
correlations and its link to behavior. Going forward, we
highlight the need for theoretical contributions based on
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(a) Schematic showing the decrease in correlated variability of neurons as represented in ‘state space’: the firing rate of neuron 1 on the x-axis,
and the firing rate of neuron 2 on the y-axis, during presentation of the same stimulus S;. Each circle represents a trial. (b) The average Pearson’s
correlation coefficient robustly decreases with an increase in performance during attention as well as learning. Figure adapted from [18°°].
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less restrictive assumptions, as well as bringing together
theoretical insights and experimental findings to fully
address these questions. One important step in this
direction was performed by Moreno-Bote er al. [14],
who showed that in the regime of inhomogeneous tuning
curves, If the ‘noise’ correlations are in the direction of
the ‘signal’ correlations, that is tuning curves, this leads
to a saturation in the linear Fisher information. These
noise correlations in the direction of signal correlations
are called ‘differential’ correlations. See [17] for an
excellent review.

We also highlight the need to utilize analyses that truly
benefit from the recordings of a population of neurons.
Examining population metrics of correlated variability in
neural subspaces of simultaneously recorded neurons
(such as the principal component space, as above) is an
important next step that will move towards bridging
theory and experimental predictions.

Decoding accuracy is more than the sum of its
parts

Here we focus on the case where population analysis is
virtually essential: when neurons have so-called ‘mixed
selectivity” [5,19°%,20]. As an increasing number of experi-
ments involving multiple categories of stimuli are being
performed, neurons in several brain areas have been
found to have mixed selectivity: neurons significantly
modulate their activity in response to more than one
stimulus category/type [21,5,19°°]. For example, in
Figure Za, we see two neurons encoding for two different
stimuli; decoding stimulus identity from either of the two
neurons alone would be suboptimal. However, it both
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ncurons arc recorded, the two stimuli are linearly
separable.

It is well known that higher dimensional data can be more
easily linearly separated for classification purposes (the
‘kernel trick” in machine learning). In [19°°], Rigotti e7 a/.
argue that increasing the dimensionality of data (by, for
example, recording more neurons) only helps decoding if
neurons display ‘nonlinear’ mixed selectivity, that is an
additional neuron’s response cannot be explained by a
linear superposition of the existing responses to the
individual parameters. The authors show that individual
neurons in the prefrontal cortex do in fact encode for
multiple stimuli and that the collection of neurons display
nonlinear mixed selectivity. Moreover, they show that the
recorded neural representations have high dimensional-
ity, and that this dimensionality can predict behavioral
performance, as shown in Figure Zb. A review of this
phenomenon is also provided in [5]. The authors detail
the observation that the relevant unit of computation may
in fact be individual neurons in lower-order sensory
regions, where we may not need to consider population
analysis in order to decode activity. However, as we move
towards higher-order regions and increasingly complex
tasks, we need population analyses if in the presence of
mixed selectivity [5,22,6].

Neurons in multiple brain regions have been shown to
have mixed selectivity. In [23], the authors show that
neurons in the amygdala have representations pertaining
to both stimulus and context in a flexible decision-making
task, which may be the mechanism for the parietal
prefrontal cortex neurons to access the same information.

Figure 2
(@) (b)
o Oncs o & S
o o 490, 1 P e 12 1.0
o oo &S00 =
c e, :ofp% 8o o 8 2108 10 =
<] o rd)o ° °% c o 3 08
= £ ° < = T O
g L %o 0 o ° e, £ S 8 g a
T =
zZ 0o © 9 - 90000 : 3'@102 ) o, %0.6
5 T Es 2 o
o °o® qaﬁ 0&e 8003, 2 5 O 3 £04
© a8 & %, ° G °Sn . & % = 2 i} 4 ¢ 3B
%, B, $ o 0g 00 F ) 3 O et .
00:’ o0 &° goo °, ] o %D = _g i —— CU"BCIV trials {2 9 8 0.2 —| Correct trials
c g el 0°€Q3° - sfo 2 Error trials 1 -----| Error trials
= b 8 0 .
ic ° %0 BF O & & P& P O ¥ g WP
o o Iy Qs 0% Do .
Time from cue 1 onset (s)
Number of neurons
Firing Rate of Neuron 1
Current Opinion in Neurobiology

(a) Schematic showing that it is possible to linearly decode when recording from two neurons displaying mixed selectivity, although it would not
possible to decode the activity well using either of the two neurons. Here, the firing rate activity is represented in state space during presentation
of two different stimuli S; and S.. (b) The number of dimensions in prefrontal cortex activity are higher for correct trials than error trials (left),
although the decoding accuracy is the same for both (right). Thus, the dimensionality of neural data can directly predict behavior. Figure adapted

from [19°°].
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In the inferior temporal cortex, prefrontal cortex, and the
cortical-hippocampus loop, several studies have found
that the neurons act with mixed selectvity [24,6,25].
In [21], the authors conclude that neurons in the posterior
parietal cortex in rats have misaligned subspaces for
movement and decision-making, elucidating that neurons
are essentially multitaskers. Accurately decoding this
activity necessitates a population-level analysis.

Analysis of neural activity over time reveals
computational strategies

Considering neural population activity over time as states
in a dynamical system has a long history, for example as in
[26], where authors examine the potential mechanisms of
memory and error correction using neuron-like compo-
nents. This dynamical systems perspective is now preva-
lent in neuroscience, with the motor regions being the
most natural testing ground, since we have access to the
time-varying behavior as a direct output, and in fact,
significant work has shown the value of this perspective
[27-30], and new work continues to appear [31]. The
analysis of neural activity over time, particularly during
time-dependent behavior such as movement generation,
can be studied using techniques developed to study
dynamic (time-varying) activity. It is now common prac-
tice while analyzing motor regions to visualize the activity
of the population of neurons corresponding to a trajectory
in state space [32,27], as shown in Figure 3a. Here, the
firing rate activity over time is shown in a lower dimen-
sional space using principal components analysis (PCA).

The covariation of neurons allows us to locate subspaces
occupied by the neural activity during specific tasks. An

Figure 3

interesting question under examination is whether the
neural activity occupies orthogonal or overlapping sub-
spaces during different tasks. Studies show computations
of both kind. Specifically, the primate oculomotor system
has pre-saccadic and saccadic activity in overlapping
subspaces [33,34]. On the other hand, [35] finds that
preparatory activity in the primate dorsal premotor cortex
and primary motor cortex lives in the null space of the
subspace in which movement activity resides. However,
this finding in itself can be explained by either indepen-
dence or orthogonality of the underlying subspaces, and
in [36], it was revealed that the preparatory and move-
ment subspaces are in fact orthogonal to each other. The
orthogonality of the subspaces during different tasks was
also explored in [37], where it was found that in a ‘pull’
task, the activity was almost orthogonal to a ‘walk’ task in
mice. What determines whether neural activity lies in
overlapping or orthogonal subspaces, or does the neural
activity in fact lie in a continuum of more or less over-
lapping subspaces, depending on how similar the result-
ing tasks are? Moreover, does the union of the dimensions
of the neural manifolds grow with the number of tasks
considered, or does it reach a plateau at a fraction of the
total number of neurons? Answering these questions is
essential to making any fundamental claims about the
role of subspaces in population activity.

Recently, specific properties of population dynamics that
test ideas beyond subspace analysis have furthered our
understanding of computational strategies in motor
regions of the brain. For example, in [38°], a metric known
as ‘trajectory tangling’ was used to characterize how, and
potentially why, the motor cortex population response is
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(a) Schematic showing 3 neurons’ activity over time during two different conditions, Sy and S», for example, preparatory period and movement
period. The PC space for S, is also shown. (b) Tangling is lowered in the primary motor cortex activity (right) as compared to the electromyogram
activity (left). Figure adapted from [387]. (c) The trajectories decompose smoothly into speed scaling dimensions and non-speed scaling

dimensions. Figure adapted from [39°].
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structured very differently from the muscle population
response, as shown in Figure 3b. The degree to which
tangling remains low reflects the degree to which popu-
lation trajectories could plausibly have been produced by
a noise-robust dynamical system that is fully observed in
the recorded population. Results indicate that this is true
of motor cortex, where activity has been proposed to
reflect such dynamics, but not in the muscle population,
where the relevant driving dynamics presumably lie
upstream. Adopting trajectories with particularly low
tangling may be a computational strategy employed by
the brain to improve noise robustness. In [39°], separate
speed-varying and speed-invariant dynamics in the sub-
space are found in the medial frontal cortex (MFC) during
a task that required the animal to internally keep track of
time. In this setting, the authors probed the ‘temporal
scaling’ of the firing rate activity, which is defined as the
self-similarity of the necural activity when artficially
stretched in time across different speeds. This idea is
represented in Figure 3¢, and indeed, they found that
temporal scaling is present in the MIFC. They also found
that temporal scaling is not found in the thalamus, which
projects to the MFC; through a series of maneuvers, they
posit that temporal scaling may originate either in the
MEC, or in circuits projecting to the MFC. These find-
ings identify a possible mechanism for controlling pro-
cesses at a continuum of different speeds.

These two studies have fundamental implications on the
potential mechanisms of processing through different
brain areas down to the kinematic output. In a recent
study [40], the authors find that while different motor
regions display superficially similar  single-neuron
responses during visually guided reaching, their different
population dynamics indicate that they are likely per-
forming quite different computations. These studies go
beyond the relatively simplistic idea of neural activity
residing in separate subspaces in order to be uniquely
decoded by downstream neurons to produce separate
outputs, and examine specific properties that the dynam-
ical activity may possess. Moreover, the control of such
activity is an interesting and open question, with recent
studies like [41] addressing biologically plausible mecha-
nisms to produce these activity.

Dynamic activity is extremely important in non-motor
areas as well. For example, in [42], it was shown that
motion and color detection can be explained by a single
dynamical process in the prefrontal cortex. In [43], new
information is seen to dynamically change the activity in
the mouse parietal posterior cortex in order to implement
evidence accumulation.

Nodes in Artificial Neural Networks emulate
activity in certain regions of the brain
Although we have been modeling neural activity using
artificial nodes for a long time [26], modeling with

networks of neurons has been limited to carefully
designed studies and an intricate hand-tuning of param-
cters (see e.g. [44]). The massive advances in learning
deep neural networks has made using artificial neural
networks (ANNs) with a large number of nodes and
layers, with a large variety of structures, more approach-
able. However, the potential of ANNs to accurately
describe neuronal computations in the brain remains a
subject of active debate. Indeed, the biological plausibil-
ity of learning and computation in ANNs is an active field
of study [45—48]. In [48], the authors introduce a novel
method to assess whether the artificial network are pre-
dictive of primate performance: they compare the set of
errors made by the ANNSs to those made by the human or
monkey doing the same task. They find that although the
ANNS are predictive of primate patterns of object-level
confusion, they are not predictive of the performance on
an object discrimination task in individual images. This
finding sets a quantitative benchmark for comparisons
between primates and neural networks.

There are currently two main approaches to utilizing
artificial neural networks in modeling networks of neu-
rons: (a) utilizing a goal-driven neural network, and
using the learned network’s layers to compare and
predict the population activity in different brain
regions, and (b) modeling the activity of individual
neurons as emanating from a feedforward or recurrent
neural network architecture. These two approaches are
characterized in Figure 4a.

(i) Goal-driven networks. Modeling a goal-driven ANN to
describe neural activity attempts to combine the big-
picture view of the different regions or layers of the brain,
and the representation of the activity of individual nodes.
Artificial models with a feedforward and recurrent archi-
tecture have been used to successfully capture dynamical
activity [49,50]. In the context of motor dynamics, Sussillo
et al. trained a recurrent neural network to produce
recorded muscle activity, and showed that the activity
of the artificial nodes had the same structure as the
recorded dorsal premotor cortex and primary motor cortex
activity [51]. In [41], the authors showed that it is possible
to optimally tune a network of excitatory and inhibitory
neurons to qualitatively model neural activity in the
preparatory phase of a movement, that will lead to a
stable and reliable movement trajectory, providing a
potential computational basis to the observed results in
[32]. Other motor studies in varied tasks have also suc-
ceeded in relating the motor cortex activity to artificial
nodes in an ANN [38°,36]. ANNs have also been used to
investigate different tasks including working memory
[52,53] and perceptual decision-making [42].

In the visual cortex, Yamins e @/. used hierarchical con-
volutional neural networks (CNNs) for modeling the
processing of information in the brain, with each layer
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(a) Artificial Neural Network (ANN) with (i) goal-driven training, and (ii) data-driven modeling. (b) Left Panel: The model (red bar) outperforms other
known models (light grey) in population similarity to IT neurons. In black is data from V4 and other IT neurons; Right Panel: The representation
dissimilarity matrix of the top layer in a 4 layer CNN (CNN) as learned using goal-driven training (right) is very similar to that of electrophysiology
recordings in the IT (left). Figure adapted from [54°]. (c) Data-driven modeling of retinal cells quantifies the performance of different models, in
particular highlighting the performance gains using recurrent neural networks (RNNs). Figure adapted from [577].

of the neural network being analogous to a brain region
[54°]. They showed that directly modeling an experimen-
tal task using a 4 layer CNN can lead to a neural network
in which the layers have a similar structure to the neuronal
responses in V4 and I'T (see Figure 4b). They found
correlation (~50%) between the top and penultimate
layers of the model for the I'T" and V4 populations in
terms of explained variance. Recently, the authors have
extended their results to train a 6 layer CNN to success-
fully predict category-orthogonal object properties along
the ventral stream [55].

(ii) Data-driven modeling. Directly modeling the activity
of individual neurons using ANNs is a growing line of
research, with some recent successes in prediction of
single neuron activity. Typically, a (partially) shared
model is learned for all neuronal activity. It is then
possible to compute a receptive field per neuron, or latent
activity per population of neurons, which may be of
scientific interest, as well as use these models for pre-
dicting and decoding activity.

Retinal ganglion cells have been a particularly attractive
target for population modeling, beginning (at least) a
decade ago [56] and continuing with more recent ANN-
based approaches [57°,58]. In [57°], the activity of retinal
ganglion cells is modeled as arising from a recurrent archi-
tecture. As shown in Figure 4c, a 2 layer recurrent neural
network consistently captures around 80% of the explained
variance across experiments and cell types, which outper-
forms other known models for retinal activity. In [58], the

authors model retinal ganglion cells in an ANN with a
convolutional architecture. In [59], the authors build on
previous methods by introducing a more efficient model
while performing end-to-end training, and applying this to
neuronal recordings from the primary visual cortex.

It 1s as yet unclear which of the two approaches, (1) or (ii),
are better suited to model the activity of neurons as well
as provide insight about the computations in separate
regions of the brain. In [60], the authors address this
question in the context of V1 neurons, and find that both
these modeling approaches perform similarly, while out-
performing other known models. Moreover, they find that
(1) provides a simpler learned architecture.

While modeling the activity of the recorded neural activity,
one can simultaneously learn a dynamical model that can
produce this neural data in order to gain insights on
computational strategies employed by neural populations,
as discussed in the previous section. Classic versions of this
have included linear dynamical systems [61,62]. Gao ef al.
[30] introduced ANNs as the nonlinear map from latent
dynamics to observable neural population activity, a theme
which has been elaborated both by including ANNSs in the
dynamics model, and otherwise [63-66].

Looking ahead: when can we trust the results
of population-level analyses?

Throughout this review we have highlighted exciting
findings that have resulted from the joint analysis of
neural populations, works that exemplify the broad and
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rapidly growing trend in the ficld towards the wewral
population doctrine. However, this exciting progress has
ignited a serious and increasingly contentious debate
about whether these analyses are actually producing
novel findings about the brain, or if they are simply
recapitulating ‘old knowledge dressed up in new clothes’
[67]. Indeed, this concern has led to high-profile issues in
other fields confronting similarly explosive data (and
data analysis) growth (e.g. [68]). Without question, this
controversy is legitimate, in so much as the perils of
high-dimensional data are well known. To rationalize
and quantify this debate, then, one of the most essential
data analytical tasks going forward will be quantitative
and computational results that shed light on this debate.
A first key step in this direction is in [69%°], where a
nontrivial null hypothesis leads to a ‘null model’ from
which surrogate datasets can be drawn. These datasets
are then passed through a given population analysis, to
quantify a null distribution about the extent to which
some population structure is expected under the null
hypothesis; existing results in both mixed selectivity
(see Section ‘Decoding accuracy is more than the sum
of its parts’ of this review) and population dynamics (see
Section ‘Analysis of neural activity over time reveals
computational strategies’) are tested under this frame-
work. See [70-72] for other studies testing and extending
these concepts.

Conclusions

As recording techniques and computing capabilities con-
tinue to improve, experimental and computational stud-
ies continue to demonstrate that neuronal populations may
in fact be the relevant unit of computation in many brain
regions. Throughout this review, we have pointed out
various studies that support this scientific trend, in
domains correlated variability, decoding,
dynamical activity, and artificial neural networks.

spanning

Going forward, there are still major concerns in these
domains that need to be addressed. Firstly, when exam-
ining the dimensionality of neural recordings, the
dimensionality of the stimulus or the resulting behavior
may need to be large in order to have a better under-
standing of the underlying neural dynamics. Secondly,
the state space approach, though very useful, may obscure
ways to develop causal interventions in order to system-
atically verify and advance scientific findings. We need to
develop new methods or experiments which bring us
closer to a mechanistic understanding of the underlying
phenomena.

(1) Pushing the envelope on the dimensionality of the
behavior. Analysis of stercotyped behavior in a laboratory
setting has long been considered the primary experi-
mental setting for reliable and reproducible results. One
of the next big challenges in neuroscience is to move
past the confines of tasks with a small number of degrees

of freedom (and the limitations perhaps imposed on the
richness of the data recorded) and examine tasks with
‘free’ behaviors. In fact, the recorded behavior may be
high-dimensional enough that one may need to use
population analysis to characterize the behavior in the
first place, then relate neural activity to this complex

behavior [73-75].

ii) Discovering causal relationships to behavior. Projecting
the neural activity in a rotated, stretched, lower dimen-
sional space, although enables visualization and allows us
to relate the activity to behavior, may preclude a clear
understanding of the circuit-level activity that lead to
these behaviors. Methods such as perturbation analyses
can be used to detangle this relationship. An example of
this method is a novel Brain Computer Interface para-
digm that perturbs the neural association of tasks ‘within’
a learned neural manifold and compares this to a pertur-
bation ‘outside’ the manifold [76]. Learning ‘outside
manifold’ perturbations is harder, which may reflect
the connections between the relevant neurons. See
[77] for a good perspective on why causal inference in
the presence of multi-scale dynamics is difficult.
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