\Q:f,y; LIFE

elifesciences.org

*For correspondence:
ns2635@columbia.edu

Competing interests: The
authors declare that no
competing interests exist.

Funding: See page 20

Received: 29 November 2018
Accepted: 21 February 2019
Published: 14 March 2019

Reviewing editor: Catherine
Emily Carr, University of
Maryland, United States

Copyright Dempsey et al. This

article is distributed under the
terms of the Creative Commons
Attribution License, which
permits unrestricted use and
redistribution provided that the
original author and source are
credited.

RESEARCH ARTICLE

Generalization of learned responses in the
mormyrid electrosensory lobe
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Biophysics, Columbia University, New York, United States

Abstract Appropriate generalization of learned responses to new situations is vital for adaptive
behavior. We provide a circuit-level account of generalization in the electrosensory lobe (ELL) of
weakly electric mormyrid fish. Much is already known in this system about a form of learning in
which motor corollary discharge signals cancel responses to the uninformative input evoked by the
fish’s own electric pulses. However, for this cancellation to be useful under natural circumstances, it
must generalize accurately across behavioral regimes, specifically different electric pulse rates. We
show that such generalization indeed occurs in ELL neurons, and develop a circuit-level model
explaining how this may be achieved. The mechanism involves regularized synaptic plasticity and an
approximate matching of the temporal dynamics of motor corollary discharge and electrosensory
inputs. Recordings of motor corollary discharge signals in mossy fibers and granule cells provide
direct evidence for such matching.

DOI: https://doi.org/10.7554/eLife.44032.001

Introduction

A learned response that is adaptive only in the precise context in which it was learned is of limited
value in the real world. Though cellular and synaptic underpinnings of learning have been elucidated
in many systems, less is known about the mechanisms that allow learning to generalize appropriately
to conditions different from those in which the learning originally took place (Censor, 2013;
Fahle, 2005; Poggio and Bizzi, 2004). We address the question of generalization of learned
responses in the passive electrosensory system of weakly electric mormyrid fish. These fish, like a
number of other aquatic animals, possess a specialized class of electroreceptors on their skin that
are sensitive to minute, low-frequency electrical fields, such as those emitted by other animals in the
water (Engelmann et al., 2010; Enikolopov et al., 2018; von der Emde and Bleckmann, 1998).
However, the detection and processing of such signals is complicated by the fact that mormyrid fish
also emit their own pulsed electric fields, known as electric organ discharges (EODs). Though EODs
are used for sensing nearby objects through active electrolocation as well as for communication with
conspecifics (processes mediated by separate classes of electroreceptors), they also strongly activate
the receptors subserving passive electrolocation, inducing a ringing pattern of activation that per-
sists for ~200 ms (Bell and Russell, 1978). If left uncancelled, these responses to the fish’'s own EOD
could impede the detection and processing of behaviorally-relevant signals such as prey
(Enikolopov et al., 2018).

Past work has suggested that this problem is solved in ELL neurons through the integration of
electrosensory input and corollary signals (CD) related to the motor command to discharge the elec-
tric organ (Bell et al., 1981). CD signals are conveyed to ELL neurons by granule cells, similar to the
granule cells of the cerebellum (Bell et al., 2008). Anti-Hebbian plasticity at synapses between gran-
ule cells and ELL neurons generates negative images that serve to cancel the effects of the EOD on
ELL output (Bell, 1981; Bell et al., 1993; Bell et al., 1997a) (Figure 1A). However, all past studies
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Figure 1. Cancelling the effects of the EOD under natural conditions requires generalization. (A) Schematic of ELL circuit elements responsible for
cancellation of self-generated electrosensory responses. Granule cell corollary discharge responses form a temporal basis (blue trace at left) that is
shaped by an anti-Hebbian spike-timing dependent synaptic plasticity rule into a negative image of the predictable sensory response to an EOD (blue
trace at right). Signals related to the EOD (orange traces, left and right), along with behaviorally relevant stimuli that the system is meant to detect (not
shown), are conveyed by afferent fibers (orange) originating from electroreceptors on the skin. Question mark indicates the process of sensory
cancellation being studied. (B) A sequence of inter-EOD intervals recorded in a freely swimming mormyrid fish, adapted with permission from
Toerring and Moller (1984). Note the wide range of discharge rates and abrupt transition from lower, irregular rates to a high regular rate (arrow).
Such transitions highlight the need for negative images to generalize across different EOD rate regimes.

DOI: https://doi.org/10.7554/eLife.44032.002

of negative image formation and sensory cancellation were restricted to periods when fish emitted
EOD commands at low, regular rates (~5 Hz). Although this pattern is typical of paralyzed prepara-
tions, the fish's actual electromotor behavior is far more dynamic. For example, in freely behaving
fish it is common to observe prolonged periods of discharge at low rates (1-5 Hz), while resting or
hiding, followed by abrupt transitions to much higher rates (up to 60 Hz) when foraging for prey or
exploring a novel object (Figure 1B); (Hofmann et al., 2014; Moller et al., 1989; Schwarz and von
der Emde, 2001; Toerring and Moller, 1984).

During such transitions, negative images learned during low-frequency resting periods should
generalize to higher EOD rates. If they do not, passive electrolocation would be degraded at pre-
cisely the moment when it would seemingly be most needed. Furthermore, this generalization must
be accurate because, at high frequencies, the ringing sensory receptor responses to EODs overlap
and, if uncancelled, would continuously interfere with the detection of external stimuli such as prey.
Using microstimulation of the EOD motor command pathway to control EOD rate, we show that,
indeed, sensory cancellation in ELL output neurons generalizes across EOD rates. In theory, such
generalization is expected if electrosensory and corollary discharge responses at high rates were
simply the linear sum of the responses at low rates. We show that this is not the case and, instead,
identify two key features that, when added to existing models of sensory cancellation in ELL, account
for generalization. The first is regularization of synaptic plasticity between granule cells and ELL neu-
rons to prevent overfitting, which is closely related to machine learning approaches to generaliza-
tion. The second feature, which we support directly by recordings from granule cells and their mossy
fiber inputs, involves an approximate matching between the EOD rate-dependence of corollary dis-
charge and electrosensory inputs to ELL neurons.
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Results

Sensory cancellation in ELL output cells generalizes from low to high
EOD rates

We first tested whether sensory cancellation in ELL output cells generalizes across different EOD
rates. As in past studies, we used a preparation in which the EOD is blocked by a paralytic, but in
which fish are alert and continue to generate the motor commands that normally evoke EODs. The
electric field normally generated by the EOD is mimicked experimentally. This preparation permits
study of the responses to motor corollary discharge inputs triggered by the EOD command (by turn-
ing off the mimic), the sensory response to the artificially produced EOD mimic (by generating the
mimic in the absence of an EOD command), and the response to EOD mimics paired with the EOD
command. The paired condition replicates the natural situation in which the EOD command evokes
an EOD pulse and both electrosensory and corollary discharge pathways are engaged together.

Past studies have shown that the response to locally delivered EOD mimics triggered by the EOD
command are cancelled if mimics are paired with commands in this way over ~15 min. For this rea-
son, we will use the term ‘learning’ to refer to extended periods when EOD mimics are triggered by,
and hence paired with, commands. Turning the mimic off after learning reveals that the response to
the command alone resembles a negative image of the response to the mimic in the absence of a
command (Bell, 1981, Bell, 1982). As discussed in the Introduction, a limitation of past studies is
that cancellation and negative images were only studied at the low EOD command rates (~5 Hz) typ-
ical of the paralyzed preparation. We overcame this limitation by using microstimulation of the elec-
tromotor command pathway (see Materials and methods) to control the timing and rate of EOD
commands (von der Emde et al., 2000). Using this approach, we could achieve almost perfect con-
trol over the timing of EOD commands at rates up to 50 or 60 Hz.

Extracellular single-unit recordings were made from output cells in the region of the ELL dedi-
cated to passive electrosensory processing—the ventrolateral zone (VLZ). These output neurons are
classified into two types, known as E and | cells, according to the polarity of their response to elec-
trosensory stimuli (Bell, 1981, Bell, 1982). To avoid firing-rate rectification, which complicates quan-
titative measurements of sensory cancellation, we adjusted the polarity of the EOD mimic to evoke
excitatory responses in both E and | cells (see Materials and methods). Consistent with previous find-
ings (Bell, 1982, Enikolopov et al., 2018), no obvious differences in plasticity were observed
between E and | cells and responses were pooled.

To test generalization, we paired evoked commands with EOD mimics at a single constant rate
(10 Hz) for a 10-20 min learning period (by which time significant cancellation had occurred,;
Figure 2A, top row) and then probed responses to EOD mimics paired across a range of rates (10,
40, and 60 Hz or 10, 30, and 50 Hz). Responses after learning are reduced across rates even though
learning occurred at only the lowest rate, consistent with generalization of cancellation (Figure 2A,
bottom row, solid lines). An additional set of experiments were performed to provide a benchmark
for evaluating the quality of generalization. In this case, the EOD mimic was paired for the same
duration but this time learning took place at all the different frequencies that were subsequently
tested for cancellation (10, 40, and 60 Hz or 10, 30, and 50 Hz; Figure 2B). In this scenario, for which
no generalization is required, we expect the system to achieve the best level of cancellation across
all rates that can be achieved on the timescale of these experiments. The degree of cancellation,
measured as the residual power in the response after learning divided by the power before learning,
was comparable in the two sets of experiments (Figure 2C,D), indicating excellent generalization.

Past studies have shown that cancellation of predictable electrosensory responses is due to the
generation and subtraction of negative images (Bell, 1981, Bell, 1982). Several observations sug-
gest that the cancellation observed in Figure 2 is likewise due to the formation of negative images.
First, cancellation is unlikely to be due to adaptation of peripheral receptors or neuronal fatigue as
we routinely probed responses to the EOD mimic delivered independently of the command both
before and after learning (Figure 2A, bottom, dashed lines). Reductions in the response to the
mimic alone were never observed. Second, in a subset of experiments we probed responses to the
command alone across EOD rates after learning only at a low rate. Changes in the response to the
command alone resembled a negative image of the response to the mimic sequence (Figure 2—fig-
ure supplement 1).
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Figure 2. Sensory cancellation in ELL output cells generalizes from low to high EOD rates. (A) Top, pre-learning response of an ELL output cell to a
sequence of mimics triggered by EOD commands at 10 Hz. Shaded box indicates the learning condition. Empty dashed box indicates that no learning
was performed at 60 Hz in this series of experiments. Red ticks show the times of EOD commands and black ticks show the times of EOD mimics.
Bottom, response of the same cell after learning at 10 Hz. Dashed line is the response of the cell to the EOD mimic presented independent of the
command after learning. Note, the response to the mimic is largely cancelled at both 10 and 60 Hz even though learming occurred only at 10 Hz.
Responses were also probed at 40 Hz in this cell with similar results (not shown). Scale bar is 1 s. (B) Top, pre-learing responses of an ELL output cell
to paired EOD command and mimic sequences at 10 and 60 Hz. Shaded boxes indicate that learning took place at both 10 Hz and 60 Hz. Bottom, the
response of the same cell after learning. Learning was also conducted at 40 Hz in this cell with similar results (not shown). (C) Degree of cancellation at
each rate for learning only at 10 Hz, expressed as the ratio of the power of the residual response after learning to the power of the pre-learning
response (n = 17, median residual power ratios are 0.34, 0.48, 0.63 at 10, 40, and 60 Hz respectively). (D) Degree of cancellation at each rate when
learning and testing were at the same frequencies of 10, 40, and 60 Hz, expressed as in C (n = 12, median residual power ratios are 0.36, 0.49, 0.61 at
10, 40, and 60 Hz respectively).

DOI: https://doi.org/10.7554/eLife.44032.003

The following figure supplement is available for figure 2:

Figure supplement 1. ELL neurons form negative images that generalize across EOD rates.
DOV https://doi.org/10.7554/eLife.44032.004

Regularized synaptic plasticity partially explains generalization

To gain insights into the mechanisms that support generalization, we adapted a previously devel-
oped model of negative image formation and sensory cancellation in the ELL (Kennedy et al.,
2014). The model ELL neuron receives two classes of inputs. The first is a non-plastic electrosensory
input that we simulated by using the recorded response of an ELL output cell to an EOD mimic
sequence. This corresponds anatomically to the input onto the basilar dendrites of ELL neurons from
interneurons in the deep layers of ELL receiving somatotopic input from ampullary electroreceptor
afferents (Meek et al., 1999). The second class of inputs consists of a set of ~20,000 model granule
cell responses conveying corollary discharge signals related to the EOD command. This corresponds
anatomically to excitatory granule cell-parallel fiber synapses onto the apical dendrites of ELL neu-
rons. The model is simplified in that it does not differentiate between two distinct classes of ELL neu-
rons: output cells and medium ganglion (MG) cells (see Discussion). Granule cells are modeled as
integrate-and-fire units receiving inputs generated from recorded responses of mossy fibers and uni-
polar brush cells (the main excitatory inputs to granule cells) to isolated EOD commands (>200 ms
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intervals between commands (Kennedy et al., 2014). This granule cell model is one component of
the full model; the other is a mathematical description of the plasticity of synapses from granule cells
to ELL neurons (Bell et al., 1997a; Han et al., 2000). The anti-Hebbian spike timing-dependent plas-
ticity rule used in the model includes a regularization mechanism to prevent excessively large synap-
tic weights. Regularization consists of having the synaptic weights decay exponentially toward a
baseline value with a time constant of 1000 s, in addition to their modification due to anti-Hebbian
plasticity. We refer to this version of the plasticity rule as minimally regularized (see Materials and
methods).

To explore mechanisms of generalization using this model, we first needed to extend its granule
cell component to simulate high EOD command rates. To begin, we made simple assumptions about
how the previously recorded mossy fibers and unipolar brush cells would respond at higher com-
mand rates (see Materials and methods). For example, the most common class of mossy fiber inputs,
known as early, fire a precisely-timed burst of spikes (duration ~12 ms) at a short delay after each
EOD command. To create early mossy fibers responses to command sequences at different EOD
rates, we simply repeated the same burst pattern and timing for each command in the sequence
(see Materials and methods for assumptions used for other response types; Figure 3—figure sup-
plement 1). Later, we will replace these simple assumptions with results derived from experimental
measurements of the true EOD-rate dependence of mossy fiber and other inputs. We refer to the
granule cell model without these later modifications as the original model.

Using the original model with minimal regularization, we first simulated the generalization experi-
ment in which the system is repeatedly exposed to 10 Hz sequences of EODs for learning and can-
cellation and then tested at various rates. In agreement with the experimental results, plasticity in
the model gradually reduces ELL neuron responses to the EOD, and cancellation is accurate when it
is subsequently tested at 10 Hz (Figure 3A, lower left). However, in contrast to the experimental
results, the model exhibits a dramatic over-cancellation when tested at higher EOD rates
(Figure 3A, lower right). To determine whether this resulted from a failure of learning or generaliza-
tion, we simulated the experiments in which the system was trained at all the rates at which it is
tested. Under these conditions, the model ELL neuron learns to cancel sensory responses at all the
rates tested (Figure 3B, lower panels). This indicates that the model can learn to cancel at different
EOD rates but fails to generalize low-frequency learning to high EOD rates.

Cancellation performance is comparable between model and data when generalization is not
required because training is at both 10 Hz and 60 Hz (Figure 3C, data and minimal regularization).
Interestingly, when learning is only at 10 Hz, cancelation at 10 Hz is actually better in the minimally
regularized model than in the data (Figure 3D, data and minimal regularization). This is consistent
with overfitting, a feature that is expected to limit generalization. Indeed, when generalization is
required, real neurons outperform the minimally regularized model by a large margin (Figure 3E,
data and minimal regularization). These results show that: (1) our current understanding of ELL cir-
cuitry cannot explain the ability of the system to cancel the sensory consequences of EOD sequences
in a manner that generalizes from low to high rates and (2) this is not due to an inability of the model
system to cancel across rates but is specifically a failure of generalization.

One strategy for improving generalization that is commonly used in machine learning is regulari-
zation (Bishop, 2006). To enhance regularization, we decreased the decay time constant for the syn-
aptic weights from 1000 s to 10 s. We also changed the value toward which the weights decay from
zero to a non-zero baseline (see Materials and methods). The utility of this latter change will be dis-
cussed in a later section. We refer to this modified plasticity rule as fully regularized.

When training is performed at both 10 Hz and 60 Hz, cancellation in the fully regularized model is
similar to the data and to the minimally regularized model (Figure 3C). When trained only at 10 Hz,
the fully regularized model matches the data better than the minimally regularized model, presum-
ably by avoiding overfitting (Figure 3D). Consistent with this, the fully regularized model exhibits
substantially improved generalization across rates compared to the minimally regularized model
(Figure 3E, minimal and full regularization). However, the fully regularized model still fails to match
the generalization performance seen in the data (Figure 3E, data and full regularization). These
results suggest that the original model is subject to overfitting and that regularization provides a
partial solution. However, additional mechanisms are required to match the data. We reasoned that
this failure likely reflects the inadequacy of the assumptions we made about how granule cells
respond to high-rate EOD commands.
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Figure 3. Regularization of synaptic plasticity improves but does not fully account for generalization. (A) Top, pre-learning response of a model ELL
neuron to paired EOD command and mimic sequences delivered at 10 Hz. Shaded box indicates the learning condition. Red ticks show the times of
EOD commands and black ticks show the times of EOD mimics. Bottom, response of the model cell after learning. The response to the mimic is largely
cancelled at 10 Hz but is dramatically over-cancelled at 60 Hz. (B) Top, pre-learning response of a model ELL neuron to paired EOD command and
mimic sequences at 10 and 60 Hz. Shaded boxes indicate the learning conditions. Bottom, response after learning. The response is largely cancelled at
both 10 and 60 Hz. (C) Degree of cancellation at 10 Hz and 60 Hz for model and real cells across rates when training occurred at both rates. (D) Degree
of cancellation at 10 Hz for real cells and model cells, with full and minimal regularization, when learning was only at 10 Hz. (E) Degree of cancellation at
60 Hz for real and model cells, with full and minimal regularization, when learning was only at 10 Hz.

DOV https://doi.org/10.7554/elife.44032.005

The following figure supplement is available for figure 3:

Figure supplement 1. Modeling the responses of late mossy fibers across EOD command rates.
DOV https://doi.org/10.7554/eLife.44032.006

Rate dependence of granule cell corollary discharge responses in vivo
The corollary discharge responses of granule cells provide the ‘raw material’ from which negative
images are sculpted via synaptic plasticity, and hence they are critical for sensory cancellation.
Although the granule cell corollary discharge responses used in our model are based on an extensive
set of recordings, all of the data was collected in the context of isolated EOD commands
(Kennedy et al., 2014). As mentioned above, we modeled cancellation at high rates based on
assumptions about how mossy fiber inputs to granule cells respond at high command rates. The fail-
ure of our original model to match the generalization performance seen in the data, even with full
regularization, may indicate that these assumptions are incorrect. To test this, we used whole-cell
recordings to characterize corollary discharge responses across EOD rates for 28 granule cells (see
Materials and methods).

Most recorded granule cells (21 of 28) exhibited a prominent (~8 mV), short-latency (~2.5 ms)
depolarization in response to spontaneously emitted EOD commands. Previous studies have shown
that this response type, known as early, is due to mossy fiber input originating from a specific mid-
brain nucleus that relays electric corollary discharge information (Bell et al., 1983). Command-locked
hyperpolarizations, indicative of inhibition, were rarely observed, also consistent with past studies.

Dempsey et al. eLife 2019;8:e44032. DOI: https://doi.org/10.7554/eLife.44032
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After characterizing responses to spontaneous commands, microstimulation of the electromotor
command pathway was used to evoke trains of 25 commands at rates of 10-60 Hz (for clarity, only
responses to low and high rates are shown in the figures). As can be seen in the example traces in
Figure 4A, command-evoked depolarizations show little or no temporal summation at high com-
mand rates, with some cells even exhibiting a relatively hyperpolarized membrane potential at high
versus low rates (not shown). Additional examples are shown in Figure 4—figure supplement 1.
The responses of recorded granule cells contrast with those of the original model, which show pro-
nounced summation and membrane potential depolarization at high rates (Figure 4—figure supple-
ment 2, Figure 5B).

To quantify the differences between recorded versus model granule cells, we computed the aver-
age percentage increase in membrane voltage from 10 Hz to 60 Hz (Figure 4C) and the average
slope of the line best fit to the membrane voltage of each cell across a 60 Hz train of EOD com-
mands (Figure 4D). For the model cells, we generated a distribution by drawing 1000 sets of 28 cells
from our model population (matching the 28 recorded cells) and used this to compute both a distri-
bution and a p-value. In each histogram the vertical dashed line shows the value calculated for the
set of recorded granule cells. Whereas recorded granule cells showed very little change in their aver-
age membrane potential at high command rates, model cells increased their membrane potential
substantially (Figure 4C). Recorded granule cells have, on average, a negative slope in their mem-
brane potential across 60 Hz trains, whereas model cells have positive sloping membrane potentials
(Figure 4D), consistent with greater summation in the model versus the recorded granule cells.
Clearly the original granule cell model provides a poor description of actual granule cell responses
at high EOD command rates.

The shortcomings of the granule cell model we have been using could arise from a mismatch of
the model to the biophysical properties of real granule cells, or it could be the result of poorly
describing their mossy-fiber and unipolar-brush-cell inputs. To differentiate between these possibili-
ties, we modeled granule cell responses using the same integrate-and-fire description we have been
using, but we replaced the computed input to the model cells with experimentally measured inputs.
For each granule cell, we fit integrate-and-fire model parameters and, at the same time, inferred its
excitatory inputs from the recorded membrane potential. This process was relatively straightforward
given that granule cells exhibit large EPSPs, low noise, and receive just a few inputs (Kennedy et al.,
2014; Requarth et al., 2014; Sawtell, 2010) (see Materials and methods). We found that the origi-
nal integrate-and-fire model did a good job of fitting the data provided that we used inputs inferred
from data, not the inputs computed in the original model (Figure 4E shows the data and model fit
for an example cell, also see Figure 4—figure supplement 1). We tried a number of augmented
models, including features such as synaptic depression, inhibition and conductance-based soma and
synapses, but these did not substantially improve the fit compared to the basic current-based inte-
grate-and-fire model with purely excitatory input. This analysis suggested that the failure of the orig-
inal model (Figure 3) to generalize may indeed lie in its failure to accurately represent the EOD-rate
dependence of mossy fiber and unipolar brush cell inputs.

To test this more directly, we recorded from mossy fiber axons, unipolar brush cells, and Golgi
cells. Criteria for distinguishing between these different elements in neural recordings have been
established previously (Bell et al., 1992; Kennedy et al., 2014, Sawtell, 2010). Prominent effects of
EOD command rate were observed in early mossy fibers, the most common class of mossy fiber
input to granule cells. Consistent with past observations, early mossy fibers fire extremely precise
bursts of spikes following after EOD command. After the successive commands in a 10 Hz train they
fire exactly the same burst of spikes (Figure 4F, top), but on the second command of a 40 Hz or 60
Hz train they drop one or more spikes (Figure 4F, middle and bottom). The result of this dropping
out is that the average number of mossy fiber spikes fired per command decreases with increasing
command rate (Figure 4G).

An additional effect observed at high command rates was a decrease in the rate of tonic input to
granule cells. Tonic inputs (EPSPs not time-locked to the EOD command) were observed in 19 of 28
granule cells (Figure 4H). Similar command-rate dependent decreases in tonic firing were observed
in recordings from putative mossy fibers and unipolar brush cells (Figure 4—figure supplement 3).
Command rate-dependent responses were also found in another previously characterized functional
class of granule cell input, known as pause inputs. Pause inputs exhibit a sharply-timed cessation of
tonic firing following each EOD command and are believed to correspond to unipolar brush cells

Dempsey et al. eLife 2019;8:e44032. DOI: https://doi.org/10.7554/eLife.44032 7 of 24
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Figure 4. Command rate-dependence of granule cells and their mossy fiber inputs. (A) Membrane potential of a
granule cell in response to a 60 Hz sequence of 25 EOD commands, with stimulus artifacts removed. Red ticks
show the times of EOD commands. (B) The response to a single command at 10 Hz along with the time at which a
subsequent command would occur at a rate of 60 Hz (red arrow). Bottom trace is the electromotoneuron volley
recorded near the electric organ. Same cell as in (A). (C) Distribution of median percentage increase in maximum
membrane voltage from 10 Hz to 60 Hz command rates across n = 28 model granule cells. Dashed line shows the
experimental value of 0.006 (p=0.03). (D) Distribution of median slope of membrane voltage in response to a 60 Hz
sequence for model granule cells, dashed line shows value from the data, —0.43 mV/s (p<0.002). (E) Initial portion
of the response of the granule cell shown in panel (A). Black lines are data with stimulus artifacts removed, blue
dashed line shows a fit using a model granule cell with input spike times inferred from the recorded membrane
voltage. (F) Example traces from an early mossy fiber recorded extracellularly in the granular layer. Responses to
25 commands in a 10 Hz (top), 40 Hz (middle), or 60 Hz (bottom) sequence are overlaid. Note the ‘dropping’ of
spikes in the burst at high rates. Bottom trace is the electromotoneuron volley recorded near the electric organ.
(G) Average number of spikes fired per EOD command by early mossy fibers (gray, n = 9). Symbols show the
mean £S.D. (H) Average firing rate across all inferred tonic mossy fiber inputs to granule cells across EOD
command frequencies (mean £SEM, n = 19).

DOI: https://doi.org/10.7554/elife.44032.007

The following figure supplements are available for figure 4:

Figure supplement 1. Example recorded granule cells receiving early input.

DOI: https://doi.org/10.7554/eLife.44032.008

Figure supplement 2. Granule cells in the original model fire nonlinearly and this nonlinearity is greater for cells
with slower inputs.

DOV https://doi.org/10.7554/eLife.44032.009
Figure 4 continued on next page

Dempsey et al. eLife 2019;8:e44032. DOI: https://doi.org/10.7554/eLife.44032 8 of 24
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Figure 4 continued

Figure supplement 3. Tonic mossy fibers decrease their firing rate at high EOD command rates.
DOV https://doi.org/10.7554/eLife.44032.010

Figure supplement 4. Pause mossy fibers cease firing at high command rates.

DOI: https://doi.org/10.7554/eLife.44032.011

Figure supplement 5. Golgi cells increase their firing rate with increasing EOD command rate .
DOI: https://doi.org/10.7554/elife.44032.012

(Kennedy et al., 2014). Recordings from granule cells and putative UBCs indicate that such pause
inputs decrease their firing significantly at higher command rates, often ceasing to fire completely
(Figure 4—figure supplement 4). Finally, we found that Golgi cells, inhibitory interneurons that syn-
apse onto granule cells, markedly increase their firing with increasing EOD command rate (Fig-
ure 4—figure supplement 5). Hence, command rate-dependent Golgi inhibition could also
contribute to reducing the effect of temporal summation of excitatory inputs in granule cells.
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Figure 5. Model granule cells with rate-dependent command inputs match recorded granule cells. (A-D) Dark
versus light blue indicates model cell response with and without rate-dependent inputs matched to the data. (A)
Response of a model granule cell to two EODs in a 10 Hz command sequence. Note that the cell responds very
similarly at this rate with either set of inputs. (B) Response of the same model cell as in (A), but for a sequence of
EOD commands at 60 Hz. Note the qualitatively distinct responses with and without input rate-dependencies at
this higher rate. (C-D) Distributions of two response statistics for new and old models, dashed lines show the value
found in real granule cells. (C) Median percentage increase in membrane voltage from 10 to 60 Hz (for old model
p=0.03, for new model p=0.72). (D) Median membrane potential slope across a 60 Hz train of EOD commands (for
old model p<0.002, for new model p=0.81).

DOI: https://doi.org/10.7554/eLife.44032.013
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Model granule cells with rate-dependent command inputs match
recorded granule cells

As described above, excitatory inputs to granule cells exhibit EOD command-rate dependencies
that are more complex than those assumed in our original model. To determine whether such effects
could help to explain generalization in ELL output neurons, we incorporated features of the
recorded mossy fibers into a revised model. Specifically, we introduced the rate-dependent drop-
ping out of early mossy fiber spikes and the reduction in tonic mossy fiber firing into the model. The
measured rate-dependence of pause mossy fibers was similar to what was assumed in the original
model, so no modification was necessary for them. Golgi cells were not considered further because
we felt that too little is currently known about the details of Golgi inhibition onto granule cells to
incorporate them into the model.

We characterized the effects of these changes by simulating populations of granule cells with and
without command rate-dependent inputs. At low command rates model granule cells from the two
populations show similar responses (Figure 5A). However, at high command rates the two popula-
tions differ. Granule cells in the revised model no longer exhibit the increased depolarization at high
versus low rates that was observed in the original model granule cells (Figure 5B). Examining the
statistics we used previously to characterize EOD-rate dependencies in granule cell responses
reveals that the inclusion of realistic assumptions regarding mossy fiber inputs dramatically changes
the overall character of the granule cell responses in the revised model. The result is model granule
cell responses that are clearly more consistent with the subthreshold responses recorded in
actual granule cells across EOD rates (Figure 5C,D).

The revised model with full regularization matches the generalization
performance of ELL output neurons

Finally, we sought to determine whether the revised granule cell model, combined with fully regular-
ized synaptic plasticity, can explain generalization in ELL output cells. We again simulated the gener-
alization experiment where the system learns with 10 Hz sequences of EODs and cancellation
performance is subsequently probed at different EOD rates (Figure 6A). The revised model with full
regularization shows cancellation across rates that generalizes at a level comparable to the recorded
ELL neurons (Figure 6A,C,D). To understand the roles of both regularization and EOD rate depen-
dencies, we compared results obtained using the revised model granule cell population (with rate-
dependent input) but with the minimally regularized synaptic plasticity rule. In this case, model ELL
neurons trained only at 10 Hz exhibited over-cancellation at high EOD rates (Figure 6B). Hence the
more realistic mossy fiber-granule cell model, on its own, is also insufficient to explain generalization
(Figure 6B,C,D).

Further examination of the model suggests a hypothesis regarding how regularized synaptic plas-
ticity and rate-dependent mossy fiber inputs work together to support generalization. The form of
regularized synaptic plasticity we have used involves a decay of each synaptic weight toward a con-
stant non-zero value. Increasing the strength of this regularization decreases the variance of the
learned weights because synaptic weights from different granule cells are constrained to be similar
to this value and hence to one another (Figure 6—figure supplement 1). This means that, with
strong regularization, the learned negative image is constrained to be approximately proportional to
the mean response of the granule cell population. This average shape is, in turn, affected strongly
by the rate-dependence of inputs to granule cells. As we have shown, in the absence of realistic
mossy fiber rate-dependencies the mean model granule cell response has an increasing profile
across a 60 Hz train, whereas, with the actual mossy fiber rate dependence, the mean granule cell
response has a decreasing profile.

Notably, the sensory responses of ELL neurons to high rate trains of EOD mimics (prior to cancel-
lation) also exhibit a decreasing profile (Figure 2A, Figure 6—figure supplement 2). To determine
the origin of such responses, we performed a separate set of extracellular recordings from ampullary
electroreceptor afferents (the source of electrosensory input to ELL neurons). Ampullary afferent fir-
ing rate also exhibited a decreasing profile at high EOD rates (Figure 6E, Figure 6—figure supple-
ment 3). Responses of ampullary afferents to isolated EOD pulses consist of a firing rate increase
followed by a reduction below baseline and in some cases additional smaller waves of increased and
decreased firing resembling a damped oscillation (Figure 6—figure supplement 3D)(Bell and
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Figure 6. A revised ELL model accounts for generalization in ELL neurons. In all panels dashed blue traces are the sensory response to be cancelled
and solid blue traces are the response to the paired EOD command plus mimic sequences. Learning occurs only at 10 Hz as indicated by grey boxes.
Red ticks show the times of EOD commands and black ticks show the times of EOD mimics. (A) Top, pre-learning response of a revised model output
cell with full regularization to paired EOD command and mimic sequences delivered at 10 Hz. Bottom, response of the same cell after learning. Note,
the response to the mimic is largely cancelled at both 10 and 40 Hz. (B) Top, pre-learming response of a revised model output cell with minimal
regularization to paired EOD command and mimic sequences delivered at 10 Hz. Bottom, response of the same cell after learning. Note, the response
to the mimic is largely cancelled at 10 Hz but is now over-cancelled at 60 Hz. (C) Level of cancellation achieved at 10 Hz across different model and real
ELL cells is similar (p=0.72 for minimally regularized model versus data; p=0.62 for fully-regularized model versus data, Wilcoxon signed rank test). (D)
Similar to C but showing the level of cancellation achieved at 60 Hz, (p<0.001 for minimally regularized model versus data; p=0.38 for fully-regularized
model versus data, Wilcoxon signed rank test). (E) Dark blue, mean spiking response of model granule cells with input rate dependencies; grey, mean
response of electroreceptor afferents, both at 60 Hz EOD rate. Note the similarity in shape.

DOV https://doi.org/10.7554/eLife.44032.014

The following figure supplements are available for figure 6:

Figure supplement 1. Stronger regularization of synaptic plasticity restricts negative images to be proportional to the mean granule cell response and
decreases variance in synaptic weights.

DOI: https://doi.org/10.7554/eLife.44032.015

Figure supplement 2. Rate-dependence of ELL output cell responses to the EOD.

DOV https://doi.org/10.7554/eLife.44032.016

Figure supplement 3. Rate-dependence of ampullary afferent responses to the EOD.

DOI: https://doi.org/10.7554/eLife.44032.017

Russell, 1978). Estimating the impulse response of an ampullary afferent from its average response
to a single EOD mimic and then convolving this impulse response with a sequence of EOD mimics
yielded a reasonable approximation to the observed responses (Figure 6—figure supplement 3A,
red lines). Hence the decaying profile of the sensory response to high-rate sequences of EODs as
well as the inhibitory rebound at the end of such sequences are expected features of a linear system
with an impulse response resembling a damped oscillation.

In summary, these results suggest that generalization across EOD discharge rates may be
achieved in the ELL by combining two features: (1) a form of plasticity that encourages low variance
in learned weights, forcing the negative image to be close to the mean granule cell response and (2)
mossy fiber rate dependencies that ensure that the mean granule cell corollary discharge response
has a shape that approximates the sensory signal to be cancelled. Together, these two features may
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allow accurate negative images to be generated across a wide range of EOD rates for which no pre-
vious learning has taken place.

Discussion

Functional significance of generalization in the ELL

Past work on negative image formation and sensory cancellation in mormyrid fish has been restricted
to one particular behavioral regime, namely, periods when EOD rates are low and regular. However,
the rate and timing of EODs are under voluntary control and vary widely during both electrocommu-
nication and active electrolocation (Hofmann et al., 2014; Moller et al., 1989; Schwarz and von
der Emde, 2001; Toerring and Moller, 1984). This suggests that negative images learned over peri-
ods of minutes or hours at low EOD rates (e.g. while the fish is inactive) must generalize when the
fish transitions to a high EOD rate (e.g. during foraging, fleeing, exploring a novel object, or inter-
acting with a conspecific). If generalization did not occur in such instances, the passive electrosen-
sory system would be vulnerable to self-generated interference during the periods when it would be
needed the most. Behavioral studies suggest that multiple senses (including both the passive and
active electrosensory systems) are used in concert to detect prey (von der Emde and Bleckmann,
1998). In light of these considerations, our observation that the cancellation performance of ELL
neurons generalizes accurately supports and substantially extends the ethological relevance of nega-
tive images for passive electrolocation in mormyrid fish. A caveat is that our study focused on gener-
alization in only one specific set of circumstances, that is an abrupt transition from low to high rates.
Although this allowed us to focus on in-depth analysis of the mechanisms of generalization, impor-
tant questions remain about how such mechanisms operate under more natural circumstances, for
example in the context of the more complex and variable EOD interval patterns characteristic of
behaving fish.

Our results are likely relevant to a number of other behavioral contexts and brain structures in
which the cancellation of self-generated sensory inputs is known to occur. Negative images have
been described in the active electrosensory system of mormyrid as well as gymnotid fish where they
serve to cancel the effects of movements of the fish’s body as well as spatially redundant electrosen-
sory signals resulting from interactions with conspecifics (Bastian, 1996, Requarth et al., 2014,
Requarth and Sawtell, 2014). Movements of the tail, for example, generate reafference by chang-
ing the position of the electric organ (located in the tail) relative to electroreceptors on the head
and body. In the passive electrosensory system of elasmobranchs (the group that includes sharks
and skates), negative images cancel the effects of swimming movements and respiration
(Bodznick et al., 1999). Cancellation of self-generated inputs has also been described in related cer-
ebellum-like structures associated with the mechanosensory lateral line system in fish and the audi-
tory system in mice (Montgomery and Bodznick, 1994; Singla et al., 2017). In all of these cases,
generalization is expected to be vital in assuring that negative images remain accurate across differ-
ent behavioral and/or environmental contexts.

Mechanisms of generalization

Using a combined experimental and theoretical approach we identified two features that, when
added to existing models of ELL, were sufficient to explain how negative images learned at one rate
generalize to another. The first element was that synaptic plasticity from granule cells to ELL neurons
be appropriately regularized. Regularization of learned parameters is ubiquitous in machine learning
as a technique to prevent overfitting, or the learning of parameters that fit the idiosyncrasies and
noise present in training data and therefore do not generalize well to new data (Bishop, 2006). Con-
sistent with this, in an ELL model lacking adequate regularization we found that ELL neurons could
learn negative images at low EOD rates, however, cancellation at high (untrained) rates was poor.
Although we do not have direct evidence for such regularization of synaptic plasticity in ELL, we
note that there are a number of candidate mechanisms described in other systems. For example
bounded synaptic strengths (Amit and Fusi, 1992), discrete synaptic weights (O’Connor et al.,
2005; Petersen et al., 1998), synaptic scaling (Turrigiano, 2008), coupling of synaptic changes
between nearby synapses (Engert and Bonhoeffer, 1997), synaptic competition (Miller, 1996), and
various sources of noise (Basalyga and Salinas, 2006), could all act as forms of regularization even if
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they are simply due to constraints on the system or have additional purposes. In our model we found
that a constant decay of the strength of each synapse towards a baseline value worked best. This
rule has the appealing property of being implementable locally at each synapse. However, our rule
does require an explicit setting for the regularization decay rate. This parameter could itself be
learned over a longer timescale, which would be a form of meta-plasticity (Abraham and Bear,
1996) or meta-learning (Doya, 2002). To our knowledge, little is currently known in any biological
system regarding whether and how synaptic plasticity is regularized or about whether such regulari-
zation plays a role in generalization. Addressing these questions is an interesting challenge for future
research that may be aided by emerging methods for directly visualizing morphology, activity, and
synaptic proteins at the level of dendrites and spines (Roth et al., 2017).

The second feature we identified as important for generalization is an approximate matching
between the EOD rate dependence of electrosensory inputs to ELL output neurons and the rate
dependence of the summed corollary discharge input that an output cell receives via the granule
cells. In vivo recordings from ampullary electroreceptor afferents, ELL output neurons, mossy fibers,
and granule cells provided direct evidence for such matching. The temporal dynamics of granule cell
corollary discharge responses across EOD rates are, on average, much more similar to those of elec-
troreceptor afferents than expected based on past recordings and modeling of granule cell
responses to isolated EOD commands. This matching appears to be achieved via a variety of previ-
ously unknown EOD command rate dependencies in the inputs to granule cells. So-called early
mossy fibers are known from previous studies to fire a highly-stereotyped burst of action potentials
following each EOD command (Bell et al., 1992). We found that the number of spikes in such bursts
declines progressively with increases in the command rate. The multiple spikes in the burst seem
redundant in the context of isolated EODs. Why would multiple spikes be needed to signal the time
of occurrence of an EOD command? The present work suggests that rate-dependent grading of
such bursts conveys information that is important for generalization.

We mainly focused on the command rate-dependence of so-called early mossy fiber inputs
because these inputs are by far the most frequently encountered in our blind recordings. However,
the command-rate dependence of less common elements such as unipolar brush cells and Golgi cells
was also qualitatively consistent with the proposed matching. Determining the relative importance
for generalization of these different sources of command-rate dependence (i.e. mossy fibers, unipo-
lar brush cells, and Golgi cells) is difficult given that we lack methods for selectively targeting them
for recordings or manipulations. We also cannot rule out the importance for generalization of other
circuit elements not studied here and for which we lack sufficient physiological data under conditions
of different EOD rates. Our model (like all past models of the mormyrid ELL) does not distinguish
between two distinct classes of ELL neurons: glutamatergic output cells versus GABAergic MG cells
which inhibit output cells. MG cells occupy an analogous position in the circuitry of the mormryid
ELL as Purkinje cells in the teleost cerebellum and cartwheel cells in the dorsal cochlear nucleus
(Bell, 2002; Bell et al., 2008). Importantly, both MG and output cells integrate electrosensory and
corollary discharge input and both exhibit anti-Hebbian plasticity (Bell et al., 1997a; Bell et al.,
1993; Meek et al., 1996; Mohr et al., 2003). However, it is presently unknown, even in the context
of low EOD rates, how MG cells contribute to sensory cancellation and negative image formation.
Our model also omits molecular layer interneurons and does not distinguish between E- and I-type
output cells. Constructing a more complete and realistic model that includes these additional fea-
tures is a focus of ongoing experimental and theoretical studies of the mormyrid ELL.

Generalization of negative images could be accomplished quite simply if both electrosensory and
corollary discharge signals had a linear dependence on EOD rate. Responses of ampullary electrore-
ceptor afferents, indeed, appear to exhibit a roughly linear dependence on EOD rate (Figure 6—fig-
ure supplement 3). However, recordings from granule cells in mormyrid fish (Kennedy et al., 2014;
Requarth and Sawtell, 2014, Sawtell, 2010), as well as studies of cerebellar granule cells in mam-
mals (Barmack and Yakhnitsa, 2008; Chabrol et al., 2015; Chadderton et al., 2004,
Ruigrok et al., 2011), suggest that granule cells exhibit markedly nonlinear properties, including
prominent rectification and burst firing. In our initial modeling we found that even when electrosen-
sory and mossy fiber inputs both varied approximately linearly with EOD rate and inputs were
summed linearly by model granule cells, the model failed to match the generalization performance
seen in real ELL neurons. One reason for its failure is the nonlinearity introduced by the firing rate
threshold of the granule cells. Whenever a threshold is applied, portions of a signal that are
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subthreshold at low repetition rates can become supra-threshold at higher rates due to temporal
summation, resulting in nonlinear responses (Figure 4—figure supplement 2). Rather than lineariz-
ing the granule cell population response, the EOD rate dependencies we found in mossy fiber inputs
to granule cells actually introduce additional nonlinearities on top of the threshold linearity. It is the
summed effect of these nonlinearities across the granule cell population that guarantees that an
approximate negative image is always available in the scaled mean of the population activity. This
may be a useful principle employed by other neural systems - encoding of approximate solutions
across contexts in a robust manner, in this case through a simple average population activity, allow-
ing flexible learning while maintaining information that supports generalization.

Connections to generalization in other systems

The issue of generalization has been explored in the gymnotid ELL in the context of cancellation of
spatially redundant electrosensory signals, such as those generated by tail movements or conspe-
cifics (Bol et al., 2011, Mejias et al., 2013). Such cancellation is similar to that in the mormyrid ELL
in that it is mediated by anti-Hebbian plasticity at synapses between granule cells and ELL neurons
(Harvey-Girard et al., 2010). However, cancellation in the gymnotid ELL is driven by proprioception
or electrosensory feedback to granule cells rather than by corollary discharge (Bastian et al., 2004,
Chacron et al., 2005). In vivo recordings from ELL neurons in gymnotids demonstrated that cancel-
lation remains accurate over a wide range of stimulus contrasts (as might be produced by conspe-
cifics at different distances) (Mejias et al., 2013). Modeling was used to show how learning at one
contrast could generalize to higher or lower contrasts, despite numerous nonlinearities in the sys-
tem. Interestingly, features of the model identified to be important for such generalization are
related to those described here for the mormyrid ELL, including granule cell response properties
and a slow decay in parallel fiber synaptic strength (Mejias et al., 2013; Lewis and Maler, 2004),
which can be considered a form of regularization. Although responses of granule cells have not yet
been measured in vivo in gymnotids, several lines of evidence suggest that they are important in
relation to the specificity and generalization of learning in the gymnotid ELL (Bol et al., 2011;
Mejias et al., 2013).

A role for cerebellar granule cells in generalization has been suggested based on studies of motor
learning. Adaptation of the vestibulo-ocular reflex (VOR) shows various patterns of generalization
and specificity when training and testing are carried out at different head rotation frequencies or
static head tilts (Boyden et al., 2004). Under some experimental conditions, VOR learning has been
shown to be quite specific to the training context (Baker et al., 1987; Yakushin et al., 2000). Such
specificity can be explained by models in which learning is mediated by changes in granule cell
inputs conveying highly-specific representations of the training context—for example, granule cells
that fire for specific combination of head rotation and head tilt. Such hypotheses have not been
directly tested in the context of the VOR or other forms of motor learning, however, numerous lines
of evidence support the existence of highly-selective granule cell representations of this sort
(Chabrol et al., 2015; Huang et al., 2013, Ishikawa et al., 2015; Sawtell, 2010). Generalization of
VOR learning is also observed under some circumstances, for example when training at a high head
rotation frequency and testing on a lower frequency (Boyden et al., 2004). Broader tuning in gran-
ule cells could underlie generalization in such cases. Studies of generalization of VOR learning may
be informed by recent characterizations of the statistics of vestibular input during natural behavior in
primates and rodents (Carriot et al., 2014, Carriot et al., 2017).

It has been suggested that patterns of generalization in human motor learning, such as adapta-
tion to force fields in reaching, can be explained by the tuning of a set of basis elements
(Donchin et al., 2003; Ghahramani et al., 1996; Shadmehr and Mussa-lvaldi, 1994). Given their
large numbers and the well-characterized plasticity of their parallel fiber synapses, granule cells are a
natural candidate for such elements. To our knowledge, the present study is the first to directly
relate responses of granule cells recorded during a learning task to generalization.
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Materials and methods

Experimental preparation

All experiments performed in this study adhere to the American Physiological Society’s Guiding Prin-
ciples in the Care and Use of Animals and were approved by the Columbia University Institutional
Animal Care and Use Committee, protocol AAAW4462. Mormyrid fish (7-12 ¢cm in length) of the spe-
cies Gnathonemus petersii were used in these experiments. Surgical procedures to expose the brain
for recording were identical to those described previously (Bell, 1982; Enikolopov et al., 2018;
Sawtell, 2010). Gallamine triethiodide (Flaxedil) was given at the end of the surgery (~20 pg / cm of
body length) and the anesthetic (MS:222, 1:25,000) was removed. Aerated water was passed over
the fish’s gills for respiration. Paralysis blocks the effect of electromotoneurons on the electric organ,
preventing the EOD, but the motor command signal that would normally elicit an EOD continues to
be emitted spontaneously at rates of 2-5 Hz. The timing of the EOD motor command can be mea-
sured precisely allowing the central effects of corollary discharge inputs to be observed in isolation
from the electrosensory input that would normally result from the EOD. In a few experiments,
recordings from electroreceptor afferents were performed in unparalyzed fish anesthetized with
metomidate which leaves the fish's EOD intact (Engelmann et al., 2006).

EOD command stimulation

We controlled the EOD motor command rate by targeting a concentric bipolar stimulating electrode
(FHC, Bowdoin, ME) to the axon tract connecting the precommand nucleus to the EOD command
nucleus, located near the ventral surface of the brainstem. The electrode was inserted at the midline
through the corpus cerebellum just anterior to ELL (angled 22 degrees caudally in the sagittal plane)
and lowered into the brain using a hydraulic manipulator until commands could be evoked by a
strong stimulus (0.2 ms duration; 50 pA). The depth of the electrode was then fine-tuned until com-
mands could be reliably evoked at short latencies by single pulses using minimal current (typically 5-
15 pA). In most cases, such stimulation gave near perfect control over the timing of the EOD com-
mand. Occasionally, stimulation failed to evoke a command during high rate trains or the fish dis-
charged spontaneously during a low rate train. However, these errors were easy to detect and were
sufficiently infrequent that they were deemed negligible. Finally, microstimulation-evoked corollary
discharge responses were indistinguishable from those evoked by the fish’s spontaneous commands
at the level of field potentials, mossy fibers, and granule cells.

Electrophysiology

The EOD motor command signal was recorded with an electrode placed over the electric organ.
The command signal is the synchronized volley of electromotoneurons that would normally elicit an
EOD in the absence of neuromuscular blockade. The command signal lasts about 3 ms and consists
of a small negative wave followed by three larger biphasic waves. The latencies of central corollary
discharge or command-evoked responses were measured with respect to the negative peak of the
first large biphasic wave in the command signal.

Extracellular recordings from the VLZ were made with glass microelectrodes filled with 2M NaCl
(8-30 MQ). Consistent with previous studies, ampullary afferents were encountered in the deeper
layers of ELL (medial in our penetrations) and were characterized by highly regular spontaneous fir-
ing at ~50 Hz, the absence of any response to the EOD motor command, an excitatory responses to
a stomach negative EOD mimic pulse (0.2-2 ms duration), and strong responses to small (<1 pA),
long duration (10-100 ms) electrosensory stimuli. Output cells were encountered in more superficial
layers (on penetrations slightly lateral to those in which afferents were encountered) and were char-
acterized by much lower and more irregular firing rates than ampullary afferents. E-cells showed
increased firing in responses to a stomach negative EOD mimic pulse, while I-cells showed
decreased firing. None of the E- or I-cells included in our analysis exhibited two distinct action
potential waveforms, the hallmark of the other major cell type of in VLZ, the medium ganglion cells
(Bell et al., 1997a; Bell et al., 1993). Hence these recordings are presumed to be from the efferent
neurons of ELL.

Extracellular recordings from mossy fibers in EGp and in the paratrigeminal command-associated
nucleus were made using glass microelectrodes filled with 2M NaCl (40-100 MQ). For in vivo whole-
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cell recordings from EGp neurons patch electrodes (9-15 MQ) were filled with an internal solution
containing, in mM: K-gluconate (122); KCI (7); HEPES (10); Na2GTP (0.4); MgATP (4); EGTA (0.5),
and 0.5% biocytin (pH 7.2, 280-290 mOsm). No correction was made for liquid junction potentials.
Only cells with stable membrane potentials more hyperpolarized than -50 mV and access resistance
< 100 MQ were analyzed. Membrane potentials were filtered at 3-10 kHz and digitized at 20 kHz
(CED power1401 hardware and Spike2 software; Cambridge Electronics Design, Cambridge, UK).

Pairing experiments

Cancellation and negative image formation was tested in E- and I-cells by pairing EOD commands
with an EOD mimic pulse (0.2-2 ms wide square pulses; 1-5 nA) delivered at the delay at which the
EOD would normally occur (4.5 ms after the EOD command). This delay was fixed and independent
of command rate in our experiments. This is assumed to be the case under natural conditions as
well, although to our knowledge, this has never been directly shown. EOD mimics were delivered
using a dipole electrode positioned < 2 mm from the skin within the unit's receptive field. These
methods are the same as those used previously to characterize negative images and sensory cancel-
lation in the context of low command rates. In | cells, the EOD mimic often drove the firing rate to
zero, making it difficult to quantify cancellation. To avoid this firing rate rectification, we reversed
the EOD mimic polarity when recording from | cells, such that they responded with excitation
instead of inhibition. This response reversal is due to known properties of ampullary electroreceptor
afferents, which increase (or decrease) firing above (or below) their baseline rate for stimuli that
make the pore of the receptor positive (or negative) with respect to the basal face within the body.
Past studies have commonly used this approach to demonstrate the specificity of negative image
formation in the VLZ by performing multiple pairing in the same neuron using opposite stimulus
polarities (Bell, 1981, Bell, 1982; Enikolopov et al., 2018). Negative images are invariably observed
for both stimulus polarities in such experiments, that is responses to the corollary discharge alone
after pairing are opposite in sign to the response to the stimulus during pairing. Systematic differen-
ces between negative images and cancellation in E versus | cells or for mimics of opposite polarities
have never been noted, justifying this approach to avoid rectification.

Two types of pairing experiments were conducted. For the first type, pairing was performed
across a range of rates (10, 40, and 60 Hz or 10, 30, and 50 Hz). Cancellation was assessed by com-
paring responses early and late during pairing which lasted 10-20 minutes. Negative images were
assessed in a subset of cells by comparing responses to the command alone across rates before ver-
sus after pairing. Responses to identical trains of electrosensory stimuli presented independent of
the command were also tested for each cell. In some cases, multiple pairings were conducted in the
same cell after allowing 10-15 minutes for recovery from the effects of prior pairing. The second
type of experiment was the same as described above except that pairing was only conducted at 10
Hz. Cancellation was assessed in these experiments by briefly (60-100 sec) probing responses at all
three rates before and immediately after pairing at 10 Hz.

Linear model of electroreceptor sequence responses

To test whether electroreceptor afferent responses to EOD sequences could be approximated as lin-
ear, we estimated the impulse response kernel, K(), of each recorded unit from its response to an
isolated EOD mimic. We first computed the average firing rate evoked by isolated EOD mimics
(those separated by at least 150 ms). We treated this as an estimate of the impulse response of the
recorded unit. To compute the predicted linear response, L(t), we convolved this kernel with a series
of delta functions centered on the times of the EOD mimics:

L(r)=%ZK(r)x8(t; — 1)
where t; are the times of the EOD commands in the sequence.

Quantification of cancellation and generalization

To quantify cancellation and generalization, the degree of cancellation, C, was measured as the ratio
of the total variance of the response to a sequence starting at time ty,,, and ending at time 7., to
an EOD command plus mimic sequence post pairing, ryes (1), to that pre pairing,rpe(?):
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Modeling granule cells

Our general approach to modeling granule cells follows that used previously (Kennedy et al.,
2014). We generate model granule cell populations by random mixing of mossy fiber inputs, as
described below. To extend this model to the case of different EOD command rates we also directly
fit integrate-and-fire models to recordings of real granule cell responses, inferring the mossy fiber
inputs at the same time. We then use information about rate dependencies in these mossy fiber
inputs gleaned from this fitting procedure as well as from direct recordings of mossy fibers to show
that rate-dependent changes in the inputs to granule cells can account for their responses to EOD
command sequences. This information was then used to update the granule cell population model.
The following sections describe these different modeling steps in more detail.

Fitting granule cell voltage responses to EOD command sequences
When fitting models to real granule cell data we first removed stimulus artifacts caused by electro-
motor command nucleus stimulation as well as any spikes using a simple threshold on the gradient
of the membrane voltage. We found that a gradient threshold of 1.8 mV/ms worked well. We used
multiple methods and models to fit a set of 28 intracellularly recorded granule cell responses to
EOD command sequences from 10 to 60 Hz. The basic model was an integrate-and-fire model with
current based synapses. The parameters of the model were the membrane time constant, the leak
potential, and synaptic parameters. Each cell could receive two inputs. Each input had the following
parameters, a fast and a slow time constant, and a fast and a slow weight. This accounts for the fact
that granule cell EPSPs often show a combination of fast and slow components. We allowed two
inputs to permit both command-associated inputs and command-independent tonic inputs. The
response of a model granule cell was given by

‘Ema;—‘l/ =E; — V+Z,E(1)8(t —ty)
where #; is the time of the j-th spike of the i-th input and the synaptic kernels for each input are
given by

T _fast 1 ~slow

1 f:
— ast , T: slow | T
i) =mawie 0 Ao 0
; ,

1

To fit granule cell models, we further needed to estimate the times of input spikes for each cell.
We used multiple methods to make this input inference, all of which gave similar results. The first
method was a wavelet-based detection method. We computed the continuous wavelet transform of
the membrane voltage at 16 scales from 800 to 2000 Hz, using the MATLAB Wavelet Toolbox. We
searched for times where the wavelet transform exhibited peaks at multiple scales and considered
these times putative input spike times. We then combined peak locations into single putative input
times if they were closer than 0.5 ms together. We then visually validated all of the data by checking
if the input times detected by this procedure corresponded to clear upticks in the membrane volt-
age. We made corrections when it appeared an EPSP had occurred and then used both the cor-
rected and uncorrected input times when fitting models and compared results. The qualitative
results described in the main text did not depend on the input details at this level of accuracy. We
used two different methods for estimating the parameters of granule cell models. Our results did
not depend on which method was used. The first method was to use the putative input times we
found, assume these were the actual input times to the granule cells, and then use least squares min-
imization to find the optimal parameters of the granule cell model, given these input times. The sec-
ond method was to use these putative input times as an initialization for an MCMC method which
then generated joint samples from the posterior distribution of granule cell model parameters and
input times. We initialized the input times based on those found by the wavelet method. We then
used Gibbs sampling to sample model parameters after a burn-in of 500 sweeps. Approximate sam-
pling of input times was achieved by allowing the following moves: an input spike could be jittered
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around its current location, an input spike could be removed, and an input spike could be added.
We placed priors on the total number of spikes based on the estimated number detected by the
wavelet method to prevent the addition of many extra spikes. We also placed hard bounds on the
parameters so that synaptic weights were always positive.

Basic granule cell model

As in previous work (Kennedy et al., 2014), we generated populations of model granule cells from a
random mixing procedure based on the following assumptions. Each cell receives input from classes
early (E), medium (M), late (L), pause (P) or tonic (T). (i) Each granule cell has three sites for mossy
fiber synaptic inputs. (i) The probabilities of a given input being of E, M, L, P and T type are given
by P,, Py, Pi, P, and P,, with P, + P,, + P, + P, + P, < 1. (iii) The type of input received at one mossy
fiber-granule cell synapse is independent of that received at any other synapse. We used input type
probabilities as calculated previously based on fits to individual granule cells (Kennedy et al., 2014).

We introduced two sources of variability. We included trial to trial variability in the peak height of
recorded single EPSPs from a normal distribution with ¢ = 0.224 mV; during simulation of model
granule cells, we sampled this distribution for each mossy fiber spike. Some granule cells further
receive tonic mossy fiber inputs in addition to corollary discharge inputs. These inputs fire at high
rates, independent of the EOD command. We included tonic input as previously, based on 72 tonic
mossy fiber recordings.

For each model granule cell we randomly determined whether each potential connection to that
model cell received early (P, = 0.425), medium (P,, = 0.075), late (P, = 0.05), pause (P, = 0.05), tonic
(P, = 0.157) or no input (P, =0.243), as in previous work. We then chose a particular mossy fiber
response of the previously-determined class as the source of that input; we assumed that a connec-
tion is equally likely to be from any of the mossy fibers within a given class. These steps constitute
the basic procedure for modeling populations of granule cells. The mossy fiber recordings we use to
generate granule cells were based on responses to single EOD commands. To model the responses
of these cells to EOD command sequences we needed to choose a method for predicting the
responses of each mossy fiber to sequences of EOD commands. The following sections describe
how this was achieved.

In the model granule cells we used synapses with fast and slow components. We used the same
synapse model described above when fitting responses of real granule cells. The synaptic dynamics
were described by Equation 1. When generating model granule cell populations we had to choose

values for the four parameters Ty, wf‘m, Tyow, and wi®¥. These were chosen by fitting Gamma distri-
butions to the values of these parameters obtained by fitting the granule cell model to granule cell
data as described above. We then drew parameters randomly from these distributions for each
model granule cell we generated. Parameters were the same for each input to a given granule cell,

and the values of the four parameters were assumed to be independent.

Model granule cell responses to EOD command sequences

To generate responses of model granule cells to EOD command sequences we needed to model
the responses of each mossy fiber to that same sequence. We did not have a sufficiently large set of
mossy fiber recordings from each class in response to EOD sequences at different rates to simply
use these recordings directly as inputs to model granule cells. Instead we made simple models of
how each of our previously recorded mossy fibers (whose responses only to isolated EOD commands
we had recorded) would respond to EOD command sequences, based on actual responses to com-
mand sequences recorded from mossy fibers and UBCs in the present study. We considered two dif-
ferent models, referred to in the main text as the original model and the revised model. Medium,
late and pause inputs were treated identically in the two models. Early and tonic inputs differed. For
medium inputs we simply assumed that the set of spikes fired after each EOD command was the
same, no matter where that command came in a sequence. This meant that spikes due to one com-
mand could overlap with spikes from subsequent commands, which we allowed, although we
checked that this did not result in unrealistic firing rates of medium mossy fibers. Late inputs are
characterized by a delay in firing after a command followed by a period of spiking. To model the
response of a late mossy fiber to EOD command sequences we assumed that the firing delays accu-
mulated if they overlapped. This amounts to computing the spiking response of a late mossy fiber to
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an EOD command sequence by starting at the first command in the sequence and proceeding
through the sequence, allowing the delay in firing following a command to prevent spikes that would
otherwise have been caused by the previous command. For pause mossy fibers we estimated the
length of the pause in tonic firing induced by each command. To create the response of the fiber to
an EOD command sequence we drew randomly from the empirical inter-spike interval of the fiber
and populated the period of the sequence with spikes. We then deleted spikes occurring within the
estimated pause period after any EOD command in the sequence. This naturally gave rise to cessa-
tion of firing at high EOD command frequencies, due to accumulation of pausing. Similar responses
at high command rates were observed in recorded pause mossy fibers.

Early and tonic mossy fiber are treated differently in the two models
The key differences between the original and revised models were in the way we treated early mossy
fiber inputs and tonic mossy fiber inputs. Recordings from early mossy fibers as well as mossy fiber
inputs inferred from granule cell recordings showed that early mossy fibers tend to fire progressively
fewer spikes per EOD command during high-frequency command sequences and that tonic mossy
fibers also tend to fire at a progressively lower rate during high frequency EOD sequences. The orig-
inal model does not take these new findings into account, whereas the revised model does. In the
original model we assume that early mossy fibers fire the exact same burst of spikes (known from
recorded responses to single EOD commands) after each command in a sequence and we create
tonic mossy fiber spike trains in response to EOD command sequences by sampling from estimated
inter-spike interval distributions for each recorded tonic mossy fiber. In the revised model, the frac-
tion of spikes fired by each early mossy fiber following each EOD command, compared to the num-
ber fired after an isolated EOD command, was a function of recent EOD command history. The
fraction f relaxed to 1 with a characteristic timescale (80 ms) and is reduced by a factor a= 0.72 fol-
lowing each EOD command:

df

Tf‘a— 1 —f

and f — af after each EOD command. These parameters were chosen to approximately match the
dropping observed in recorded responses of early mossy fibers to EOD command sequences. In the
revised model we modified the responses of tonic mossy fibers by removing a number of spikes
from the spike train based on the recent EOD command rate (computed over the last 100 ms). The
decrease in tonic firing was again based on recorded tonic mossy fiber responses to EOD sequen-
ces. Tonic firing rates were decreased linearly from their maximum rate at an EOD command fre-
quency of 10 Hz to 0.6 times their maximum rate at an EOD command frequency of 60 Hz.

Additional granule-cell responses types

Not all granule cells from the revised model population behaved in the same way. For example, a
minority of cells, specifically those receiving previously described medium mossy fiber inputs active
at intermediate delays, integrate and fire more spikes at high EOD command rates. Only 2 of the 28
recorded granule cells received a medium input, consistent with the small proportion of medium
inputs found previously (Kennedy et al., 2014). One of these cells, indeed, exhibited prominent
summation and increased spiking at high rates. However, given the small proportion of medium
inputs, a much larger number of actual granule cells would have to be recorded to determine
whether such response types are a consistent feature of real granule cells.

Synaptic plasticity

As in previous work we modeled the membrane potential of ELL neurons, V(¢), as a passive, current-
based leaky unit receiving excitatory input from 20,000 model granule cells r;(r) and sensory
input s(¢), with anti-Hebbian spike-timing dependent plasticity at granule cell-ELL neuron synapses
with weights w;, and EPSP kernel E fit to recorded granule cell-evoked EPSPs (Kennedy et al.,
2014). As discussed above, we adjusted the polarity of the sensory stimulus such that excitation was
evoked in both E and | cells. Hence, no distinction was made in the model between E and | cells.
The granule cell-ELL neuron learning rule has the form A" — A™Ly(¢) where 1 = fostspike — fprespike @aNd
L,(t) determines the time dependence of associative depression. Theoretical analysis has shown that
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the negative images are guaranteed to be stable when Ly = E, where E is the EPSP from granule
cells to the ELL neuron (Roberts and Bell 2000). The timescale of E agrees with learning rules fit to
experimental data, thus we set Ly = E. We further included a regularization term as mentioned in
the main text. This regularization is equivalent to a constant decay of each synaptic weight toward a
baseline value that is the same for all synapses. Using this approach, the rate of change of w; is equal
to Ay [ri(t)dt — A [V(£)(E % r;)(¢)dt — A(w; — w.), where the integral is over the period of the EOD
command sequence being paired. The regularization constant A sets the time constant, %, for the
decay of synaptic weights to the baseline value w,. The values of A and w, chosen here were selected
by hand in order to match the experimental data. The model introduces these two parameters as a
minimal extension of our previous model which can account for the experimental results. See the
Discussion for thoughts about how these parameters might be set in the biological system.

We used 1 = 10s in the case of full regularization and 1 = 1000s for minimal regularization. The
value used with full regularization was chosen to bring the overall performance of the model when
generalizing as close to that found in the data without compromising cancellation at 10 Hz to the
point where the model could not cancel as well as the data. The value used with minimal regulariza-
tion was chosen to prevent unrealistically large weights from being learned. We chose the value of
w. depending on the ELL neuron being modeled so that the mean model granule cell response
scaled by w. was approximately equal to the negative of the sensory input to the ELL neuron, that is
such that w.(r;(r))= — s(¢). A; and A~ were taken from previous work, where they were fit to nega-
tive images recorded experimentally (Kennedy et al., 2014).
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