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Spatio-temporal data are ubiquitous in the agricultural, ecological, and environmental
sciences, and their study is important for understanding and predicting a wide vari-
ety of processes. One of the difficulties with modeling spatial processes that change
in time is the complexity of the dependence structures that must describe how such a
process varies, and the presence of high-dimensional complex datasets and large pre-
diction domains. It is particularly challenging to specify parameterizations for nonlinear
dynamic spatio-temporal models (DSTMs) that are simultaneously useful scientifically
and efficient computationally. Statisticians have developed multi-level (deep) hierarchi-
cal models that can accommodate process complexity as well as the uncertainties in the
predictions and inference. However, these models can be expensive and are typically
application specific. On the other hand, the machine learning community has developed
alternative “deep learning” approaches for nonlinear spatio-temporal modeling. These
models are flexible yet are typically not implemented in a probabilistic framework. The
two paradigms have many things in common and suggest hybrid approaches that can
benefit from elements of each framework. This overview paper presents a brief intro-
duction to the multi-level (deep) hierarchical DSTM (H-DSTM) framework, and deep
models in machine learning, culminating with the deep neural DSTM (DN-DSTM).
Recent approaches that combine elements from H-DSTMs and echo state network DN-
DSTMs are presented as illustrations. Supplementarymaterials accompanying this paper
appear online.

Key Words: Bayesian; Convolutional neural network; CNN; Dynamic model; Echo
state network; ESN; Recurrent neural network; RNN.

1. INTRODUCTION

Deep learning is a type of machine learning (ML) that exploits a connected multi-layer
set of models to predict or classify elements of complex datasets. The ML deep learning
revolution is relatively recent and primarily associated with neural models such as feedfor-
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ward neural networks, convolutional neural networks (CNNs), recurrent neural networks
(RNNs), generative adversarial networks, or some combination of these neural architectures.
There are remarkable success stories associated with these approaches, such as models that
can defeat experts in Go, Chess, or Shogi (Silver et al. 2016, 2018), and of course, there
are failures as well (Shalev-Shwartz et al. 2017), albeit less publicized. Statisticians should
not be surprised by the success (and failure) of these deep ML methods as we have been
using deep models for years, i.e., multi-layer hierarchical Bayesian models. Although these
models have not traditionally been labeled by the “deep” descriptor, they are deep in much
the same way as deep ML models, and in this article they will be referred to as deep hier-
archical models. Indeed, many of the reasons for success and failure of deep ML and deep
hierarchical models are the same. The primary purpose of this article is to discuss some of
these connections in the context of an area of great interest in agriculture, environmental, and
ecological statistics—spatio-temporal modeling, and to show some ways in which deepML
model methodologies can be utilized within a traditional statistical modeling framework.

Spatio-temporal processes are ubiquitous in the environmental sciences. They describe
how spatially dependent processes change through time, subject to various forcing mecha-
nisms. An important modeling challenge for such processes concerns how one accounts for
interactions between different scales of spatial and temporal variabilities, internal to the pro-
cess of interest, as well as how that process interacts with other (exogenous) processes. Often
spatio-temporal processes are quite nonlinear in time, at least at certain time or spatial scales.
It can be difficult to model interactions for such processes in a parsimonious way, although
some parametric spatio-temporal statistical models have been used in this context, often
by incorporating knowledge about the underlying dynamics of the system of interest (e.g.,
Wikle et al. 2001; Wikle and Hooten 2010). Such deep (multi-level) hierarchical dynamic
spatio-temporal models (H-DSTMs) can be quite complex. Similarly, perhaps the greatest
success stories in deepMLmethods have been associatedwith data that have complex spatial
and temporal dependencies. In particular, CNN models have been very successful in vision
and image processing, and RNN models have exploited the complex temporal dependen-
cies in language processing (see the overviews in Goodfellow et al. 2016; Aggarwal 2018).
Increasingly, CNN and RNN approaches are being combined to model spatio-temporal pro-
cesses (e.g., Donahue et al. 2015). In this paper, we refer to such hybrid spatio-temporal
models as deep neural dynamical spatio-temporal models (DN-DSTMs).

Faced with complex spatio-temporal modeling challenges, how does the environmental
statistician decide which paradigm is most appropriate for their problem? H-DSTMs and
DN-DSTMs can both be challenging to implement—often requiring a great deal of training
data and specialized computational algorithms. As discussed in Sect. 4.6, the two modeling
paradigms share common (or, at least similar) solutions to these challenges. One must also
consider how important uncertainty quantification is to the problem at hand. As statisticians,
wewould like to think that accounting for uncertainty isalwaysof fundamental importance to
what we do, but the reality is that there are situations where one simply needs a prediction or
classification and the quantification of uncertainty is secondary at best (e.g., it is sometimes
the case in spatial statistics that practitioners do not use the prediction standard errors).
Most DN-DSTM methods do not provide a model-based measure of uncertainty, whereas
the H-DSTM approach is built upon a framework to explicitly capture uncertainty about as
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many aspects of the problem as possible (data, process, and parameters). On the other hand,
DN-DSTMmodels have the flexibility to consider non-Markovian feedback mechanisms in
time and the influence of specific events in the distant past, whereas H-DSTMs are typically
based on Markovian (i.e., autoregressive) structures. This suggests we might borrow ideas
from both the H-DSTM and DN-DSTM approaches to develop relatively parsimonious and
flexiblemodels that can accommodate real-world complexity and uncertainty quantification,
potentially in a computationally efficient manner. Perhaps more importantly, in some cases,
these methods could be used in situations where one does not have access to tremendous
amounts of data (either labeled or unlabeled), especially when they are linked together with
parsimonious architectures.

Section 2 provides a concise overview of spatio-temporal modeling in statistics from
both the descriptive and dynamic perspective, illustrating the importance of basis function
representations. This is followed by a brief overview of deep modeling and the H-DSTM
statistical perspective in Sect. 3. Section 4 then gives a brief overview of deep models in
machine learning and issues associated with their implementation, including deep feedfor-
ward NNs (DNNs), CNNs, RNNs, and DN-DSTMs. Section 5 then reviews some recent
approaches for linking the H-DSTM and DN-DSTM frameworks. A concluding discussion
is presented in Sect. 6.

2. A BRIEF OVERVIEW OF SPATIO-TEMPORAL MODELING

In statistics, we have typically been interested in spatio-temporal models that include an
observation model and a model for a spatio-temporal latent process (e.g., Cressie andWikle
2011; Wikle et al. 2019):

[observations | latent process and obs/sampling error] (1)

latent process = “fixed effects” + dependent random process, (2)

where [ ] denotes a generic distribution, | denotes conditioning, and each component of the
model is indexed in space and time. More formally, assume we are interested in a latent
(unobserved) spatio-temporal process {Y (s; t) : s ∈ Ds, t ∈ Dt }where s is a spatial location
in domain Ds (a subset of d-dimensional real space) and t is a time index in temporal domain
Dt (along the one-dimensional real line). We then have observations {z(si j ; t j )} for spatial
locations {si j : i = 1, . . . ,m j } and times {t j : j = 1, . . . , T }.

A common example of (1) for Gaussian spatio-temporal observations is given by

z(si j ; t j ) = Y (si j ; t) + ε(si j ; t j ), (3)

where ε(si j ; t j ) ∼ i id Gau(0, σ 2
ε ) is the observation error process. The latent Gaussian

spatio-temporal process (2) can be represented as

Y (s; t) = μ(s; t) + η(s; t), (4)
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where μ(s; t) is a spatio-temporal mean function, and η(s; t) is a mean zero Gaussian
process (GP) with covariance function, say cη(η(s; t), η(s′, t ′)) ≡ cov(η(s; t), η(s′; t ′)).
Then, Y (s; t) is also a GP with mean function μ(s; t) and covariance function cη(·, ·).
Recall, a GP is a distribution over functions that is fully specified by a mean function and
covariance function defined over the spatio-temporal domain of interest (e.g., Ds ×Dt ). GPs
have the very useful property that all of their finite-dimensional distributions are Gaussian
(i.e., normal).

Now, say we are interested in predicting the latent process at location (s0; t0) given
the m = ∑

j m j -dimensional observation vector z ≡ {z(si j ; t j )}. The spatio-temporal
(universal) kriging optimal predictor is the linear predictor Ŷ (s0; t0) that minimizes the
mean squared prediction error, E(Y (s0; t0) − Ŷ (s0; t0))2:

Ŷ (s0; t0) = x(s0; t0)′β̂gls + c′
0C

−1
z (z − Xβ̂gls), (5)

where x(s0; t0) is a p-vector of covariates known at location (s0; t0), β is the associated
parameter vector, X is the m × p matrix of covariates at observation locations, Cz ≡ var(z)
is anm×m covariance matrix, c0 ≡ cη(z,Y (s0; t0)) is them×1 covariance vector between
observation locations and the prediction location, and the generalized-least-squares (gls)
estimator of β in (5) is given by β̂gls ≡ (X′C−1

z X)−1X′C−1
z z. Note that Cz = Cy + σ 2

ε I =
Cη + σ 2

ε I. The associated spatio-temporal kriging variance is given by σ 2
Y (s0; t0) = c0,0 −

c′
0C

−1
z c0 + κ , where c0,0 ≡ var(Y (s0; t0)) and κ represents the uncertainty brought to the

prediction due to the estimation of β (e.g., Wikle et al. 2019). It is straightforward to modify
these formulas to obtain predictions for many locations at once, and the approach can be
extended to non-Gaussian data models as well, but without a closed-form solution (e.g., see
Cressie and Wikle 2011).

This approach to spatio-temporal modeling is descriptive (marginal) in that it only relies
on thefirst and secondmoments of the latent process {Y (s; t)}. In the spatio-temporal context,
this is quite useful when one does not have a great deal of knowledge about the underlying
process and only needs to specify a plausible spatio-temporal covariance structure (and a
spatio-temporal trend) and can rely in some sense on “Tobler’s law” that nearby things in
space (and time) are more related than distant things (Tobler 1970). However, this can be
challenging for complex processes as it is difficult to specify valid covariance functions that
are realistic in many situations where Tobler’s law might not hold (e.g., eddy dynamics,
density-dependent growth, etc). In addition, such second-order moment-based approaches
are limiting for nonlinear and non-Gaussian processes. Practically, as shown in Fig. 1, these
limitations are most noticeable in situations where one is forecasting multiple time steps
into the future and/or must fill in large gaps in the spatio-temporal domain of interest.

2.1. DYNAMIC SPATIO-TEMPORAL MODELS (DSTMS)

The dynamical approach to spatio-temporal process modeling in statistics is based on
the idea of conditioning the spatial process at the current time on the recent past (i.e., a
Markov assumption). The model is primarily concerned with specifying the evolution of the
spatial field through time, which describes the etiology of the environmental process. Such
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Figure 1. Ocean color images from the SeaWiFS satellite—note that ocean color is a proxy for phytoplankton
primary productivity in the ocean. The left panel shows a schematic box representing missing observations as one
often experiences due to cloud cover. The right panel shows that there is a mesoscale eddy (a highly nonlinear
circulation feature that occurs at medium spatial scales) in that region. This illustrates the challenge of trying to
use traditional interpolation-based spatial or temporal prediction methods for complex processes. (Color figure
online)

specifications have traditionally worked well when one has some underlying knowledge
about the process of interest to help with estimation of the transition operator that controls
the evolution (e.g.,Wikle andHooten 2010). Thesemodels are typicallymost effective when
forecasting multiple time steps in the future and/or predicting across large regions of space
in which there are no observations (e.g., see Fig. 1).

2.1.1. Simple Two-Stage Linear DSTM

For illustration, consider a simple two-stage DSTM in the context of a fixed set of spatial
locations and discrete time. Specifically, let zt = (zt (r1), . . . , zt (rmt ))

′ correspond to an
observation vector at spatial locations {ri : i = 1, . . . ,mt } and time t . (Note, as is customary
for dynamic models, we represent the time index as a subscript here.) Let the latent dynamic
process be given by Yt = (Yt (s1), . . . ,Yt (sn))′, where {s j : j = 1, . . . , n} are spatial
locations that may or may not coincide with the observation locations. We then write the
DSTM:

Zt = HtYt + εt , (6)

Yt = MYt−1 + ηt , (7)

where Ht is an mt × n observation matrix that associates (maps) the observations with the
latent dynamic process vector,M is an n × n evolution operator that controls the evolution
dynamics of Yt , εt ∼ Gau(0,Cε,t ) is a measurement error process, and ηt ∼ Gau(0,Cη)

is the random dynamic error (innovation) process. It is common to refer to these two models
as a “state-space” model, where the latent dynamic process vector corresponds to the “state”
of the process of interest. Typically, one would also specify a distribution for the initial state,
[Y0]. Eachof thesemodels depends onparameters associatedwithHt ,M,Cε,t , and/orCη.As
discussed below, one of the challenges with many spatio-temporal modeling problems, even
ones for which simple models like this are appropriate, is that there are too many parameters
to estimate (e.g., in cases where n � mt ) and one must work hard to parameterize these
matrices (e.g., see Cressie and Wikle 2011).
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2.1.2. General Two-Stage DSTM

In general, the data model (6) can be written as:

zt (·) = H(Yt (·), θd,t , εt (·)), t = 1, . . . , T, (8)

where zt (·) corresponds to the data at time t , Yt (·) the corresponding latent process of
interest, with a linear or nonlinear mapping function,H(·), that relates the data to the latent
process. The data model error is given by εt (·), and data model parameters are represented
by θd,t . These parameters may vary spatially and/or temporally in general. An important
assumption that is present here, as well as in (6) and the descriptive model presented above
in (3), is that the data zt (·) are independent in time when conditioned on the true process,
Yt (·), and parameters θd,t .

The most important component of the DSTM is the dynamic process model (e.g., (7)).
This model makes use of conditional independence through Markov assumptions (e.g.,
conditioned on the recent past, the process is independent of the process in the more distant
past). For example, a first-order Markov process can be written

Yt (·) = M(Yt−1(·), θ p,t , ηt (·)), t = 1, 2, . . . , (9)

whereM(·) is the evolution operator (linear or nonlinear), ηt (·) is the noise (error) process,
and θ p,t are process model parameters that may vary with time and/or space. As in (6) and
(7), we are assuming that time is discrete and equally spaced (although this can be relaxed).
We also note that one can include higher-order lag dependence in the process model as in
multivariate vector autoregression models.

Importantly, one either estimates the parameters in (8) and (9) directly, or assigns them
distributions. As discussed below, an important part of the H-DSTM framework is modeling
these parameters as processes (e.g., spatially or temporally varying, and/or allowing them
to depend on auxiliary covariate information).

2.2. BASIS FUNCTION REPRESENTATION

Both the descriptive and dynamic approaches to spatio-temporal modeling suffer from a
curse of dimensionality. In the descriptive case, we need to be able to efficiently calculate
the inverse C−1

z , and in the dynamic case, we need to be able to estimate the parameters in
the transition operator (e.g., the transition matrix M in the linear case). This is challenging
if the number of spatial locations (data and/or prediction) is large. There are several ways in
which these issues can be mitigated (e.g., see the overview, Heaton et al. 2018, in the context
of spatial models), but a common approach to both is to use basis function representations.

Consider expanding the spatio-temporal process (4) in a finite-dimensional basis expan-
sion:

Y (s; t) = x(s; t)′β +
nα∑

i=1

φi (s)αi (t) + ν(s; t), (10)
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where {φi (s) : i = 1, . . . , nα} are basis functions, {αi (t) : i = 1, . . . , nα} are the associated
random expansion coefficients, and ν(s; t) is a relatively simple spatio-temporal process
sometimes needed to represent left-over fine-scale spatio-temporal random variation. Note
that we could consider basis functions that are indexed in space and time, or just time (e.g.,
see Wikle et al. 2019).

Of course, there is a well-known connection between covariance functions, basis func-
tions, andkernels in the context ofMercer’s theoremand theKarhunen-Loévedecomposition
for GPs (e.g., see Rasmussen and Williams 2006). But, to see the practical utility of this
representation, one need only note that they allow us to build complexity through marginal-
ization in a computationally efficient manner. For example, recall from linear mixed model
theory that we can write (in vector/matrix form) the conditional model

Yt |αt ∼ Gau(Xtβ + �αt ,Cν),

αt ∼ Gau(0,Cα),

where αt = (α1(t), . . . , αnα (t))
′ and � = {φi (s j )}i, j is a matrix of known spatial basis

functions. Then, integrating (marginalizing) out the random effects αt induces dependence:

Yt ∼ Gau(Xtβ,�Cα�′ + Cν).

That is, we have constructed the marginal covariance matrix through the known basis func-
tions and the dependence in the random effects: Cy = �Cα�′ + Cν .

In this context, the main spatio-temporal dependence structure comes from � and either
Cα in the descriptive case, or αt = Mααt−1 + ηt in the dynamic case. Then, the compu-
tational advantage of basis functions comes when one recognizes that {αt } is simpler than
{Y (s; t)} so that C−1

α and/or Mα are easy to obtain. This occurs when one is working with
a low-rank system (i.e., nα � n) or when there are efficient algorithms for manipulating
the basis functions and/or random effects (e.g., see Cressie andWikle 2011). Basis function
approaches can be quite useful for spatio-temporal modeling, but there are still many situa-
tions that require more complicated process descriptions on the random effects. This is best
considered from a hierarchical modeling perspective.

3. MULTI-LEVEL (DEEP) HIERARCHICAL MODELS

What are deep models? Although there is probably no universally agreed upon answer,
one view is that a deep model is structured so that the response (output) is given by a
sequence of linked (telescoping) models:

Response (Output) ←− M1 ←− M2 ←− · · · ←− ML(←− Input),

where M	 corresponds to the 	th model. In statistics, this is perhaps best represented by
the multi-level hierarchical Bayesian modeling framework (e.g., see Gelman and Hill 2006;
Gelman et al. 2013), in which case the input is not included at the deep end of the model,
but can be in any stage, or at the top. In particular, in the context of environmental statistics,
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the hierarchical modeling paradigm of Berliner (1996), Wikle et al. (1998), and Cressie and
Wikle (2011) considers the following general distributions/models:

Data Models: [data | process, data parameters]
Process Models: [process | process parameters]
Parameter Models: [data and process parameters].

For inference and prediction, one then evaluates the posterior distribution:

Posterior: [process, parameters | data],

which is proportional to the product of the data, process, and parameter distributions given
above. Typically, there are multiple sub-stages for each level, which adds to the model depth
(e.g., see Cressie and Wikle 2011). The key to the Berliner (1996) hierarchical modeling
paradigm (which, unfortunately, is often ignored) is that one avoids modeling second-order
structure as much as possible. That is, one puts the modeling effort into the conditional
mean to build dependence (complexity) through marginalization (as with the basis function
illustration discussed above). So, these are linked conditional models and the structure is
verymuch top down in the sense that inputs are usually closer to the top (data) level, although
they can enter at any level in principle. The next section illustrates the general deepH-DSTM
model for complex spatio-temporal modeling.

3.1. MULTI-LEVEL (DEEP) HIERARCHICAL DYNAMICAL SPATIO-TEMPORAL

MODES (H-DSTMS)

Here, we outline a prototypical H-DSTM. For simplicity, and to compare to the deepML
models in Sect. 4, this model is presented in the context of discrete time and space, although
time and/or space can be considered continuous more generally. For t = 1, . . . , T ,

Data Model: zt |Yt , θh ∼ D(HtYt ; θh), (11)

Conditional Mean: f (Yt ) = μt + �αt + νt , (12)

Process Mean: μt = Wtθμ + γ t , (13)

Dynamic Process: αt = g(αt−τ , xt−τ ; θα; ηt ), (14)

“Residual′′Process: [νt |θν],
Regularization Priors: [θα|ζ ],

Parameters: [θh, θν, θμ, ζ ]. (15)

The data model (11) specifies the distribution for zt , which is a spatially referenced data
vector at time t . Specifically, D(·) is some generic distribution (e.g., exponential family;
this is problem specific), Ht is a mapping matrix that maps the latent process locations to
the data locations, Yt is the spatially referenced latent process vector at time t , and θh are
data model parameters. This model can include bias terms as well (see Cressie and Wikle
2011), but in this example the bias term is included in the conditional mean stage. The
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important assumptions in this data model are that the observation vectors are considered
to be independent conditioned on the latent process, and the observation error structure is
relatively simple (i.e., independent) since most of the dependence is attributed to the latent
process. Note also that multiple data (input) sources can easily be accommodated as in the
general Berliner (1996) framework.

The conditional mean (12) specifies a transformation (link function) f (·), where μt is a
time-varying spatial “trend” (note, this can depend on inputs, xt ), � is a matrix of spatial
basis functions (providing dimension reduction), αt is a latent dynamical random process
(nα � ny), and νt is a non-dynamic spatio-temporal random process (described below).
The most important assumption of this portion of the model is that the latent dynamical
process {αt } is low dimensional.

The process mean is given in (13), whereWt contains covariate inputs to accommodate
trends, biases, seasonality, etc., θμ are the associated parameters, and γ t is an error process
(typically, Gaussian). Note that more flexible functions of the covariates can be considered
here (i.e., as in generalized additive models) if necessary, but most of the complex structure
in the data is due to the αt term described below. Note also that γ t is assumed to have mean
zero and is typically assumed to be independent in time and space.

The dynamic portion of the model is given by (14), where g(·) is the evolution operator
(potentially nonlinear in αt−τ and inputs xt−τ ), θα are parameters, and ηt is a noise process
(typically assumed to be Gaussian and mean zero, with dependence structure that depends
on the specific problem). This model is arguably the most important part of the H-DSTM. It
is typically highly parameterized and can, if information is available, be formulated in terms
of a mechanistic model, or at least is motivated by such models. Regardless, it is crucial
that this dynamical model allows for interactions in the elements of αt through time (see the
discussion Wikle et al. 2019, in Chapter 5). As an example, consider the general quadratic
nonlinear model of Wikle and Hooten (2010):

αt (i) =
p∑

j=1

θ L
i, j αt−τ ( j)

+
p∑

k=1

k∑

	=1

θ
Q
i,k	 αt−τ (k)g(αt−τ (	), xt ; θ g) + ηt (i), (16)

where the evolution of an individual αt component is controlled by linear interactions (the
first term on the right-hand side (RHS) with parameters θ L ) and quadratic interactions (the
second term on the RHS with parameters θQ), plus a noise term. The function g(·; ·) is a
transformation function that is used to limit the explosive growth induced by the nonlinear
interactions. This model is motivated by a wide variety of processes in the physical and bio-
logical sciences (seeWikle and Hooten 2010) and can be quite flexible. However, this model
is severely over-parameterized with O(n3α) parameters, and it requires either science-based
hard thresholding or regularization/sparsity on the parameters for practical implementation.

The residual spatio-temporal process is given in (15), where the distribution is determined
by the specific problem. For example, a useful parameterization is to assume another basis
expansion such as νt = �ωt+ξ t ,where� is a spatial basis functionmatrix,ωt are expansion
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coefficients, and ξ t is a simple error process (e.g., Wikle et al. 2001). The assumption here
is that the complex spatio-temporal dynamics are being captured by αt , so ωt would have
a simple distribution (e.g., Gaussian with perhaps simple time dependence but independent
in “ω space”), and ξ t would be independent in time and space.

As discussed above, the dynamic model for αt is likely over-parameterized and often
requires regularization. Any of the common approaches for regularization in the context of
Bayesian models could be used here (e.g., stochastic search variable selection, spike-and-
slab, horseshoe priors, etc. (e.g., see Fan and Lv 2010)). Lastly, we require distributions or
fixed values for the remaining parameters. Importantly, in the deep H-DSTM, these param-
eters may themselves be “processes” (spatial or temporal) and can include dependence on
various exogenous input variables. Implementation of such a complex multi-level Bayesian
model is typically through problem-specific MCMC algorithms, although there have been
recent attempts to consider fairly complex DSTMs in a variational Bayesian context (e.g.,
Quiroz et al. 2018). In general, MCMC implementations can be time-consuming and require
significant amounts of data, prior information, and computing resources to be successful.

3.2. H-DTSM EXAMPLE: OCEAN COLOR

Leeds et al. (2014) used an H-DSTM model to perform spatio-temporal prediction to
fill gaps in SeaWiFS ocean color observations similar to the issue shown in Fig. 1. They
considered a multivariate model that, in addition to the SeaWiFS observations, included sea
surface height and sea surface temperature output from the Regional Ocean Model System
(ROMS) that was coupled with a biogeochemical model for the lower trophic ecosystem.
They implemented a reduced-dimension general quadratic nonlinear process model similar
to (16) as an emulator of the ROMS model (e.g., the ROMS model output was used to
train prior distributions for the nonlinear model—analogous to ML pre-training described
below). Details can be found in Leeds et al. (2014). As shown in Fig. 2, the model was
able to predict an eddy in the phytoplankton field despite the fact that the cloud cover in
the coastal Gulf of Alaska region left persistent gaps in the SeaWiFS data. Importantly, the
probabilistic nature of themodel produces uncertaintymeasures that suggest that the biggest
uncertainty is not that there was an eddy in this area, but rather its precise location.

4. DEEP NEURAL MODELS

The development and application of deep neural models has advanced rapidly over the
last decade. Broad overviews can be found in textbooks such as Goodfellow et al. (2016) and
Aggarwal (2018). The purpose of this section is not to give such a comprehensive treatment,
but rather a brief overview to facilitate the connection to DSTMs. We describe simple
feedforward neural networks, deep feedforward neural networks (DNNs), convolutional
neural networks (CNNs), and recurrent neural networks (RNNs). This then provides the
background to discuss deep MLmodels for spatio-temporal data, which we call deep neural
DSTMs (DN-DSTMs).
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Figure 2. Plots of log-transformed SeaWiFS ocean color observations (top row),H-DSTMposteriormean (second
row), and H-DSTM posterior standard deviation (third row), for three eight-day time periods: June 2, 2002 to June
9, 2002 (left column), June 10, 2002 to June 17, 2002 (center column), and June 18, 2002 to June 25, 2002 (right
column).

4.1. NEURAL NETWORKS

We start with a very simple neural network called a single hidden layer feedforward
network or single layer perceptron. Assume we have a p-dimensional input vector x, and
response (output) vector z, which is m-dimensional (but note, m = 1 in most nonlinear
regression and binary classification problems). We now seek a nonlinear model for the
responses given a transformation of the inputs through a “hidden layer” given by

y j = g

( p∑

i=0

w j i xi

)

, j = 1, . . . , J, (17)

where y j is the hidden variable, {w j i } are the weights (parameters) in which w j0 are the
bias or offset (intercept) parameters (note, x0 ≡ 1), and g(·) is an activation function (e.g.,
a hyperbolic tangent, radial basis function, rectified linear unit, softmax, etc.). The “output
layer” is then given by:

zk = go

⎛

⎝
J∑

j=0

vk j y j

⎞

⎠ , k = 1, . . . ,m,

where go(·) is an activation function (which may be the identity function), y0 ≡ 1, and {vk j }
are output weights, including an offset. One can think of the hidden layer transformation as
a basis expansion of the inputs, in which case we can simply write the model as:
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zk(x;W,V) = go

⎛

⎝
J∑

j=0

vk j g(
p∑

i=0

w j i xi )

⎞

⎠ ,

where W = {w j i }, and V = {vk j } and we note that there is no explicit error term in this
model.

As with traditional nonlinear regression, to estimate the parameters in such a model
(i.e., “train the network”) we select an objective function in terms of {W,V} (e.g., squared
error, cross-entropy) and then typically use a gradient-based approach to obtain parameter
estimates of theW and V parameters. Traditionally, the neural computing community uses
backpropagation to do this. Backpropagation is based on applying the chain rule to calculat-
ing the gradient, which is straightforward and useful due to the hierarchical/compositional
nature of the model. This is implemented in a two-pass algorithm that has the important
feature of locality, in that each hidden unit passes and receives information only to and
from units that share a connection. This facilitates computation in a parallel computing
environment, which is important for large datasets.

Because the objective function consists of a sum over the training data, which can be quite
large, computation of the gradient can be expensive. In addition, there may be redundant
data in the training sample. One way to mitigate these issues is to consider minimizing the
expected loss, which can easily be estimated by averages of small random samples (i.e.,
minibatches) of the training sample. This is the essence of stochastic gradient descent,
which is the dominant paradigm in modern neural computing (e.g., see Goodfellow et al.
2016; Aggarwal 2018). Not only does it help with the big data, but stochastic gradient
descent also helps keep the optimization from getting trapped in local minima. Even these
simple one-layer networks tend to overfit, and it is important that they include some form
of regularization. For example, L2 (ridge) penalties on the weights can be added to the
objective function (known as “weight decay”) or L1 (lasso) penalties can be added, which
is called “weight elimination.”

4.2. DEEP FEEDFORWARD NETWORKS (DNNS)

Many problems that have big data, such as acoustic processing, image processing, and
natural language processing, have very complex structure and have provided the motivation
for the development of a new generation of deep learning algorithms. These are typically
neural networks withmany hidden layers, with outputs from one layer becoming the input to
the next. We consider the number of units in each layer as thewidth and the number of layers
the depth of the network. Having both width and depth provides a very flexible learning
environment, but brings with it many challenges. DNNs utilize many of the technological
innovations that underly many of the current applications of deep learning in large datasets
(e.g., Hinton et al. 2012). Comprehensive overviews can be found in Goodfellow et al.
(2016) and Aggarwal (2018).

A basic DNN can be represented as:

z(x) = go,VL (gWL (· · · gW1(x))),
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where go,VL (·) is an output function with weights VL , and gW	
(·) is a nonlinear activation

function depending on parameters W	 as in (17). The hierarchical nature of a DNN is
apparent in a simple example with two hidden layers and one output layer (with an identity
output function):

z = Vy2,

y2 = g(W2y1 + w0,2),

y1 = g(W1x + w0,1),

where the dimension of the hidden vectors y1 and y2 may be different. (Note, the offset
vectors are written explicitly here to illustrate that the arguments to the g(·) functions
are affine transformations.) Training follows with backpropagation in an analogous way
to the one hidden layer model. A significant challenge arises because there is typically
a huge number of parameters in this model as the depth increases, which makes DNNs
difficult to train. In particular, in traditional applications with relatively small numbers of
labeled responses there are several issues: e.g., (1) sensitivity to the number of hidden layers
and number of hidden units; (2) sensitivity to other tuning parameters (one can use cross-
validation if feasible); (3) extreme sensitivity to the initial values of the weights; (4) slow
optimization on standard computation platforms; and (5) fittedmodels that have a propensity
to overfit.

Modifications to the basic gradient-based optimization have allowed these models to
be fit to large datasets. One of the first “breakthroughs” was generative pre-training. In
essence, this is an attempt to get the parameters “in the ball park” before performing the
backpropagation optimization. The key idea behind generative pre-training is that one learns
one layer at a time with the hidden units predicted at one level then serving as the input
for training the next level. This is generative in the sense that it starts at the bottom and
builds one layer at a time—ultimately generating a response. The important thing here is
that the associated estimates of the weights (which are approximations) just serve as starting
values for the backpropagation algorithm. The backpropagation algorithm then uses all of
the information and fine tunes the estimates. It is important to note that the generative pre-
training does not use labeled responses, so it is unsupervised. This gives the parameters
more freedom and prevents overfitting, but the backpropagation algorithm uses the labeled
responses to get the final estimates. The primary generative models are restricted Boltzmann
machines (RBMs) and autoencoders (e.g., Goodfellow et al. 2016). Both of these approaches
have the advantage that they have undirected connections (which guide the weights toward
minima that improve generalization, e.g., see Erhan et al. 2010), are easily stacked (so that
the output of one can form the input for another), and are unsupervised.

In addition to the generative pre-training, other factors have proven important for the
implementation of feedforward DNNs such as: (1) use of unlabeled data to train the model
(this allows more flexibility); (2) use of node dropout for regularization (shrinkage), which
helps dramatically with overfitting (essentially, each node has a probability of being in
the model when being trained); (3) efficient computation (i.e., these models require a lot
of computational power to fit— distributed and parallel computing is essential, which has
been made possible by graphical processing unit (GPU)-based parallel computing in recent
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Figure 3. a Black and white image of the author; b convolution of image in (a) with a 3× 3 Sobel edge detection
(x-direction) filter; c 5 × 5 max pooling of the convolved image in b; d convolution of image in (a) with a 3 × 3
random (uni f (−0.1, 0.1)) filter; e 10 × 10 median pooling of the convolved image in d.

years); and (4) rectified linear unit (ReLU) activation functions, ReLU (x) = max(0, x),
which can lead to simpler optimization algorithms and faster training. These models have
perhaps shown the greatest success when they can also exploit the inherent multiscale nature
of time and space, as with CNNs and RNNs.

4.3. CONVOLUTIONAL NEURAL NETWORKS (CNNS)

One of the biggest success stories in deep learning has been CNNs, especially in the con-
text of image processing. Recall the definition of a discrete convolution in two dimensions:

k[x, y] ∗ z[x, y] =
∞∑

i=−∞

∞∑

j=−∞
k[i, j]z[x + i, y + j],

where in practice, because there are a finite number of pixels in an image, the sums are
finite. We can think of k[ ] as a kernel weight function (typically known as a filter in the
neural computing literature) that is applied to elements of the spatial image z[ ]. Depending
on the filter weights, one can get different properties associated with the image after doing
the convolution (see Fig. 3). Note, in practice, color images have pixels represented by a
combination of red, green, and blue (RGB) pixels, so images are best thought of as tensors.
(Note, tensors are simply multidimensional arrays, which is how one might represent a
multivariate value for a given pixel; that is, [i, j, k] is an element of a tensor that represents
the [i, j]th pixel, for which k = 1, 2, 3 corresponds to the value for red, green, and blue.)
One can easily modify the convolution function to operate on tensor-valued pixels, at the
expense of notational complexity.
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The CNN considers a convolution of the image with unknown weights that are learned;
this is done multiple times for each level to get different “feature maps.” That is, rather than
specify filter functions, CNNs learn them in a way that there is one set of filter weights
for each convolution, so the weights are shared across the image (this leads to a significant
dimension reduction in the number of parameters that must be learned). This convolution
step is then followed by a pooling layer (or, subsampling or down sampling). The pooling
layer considers a small rectangular block from the convolutional step and subsamples or
aggregates it in some way to produce a single output. Perhaps the most common pooling
simply takes the block maximum (known as “max pooling”). Pooling is beneficial because
it helps make the CNN less sensitive to spatial shifts (translations) of the input features.
Importantly, it also reduces the size of the next-level image. The right panels in Fig. 3
illustrate pooling.

The general structure of a CNN has alternating convolution layers followed by pooling
layers, with the last layer being fully connected (as in the DNN). Typically, there are (1)
multiple featuremaps at the convolution stage created via multiple filter weight matrices; (2)
the convolved images go into a nonlinear activation function—usually, a ReLU function; and
(3) pooling occurs separately for each featuremap. The critical stage of theCNN that requires
estimation is the convolution step. Let y	−1

i, j correspond to the input to a convolutional step.
The next-level feature map (assuming one feature map at the previous level and a univariate
pixel value for simplicity) is then given by:

y	
i, j = gp

(

g

(
∑

a

∑

b

k(	)
a,b y

	−1
i+a, j+b

))

,

where gp(·) is the pooling function, g(·) is a nonlinear activation (e.g., ReLU), and kab are the
filterweights thatmust be learned (estimated). Note, the pooling layers are simple and are not
learned. AswithDNNs, training the other components of themodel is accomplished through
a gradient descent back propagation algorithm, with the same enhancements described in
Sect. 4.2.

4.4. RECURRENT NEURAL NETWORKS (RNNS)

Recurrent Neural Networks (RNNs) were originally developed in the 1980s to process
sequence data. In recent years, they have been enhanced to be one of the most used and
successful deep learning methods, particularly for language processing applications (e.g.,
speech recognition, text generation, machine translation, etc.). These models are analo-
gous to multivariate state-space models for dynamical systems, as one might see in time
series, econometrics, or spatio-temporal statistics. Consider a classical dynamical system:
yt = M(yt−1; θ), where yt represents the state of the system at time t . This is considered
“recurrent” because the state at time t refers back to the state at time t − 1, etc. We can
rewrite this in a so-called unfolded form, yt = M(M(M(yt−3; θ); θ); θ · · · ). Note, the
parameters θ are shared across all states. The hidden states are then related to an output zt
in an observation equation. As with state-space models, the states in the RNN depend on
external inputs, xt .
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Thus, the most basic (“vanilla”) RNN is given by

zt = go(Vyt )

yt = g(Wyt−1 + Uxt ),

where go(·) is an output function, g(·) is an activation function, and U, V, and W are
weight matrices (which typically contain bias/offset terms as well). As with other neural
networks, to estimate the parameters, one defines a loss function and would like to optimize
by backpropagation with gradient descent. However, there is a complication in the case
of RNNs because the parameters are common across time, and so one must implement
a backpropagation through time algorithm (e.g., see the overview in Aggarwal 2018). A
serious challenge to implementing this type of optimization for a vanilla RNN is the so-
called vanishing gradient/exploding gradient problem. That is, the gradient can become
increasingly smaller (typically) or larger as one moves through each time step (there are
typically many time steps in an RNN implementation).

There are a number of modifications to RNNs that have been specified to mitigate the
vanishing/exploding gradient problem. Perhaps the most common approach includes gates
that break up the temporal structure, allowing some hidden states in the past to be considered
at certain time steps and others to be forgotten. For example, the long short-term memory
(LSTM) RNN uses gates to create time paths that have gradients that do not vanish or
explode (Hochreiter and Schmidhuber 1997). The basic LSTM structure is given as (note,
◦ is the Hadamard (element-wise) product):

Output: zt = go(Vyt )

Hidden State: yt = tanh(ct ) ◦ o

Internal Memory: ct = ct−1 ◦ f + g ◦ i

Candidate Hidden State: g = tanh(Ugxt + Wgyt−1)

Output Gate: o = σ(Uoxt + Woyt−1)

Forget Gate: f = σ(U f xt + W f yt−1)

Input Gate: i = σ(Uixt + Wiyt−1),

where typically σ(·) is a sigmoid function. The input gate selects hidden units that get input
to time t , the forget gate selects the hidden states at the previous time to reset to 0 at time t , and
the output gate selects the states that will be related to the response. The memory units are
crucial as they indicate when to remember or forget previous hidden states—this memory
feature is not only helpful in mitigating the vanishing/exploding gradient problem, but
realistic for many processes in which events in the (distant) past can influence the presence
irrespective of the intervening states. A slightly simpler gated RNN that has gained recent
popularity is the gated recurrent unit (GRU) RNN (Cho et al. 2014).

In general practice, gated RNNs can be computationally intensive and often require
parallelized implementations, and like the standard DNN and CNN, require large amounts
of training data. In the literature, the gated algorithms are considered more as “black boxes”



Comparison of Deep Neural Networks

given their complexity, which has the benefit of making them modular and connectable (see
Sect. 4.5).

4.4.1. Echo State Networks (ESNs)

An alternative RNN that is easy to estimate and typically requires less computational
resources and training data is the echo state network (ESN) (Lukoševičius and Jaeger 2009):

zt = go(Vyt )

yt = g(W∗yt−1 + Uxt ).

This looks like the basic RNN given above, but remarkably, the weight matrices W and U
are sparse and chosen randomly in the ESN, so only the output matrix V is learned (with
regularization). This use of random parameters in the nonlinear transformation is referred to
generally as “reservoir computing.” One complication is that this approach requires a modi-
fication of theweightsW (given here byW∗—see below) to ensure the “echo state property,”
which essentially requires that the effects of the initial conditions diminish asymptotically
with time. Overall, the ESN provides an enormous reduction in parameters to be estimated
and greatly simplifies the model so that yt is simply a series of stochastic transformations
of the inputs xt based on random weights, and theV parameters in the output function go(·)
can be trained as in basic statistical models (e.g., regression, logistic, softmax). The ESN
usually requires more hidden units than a traditional RNN (i.e., is wider) to compensate
for not learning the weights, and so one has to apply regularization when estimating V. We
discuss ESN models in greater detail in the context of DSTMs in Sect. 5.

4.5. DEEP NEURAL DSTMS (DN-DSTMS)

Although DNNs can be used effectively with spatio-temporal data (Polson and Sokolov
2017b), they are not always appropriate because they do not naturally accommodate depen-
dence structures that occur in time and space. However, given the modularity of CNNs and
RNNs (i.e., they are easily “stacked” to make deeper models) it is no surprise that they can
easily be combined in different ways to produce deep hybrid models for spatio-temporal
data, such as video image processing and image captioning (e.g., Keren and Schuller 2016;
Tong and Tanaka 2018). For example, images in a video can be reduced by a CNN to find
spatial features and the time evolution of these features can then be modeled with an RNN
(usually an LSTM). In some cases, this framework can also be used to relate images to cap-
tions or descriptions (Donahue et al. 2015). That is, the CNN is used to encode the image
and the RNN is used to decode relative to a sequence of words that describes the image.
The first case is clearly a spatio-temporal problem, and the last is “temporal” in the context
that the output (a sequence of words) has a sequential structure. In general, the ability of
software packages to modularize the various machine learning components (such as CNNs
and RNNs) allows developers to combine these layers in different ways. Here, our interest
is with spatial processes evolving through time (i.e., analogous to the first scenario). Such
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Figure 4. Schematic representation of a general DN-DSTM showing alternating hidden layers and reduction
layers.

approaches have been used in environmental science to produce nowcasts of precipitation
(Xingjian et al. 2015).

Ageneral approach to the hybridDN-DSTMconsiders a stackedRNNbutwith intermedi-
ate layers that reduce dimension. This is analogous to the CNN and, as shown schematically
in Fig. 4, can be written generally as:

Output State: zt = go
(
yt,1, ỹt,2, . . . , ỹt,L ; θ z

)
,

Hidden Stage 1: yt,1 = g
(
yt−1,1, ỹt,2; θh1

)
,

Reduction Stage 1: ỹt,2 ≡ Q(yt,2; θr1),

Hidden Stage 2: yt,2 = g
(
yt−1,2, ỹt,3; θh2

)
,

Reduction Stage 2: ỹt,3 ≡ Q(yt,3; θr2),

...
...

Hidden Stage L: yt,L = g
(
yt−1,L , x̃t ; θhL

)
,

Input Stage: x̃t = gI
(
xt ; θ I

)
, (18)

where go(·) is an output function (e.g., identity for regression, softmax for classification,
etc.), gI (·) is an input function that potentially augments and/or transforms the input vector
xt , g(·) is some type of RNN structure (e.g., LSTM, GRU, ESN), and Q(·) is a dimen-
sion reduction function such as a CNN or something simpler such as a principal compo-
nent decomposition or some other stochastic dimension reduction approach (e.g., random
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projection, Bingham and Mannila (2001)). The parameters (weights) in each function are
given by the θs. In this framework, the components at each reduction stage, ỹt,	, can influence
the output, in addition to the non-reduced hidden units from Stage 1. One could also have
the non-reduced hidden units from the deeper hidden stages influence the output directly as
well, but this increases the number of parameters that must be learned and is typically not
necessary. Finally, note that this model might be written more concisely as a telescoping
functional transformation of the input:

zt = go(g(Q(g(· · ·Q(g(gI (xt ))))));�), (19)

where � represents all of the various parameters (weights) in the functions.
The advantage of this approach is that it naturally accommodates multiple spatial and

temporal scales of variability. Note, gI (·) acts as an encoder that transforms the inputs. For
example, gI (·)might be a CNNor it might be some other type of dimension reduction proce-
dure (e.g., autoencoders, principal components, Laplacian eigenmaps, kernel convolutions,
etc.). Then, the Q functions extract important dependent features in the hidden units (that
may be spatially referenced depending on the choices of gI (·), g(·) and Q). The various
RNN levels then act to find temporal dependencies, typically at different scales in time (e.g.,
Graves et al. 2013; Hermans and Schrauwen 2013). Note that one can leave out various lev-
els; e.g., we might leave out a Q stage and form a stacked RNN without the intervening
reduction stage (and, vice versa). Typically, such a model would be implemented via back
propagation and gradient descent, depending on the choices onemakes for the variousmodel
stages.

4.6. CONNECTIONS BETWEEN H-DSTMS AND DN-DSTMS

The natural question is how do the H-DSTMs presented in Sect. 3.1 compare to the DN-
DSTMs presented in Sect. 4.5? The two paradigms do havemuch in common in that they are
both trying to do the same thing in the context of modeling complex spatio-temporal depen-
dence. That is, both are dealing with the fact that there are multiple scales of spatio-temporal
variability that interact to describe process evolution and are building that complex depen-
dence in some sense by “marginalizing” common components. Specifically, both model
frameworks: (a) consist of multiple connected telescoping levels; (b) include dimension
reduction stages; (c) typically do not model second-order dependence (note, GP networks
and restrictedBoltzmannmachines are an exception); (d) can handlemultiple inputs (predic-
tors) and different output types; (e) have a very large number of parameters to estimate; (f)
require a lot of training data; (g) require prior information (or, pre-training, heuristics, etc.);
(h) require regularization; (i) are expensive to compute and require efficient algorithmic
implementations.

The aforementioned points suggest that one of the main challenges for both the H-
DSTM and DN-DSTM frameworks is related to implementation and computation. That
is, in the H-DSTM framework, one must make many decisions concerning the types of
dependence structure, whether to put structure in the covariance or the mean, the amount
of mechanistic information to include, and the prior distributions, just to name a few. In
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addition, in these complex modeling situations, one typically must program the H-DSTM
from scratch in some relatively efficient language as the automated packages that perform
Bayesian computation are often not flexible enough to accommodate H-DSTMs, or are too
inefficient (i.e., their strength in providing general solutions can be a limitation for certain
specific dependence structures). Similarly, the DN-DSTM models can also have a very
large number of tuning parameters and model choices (e.g., choice of g(·), Q, the number
of layers, the number of hidden units per layer, the type of regularization, pre-training,
etc.). Although the aforementioned references contain suggestions for some cases, there is
no universal advice for these decisions—it is very much an experience and trial-and-error
endeavor. However, unlike with H-DSTMs, there are standard software environments such
as Tensor Flow, Theano, Caffe, pyTorch (and many more!) that are quite flexible and, in
some sense, modular, which has increased their utility in production environments.

There are a number of other structural differences between themodeling paradigms. First,
theH-DSTM framework is based on stochasticmodels that include distributional error terms
within a valid probability construct (i.e., the joint distribution of all random components
can be written as a series of conditional models). In contrast, the DN-DSTM framework is
deterministic with no error terms (note the caveat that when one uses reservoir methods (e.g.,
ESNs for g(·)), then (19) is a stochastic transformation but not a formal stochastic model).
One consequence to the lack of a probabilistic structure for the DN-DSTM is that there is
no clear mechanism to produce model-based estimates of uncertainty in the prediction or
classification that results from the DN-DSTM. Second, one is not able to perform inference
on the parameters in a DN-DSTM, although it should be noted that this would seldom
be of interest in this type of model as the parameters are typically not identifiable, highly
dependent, and non-interpretable.

In addition, it is still an open problem on how to generally include known relationships
(e.g., such as suggested by a mechanistic model) in the deep NN framework (although, see
Karpatne et al. 2017; Reichstein et al. 2019, for recent work in this area). That said, the
DN-DSTM framework does have some important advantages in that it is easy to manipulate
and implement different model structures (e.g., stacking different model components) in the
backpropagation estimation paradigm implemented in many of the existing software pack-
ages. Finally, in the context of spatio-temporal dynamics, it should be noted that the RNN
structure can naturally accommodate non-Markovian dynamics (e.g., memory of distant
past events). This last point is potentially important to environmental, ecological, and agri-
cultural applications and has not been a concentrated focus in statistical implementations of
spatio-temporal models.

5. COMBINING THE H-DSTM AND DN-DSTM FRAMEWORKS

A natural approach to combine the H-DSTM and DN-DSTM frameworks would be to
allow the parameters in the DN-DSTM to be random, perhaps add some error terms, and
then implement via aBayesian paradigm.AlthoughBayesian implementations of neural nets
have been considered at least since the 1990s (MacKay 1992; Neal 1996), it is exceedingly
challenging to implement deep neural models from a fully Bayesian perspective due to the
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extremely large number of dependent and non-identifiable parameters (see the overview
in Polson and Sokolov 2017a). Such models can be implemented in some contexts (e.g.
Chatzis 2015; Chien and Ku 2016; Gan et al. 2016; McDermott and Wikle 2017a) but are
quite sensitive to particular datasets and are typically computationally prohibitive. More
recently, approximate Bayesian methods such as variational Bayes (Tran et al. 2018), and
scalable Bayesian methods (Snoek et al. 2015) have been used successfully in deep models.
In the context of DN-DSTMs this is still an active area of research.

Alternatively, two relatively simple approaches have recently been used to blend the DN-
DSTM and H-DSTM paradigms. These do so in a way that also mitigates the challenges
associated with implementing H-DSTMs. That is, H-DSTMs typically suffer from a curse of
dimensionality in parameter space and require a large amount of data and fairly specialized
computational algorithms and, thus, are fairly inefficient to develop and implement. The
hybrid approaches mitigate these issues but still provide a flexible and effective approach
to model complex spatio-temporal processes in a manner that accounts for uncertainty
quantification.

5.1. AN ENSEMBLE APPROACH

McDermott andWikle (2017b) made several modifications to the standard ESNmodel to
account for a simple approach to uncertainty quantification in a spatio-temporal nonlinear
forecasting setting. They considered a quadratic ESN model. That is, for t = 1, . . . , T , let:

Response: zt = V1yt + V2y2t + εt , for εt ∼ Gau(0, σ 2
ε I); (20)

Hidden State: yt = g

(
ν

|λw|Wyt−1 + Ux̃t

)

; (21)

Parameters: W = [wi,	]i,	 : wi,	 = γ w
i,	 Uni f (−aw, aw) + (1 − γ w

i,	) δ0, (22)

U = [ui, j ]i, j : ui, j = γ u
i, j Uni f (−au, au) + (1 − γ u

i, j ) δ0, (23)

γ w
i,	 ∼ Bern(πw), (24)

γ u
i, j ∼ Bern(πu), (25)

where g(·) is an activation function (usually a hyperbolic tangent function), λw is the “spec-
tral radius” (the largest eigenvalue ofW), and ν is a scaling parameter taking values between
[0, 1] that helps control the amount of memory in the system,W, U, V1, and V2 are weight
matrices, δo is a Dirac function, γ w

i,	, γ
u
i,	 denote indicator variables, and πw, πu represent

the probability of a parameter in the weight matrices being 0. Note, dividing by the spec-
tral radius in (21) ensures the echo state property mentioned previously, and ν controls the
memory. The only parameters that are estimated in this model are those in V1 and V2, and
σ 2

ε from Equation (20), for which we use a ridge penalty hyperparameter, rv . Again, it is
important to note that W and U are not estimated, but simply drawn from (22) and (23),
respectively. The hyperparametersπw,πu , aw, au , ν, and rv are specified as discussed below.
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The modifications of the ESN that make it useful as a DSTM are the inclusion of the
explicit error term, εt , the quadratic term V2y2t and, most importantly, vector embeddings
of the inputs:

x̃t = [x′
t , x

′
t−τ , x

′
t−2τ , . . . , x

′
t−mτ ]′.

An embedding includes lagged values of the input predictor and is important due to Takens’
theory (Takens 1981) in dynamical systems that suggests that one can represent a state space
of high dimension by a sufficiently large number of lagged values of a portion of the state
space. Note that the results are not very sensitive to {πw, πu, aw, au} and they are usually
fixed at small values, but the results can be sensitive to {nh, ν, rv}, so they are chosen by
cross-validation.

McDermott andWikle (2017b) consider a simple ensemble forecast approach (analogous
to a parametric bootstrap; Sheng et al. (2013)), in which multiple samples from the reservoir
matrices W and U are drawn and the model is refit for each parameter set. This gives a
distribution of the output predictions and allows the quantification of uncertainty in the
predictions. They present an example in which this quadratic ensemble ESN (Q-EESN)
model is used to generate long-lead (6 month) forecasts of tropical Pacific sea surface
temperature (SST; i.e., El Niño and La Niña events). The model performed very well. For
example, Fig. 5 shows the prediction and prediction uncertainty for a forecast of SST in
December 2017 given data through June 2017 (which exhibited a La Niña event; negative
anomalies). Note, however, that the dynamical and statistical forecasts presented for this
same period by the US National Oceanic and Atmospheric Agency’s Climate Prediction
Center (CPC) and International Research Institute (IRI) for Climate and Society at Columbia
University1 did not suggest a La Niña would develop (their probability forecast was around
15% for a La Niña for this period). The reasons for the success of the Q-EESN approach
here are likely related to the fact that the ESN is a dynamicmodel that incorporates nonlinear
interactions, but also that it augments the input space to perform a regression (Gallicchio
and Micheli 2011). That is, the dimension of yt is typically larger than x̃t (i.e., a dimension
expansion of the potential predictors). In addition, the small, sparse, random weights in
V1 and V2 limit overfitting and regularize the regression. Finally, the embedded inputs in
the Q-EESN implementation allow for additional nonlinearity, and the ensemble bootstrap
approach with relatively few hidden units provides a “committee of weak learners.” It is
important to note that this approach takes just seconds to implement on a laptop computer
compared to hours for traditional H-DSTM approaches.

5.2. A DEEP BASIS FUNCTION APPROACH

The Q-EESN model has no mechanism to link hidden layers, which are important for
processes that occur onmultiple time scales. There havebeendeepESNmodels implemented
in the ML literature (e.g., Jaeger 2007; Triefenbach et al. 2013; Antonelo et al. 2017; Ma
et al. 2017; Gallicchio et al. 2018), but these approaches generally do not accommodate

1https://iri.columbia.edu/our-expertise/climate/forecasts/enso/2017-July-quick-look/?enso_tab=enso-sst_table.

https://iri.columbia.edu/our-expertise/climate/forecasts/enso/2017-July-quick-look/?enso_tab=enso-sst_table
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Figure 5. Left panels: Long-lead forecast summarymaps for Pacific SST for 6-month forecasts valid in December
2017 given observations through June 2017. The top row shows the observed sea surface temperature (SST)
anomalies (deviations from climatological average); note that negative anomalies suggest a La Niña and positive
anomalies suggest an El Niño. The forecast mean from the Q-EESN model is shown in the second panel, and
the bottom two panels show the lower and upper quantiles for a 95% prediction interval calculated in each grid
cell. The figure on the right shows the Q-EESN predictive distribution for the so-called Nino3.4 index, which is
based on an average in the region denoted by the box in the second panel on the left side. The blue star shows the
Q-EESN forecast mean, and the observed index value is denoted by the filled blue circle. The solid and open red
circles correspond to forecasts based on the same starting and verification period for deterministic and stochastic
models presented by IRI/CPC (see the footnote in the text for the website). Thus, the Q-EESN model was alone in
forecasting a strong La Niña during this period. (Color figure online)

uncertainty quantification and are not designed for spatio-temporal systems. However, one
could extend these deep ESN models to accommodate spatio-temporal processes as in
(18). For example, McDermott and Wikle (2018) did this within an ensemble parametric
bootstrap context to account for multiple time scales and uncertainty in predictions. They
also consider an implementation where (18) is used to generate basis functions that are
a stochastic transformation of the inputs. This is especially useful in a spatio-temporal
regression context, i.e., when one seeks to predict one spatio-temporal process based on
another. Specifically, consider the model:

Data Stage: zt ∼ Gau(�αt ,Cz)

Output Stage: αt =
nres∑

j=1

[
β

( j)
1 y( j)

t,1 +
L∑

	=2

β
( j)
	 ỹ( j)

t,	

] + ηt , ηt ∼ Gau(0, σ 2
η I),

Priors: β
( j)
	,b | γ

β	

	 ∼ γ
β	

	 Gau(0, σ 2
β	,0) + (1 − γ

β	

	 ) Gau(0, σ 2
β	,1),

γ
β	

	 ∼ Bernoulli(πβ	
),

σ 2
η ∼ IG(αη, βη),
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where y( j)
t,1 , ỹ

( j)
t,	 are a function of x̃t−τ as given in (18), andβ

( j)
	 are the associated regression

coefficients for the j th ensemble and 	th level. Importantly, the ys are generated “offline”
from an ensemble deep ESN with principal component reduction stages forQ. In addition,

{πw1, . . . , πwL , πu1 , . . . , πuL , aw1 , . . . , awL , au1 , . . . , auL }

are fixed at small values, and the number of hidden units for all layers except the first are
fixed since all of these layers go through the dimension reduction function Q. Finally,

{ν1, . . . , νL , nh̃,2, . . . , nh̃,L , nh,1, rν,m}

are selected by a genetic algorithm. The parametric bootstrap approach generates j =
1, . . . , nres ensembles of these deep ESNs by sampling different weight matrices as with
the Q-EESN model (23) and (22) above.

As an example, McDermott and Wikle (2018) consider 6-month long-lead forecasts of
soil moisture over the US corn belt given Pacific SST. Figure 6 shows the out-of-sample
forecast for May 2014 given SSTs from November 2017 based on a 3-level deep ensemble
ESN model. They show that this model performed the best compared to a variety of models
in terms of a continuous ranked probability score and second best in terms of mean squared
prediction error (the 2-level version of this model performed slightly better with this metric).

This approach is essentially a high-dimensional regression problem in which one gen-
erates a collection of basis functions by stochastic transformation of the inputs through the
deep ESNmodel. Multiple transformations are considered as potential predictors to give the
approach flexibility and reproducibility. The large number of predictors are controlled by
stochastic search variable selection regularization. Note that the inputs (predictors) in this
model are stochastically and dynamically transformed. Thus, the spatio-temporal regression
model is not itself dynamic but, importantly, the transformations are dynamic through the
ESN structure. These multiple levels of transformation allow for different time and spa-
tial scales in the predictor variables to affect the response. Importantly, by including the
dynamics in the transformation (offline), this framework is very easy to implement through
regularized regression methods and it is relatively efficient (compared to H-DSTMs and
DN-DSTMs) due to the reservoir approach in the ESN and simple regularization. Note,
the data model here can easily accommodate other data types such as with deep Bayesian
implementations of generalized linear mixed models (e.g., Tran et al. 2018).

6. DISCUSSION

One of the fundamental principles of H-DSTMs is that to model complex processes
across multiple time and spatial scales, one benefits from considering a sequence of linked
probability models. In particular, because it is very difficult to specify the dependence struc-
ture for complex (e.g., nonlinear) spatio-temporal processes, one places modeling effort into
the conditional mean and takes advantage of building dependence through marginalization.
Similarly, the deep neural models in ML that have become so popular in the last decade for
image and language processing (e.g., DNNs, CNNs, RNNs) are also based on a sequence of
linked models (typically, not stochastic models), with the outputs from one level becoming
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the inputs for the next. The spatio-temporal version of these models, DN-DSTMs, typically
combine CNNs and RNNs and also seek to build complexity by learning which scales of
spatial and/or temporal variability are important for predicting responses. These modeling
frameworks have many practical issues in common, including the need for large training
datasets, dimension reduction, regularization, and efficient computation. Recent approaches
to mitigate some of these issues, e.g., to apply the models when one does not have a huge
amount of training data, have benefited from considering reservoir computing in the context
of ESNs. In spatio-temporal problems, these models have been placed in a statistical con-
text through the use of parametric bootstrap and basis function transformation approaches.
These can be implemented at a fraction of the computational cost of traditional H-DSTMs
but still retain a probability formulation to allow uncertainty quantification and benefit from
the flexibility of DN-DSTM’s ability to flexibly model multiple time and spatial scales.

We have only scratched the surface in terms of blending the H-DSTMs and DN-DSTMs
for environmental, ecological and environmental statistics. One important challenge is to
be able to include mechanistic information efficiently in this blended framework (Karpatne
et al. 2017; Reichstein et al. 2019). Traditionally, it has been challenging to include such
information inDN-DSTMsdue to the conflict betweenmechanistic formulations andflexible
learning formulations, and because of the challenge in training such models via gradient-
based optimization.

In addition, there are potential advancements that can be obtained by including ideas from
deep reinforcement learning (e.g., see the overview in Aggarwal 2018). Such methods train
models in ways that they are rewarded for good decisions and penalized for poor decisions.
This is the technology that was used for AlphaGo (Silver et al. 2016) and later game-playing
algorithms (Silver et al. 2018). Useful connections to H-DSTMs in environmental statistics
are likely, given the long history of using reinforcement learning in control engineering.
In addition, it is likely that the hybridization of H-DSTMs and DN-DSTMs can benefit
from the recent advances in generative adversarial networks (Goodfellow et al. 2014). This
approach trains models in a way that benefits from two NNs competing against each other.
In particular, one network generates potential solutions and the other network evaluates
or discriminates these solutions. Finally, geometric deep learning offers promise for deep
learning in complex networks and manifolds beyond the Euclidean frameworks that have
traditionally been considered in CNN and RNN applications (Bronstein et al. 2017). Indeed,
the literature in deep neural modeling is advancing very rapidly, and it is exciting to see
which of these methods and approaches can be included in more traditional probabilistic
DSTM frameworks.
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