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ABSTRACT

BACKGROUND: Previously, we identified four depression subtypes defined by distinct functional connectivity
alterations in depression-related brain networks, which in turn predicted clinical symptoms and treatment response.
Optogenetic functional magnetic resonance imaging offers a promising approach for testing how dysfunction in
specific circuits gives rise to subtype-specific, depression-related behaviors. However, this approach assumes
that there are robust, reproducible correlations between functional connectivity and depressive symptoms—an
assumption that was not extensively tested in previous work.

METHODS: First, we comprehensively reevaluated the stability of canonical correlations between functional con-
nectivity and symptoms (N = 220 subjects) using optimized approaches for large-scale statistical hypothesis testing,
and we validated methods for improving estimation of latent variables driving brain-behavior correlations. Having
confirmed this necessary condition, we reviewed recent advances in optogenetic functional magnetic resonance
imaging and illustrated one approach to formulating hypotheses regarding latent subtype-specific circuit
mechanisms and testing them in animal models.

RESULTS: Correlations between connectivity features and clinical symptoms were robustly significant, and canonical
correlation analysis solutions tested repeatedly on held-out data generalized. However, they were sensitive to data
quality, preprocessing, and clinical heterogeneity, which can reduce effect sizes. Generalization could be markedly
improved by adding L2 regularization, which decreased estimator variance, increased canonical correlations in
left-out data, and stabilized feature selection. These improvements were useful for identifying candidate circuits for
optogenetic interrogation in animal models.

CONCLUSIONS: Multiview, latent-variable approaches such as canonical correlation analysis offer a conceptually
useful framework for discovering stable patient subtypes by synthesizing multiple clinical and functional measures.
Optogenetic functional magnetic resonance imaging holds promise for testing hypotheses regarding latent,
subtype-specific mechanisms driving depressive symptoms and behaviors.
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Depression is a heterogeneous neuropsychiatric syndrome
that is thought to be caused by multiple distinct and interacting
neurobiological mechanisms that may play unique roles in
various patient subgroups (1-6). Pioneering work identified
melancholic, atypical, seasonal, and other clinical subtypes of
depression, defined by symptoms or clinical characteristics
that tend to co-occur (7-11), but it has been challenging to
identify neurobiological correlates that could be used as bio-
markers. An alternative strategy for parsing heterogeneity
would involve subgrouping patients based on objective bio-
logical, cognitive, or behavioral substrates and then testing
whether they predict clinical symptoms and outcomes—an
approach with proven utility in psychosis, autism, and other
disorders (12—17) and, more recently, in depression (18-22).

Our prior work identified four neurophysiological subtypes
of depression defined by distinct functional connectivity al-
terations in limbic and frontostriatal brain networks, which, in
turn, predicted distinct clinical symptom profiles (18). We used
canonical correlation analysis (CCA) to identify linear combi-
nations of resting-state functional connectivity (RSFC) features
that predicted linear combinations of clinical symptoms, both
of which could be used for either defining patient subtypes or
rating individual patients along continuous dimensions that
capture unique aspects of brain dysfunction, consistent with
multiple previous studies identifying correlations between
RSFC features, symptoms, and diagnostic status (23-32).
However, subtype-specific connectivity patterns were com-
plex, and as in other studies (18-21), it remains unclear how
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connectivity alterations in specific circuits mediate particular
symptoms and behaviors. Addressing this issue will require
new approaches aimed at “bridging the causality gap” (33) by
experimentally manipulating specific circuits and testing for
effects on behavior.

The primary goal of the present work was to illustrate one
such approach to formulating hypotheses regarding subtype-
specific circuit mechanisms driving depressive behaviors in
patients and then testing homologues in animal models using
optogenetic functional magnetic resonance imaging (ofMRI).
Importantly, this approach assumes that RSFC alterations
capture an important latent component of depression patho-
physiology that reliably predicts symptoms and behavior.
However, a recent preprint study raised questions about this
central assumption by showing that CCA involving high-
dimensional neurocimaging data tends to overfit and suggest-
ing that RSFC-behavior correlations may not be reliable (34).
Thus, a necessary prior goal was to test the assumption
that we can reliably reproduce latent variables underlying
RSFC-behavior correlations.

We begin by comprehensively reevaluating whether RSFC
alterations are stably related to depressive symptoms using
optimized approaches for large-scale statistical testing. We
find that correlations between RSFC features and clinical
symptoms are robustly significant and, further, that latent
variable (CCA) solutions tested repeatedly on held-out data
generalize, but tend to overfit with increasing numbers of
features. To overcome this obstacle, we show that gener-
alization can be markedly improved by adding L2 regulari-
zation. Having confirmed these key assumptions, we review
recent advances in ofMRI and illustrate how it could be used
to causally interrogate latent subtype-specific circuit mech-
anisms driving particular depression-related behaviors,
integrating results from our recent subtyping work with
published ofMRI studies. We also discuss pros and cons of
this method, relative to lesion analyses and noninvasive
brain stimulation methods that can be applied directly in
humans.

METHODS AND MATERIALS

Subjects

The analyses reported in Figures 1-3 were designed to
reevaluate our approach in our previous work (18) using state-
of-the-art statistical methods to test whether depression-
related RSFC alterations are significant and stable predictors
of clinical symptoms. Therefore, these analyses were
conducted in the same subtype-discovery sample used in
Drysdale et al. (18), which comprised 220 subjects meeting
DSM-IV criteria for a diagnosis of (unipolar) major depressive
disorder (MDD) and currently experiencing an active, nonpsy-
chotic major depressive episode at the time of the fMRI scan
(see Table 1 for details). In addition, to better understand
whether differences between this sample (summarized in
Supplemental Table S1) and the sample used in Dinga et al.
(34) may have influenced their power to detect statistically
significant RSFC—clinical symptom correlations, we conducted
supplementary analyses in a separate sample of 184 subjects
(acquired during ongoing studies at Weill Cornell Medicine and
Toronto Western Hospital) that more closely resembles their

dataset. See Supplemental Methods for further details on
subjects and MRI data acquisition.

fMRI Data Preprocessing and RSFC Quantification

Preprocessing was identical to the procedure defined in our
previous report (18) and is described in Supplemental
Methods.

Data Analysis

The stability and significance of correlations between RSFC
features and Hamilton Rating Scale for Depression (HAMD)
clinical symptoms was assessed by calculating the 33,123
Pearson correlation coefficients (PCCs) between each RSFC
feature and each of 16 of the HAMD item-level measures on
1000 bootstrap replicates to estimate the variance of these
correlations (item 17 was excluded, having zero variance in
many replicates). We then followed the procedure of Efron (35),
using correlation-corrected z values and bootstrapping to
calculate the percentage of correlations that exceeded chance
level. See Supplemental Methods for further details.

CCA (36,37) was performed between clinical measures and
a selected subset of screened RSFC features (those with
highest Spearman correlation) as previously described (18).
Owing to this feature screening step, we used validation on
held-out data in subsequent analyses to avoid overly opti-
mistic correlation estimates due to training-set overfitting. To
better stabilize CCA coefficients, L2-regularized CCA (38) was
also applied. This approach uses two regularization parame-
ters, iy and Ay, to regularize the estimated covariance matrices
for the RSFC and clinical features, respectively. To find the
best combination of these two variables, a grid search over
possible values of the parameters and number of features was
conducted, with 1000 regularized CCA (RCCA) fits found for
each parameter combination. For each set of parameters,
model fitting was done on training data and then assessed via
the magnitude of the first canonical correlation coefficient on
held-out validation test data, using the same procedure as
above for standard CCA. See Supplement for further details.

RESULTS

Testing for Robust Correlations Between RSFC
Features and Clinical Symptoms

We began with a modern approach to a classical problem:
establishing the existence and strength of correlations be-
tween brain and behavior using mass univariate statistics.
Examining number, strength, and effect size of these correla-
tions gives us a strong basis from which to begin more
complicated multivariate analyses (such as CCA) and con-
vinces us of the utility of doing so. Furthermore, understanding
the structure of univariate correlations between RSFC and
clinical symptoms gives us insight into what kind of challenges
might present themselves in the multivariate setting. First, we
correlated each RSFC feature with each HAMD clinical
symptom and estimated the number of z values for the
resulting RSFC-symptom PCCs that exceeded the threshold of
significance expected by chance (Figure 1), after correcting for
correlations between RSFC features across subjects and for
large-scale correlations and multiple comparisons (see
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Figure 1. Robust correlations exist between resting-state functional connectivity (RSFC) features and clinical measures (Hamilton Rating Scale for
Depression [HAMD)). (A) Histogram of z values for the 33,123 average Pearson correlation coefficients (PCCs) between RSFC features and HAMD item 1
(depressed mood) scores averaged over 1000 bootstrap replicates and compared with a standard .#*(0, 1) Gaussian distribution (red line) and with a smoothed
kernel density estimate plotted over the histogram (green line) (see Methods and Materials). The black arrow and shaded region show the area of the z values
that exceeds the area expected for a standard normal distribution (outside the two-sided significance criterion of z > +1.96 for p < 0.05) (shown as vertical
dotted black lines). Note the empirical distribution of z values has sample mean and SD i = 0.497, = 0.971, respectively, with the lower-than-expected
sample variance resulting from correlations among the statistics; we correct for the effects of such interstatistic correlations using the procedure in Efron
(35) (see Methods and Materials). (B) Bar plots of the mean percentage of z values that exceeded that expected by chance [e.g., the percentage above 2.5%,
shown as the shaded black area in panel (A) for HAMD 1] for 1000 bootstrap replicates. Yellow whiskers on the bars denote 95% confidence intervals
[corrected for multiple comparisons and data correlation using Bonferroni-Holm and Efron (35), respectively]. HAMD measures 1, 3, 5, 6, 7, 12, and 13 have
mean significant percentages well in excess of 1% more than expected under the null hypothesis. (C) Histograms of z values similar to histogram shown in
panel (A) for all 16 HAMD clinical measures considered, ordered by effect size (Cohen’s d, given at right of each plot) [magnitudes between 0.2 and 0.5 are
considered small to medium effect sizes, and magnitudes between 0.5 and 0.8 are considered medium to large effect sizes; calculated between the smoothed
z value distributions similar to the green line in panel (A) with the standard normal]. Red dotted lines denote the standard normal distribution. Asterisk marks the
distribution for HAMD 1 shown in panel (A). (D) Bootstrapped PCCs for HAMD measure 1 for the 1000 most positive (left panel) and 1000 most negative (right
panel) RSFC features (shaded regions show 95% percentile bootstrap confidence interval for the mean), ordered by mean correlation (thick blue line). Red
arrow points to top 10 most positive-ranked RSFC features [shown in panel (E)]; note both have confidence intervals excluding zero, indicating that whereas
they cover an appreciable range, they are significantly different than zero across the 1000 bootstrap replicates and thus somewhat stable across bootstrap
replicates. The black arrow and dotted line show the upward shift resulting from the positive shift of the distribution shown by the black arrow in panel (A).
(E) Violin plot (with superimposed boxplots showing first and third quartiles as black bar and the median as white point) of the top 10 positive ranked RSFC
features by average PCC to HAMD measure 1 [corresponding to red arrow in panel (D), with mean 95% confidence intervals + SD of 0.148 + 0.0152, 0.376 +
0.0119]. Note these look very similar, suggesting the rank order could easily change across replicates. Symptom abbreviations: Anergia, also encompasses
somatic symptoms; Anhedonia, also encompasses work activities; Gl, gastrointestinal symptoms; Hypochond., hypochondriasis; Mid., middle insomnia; Phys,
physiological anxiety symptoms; PMA, psychomotor agitation; PMR, psychomotor retardation; Psych, psychological anxiety symptoms; Weight, weight loss
or weight gain.

Supplemental Methods). We were also interested in estab-
lishing the variance of the number of significant correlations: Is
it stable, or do small changes in the data collection conditions
translate to large changes in the number of correlations that
are found to be significant (indicating unstable correlation
estimates)?

To estimate the variance of the number of correlations above
the significance threshold, we used the bootstrap (39), resam-
pling the RSFC and clinical data for each subject to generate
1000 bootstrap replicate datasets, and then ran the z value

556

procedure from Efron (35) on each. A representative result for
HAMD item 1 (HAMD 1: depressed mood) is shown in Figure 1A,
with the shaded region showing the number of significant RSFC
feature-HAMD 1 correlations above the number expected by
chance. We generated confidence intervals for the significant z
value estimates with the percentile bootstrap and corrected for
the 16 multiple comparisons across the HAMD clinical features
using the Holm-Bonferroni procedure, yielding the results
shown in Figure 1B, with effect sizes in Figure 1C (40). Seven
HAMD measures had median significant percentages (number
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Figure 2. Stable train/test canonical correlations between resting-state functional connectivity (RSFC) features and clinical measures are improved by
regularization. (A) Violin plots (with superimposed boxplots) of correlations between the first canonical variate (CV1) of a standard canonical correlation
analysis (CCA) on training data (930% of subjects) and test data (10% of subjects) for a range of features (10-190 by increments of 10) selected using
the correlation method proposed in Drysdale et al. (18), with this procedure bootstrapped 1000 times for each number of features to yield the plotted
distributions. Feature selection and CCA fitting were done on training data separately for each bootstrap replicate, and then estimated CCA coefficients
were applied to the selected features in the held-out validation set to obtain test correlations. Test correlations for CCA peak at 20 features selected.
Black arrow shows standard CCA cannot be fit to more correlations than there are observations (in this case 90% of N = 220, or 198 subjects).
(B) Median test rates fit over a grid of regularization parameters Ax, 1y for each number of features selected. (Left panel) The grid corresponding to the
best test correlations corresponding to using 160 RSFC features. The color of each square in the grid corresponds to the median test correlation (also
printed in gray in the center of each square; color bar at right gives hue values). (Right panel) Similar grids for other numbers of RSFC features (number
of features selected shown above grid, test correlations shown in color only, not text). The best fit (160 features; shown on the left) is boxed in red box
in the full set of fits on the right. Fitting more than 198 coefficients is possible. (C) Violin plots (with superimposed boxplots) of correlations between the
first canonical variates of the regularized canonical correlation analysis (RCCA) with the best regularization parameters (ix = 0.1, Ay = 1, Ne = 160)
on training data (90% of subjects) and test data (10% of subjects) for the various numbers of features selected using the correlation method proposed
in Drysdale et al. (18) (resampled 1000 times), as in panel (A). Fitting more than 198 coefficients is possible. (D) Test rates for CV1 as a function of the
number of features selected for CCA (gray) and RCCA (red); shaded region shows first through third quartiles for the replicate fits. (E) Test correlations
between canonical variates 1-15 for the best fit from panel (A) (CCA fit in gray; 20 features) and the best fit from panel (C) (RCCA fit in red;
160 features); shaded region shows first through third quartiles for the replicate fits. (F) Ordered (by top rank) histogram of the top 20 features chosen
by the feature selection approach [from Drysdale et al. (18)] showing the percentage of times they were chosen across the 1000 subsampled replicate
datasets. Just three features are selected more than 80% of the time. (G) Ordered (by top rank) histogram of the top 160 features chosen by the feature
selection approach showing the percentage of times they were chosen across 1000 subsampled replicates. Twenty-five features appeared more than
80% of the time (dotted line denotes top 20 features); compare with panel (F). (H) Number of overlapping features in all pairwise combinations of
100 randomly chosen replicates as a function of number of features selected (dark blue line shows median, and shaded region shows first through third
quartiles across replicates). The median number of overlapping features selected increases approximately linearly with the total number of features
selected.
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of correlations more than expected by chance) well in excess of
1% (representing hundreds of significant correlations), and
overall, 14 of the 16 z value distributions showed reliable, sig-
nificant shifts in correlations.

We also examined the range of RSFC-HAMD correlations.
Figure 1D shows the 1000 most positive (left panel) and 1000
most negative (right panel) correlations, ordered by the
average PCC across bootstrap replicates (solid blue line), with
95% confidence intervals (percentile bootstrap). All of the 1000
most positive PCCs and a substantial fraction of the 1000
most negative PCCs had confidence intervals excluding zero,
but there was also a significant range over which different
bootstrap replicates might yield different orderings of the co-
efficients. This is illustrated in Figure 1E, showing violin plots
detailing the distribution of PCCs for the 10 most positive
PCCs: The distributions were significantly different from zero
but looked relatively exchangeable, such that their ranking
would change over bootstrap replicates. Thus, a large number
of very similar variables could result in highly variable feature
selection, with implications for CCA discussed below.

RSFC-Clinical Symptom Correlations Are Sensitive
to Clinical Sampling and Preprocessing Decisions

Dinga et al. in a recent preprint (34) reported the results of an
analysis similar to our earlier work (18) and concluded that
RSFC-clinical symptom correlations were not significant,
which would seem to contradict the findings reported in
Figure 1. However, there were several important differences
between these two studies (see Supplemental Table S1 for
details), especially in their clinical sample characteristics and
preprocessing pipelines. Of note, the sample in Dinga et al.
(34) included 187 subjects scanned on four different scanners

Biological

Table 1. Subject Demographics, Medication Status, and
Psychiatric Comorbidities

Toronto Sample Cornell Sample

Number of Subjects 124 96
Age, Years, Mean 404 421
Gender, Female, % 57.3 58.3
HAMD-17 Total Score, Mean 204 19.3
Psychiatric Medications, %
Antidepressant 59.7 57.3
Mood stabilizer 16.9 17.7
Antipsychotic 17.7 15.6
Other” 452 42.7
Psychiatric Comorbidities, %
Generalized anxiety disorder 4.8 5.2
Posttraumatic stress disorder 6.5 4.2
Social anxiety disorder 4.8 4.2
Panic disorder 2.4 3.1
Other” 4.0 3.1

The analyses in Figures 1-3 were implemented in the same dataset
used in Drysdale et al. (18). Subjects recruited at the Toronto and
Cornell sites were matched for age (p = .41), gender (p = .87), and
depression severity (HAMD-17 total score, p = .11).

HAMD-17, 17-item Hamilton Rating Scale for Depression.

“Psychiatric medications listed as “Other” included benzodiazepines,
nonbenzodiazepine sedative-hypnotics, stimulants, and thyroid hormone.

bpsychiatric comorbidities listed as “Other” included obsessive-
compulsive disorder, attention-deficit/hyperactivity disorder, Asperger's
disorder, and Tourette’s syndrome.

(vs. 220 subjects scanned on just two scanners in our pre-
vious work, yielding a larger number of subjects per scanner
and potentially more stable corrections for scanner-related
differences). Among other differences, Dinga et al. (34) did

Figure 3. Optogenetic functional magnetic resonance imaging (fMRI) for interrogating subtype-specific circuit mechanisms in depression. (A) Schematic
illustration of a model for formulating hypotheses regarding subtype-specific mechanisms driving depressive symptoms and behaviors and testing them in
animal models using optogenetic fMRI. By first testing for robust and stable resting-state functional connectivity (RSFC)-clinical symptom correlations as in
Figure 1 and then using canonical correlation analysis (CCA) and hierarchical clustering, relatively homogeneous subgroups of a heterogeneous major
depressive disorder sample can be identified. These subgroups can be used to identify subtype-specific candidate circuits (see text), and optogenetic fMRI
can be used to test hypotheses about dysfunction in specific circuits driving specific behaviors, while also validating whether the RSFC effects evoked by the
optogenetic manipulation resemble those observed in human subjects. (B) In Drysdale et al. (18), hierarchical clustering on two canonical variates representing
anhedonia- and anxiety-related RSFC revealed at least four clusters of patients in these two dimensions. The height of each linkage in the dendrogram
represents the distance between the clusters joined by that link. The dashed line denotes 20 times the mean distance between pairs of subjects within a
cluster. (C) The four subtypes predicted significant group differences in anhedonia and anxiety (p < .005, Kruskal-Wallis analysis of variance) as indexed by
item-level responses on the Hamilton Rating Scale for Depression (items 7 and 11, respectively). Symptom severities are Z-scored with respect to the mean
and SD of all patients in the sample. Error bars = SEM. (D) Heatmaps depicting subtype-specific patterns of altered functional connectivity for the top 50
neuroanatomical regions of interest with the most subtype-specific RSFC features by Kruskal-Wallis analysis of variance. The color scale represents Wilcoxon
rank sum test scores for the difference between patients in each subtype and matched healthy control subjects. The green boxes denote RSFC features
discussed in the text. For additional details on panels (B-D), see Drysdale et al. (18). (E) In Ferenczi et al. (55), a viral vector (adeno-associated virus/calcium/
calmodulin-dependent protein kinase Il [CaMKlIla]/stable step function opsin [SSFO]) driving SSFO expression in projection neurons was injected into medial
prefrontal cortex (MPFC), and an optical fiber implanted over the mPFC target was used to activate (blue light) and inactivate (amber light) the opsin during
alternating resting-state fMRI scanning periods (300 seconds per scan). SSFO activation induced a pattern of increased functional connectivity between an
mPFC seed (denoted by the red dot) and a network of structures depicted here, where colors denote the Z statistic (and associated p value) for RSFC changes
in the opsin-on vs. opsin-off conditions (7 = 4 rats, 14 runs). (F) Subjects (1 = 8 SSFO rats, blue; n = 10 control rats, black) were assessed on the sucrose
preference test during a 2-day baseline period, followed by 6 days with SSFO activated, followed by a 4-day washout period with SSFO off. SSFO activation
reduced sucrose preference behavior (F11,176 = 2.56, p = .0051, two-way repeated measures analysis of variance), compared with subjects expressing a yellow
fluorescent protein (YFP) control construct. (G) Individual differences in RSFC between the mPFC seed and the ventral striatum correlated with sucrose
preference behavior (R2 = .56, p = .03). See Drysdale et al. (18) and Ferenczi et al. (55) for additional details. NAc, nucleus accumbens; OFC, orbitofrontal
cortex; vStr, ventral striatum. [Panels (B-D) and (E-G) modified with permission from Drysdale et al. (18) and Ferenczi et al. (55), respectively.] ACC, anterior
cingulate cortex; AN, attention network; Amyg, amygdala; COTC, cingulo-opercular task-control network; DLPFC, dorsolateral prefrontal cortex; DMN, default
mode network; DMPFC, dorsomedial prefrontal cortex; FPTC, frontoparietal task-control network; GP, globus pallidus; HC, hippocampus; LIMB, limbic;
OFC, orbitofrontal cortex; PPC, posterior parietal cortex; precun, precuneus; SN, salience network; subC, subcortical; thal, thalamus; VLPFC, ventrolateral
prefrontal cortex; VMPFC, ventromedial prefrontal cortex; vStr, ventral striatum.
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not directly control for scanner-related differences, and their
sample was also more clinically heterogeneous (including
MDD, generalized anxiety disorder, social phobia, or panic
disorder with no specified requirements for active depressive
symptoms vs. currently active, treatment-resistant MDD in
our work). By testing for RSFC—clinical symptom correlations
in this more heterogeneous sample, the approach in Dinga
et al. (34) assumes that the mechanisms driving these cor-
relations are the same across these disorders, but this may
not be true. For example, it is possible that different mecha-
nisms may drive anxiety symptoms in MDD compared with
panic disorder, in which case an analysis of subjects with
mixed diagnoses could yield smaller effect sizes and unstable
results in held-out data.

To test whether these clinical sample and preprocessing
differences could influence their power to detect robust RSFC-
clinical symptom correlations, we repeated the analysis re-
ported in Figure 1 in a second, more clinically heterogeneous
sample of 184 subjects with MDD or an anxiety disorder,
scanned on one of four scanners, and preprocessed exactly as
in Dinga et al. (34) (see Supplemental Methods). The results in
Supplemental Figure S1 show that small but statistically sig-
nificant RSFC—clinical symptom correlations are still detect-
able for 10 of 16 symptoms (vs. 14 of 16 in Figure 1B), but
these associations are modest, with uniformly small effect
sizes (d = 0.21-0.29 for 5 symptoms, d < 0.2 for all others).
These results are consistent with the interpretation that distinct
mechanisms give rise to RSFC—clinical symptom correlations
across these heterogeneous disorders and that preprocessing
decisions may be important.

Stable Canonical Correlations Between RSFC
Features and Clinical Symptoms

CCA (36,37) is a classical multiview statistical approach that
we (18) and others (21) have used to find latent linear com-
binations of RSFC measures and clinical features (canonical
variates) that are maximally correlated with each other. In
principle, CCA is a potentially useful approach for discov-
ering subtypes of depression (or a dimensional rating system)
anchored in brain network dysfunction and for identifying
potential latent targets for optogenetic and other causal
investigations: It provides a generalizable, low-dimensional
representation of the relationship between neuroimaging
and clinical features in the form of a simplified summary of
the interesting structure between them. However, traditional
CCA has some potential weaknesses, particularly on large-
scale, correlated data. In particular, CCA coefficients
become unstable in the presence of multicollinearity (i.e.,
significant correlations between variables, as we might sus-
pect between RSFC features and HAMD symptoms) (38).
Further, CCA can operate on only as many variables as there
are observations, so that feature selection is necessary
before applying CCA to reduce the 33,123 RSFC measures to
a number less than or equal to the number of subjects in the
study (38). Despite this, CCA yielded promising results in
recent studies (21) and in the data presented in our previous
work (18). However, the stability of CCA solutions was not
integral to the other analyses in our previous study (18) and
thus was not directly assessed.
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To test this, we resampled the data 1000 times (without
replacement) into training (90% of subjects) and validation
(test) sets (the remaining 10%) and assessed CCA stability
by comparing the resulting canonical correlations in the first
canonical variate subspace across increasing numbers of
RSFC features (Supplemental Methods). Figure 2A shows that
standard CCA overfits: The training correlations gradually
approached 0.9, whereas the test correlations increased initially
but then decreased toward 0.1. The variance of the distributions
for test canonical correlations was large, but the best fit had a
median canonical correlation of 0.557 (interquartile range =
0.456-0.642), suggesting that the approach is promising.

We hypothesized that these results might be stabilized via
L2 regularization applied to the CCA coefficients associated
with both the RSFC and the clinical features, as both were
multicollinear. L2 regularization [the ridge penalty (41)] in-
duces a small downward bias in coefficient magnitude in
exchange for a potentially large reduction in coefficient vari-
ance (42). In RCCA, we shrink the sample covariance matrix

both for the RSFC features ix and for the clinical measures
>y toward the identity matrix by replacing them with

§X+1x1 and iv + Ayl, respectively (38). This requires
specifying the value of the two regularization parameters Ax
and iy for each RCCA fit. To assess the effects of these
parameters on fit quality, we fit each of our RCCA models
over a grid of Ax and Ay, with each parameter taking values in
set {0, 0.1, 1, 10, 100, 1000, 1e6, 1e9}.

Figure 2B depicts the median canonical correlation results
on the held-out test data (over 1000 replicates) and shows that
a small amount of regularization of the RSFC feature co-
efficients greatly improved the test canonical correlations. To a
lesser extent, regularization of the HAMD coefficients also
benefits fit, with a peak median test canonical correlation at
Jx =01 and Ay =1.0 of 0.735 (interquartile range =
0.665-0.797). Compared with the CCA fit in Figure 2A, the test
canonical correlations for the best RCCA (fit at Ay = 0.1, 4y =
1.0) had lower variance, remained above zero, and improved
with increasing number of features (Figure 2C, D). Furthermore,
if we examine the stability of test correlations between addi-
tional canonical variates (Figure 2E), we see that RCCA uni-
formly outperforms CCA (at its best performance at 20 RSFC
features) for the first four sets of canonical variates. Thus,
regularization of both RSFC and HAMD feature coefficients
stabilizes and improves low-dimensional coembedding of
neuroimaging and clinical measures.

As noted above, Figure 1D showed that a large number of
very similar variables could result in highly variable feature
selection across bootstrap replicates. Figure 2F and G show
the ranked distributions of which RSFC features were chosen
by the screening procedure over the 1000 subsamples when
selecting the top 20 features (the optimum for traditional CCA
in Figure 2A) versus the top 160 features (the optimum for
RCCA in Figure 2C). Having just 20 RSFC features (Figure 2F)
means just three features are selected more than 80% of the
time, whereas having 160 features results in 25 features
appearing more than 80% of the time. In Figure 2H, we ran
pairwise comparisons looking at how many features appeared
in both of two replicates (randomly choosing 100 of the sub-
sample replicates) and found that the number of consistently
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selected features increased linearly with the total number of
features selected. Thus, stabilizing CCA with regularization
allows the model to leverage more features than standard
CCA, yielding a broader set of more reliable features that result
in higher out-of-sample test correlations.

DISCUSSION

Together, these results support the hypothesis that RSFC
alterations capture an important component of the patho-
physiology of depression and are robust and reliable predictors
of specific symptoms in actively depressed patients with MDD.
In particular, as shown in our previous work (18), CCA in this
sample revealed two canonical variates, predicting individual
differences in 1) anhedonia and psychomotor slowing (HAMD
items 7 and 8) and 2) anxiety and insomnia (HAMD items 4, 5,
and 11). Individual patients, in tumn, could be clustered into
subgroups defined by relatively homogeneous patterns of
altered functional connectivity in these two dimensions,
which predicted distinct clinical symptom and treatment
response profiles (Figure 3) (18). Other groups have reported
similarly promising results for parsing diagnostic heterogeneity
based on task-related and resting-state fMRI (rsfMRI), clinical
symptoms, and neuropsychological profiles in affective
disorders (19-22) as well as in psychosis and attention-deficit/
hyperactivity disorder (12,43-45). For example, Price et al. (19)
identified two sexually dimorphic subgroups of patients with
depression that differed with respect to RSFC in the default
mode network and predicted individual differences in
comorbid anxiety and history of recurrence. More recently,
Xia et al. (21) used sparse CCA in a sample of 663 youths with
mixed diagnoses to identify four dimensions of altered
functional connectivity predicting mood symptoms, psy-
chosis, fear, and externalizing behavior. Importantly, they
went on to replicate these findings in an independent sample
of 336 subjects, providing further support for the assumption
that stable latent-variable relationships between RSFC
and clinical symptoms could be used to develop more
biologically homogeneous diagnostic labels.

In all of these studies, it remains unclear whether RSFC
alterations reflect changes in specific circuits driving
depression-related behaviors or are merely correlated with
them. Optogenetic tools offer one approach to addressing this
question. Over the last 10 years, optogenetic studies have
begun to define causal relationships between circuit function
and behavior (46-51), with important implications for both
neurological (52-54) and psychiatric (49,55-61) diseases.
Importantly, these methods can also be integrated with fMRI
and other noninvasive neuroimaging techniques that are
widely used in humans, offering new opportunities for testing
hypotheses and predictions derived from human neuroimaging
studies (55,62). Below, we review these developments, illus-
trate one model for testing such hypotheses, and discuss
important caveats and limitations relative to other approaches.

ofMRI for Testing Subtype-Specific Circuit
Mechanisms in Depression
First introduced in 2010 (62), ofMRI combines high-field fMRI

with photoactivatable opsins to manipulate the activity of
genetically defined cellular subtypes and test for local and

global effects on neuronal activity and brain network function.
The initial report by Lee et al. (62) underscored two of the most
important and commonly implemented applications of ofMRI.
First, it showed how ofMRI could be used to glean mechanistic
insights into the neurophysiological basis of the fMRI blood
oxygen level-dependent (BOLD) signal—a critical issue for
interpreting the results of clinical neuroimaging studies. This
report (62) showed that optogenetic stimulation of neocortical
or thalamic excitatory neurons was sufficient to drive local
BOLD signal responses, informing an ongoing debate about the
nature of the neuronal signals and cellular subtypes that un-
derlie the BOLD signal. Subsequent ofMRI studies showed that
the BOLD signal is more strongly correlated with local spiking
activity than with the local field potential (63) and is driven by the
effects of neuronal activity on cerebral venules (64). Recent
studies have also shown how inhibitory interneurons and as-
trocytes contribute to the BOLD signal, independently of activity
in excitatory pyramidal neurons and through distinct mecha-
nisms (65,66). Second, Lee et al. (62) showed how ofMRI could
be used for whole-brain functional circuit mapping, by opto-
genetically manipulating the activity of excitatory pyramidal
cells in a specific brain area and testing for downstream BOLD
signal effects. More recent studies extended this approach to
map the functional networks activated by specific circuits (e.g.,
dorsal vs. ventral hippocampus) (67—-72) and by specific cellular
subtypes (e.g., dopaminergic vs. glutamatergic cells in the
ventral tegmental area [VTA]; serotonergic responses to fluox-
etine and acute stress) (73-76), often with surprising results that
could not be predicted based solely on mapping the axonal
projection fields of a given brain region (71,76). Other studies are
defining new methods for integrating ofMRI with two-photon
microscopy and head-fixed behavior (77,78).

Of particular relevance for translational neuroscience
studies, ofMRI methods can also be used to recapitulate
disease-related pathophysiological processes and evaluate
their impact on brain networks and behavior. To this end, we
illustrate one approach for formulating hypotheses regarding
subtype-specific mechanisms driving depression-related be-
haviors and testing them in animal models using ofMRI
(Figure 3A), drawing on two recently published works. In this
model, rsfMRI is used to identify candidate circuits that predict
specific symptoms and behaviors in patients. ofMRI, in turn,
can be used to recapitulate and validate these connectivity
changes in functionally related circuits in rodents and test for
causal effects on associated behaviors. One approach to
identifying promising candidate circuits involves searching for
connectivity alterations and clinical symptoms that tend to co-
occur. For example, in our previous work (18), hierarchical
clustering on the two canonical variates described above
revealed at least four clusters or subtypes (Figure 3B), pre-
dicting group differences in multiple symptoms, especially
anhedonia and anxiety (Figure 3C). Group differences in
anhedonia and anxiety, in turn, were associated with functional
differences in depression-related brain networks (Figure 3D).

These subtype-specific patterns were complex; however,
qualitatively, two observations stood out. First, subtypes 1 and
4 were associated with increased anxiety and connectivity
deficits in frontoamygdala circuits (Figure 3D: green boxes),
which have been implicated in the regulation of fear memories
and the cognitive reappraisal of negative emotional states
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(79-82). Second, subtypes 3 and 4 were associated with
increased anhedonia and hyperconnectivity between the
medial prefrontal cortex (mPFC), ventral striatum, and other
frontostriatal circuits that have been implicated in reward
processing, effort valuation, and motivation (6,27,83-89).

Optogenetic tools provide one means of testing whether
altering functional connectivity in these circuits is sufficient for
driving specific depression-related behaviors. Stable step
function opsins (SSFQOs) are particularly useful in this context,
in that they were designed to achieve stable, partial depolari-
zation on a timescale of minutes (49), suitable for use in rsfMRI
analyses of low-frequency signal fluctuations, but still imme-
diately reversible, enabling within-subject statistical compari-
sons. Furthermore, by partially depolarizing neurons and
rendering them responsive to their physiological inputs, they
can, in principle, be used to reversibly modulate functional
connectivity in specific circuits and cell types.

A recent ofMRI study by Ferenczi et al. (55) provides evi-
dence consistent with the hypothesis that increased functional
connectivity in a specific frontostriatal network, qualitatively
similar to the pattern observed in subtypes 3 and 4, is sufficient
to drive anhedonic behavior in rats. In this study, SSFO was
expressed in calcium/calmodulin-dependent protein kinase |l
alpha-positive projection neurons in the mPFC, and rsfMRI
was used to quantify functional connectivity changes elicited
by SSFO activation in the mPFC (Figure 3E). SSFO activation
increased functional connectivity between the mPFC target
and a network of structures, including the ventral striatum,
nucleus accumbens, orbitofrontal cortex, anterior cingulate
cortex, and thalamus (Figure 3E), qualitatively similar to many
of the areas exhibiting increased connectivity in subtypes 3
and 4. SSFO modulation of mPFC projection cells was also
sufficient to drive anhedonia-like behavior in the sucrose
preference test (Figure 3F, G).

Importantly, this approach also provides a means of testing
how circuits interact to produce anhedonic behavior. Ferenczi
et al. (55) went on to show that mPFC and the VTA compete to
influence processing in striatum. VTA stimulation drove a
striatal BOLD response that predicted reward-seeking
behavior, whereas SSFO modulation of mPFC excitability
suppressed the striatal response to VTA stimulation and dis-
rupted reward processing. Of course, these findings do not
necessarily indicate that the same mechanism is involved in
driving anhedonic behavior in subtypes 3 and 4. Rather, they
show that this particular pattern of frontostriatal hyper-
connectivity, elicited by increasing the excitability of mPFC
projection neurons, is sufficient to disrupt reward-seeking
behavior. Future studies could test whether these subtypes
are associated with hyperexcitability in mPFC; with deficits in
striatal reward reactivity; and with abnormal interactions be-
tween VTA, mPFC, and striatum. Likewise, new viral tools for
targeting opsin expression to topologically defined projection
neuron subtypes with increased ease and efficiency (90-92)
will enable more targeted investigations that modulate con-
nectivity between specific nodes in this frontostriatal network.

The example in Figure 3 illustrates one approach to
formulating hypotheses about candidate circuits for opto-
genetic study, based on qualitatively similar connectivity al-
terations that co-occur with specific symptoms across
subtypes. However, candidate circuits could also be identified
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in a data-driven way, especially with larger sample sizes.
Indeed, multiview, latent-variable methods such as RCCA are
well suited to this purpose, as reliable latent variables under-
lying brain-behavior correlations and discovered by RCCA
suggest targets for optogenetic interrogation in rodent exper-
iments, which could test whether symptom dimensions can
indeed be dissociated by modulating the candidate neural
targets. Including sparsity constraints as in the study by Xia
et al. (21) may further refine candidate targets for optogenetic
interrogation using RCCA.

Caveats and Limitations

It is also worth noting some important caveats associated with
this approach. First, Figure 2A underscores how CCA has a
tendency to overfit when combined with a feature selection
step. Therefore, when screening is used to preselect features
for further analysis, careful training and test validation are
necessary to generate models that perform well in held-out
data and to avoid overfitting. Second, the feature selection
approach used here is adequate for identifying stable and
robust associations between RSFC features and clinical
symptoms, but other approaches (e.g., nonlinear multiview
and/or sparse methods) could yield superior results.

Third, these approaches may be highly sensitive to clinical
sample characteristics (e.g., distinct circuit mechanisms may
be at play in active depression, depression in remission, and
various anxiety disorders) as well as to medication status,
data quality, head motion, and other sources of global signal
artifacts. Therefore, it is important to optimize and validate
preprocessing methods and other data quality controls based
on the goals of a given study. Medication status is an espe-
cially important issue: Our sample was treatment resistant,
and most subjects were taking at least one psychiatric
medication at the time of their scans (Supplemental Table S1).
The subtypes did not differ by medication status, indicating
that the subtyping results were not likely driven by medication
usage per se (18). However, several studies indicate that
antidepressants and other psychotropic medications have
significant and varied effects on RSFC measures (93-98).
Therefore, future studies will be needed to systematically
characterize medication effects on resting-state networks
and to evaluate the extent to which our results would
generalize to unmedicated patients, non-treatment-resistant
patients, and first-episode patients.

Fourth, categorical subtyping is just one approach to
parsing diagnostic heterogeneity, and the four-cluster solution
in Figure 3B is not the only solution. Rather, as discussed in
our prior work (18), this four-cluster solution was stable and
clinically useful (predicting clinical symptoms and treatment
response), but also most likely constrained by features of the
subtype discovery dataset, especially sample size and the
available clinical data. ltem-level HAMD responses provide a
relatively coarse, ordinal rating of a limited set of depressive
symptoms, and future studies will surely benefit from incor-
porating more precise rating scales designed to measure
specific constructs as well as objective behavioral measures.
Likewise, although a model anchored in categorical subtypes
provides a familiar and clinically useful heuristic for clinicians to
parse diagnostic heterogeneity, other methods might be su-
perior. One alternative approach that warrants further
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examination would substitute a multidimensional rating system
for categorical subtype diagnoses.

Finally, although we focus here on ofMRI, this approach has
some limitations, and other approaches should also be
considered. First, it is unclear whether RSFC measures are
interpretable in the same way in rodents and primates. A
growing body of work highlights qualitative cross-species
similarities (99), including a reliable RSFC signal that corre-
lates with low-frequency (delta) power (100,101); robust
resting-state functional networks (67,102-105); and a neuro-
anatomically similar default mode network in both rats and mice
(103,106). However, cross-species differences are also evident.
For example, the rodent default mode network lacks a neuro-
anatomical correlate of the primate posterior cingulate areas 23
and 31 (99,106). Likewise, other rsfMRI studies comparing the
topology of the mouse, macaque, and human brain have
identified reliably conserved properties (e.g., rich club con-
nectivity) but also important differences (e.g., the probability
that highly connected hubs are connected to other hubs) (1086).
Second, some brain circuits in primates may not have clear
homologues in rodents. For example, the PFC exhibits a host of
cytoarchitectonic, topological, and molecular differences in
rodents versus primates (107), and multimodal association
cortex occupies a much larger proportion of the human brain
(108). Third, rodent models of human behavior are inherently
limited to behaviors that are well conserved across species
(109), and even superficially similar behaviors and cognitive
processes may be implemented by different mechanisms
across species (110,111). Consequently, studies drawing par-
allels between brain circuits and behavior in rodents versus
humans must be interpreted with care, and some human brain
circuits and behaviors are simply not well modeled in the
mouse. In these cases, other approaches, such as concurrent
transcranial magnetic stimulation/fMRI (112-114) and new
methods for analyzing interactions between brain lesions and
their relationship to behavior (115), may be superior for testing
causality in the human brain directly (33).

Conclusions

The above caveats notwithstanding, the results in Figures 1-3
and the accompanying review highlight the potential for inte-
grating clinical neuroimaging analyses with ofMRI approaches
to formulate and test hypotheses regarding latent, subtype-
specific mechanisms underlying depression-related behavior.
RCCA can be used to discover robust and stable latent as-
sociations between functional connectivity and behavior,
linking specific circuits with specific clinical symptom combi-
nations that may be differentially involved in individual patients
with MDD. ofMRI, in turn, provides a powerful tool for testing
hypotheses derived from clinical neurcimaging data; for
implicating specific patterns of network dysfunction as causal
mechanisms, not just functional correlates; and for isolating
the contributions of specific network nodes and circuits and
studying their interactions.
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