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Abstract. We consider the Bayesian detection statistic for a targeted search for
continuous gravitational waves, known as the B-statistic. This is a Bayes factor
between signal and noise hypotheses, produced by marginalizing over the four
amplitude parameters of the signal. We show that by Taylor-expanding to first order
in certain averaged combinations of antenna patterns (elements of the parameter space
metric), the marginalization integral can be performed analytically, producing a closed-
form approximation in terms of confluent hypergeometric functions. We demonstrate
using Monte Carlo simulations that this approximation is as powerful as the full 5-
statistic, and outperforms the traditional maximum-likelihood F-statistic, for several
observing scenarios which involve an average over sidereal times. We also show that
the approximation does not perform well for a near-instantaneous observation, so the
approximation is suited to continuous wave observations rather than transient modelled
signals such as compact binary inspiral.
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1. Introduction

The signal from a non-precessing source of gravitational waves (GWs) such as a rotating
neutron star or slowly-evolving binary system, can be described by phase-evolution
parameters, which determine the shape of the signal, and amplitude parameters. In the
case where the phase-evolution parameters are assumed to be known, the likelihood ratio
between models with and without signal is a function of the four amplitude parameters.
Jaranowski, Krélak and Schutz [1] constructed a maximum-likelihood statistic (known
as the F-statistic), which is the basis of many existing searches for continuous GWs.
Prix and Krishnan [2] proposed a Bayesian alternative (the B-statistic) which instead
marginalized the likelihood ratio over these parameters, assuming a geometrically-
inspired prior distribution. Exact evaluation of the B-statistic requires integration over
the four-dimensional amplitude parameter space; Whelan et al [3] showed that two
of the integrals can be done analytically, but a two-dimensional numerical integration
remains. They also showed that the marginalization integrals can be done exactly if the
parameter-space metric (determined by averaged combinations of antenna patterns) has
a block-diagonal form. In this paper, we generalize this result to produce an analytical
approximation to the B-statistic by Taylor expanding to first order in the off-diagonal
metric elements.

This paper is laid out as follows: in section 2 we give a brief overview of the
background information and formalism related to this topic, including a discussion of
GW signal analysis and a description of the two detection statistics which already exist.
Section 3 contains the derivation of our approximation and in section 4 we test the power
of the approximation as a detection statistic. Section 5 concludes with a summary of
the results and their practical implications.

2. Formalism

2.1. Signal Parameters

We follow the conventions and notation of [3], where more details can be found. We
summarize the relevant expressions here. For a GW signal coming from a sky position
specified by right ascension a and declination §, we can define a propagation unit vector
k pointing from the source to the solar-system barycenter (SSB). The tensor GW can
then be resolved in a basis of traceless tensors transverse to k as

W) = ho(7) By + ho(7) €y . (2.1)

For a nearly periodic signal, as from a rotating neutron star (NS), the polarization
components are

(L+x*)cos[@(r) + o] and  hy(r) = hoxsin[d(7) + o] ,  (2:2)
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where y = cost is the cosine of angle between the line of sight and the neutron star’s
rotation axis, and

4G | Iy — I, 2
hy — — 172 vyt 2.3
07 " d (2.3)
is the amplitude in terms of the equatorial quadrupole moments {I,,, I, }, the rotation
frequency €2, and the distance d to the source. The preferred polarization basis tensors

are given by
€L =%, cos2y + Z, sin2¢ and € = —E, sin2t + &, cos2y . (2.4)

where &, = 7@ 7— 7® 7and €, = 7® 7+ 7® 7 are the fiducial basis tensors defined
using unit vectors orthogonal to E, with 7" pointing “West on the sky” in the direction
of decreasing right ascension «a, and 7 pointing “North on the sky” in the direction of
increasing declination 0. The polarization angle 1) measures the angle counter-clockwise
on the sky from 7" to the NS’s equatorial plane.

The phase evolution ¢(7) in terms of the arrival time 7 at the SSB can be written
in terms of NS rotation or spindown parameters, e.g.,

o(7) = 27 (f07+f1%2+---> : (2.5)

although it may be more complicated, e.g., for NSs in binary systems.
The strain, h, measured by an interferometric GW detector whose arms are parallel
to the unit vectors p; and ps is given by

<~

<>
h=h:d (2.6)

wheref

—

P ® P — P2 @ Po
2
is the detector tensor and : signifies the double dot product, defined by (G®0b) : (F®d) =

- =

(@-d)(b-¢c). The GW strain can also be expressed as

(2.7)

h:h+F++h><F>< y (28)

where I, and F are the detector antenna pattern functions which depend on the 3
angles defining the source sky position and polarization basis relative to your detector,
which in our case would be the right ascension «, the declination ¢ and the polarization
angle 1. If we separate out their dependence on 1, then the pattern functions have the
form

Fi(a,0,) = ala,d) cos2y+b(a,d) sin 2 (2.9a)
Fo(a,6,0) = —a(a,d) sin2¢y +b(a, d) cos2y (2.9b)

1 We limit attention in this section to the long-wavelength limit, where the detectors are assumed to be
small compared to the gravitational wavelength ¢/ fo, which is appropriate to most observations with
ground-based interferometric detectors. At higher frequencies, the detector tensor (c_l>( f) is frequency-
dependent and complex. See e.g.,[3] for more details.
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where a and b are amplitude modulation coefficients defined in terms of the detector
tensor d as

a

b

) (210&)
(2.10D)

Q)i _@i

&1 gl

These coefficients are defined with respect to the reference polarization basis and
depend both on the sky position of the GW source and the sidereal time at which
the measurement is taking place.

It is useful to divide the signal parameters into amplitude parameters§ {ho, x, ¥, ¢o}
and phase-evolution parameters such as the sky position {«,d}, and any parameters
describing ¢(7). The dependence of the signal on the amplitude parameters can be
written simply as[1, 3] . .

h(r; A, N) = AP hy (T3 A) (2.11)

where the Einstein summation convention implies the sum ) =1 over repeated indices.

The amplitudes { A"} are defined by||

Al = Ay cos ¢ and A% = Ag sin ¢y, ; (2.12a)
A3 = A; cos ¢y, and At = A; sin ¢y, (2.12b)
where
1+ x 2
Ar = hg (T) and  ¢p = ¢ + 20 ; (2.13a)
1 v\ 2
A, = ho (TX> and ¢, = ¢ — 20 (2.13b)

are the amplitudes and phases of the right- and left-circularly-polarized components of
the signal, respectively.

2.2. Likelihood Function and Detection Statistics

If we denote the data recorded in the GW detector(s) as x, and assume those data to
consist of the signal A”h; plus Gaussian noise, the sampling distribution for the data
will be

pdf(x]|A) o exp (—% (z — Ahy|z — Aﬁhﬁ)) (2.14)
The log-likelihood ratio will thus be
vy g PUEA) L
A{A"};z) =In pdf(z]0) Az, 2A Mz A (2.15)

§ Note that ¢g is considered an amplitude parameter because it does not affect the time evolution of
the phase ¢(7) appearing in (2.2), which could be rewritten in terms of amplitudes h. = hg cos ¢y and
hs = ho sin qbo.

| Our coordinates {.A"}, introduced in [3], are related to the more familiar Jaranowski-Krélak-Schutz

(JKS) coordinates {A*} of [1] by A' = Al 4+ A3, A2 = A% — A, A3 = — A% — A% A% = AT — A3
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where z; = (x|hy) is the scalar product (see Appendix A) of the data with the template
waveform, and

I 0 L —-K

B o 1 K L
Muy =y = | | (216)

-K L 0 J

forms a metric on parameter space.
If we define {M/""} as the matrix inverse of {M;;}, we can write the maximum-
likelihood values of the amplitude parameters { A%} as

Al (z) = MP x| (2.17)

Since the maximum-likelihood parameters {A%(z)} contain equivalent information to
the projections {x} (which form jointly sufficient statistics for the amplitude parameters
A), we can use {.Z“} as a representation of the relevant part of the data. Their sampling
distribution can be written as the multivariate Gaussian

pdf(A]A) = (det 2rM) ™% exp <—%(ﬁﬁ — A M (A7 — Aﬁ)) (2.18)

This is useful for conducting Monte Carlo simulations (as was done in [2]): one need
not simulate the full GW data, only generate draws of the four maximum-likelihood
parameters {A\D } representing the data.

It is also convenient to write the log-likelihood ratio in terms of A as well:

AA; A) = AP M A7 — %Aﬂ/\/lwfl” . (2.19)

This is written explicitly in terms of the polar representation in Appendix B.
The F-statistic[1] is defined as the maximized log-likelihood ratio,

~ 1 ~ ~

F(z) =max A(A;z) = A(A;z) = A M5 A7
R o (2.20)

= SIA 4 ZJA 4 A K sin( = 6.) + Loos( — 1)

The B-statistic[2] is defined as the Bayes factor between a model H, with a signal of
the form (2.11) plus (Gaussian) noise and a model #,, with only noise:

di(e|H, di(x|.A) pdi(A|H,) d*A by
:Edfg"ﬂ ; _ Jpdfl ’pzi?(aﬂ(())’ J&A _ / A pAf(AIH,) dUA - (2.21)

Comparing the last form in (2.21) to the first form in (2.20), we see that while F(x)
is constructed by maximizing the (log-)likelihood ratio over the unknown amplitude

B(x)

parameters, B(z) is made by averaging the likelihood ratio over those parameters,
weighted by the prior distribution pdf(A|#Hs). The prior is taken to be uniform in
X € (=1,1), ¥ € (—m/4.7/4) and ¢y € (0,27), so that

pdf(h07X71/}7¢0|H8> - T (222)
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The convention introduced in [2] is to use an improper prior pdf(hg|Hs) = A, 0 < h < o0,

so that
2w w/4
B(x) / / / / A gho dib dx debo
272 —1J-n/4

) / %/ / (A7) PAn A4, A6y A,
-2 VA,

Note that the prior on y and v corresponds to an isotropic distribution on the source’s
orientation, but the prior on hy is an arbitrary choice motivated by convenience and

(2.23)

mathematical simplicity.

3. An approximate form for the B-statistic

Previous work [3] showed that the B-statistic integral (2.23) can be exactly evaluated in
the case where K = 0 = L, so that the metric (2.16) becomes diagonal and the left- and
right-circularly polarized subspaces decouple. We show in Appendix A that K and L
can be small compared to I = J, especially in continuous-wave observations containing
an average over sidereal times and/or detectors.

When K and L are small compared to I and .J, it is fruitful to consider a Taylor
expansion of the B-statistic integral (2.23), which we carry out in Appendix B, and find

AL (P
and
B(z 1 1A JAZ\ .~ = ~ -
In w Nlanl Z 1, —|—1H1F1 4,1, 9 +-KSIH(¢R—¢L)+LCOS(¢R—¢L)
" 1 <4§L d 2) 1F1 (47 7J§%) 1 lFl (%727 If;‘%) 1F1 (%727 J?E>
4 JA? 16 142 JA?
(le ) 1F1 (47]-7 ) 1F1 <%71a 9 > 1F1 (le’]" 2 >

where 1 Fi(a, b, z) = M(a,b, z) is the confluent hypergeometric function [4] and the terms
omitted are second order and higher in K and/or L. It is convenient to factor out the
constant B(0), because the detection statistic In g%; is more directly comparable to
F(z). (For example, both vanish when = = 0.)

We can compare this to several limiting cases and alternative forms. First, note
that if K = 0 = L, we recover the result of section 6.1 of [3]. [See equation (6.11) of

that work.] Second, in the limit that A and A are both large, the asymptotic form of
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the confluent hypergeometric functions [see identity (13.5.1) of [4]]

-~ ~\ —3/4
1 _[A2 A_) 1 IA2 12
F -1 == @ T1A%/2 ‘
141 <47 ) 9 ) — 1—‘(711) < 92 > € (3 3&)
~ o\ —3/4
5 _[A2 A_) 1 ]A2 12
Fi|.2,— | = — e 3.3b
141 <47 ) 9 ) — 1—‘(%) ( 92 € ( )
says that
B(ZE) An,Ar-)OO ]- 2 1 ~ ~ ~ o~ o~
mw 514z +2JA + [Ksm(¢ ¢L)+LCOS(¢R—¢L)]A A

3. (1. \ 3. (1 o 1
_F- ;m(EREL) +const (3.4)

which is the result in equation (5.37) of [3].

4. Evaluation of Approximation

We evaluate the approximation for three cases of interest, which are further detailed in
Appendix A:

(i) The case originally considered in [2]: a Tons = 25hr observation of a source at
right ascension 2radians, declination —0.5radians, with a single detector (LIGO
Hanford, known as H1) beginning at GPS time 756950413 (2004 Jan 1 at 00:00
UTC), for which I = J = 0.388 Tows = —0.0207 2k and L = —0. 080559 Tobs

Sn(fo0)’ Sn(fo0)? Sn(fo)”
so K/I = —0.0533 and L/I = —0.207. This is a typical long—observatlon case.q

(ii) An observation with perfect sidereal-time averaging of a source on the celestial

equator (declination 0) using only H1. As shown in Appendix A, this is a worst-

case long-observation scenario, for which I = J = 0.305g ‘E;;) K = 0, and

L = —0.14795 Obb so K/I =0 and L/I = —0.485. It provides an intermediate
case where the approximation has not broken down completely.

(iii) A short two-detector (LIGO Hanford and Livingston) observation of a source
at right ascension 2radians, declination —0.5radians, at Greenwich sidereal time
00:00, for which I = J = 06795 ‘23’:), K = 0. 16045 ‘E‘;:), and L = 065275 ‘ZS’%
so K/I = 0.236 and L/I = 0.961. This is a case where we do not expect the

approximation to perform well.

€ Note that this case is slightly less favorable than another realistic alternative with the same sky
position, which averages over the O1 segments from LIGO Hanford and LIGO Livingston, for which

I = J = 0.37357?3%), K = 001205@5), and L = —0.0385ST;1};). so K/I = —0.0321 and
L/I = —0.103. However, as we shall see, the approximation performs well enough for the case considered

that this more favorable case would be a redundant illustration.
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Note that in the investigations in Appendix A, three factors tend to impact the size of
L/I and K/I and the validity of the approximation:

e Observations which average roughly evenly over sidereal time suppress L/I and
especially K/I. Note that this is a side effect of long observation times, but the
observation time itself is not important once it exceeds one sidereal day.

e Sources closer to the poles produce a better approximation than sources closer to
the equator.

e Averaging over more detectors improves the approximation.

So, although case (ii) involves perfect sidereal averaging, it is not as good an
approximation as case (i) because case (ii) deliberately chooses a worst-case sky location.

4.1. Numerical Evaluation of B-statistic Integral

To compare our approximate form of the B-statistic to its exact value, we have to
evaluate the integral (2.23). It was shown in [3] that the log-likelihood ratio (2.15) can
be written in physical coordinates as

o h2 7 2
A({ A"} @) = how(; x, 1) cos(do — pol@; X, ¥)) — M (4.1)
and the hg and ¢g integrals performed explicitly to reduce the B-statistic to a double
integral™
T/4 IO $ X w)) eg(xSXa"l’)
= Von : dip dy 4.2
2w / /71’/4 7’¢) ( )
where o o
W T;5 X,
TyXW) = g 4.3
L = P (43)

We note here the explicit forms of v(y, ) and w(z; x,¥). (The form of yo(z;x, ) is
irrelevant to the result of the integral.) From (B.2) we can see

Y(x, V) = W hl [IA2 + JA2 + 24, A, [K sin(¢y — ¢1) + Lcos(¢r — (bL)H
0
4 2 2
=1 (1 +X> +J (1_—") +2 (1 +X) (1 — X) K sin(de) + L cos(4v)] .
2 2 2 2
(4.4)
while
w(; X, 1) cos(go — @olw; X, 9)) = AZ:[L

1+x\° 1-x)°
= (TX) (xy cos ¢pr + x5 8in ¢y ) + (TX) (x5 cos ¢y, + x5 sin ¢y

=Ucos¢y+ Vsingy (4.5)

T A similar reduction to a two-dimensional integral appears in [5], with the integrand empirically
estimated rather than evaluated analytically.
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so [w(x; x,¥)]? = U? + V2, where

/1 2 1-y\? | 1 2 1-\2 ]

U = cos 2t (%) Ty + (TX) x5 | +sin 2y %) Ty — (TX> Ty
(4.6a)

(14X’ 1-x\’ . 1+x\? 1—x\2 |

V = cos 2y (T) Ty + (T Tyl —sin 29 T Ty — T Ty
(4.6b)

In the simulations that follow, we evaluate the integrals for the B-statistic using a 3000-
1,1), ¥ € (—m/4,7/4). This has the
advantage that, even when the integrand depends only weakly on ), we still estimate

point Monte Carlo integration on the space x € (—
the y integral accurately. For 3000 points, we see Monte Carlo errors of O(1%).

4.2. Comparison of Statistic Values

We compare our approximation to the numerically-evaluated exact B-statistic, and to
the F-statistic. Each statistic is a function of the four data values {z;}. However, if we
express it in terms of the maximum-likelihood parameters {A"} we see that all of the
statistics are independent of the combination d)R—i—gbL = Zgbo and depend on the angles d)R
gbL = 41/) Thus we can consider the statistics on the
¢, € [0,27). For
visualization purposes, we plot contours of constant statistic versus A and A on slices of

and qu only in the combination qu
three-dimensional space parameterized by A >0, A > 0, and ¢R

constant gbR gbL, in analogy to Figure 3 of [3], Wthh con81dered a metrlc Wlth K=0=1,
If we plot gzﬁR gbL = 0 in the
¢L = 7 in the second, we are effectively plottmg A cos(gb qu)
¢L) = 0. Likewise, if we plot qﬁR gbL = 7 in the first
ngL = —7 in the second, we are effectively plotting A sm(gbR qu)
¢L) Since the approximate B-statistic and the F-statistic

(bL) +L COS<¢R -
on the impact of L and the second on the impact of K. Note that another choice of

¢, = tan~! (—?) so that the K-and-L-dependent part of

¢, = tan™! (%), which would maximize the impact of

this term. In practice, for the examples we chose, |L| is significantly larger than | K|, so

for which the statistics were independent of <;5R and ¢L
first quadrant and gbR
versus A, on the slice sm(¢R
quadrant and gbR
versus AL on the slice COS(¢R
both depend on the combination K sin(¢y — ¢1.), the former slice focuses
slice would be to chose ¢ —
the statistics vanished, or ¢ —

these slices would be similar to the ones we plot.

We choose our contours for these plots to correspond to specific false-alarm
probabilities (estimated by drawing 107 random points {.,Zl\“} from a Gaussian with
zero mean and variance-covariance matrix { M#”}) rather than specific statistic values.
In figure 1, we see that for the case (i), with K/I = —0.0533 and L/I = —0.207, the
approximation works well and the approximate and exact B-statistic contours are nearly
Figure 2 shows case (ii), for which K/I = 0 and L/I = —0.485.
Some discrepancy is visible for low false-alarm rates when the maximum-likelihood value

indistinguishable.

corresponds to linear polarization with 7:/1\ ~ 0, i.e., A\Rei‘gR ~ fAlLe"‘gL. Finally, in figure 3
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A\L\/j

A\L\/j

10

~

bn — &, = 0, 7 for case (i)

— B-stat
----- approx
F-stat

~ -~
L

¢R_

= %7 for case (i)

AT

Figure 1. Comparison of B-statistic (2.23) and approximation (3.2), along with F-
statistic (2.20); using the assumptions of a 25-hour observation beginning 2004 Jan
1 at 00:00 UTC (GPS time 756950413) [case (i)], for which K/I = —0.0533 and
L/I = —0.207. The statistics depend on the data through the maximum-likelihood
parameters ER, A\L, and (ER — QASL. Top: the slice sin(z,zASR — QASL) = 0, for which the L-
dependent terms of the statistics are important; bottom: the slice cos(ch - ggL) =0, for
which the K-dependent terms of the statistics are important. The contours of constant
exact and approximate statistic are nearly indistinguishable, indicating that this is a
good approximation for these metric values.
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O — &S\L = 0, 7 for case (ii)

— B-stat
approx
F-stat

A\L\/j

A\L\/j

Figure 2. Comparison of B-statistic and approximation, along with F-statistic,
assuming a source on the celestial equator and H1 observations which evenly sample
sidereal time [case (ii)], for which K/I = 0 and L/I = —0.485, contours and slices
constructed as in figure 1. There is some discrepancy between the approximate and
exact B statistic contours at low false alarm rate in the case of linear polarization
A A Note that the disagreement for this contour in other directions is because
it is drawn at the same false alarm probability, so the approximate B-statistic contour
must be inside the exact B-statistic contour to compensate for the deformation in one
direction.
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O — $L = 0, 7 for case (iii)

5 ~ ~
— B-stat
\ \
P approx S
=== JF-stat

-
~a

Figure 3. Comparison of B-statistic and approximation, along with F-statistic,
assuming a single Greenwich sidereal time of 00:00 [case (iii)], for which K/I = 0.236
and L/I = 0.961, contours and slices constructed as in figure 1. Now the contours for
the approximate B-statistic are quite far off of those of the exact B-statistic. In fact,
the entirety of both plots lie above the median of the approximate B-statistic under
the no-signal hypothesis; the contour in the upper left of the top plot is a false alarm
probablhty of 0.05, and the one in the center of the lower plot is 0.0005. The origin
AR =0= A is at the 98th percentile of the approximate B-statistic, but the minimum
of the exact B-statistic. Thus the approximation is, as expected, inappropriate for a

value of vV K2 4+ L?/I so close to unity.
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. ROC curve for case (i)

=
oo
1
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1
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1
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—— B-stat
''''' approx
— == JF-stat

e
[\
1

00 ! LA LR | ! LA LR | ! LA L L L L | ! LA L L
10~4 103 102 101 100

False alarm probability

Figure 4. ROC curves for B-statistic and approximation, along with F-statistic,
using the metric from case (i) (see figure 1). In this case, the approximate B-statistic
performs identically to the exact one. Compare figure 3 of [2].

we show the case (iii), with K/I = 0.236 and L/I = 0.961. The approximation performs
badly, as we’d expect for a first-order expansion in a quantity close to unity.

4.8. Monte Carlo Simulations

To evaluate the performance of our B-statistic approximation, we produced Monte
Carlo simulations by drawing 10° sets of signal parameters, using a fixed value of
hy = 10% and drawing the parameters y, v, and ¢y from uniform distributions.
Each of these sets of parameters was converted into a point A%, and then a signal
Al was generated by drawing from a Gaussian with mean A# and variance-covariance
matrix {M"}. A receiver-operating-characteristic (ROC) curve was generated for each
statistic by plotting the fraction of signal points above a signal threshold (detection
probability) against the fraction of noise points (described in the previous section) above
the same threshold. The latter fraction is known as false-alarm probability, Type I error
probability, or, in the language of hypothesis testing, significance. A superior detection
statistic will have a higher detection efficiency at a given false-alarm probability, and
thus be found above and to the left of an inferior one. Note that while an extension
of the Neyman-Pearson lemma due to Searle[6] states that the Bayes factor will be the
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. ROC curve for case (ii)
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False alarm probability

Figure 5. ROC curves for B-statistic and approximation, along with F-statistic, using
the metric from case (ii) (see figure 2). Even though K/I =0 and L/I = —0.485, the
approximate B-statistic, which is Taylor expanded in K/I and L/I, still performs as
well as the exact B-statistic (and better than the F-statistic) in this Monte Carlo.

optimal test statistic for a Monte Carlo using the same prior, this is not guaranteed to
be the case here, since the delta-function prior on hg is not the same as the uniform
prior used in defining the statistic.

In figure 4 we show the ROC curve for case (i), in which our approximation was
shown to match the exact B-statistic well (see figure 1). As expected, the approximate
B-statistic performs as well as the exact one, and both outperform the F-statistic, as
shown in [2]. In figure 5 we show the ROC curve for case (ii), where our approximation
was shown in figure 2 to have some discrepancies with the exact B-statistic. Nonetheless,
we see that it again performs as well as the exact B-statistic and better than the F-
statistic. In figure 6 we show the ROC curve for case (iii), where our approximation was
shown in figure 3 to disagree considerably with the exact B-statistic. Unsurprisingly, we
find this approximation to be a poor detection statistic in this scenario, underperforming
both the exact B-statistic and the F-statistic.

4.4. Computation Time
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ROC curve for case (iii)
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Figure 6. Comparison of B-statistic and approximation, along with F-statistic, using
the metric from case (iii) (see figure 3). Here K/I = 0.236 and L/I = 0.961, and we
see indeed that the approximate B-statistic performs poorly, considerably below both
the exact B-statistic and the F-statistic.

A comprehensive study of the computation time of the three statistics (F-statistic,
numerically-evaluated B-statistic and B-statistic approximation) is beyond the scope
of this project, but we report here some timing statistics based on the computations
used to produce the plots for this paper. The computation was done in Python, using
the Scientific Python libraries [7]. One should avoid reading too much into the exact
quantitative computing cost, given that 1) the Monte Carlo integration to evaluate
the numerical B-statistic was not exhaustively optimized, and 2) the multi-dimensional
arrays used in the Monte Carlo integration were too large to fit in memory, and so had to
be broken into pieces which were looped over. Note that because the F-statistic and the
approximate B-statistic are computed using many of the same quantities, the standard
version of the code computes them together in one function. However, an additional
test was done with the two in separate functions.

The timing measurements are summarized in table 1. The combined F-statistic
and approximate B-statistic computation took O(1 — 2 ps) per evaluation, while the
numerical integration for the exact B-statistic took O(1ms) per evaluation. A separate
test indicates that most of the cost of the former function is in the approximate B-
statistic computation.
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Table 1. Results of timing measurements. The Monte Carlo simulations for this
paper included some runs with 10 and some runs with 107 evaluations of the various
functions. The standard code included one function which calculated the F-statistic
(2.20) together with the approximate B-statistic (3.2), and another which computed
(by 3000-point Monte Carlo integration) the “exact” B-statistic integral (2.23). The
combined F-statistic and approximate B-statistic computation took O(1 — 2 us) per
evaluation, while the numerical integration for the exact B-statistic took O(1ms) per
evaluation. A separate test indicates that most of the cost of the former function is
in the approximate B-statistic computation. Note that the absolute numbers are not
meant to be definitive, as described in the text.

Function # runs (10° calcs) # runs (107 cales) median time/calcs (1s)
F & approx B 7 6 0.94
F 6 6 0.04
approx B 6 6 0.63
numerical B 7 7 943.89

Implementation of the B-statistic approximation in the LSC Algorithms Library
[8] is planned for the future. One potential challenge is that the approximate B
statistic is expressed in terms of confluent hypergeometric functions, which may be more
time-consuming to evaluate than the algebraic functions involved in the F-statistic, as
indicated by the Python tests presented here. Additionally, direct evaluation of these
confluent hypergeometric functions for large-amplitude signals can produce overflow,
even though the final approximation in terms of their logarithms and ratios may be well-
behaved. It may be necessary to supplement standard library functions with strategic
use of asymptotic forms.

5. Conclusions

We have produced an analytic approximation to the B-statistic, a Bayesian detection
statistic for continuous gravitational waves based on a Bayes factor between signal
and noise hypotheses. This approximation is based on a Taylor expansion in the
parameters K /I and L/I, which are related to observation-averaged combinations of
antenna patterns, and depend on the sky position of the source, detectors involved in
the observation, and distribution of the observations in sidereal time. For observations
which average over a range of sidereal times, these parameters tend to be small enough to
produce a good first-order approximation, and we showed via Monte Carlo simulations
that the approximate statistic performed as well as the exact B-statistic, even for a case
with an expansion parameter approaching 50%. The approximation is shown to break
down for observations at a single sidereal time, which indicates the approximation is
not likely to be an appropriate statistic for transient modelled signals such as compact
binary inspiral.

Unlike the exact B-statistic, which must be evaluated via a two-dimensional
numerical integral, our approximation (like the maximum-likelihood F-statistic) can
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be evaluated analytically, which should make it computationally more efficient, as
illustrated in section 4.4. This, combined with the better detection efficiency than the
F-statistic at the same false alarm rate, makes it a potentially useful replacement for,
or alternative to, the F-statistic in a semicoherent search which combines F-statistic
values at a range of signal parameters.
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Appendix A. Form and Behavior of the Metric Elements

Given some nearly monochromatic GW signal around frequency fy, the multi-detector
scalar product of two time series x and y, used in the definition (2.16), can be expressed
as

@w>52955%5R9Amﬁ“umfuv#, (A1)

where S;¥(fo) is the one-sided noise power spectral density around the frequency f

in detector X during time stretch I, and 7;*(f), y;* (f) are the corresponding Fourier-

transforms of % (¢), y* (¢) restricted to the time stretch . This assumes the data from

each detector X has been divided into short stretches of data [t;, t; + Tyg) of length Tig.
The metric components can be written as

I=A+B+2F and J=A+B—-2F and K=2C and L=A—-B (A2)

where, in the long-wavelength limit,

Tsft X\ 2 Tsft X\ 2 Tsft X1 X
A= d B= b d C= —ai'b
2 5i(y (@) and B=D s (1) and C=D oxfpsart
(A.3)

and F = 0 (so that [ = J). Asshown 13 [3], the more general expression, with a complex

frequency-dependent detector tensor d(f) and amplitude-modulation coefficients a(f)
and b(f), the (real) metric components can be more generally written as™

Tty X i X 2 an _ Tty CLX i X 2

=2 gxiy | )~ (RIF and T = 5 axslad (o) + 67 ()
(A.4a)
Lot i = Y s (o) = 0 (0] (o) + 7 (0] (Auab)

* Note that equation (A.3b) of [3] has the formulas for K and L reversed.
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Figure A1l. Plots of the metric element ratios K/I, L/I, and vV K? + L?/I versus sky
position of targeted source, along with cumulative probability distributions of these
ratios, assuming a randomly chosen sky location, using the assumption of a 25-hour
observation with LIGO Hanford Observatory (H1) beginning 2004 Jan 1 at 00:00 UTC

(GPS time 756950413).

In this form, we can see that the Cauchy-Schwarz inequality implies that

K4+ L= |L+iK[>?<1J; (A.5)

in the long-wavelength case, this becomes v K? + L2 <[ = J.
Prix and Krishnan [2] give an example of a Ty,s = 25hr observation of a source

at right ascension 2radians, declination —0.5radians, with a single detector (LIGO

Hanford, known as H1) beginning at GPS time 756950413 (2004 Jan 1 at 00:00 UTC)

and obtain metric components of values of A = 0.154 ‘E‘}S), B = 0.234 (be))’ and

C = —0.0104 22t which is equivalent to [ = J = 03885 ‘zk} K = —0.0207 °bs

Sn(fo)
and L = —0.0805 ‘st or K/I = —0.0533, L/I = —0.207. We explore the robustness

of those ratios in ﬁgure A1, which calculated them for the same observing time and
different sky positions. The ratio K/I is small (< 0.10) everywhere, while the ratio L/I
is smaller away from the celestial equator.

As an alternative to the arbitrarily chosen 25-hour observing time of [2], we can
consider the idealization that a long observation will include roughly the same amount
of data from each sidereal time, and construct the corresponding metric components for
this case. Under this idealization, the metric components will be independent of right
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Figure A2. Left: Plots of metric elements I, K, and L, and the ratios K/I and L/I
versus declination of targeted source, assuming an observation using LIGO Hanford
Observatory (H1) that results in a perfect average over sidereal time. The spacing in
declination is chosen to be proportional to sky area. Right: Cumulative probability
distributions of the metric element ratios K/I, L/I, and v K2 + L?/I for this case,
assuming a randomly chosen sky location.

ascension, allowing us to simply plot them versus declination. In figure A2 we plot the
metric elements and their ratios versus declination. We find, as in figure A1, the ratio
L/I can approach 0.50 near the celestial equator. However, this is specific to the choice
of single-detector observations with H1 only. If we assume equal amounts of data from
LIGO Hanford (H1) and LIGO Livingston (L1), we find that L/I < 0.15 over the entire
sky, as shown in figure A3. We also notice that K = 0 for this choice of observing
time. This is a geometrical result related to the symmetries of the quantity a*b* under
rotations of the Earth.

To give a more realistic example of a typical observing time, we consider the H1 and
L1 segments associated with advanced LIGO’s first observing run (O1), from the LIGO
Open Science Center[9]. We see that the ratios K/I and L/I, plotted in figure A4, are
small enough that a Taylor expansion should be promising.

As a worst-case example (and an illustration of why this approximation is better
suited to continuous-wave observations than to transients), in figure A5, we show
the relevant metric component ratios for an observation at a single time, assumed to

correspond to sidereal time 00:00 at the prime meridian. We see that in this case, the
bound v K? + L? < I is nearly saturated for much of the sky.

# https://doi.org/10.7935/K57P8W9ID
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Figure A3. Left: Plots of metric elements I, K, and L, and the ratios K/I and L/I
versus declination of targeted source, assuming an observation using LIGO Hanford
Observatory (H1) and LIGO Livingston Observatory (L1) that results in a perfect
average over sidereal time. The spacing in declination is chosen to be proportional
to sky area. Right: Cumulative probability distributions of the metric element ratios

K/I, L/I, and v K? + L?/I for this case, assuming a randomly chosen sky location.

Appendix B. Derivation of Taylor Expansion

Here we collect the detailed derivation of the Taylor-expanding B-statistic.
In terms of the polar representation,

AﬁMﬁf/vZﬂ = ]ARA\R cos(dp — Q/b\R) + ‘]ALA\L cos(¢r, — é;L)
T ALA, K sin(¢y — </b\L) + L cos(¢p — ggL)} LA A, [—K sin(¢y, — <$R) + L cos(¢y — (ZR)
(B.1)

and [see eqn (5.10) of [3]]

A M A” = TAZ + JA? + 24, A, [K sin(¢y — ¢) + Lcos(ds — )] (B.2)
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Figure A4. Plots of the metric element ratios K/I, L/I, and v K2 + L?/I versus sky
position of targeted source, along with cumulative probability distributions of these
ratios, assuming a randomly chosen sky location, for an observation corresponding to
the data segments (H1 and L1) from Advanced LIGO’s first observing run (O1).

so that

~

ANAyz)=1 (——A2 + ApAyn cos(¢y — &ER)) +J (—lAE + AL A, cos(¢y, — $L)>

[\)

+ K (= AgAysin(6 — &) + A sin(6y — 6.) — AAusin(o, — b))
L (= AAs cos(pn — 61) + AnA cos(on — 1) + Ay cos(o — b))
— Au(Au, 6ui A, D) + Aoy, 603 A1, 60)
+ [K sin(Ge — &) + Leos(be — 6,)]

X [ARAL (_ cos(¢pr — (ZR) cos(pr — ¢A5R) + sin(¢gr — CZR) sin(¢, — ¢L)) (
+ AR;{L COS(¢R - aﬁ) + ;{RAL COS(d)L - ¢A5L)}
+ [K COS((ZR - (EL) + Lsin(gR - ;ﬁi)]

[, (coston = B)sin(6, — 3 + sinfon — B cos(s. — )

B.3)

~

+ A A, sin(oy — dn) + A A, sin(¢, — gEL)]
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Figure A5. Plots of the metric element ratios K/I, L/I, and vV K? + L?/I versus sky
position of targeted source, along with cumulative probability distributions of these
ratios, assuming a randomly chosen sky location, for a brief observation at Greenwich
sidereal time 00:00.

The likelihood ratio can be expanded, to first order, as

-~

eAR(AR,¢R;AR,¢R)+AL(AL:¢L§AL7¢L)+A1(A§A) ~ eAR(AR7¢R;AR7¢R)eAL(ALaQbL;AL’(z)L) 1+ Al (A7 A)

(B.4)
In this form, we can factor the integrals in each of the terms; they all reduce to one of

AGAR )

three forms:

/0% /Ooo e_éAQHAgCOSW—@dA% =27 /000 €_£A2IO(IAA\)% (B.5a)

/ u / " A AR es6-9) oo — 3) VAdAde = 2 / e (rAR)AdA
o Jo ’ (B.5b)
/02” /0°° ¢~ 3APHARSO-D) in (5 — B) VA dAd = 0 (B.5¢)

where [,,(z) = i7" J,(ix) is the modified Bessel function, and we have used the Jacobi-
Anger expansion[4], which tells us that

(1ARE0-5) — 1(1AZ) + 23 (AR cos(ulp — ) (5.6)

n=1
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Both of the remaining integrals can be done using equation (11.4.28) of [4], which says,
in terms of the modified Bessel function, that, when Re(v + i) > 0 and Re(a?) > 0,

o0 I (452 ()" v+ b2
—a2t? -1 2 2 :“
tP L (bt) dt = —=24—=2" | F 1, — B.
/0 ‘ (62) 20+ T (v +1) " 1( > VT 42> (B7)

where 1 Fi(a, b, z) = M(a,b, z) is the confluent hypergeometric function. We apply this
with a*> = I/2, b =TA, p=1/2 and 3/2, and v = 0 and 1, respectively, in (B.5a) and
(B.5b), to get

27 00 1 ~
~LA24 TAA cos(¢p—9) dAdg . I (Z) l ﬂ
/0 /0 ‘ VA 27T23/4[1/4 1B 1 L, 5 (B.8a)
o A2+IAAcos(¢ ¢) \/_ I (5) 121\ 5 [2{2
/0 /0 Cos(gb gb) AdA d¢ = 27T23/4]1/4 11 Z) 2, T
(B.8b)

We can use these to evaluate the integral for the B-statistic (2.23) as

A (1) (1) 1 A2 1, JA?
B~ g (2”23/411/4 g | Pl R b

x {14+ [K sin(ggR - g/b\L) + Lcos(q/gR — gbL)] fAlRﬁL

A2 12 12 12
R) 1 lFl <ga2a J124L> 1 lFl (%727 L;R> lFl (%727 J§L>
17 +7 ) T ) 12
t\R (iL%) 16\,A (i;L%“) 151 <%717%>

Appendix C. Recovery of F-Statistic

Our method expands the B-statistic to first order in the metric components K and L. It
has been shown in [2] that the Bayes factor constructed with a prior uniform in the { A%}
is equivalent to the F-statistic, which we note in (2.20) has only zeroth- and first-order
terms in these quantities. This means that applying the Taylor-expansion method with
this prior should reproduce the exact F-statistic.

If we replace the isotropic prior (2.22) with a uniform prior pdf(A®, A%, A3, AZL’Hf) =
C, the B-statistic integral (2.23) becomes

/ / / / AEAY ) g AL g A2 dA% gAY
27 27
/ / / / A AL A d A dA, dby do,

(C.1)
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The Taylor expansion of the likelihood, and the angular integrals, proceed as in
Appendix B, and the only difference is that the two principal integrals (B.5a) and
(B.5b), become

27 S . - oo 9 ~
/ / e 2ATHTAACS(6-0) A JA dp = 2 / e 24 [ (IAA) AdA (C.2a)
0 0 0
2 poo N ~ - o -~
/ / e~ 2 ATHAACOS(9-0) cog(p — ) A2 dAdp = 2n / e 2N [ (IAA) A*dA (C.2b)
0 0 0

Using (B.7) with a®> = /2, b= Ig, i =2 and 3, and v = 0 and 1, respectively, we find,
in place of (B.8),

27 00 — ~ A2 A
/ / e~ FATHIARON6-0) A JA dgp — 2n F 10, 147 = Q—We# (C.3a)
0 0 I 2 !
27 [e'e) e ~ ~ A A2 A A2
/ / e—§A2+IAAcos(¢—¢) cos(gb . ¢) A2 dA dqb — # 1P (2, 2, %) = #613
0 0
(C.3b)

where we have used (13.6.12) of [4], which states that 1 F}(a,a,z) = €®. This then gives
a statistic of

B(z) ~ C (QTW) <277T) e T {1 + [K Sin((;ﬁ\R, — ggL) + LCOS(Q/Z;R — ggL)] A\RA\L(l +1-— 1)}
(C4)
So that, to first order in K and L,

o~

Ble) 1Az JAL [K sin(dn — o) + L cos(n — qﬁL)} AA, (C5)

1 ~
"By T 2 2

Which is indeed the form given in (2.20) for the exact F-statistic.

Appendix D. Relationship to High-SNR Approximation

Recent work[10] by Dhurandhar, Krishnan and Willis (hereafter DKW) contains a
different approximate expression for the B-statistic, derived in the limit of high signal-
to-noise ratio, but without assumptions on the form of the metric. In their notation,
the approximate form is written [[10] equation (104)]

50~ (3

To make contact with our results, we collect here the conversion between DKW’s

P
¢3BNB

(1B.]1Bs))?

(D.1)

notation and ours. Their metric elements are ( = [ = J (they limit attention to
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the long-wavelength limit) and v = L + iK, with k = |k| = VK% 4 L%2. They define
complex amplitudes

. 1 2 . i
Bl — h0672l¢0 %62“& — AR’€7§(3¢R,+¢L) — BZ (Dza)

L (1=y)2 ., ;
By = hoem‘bo%emw = Ae 2 (Ont30) — B (D.2b)

and a complex metric

¢ v 0 0
11l ¢ 0 O
N={N,}=- D.
0 0 x ¢
from which we see
1~ ~ ~ il .7 ~ i3 a7
SBINB = Re (At 04t 0[L — k] A,em3030))
’ 1oy 1oy o~ o SO SO (D.4)
= SIA 4 SJA 4 DA K sin(G — 61) + Leos(dn — du)| = F
and therefore their approximation can be written
2 e’
~ ~— D.
50~ (77— 7) | ©3

Written in this form, we see that the result is the same as equation (5.37) of [3]. The
difference between this and (3.4) is the normalization constant. (Note that DKW use
an improper prior equivalent to A = 272.)
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