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Abstract. We consider the Bayesian detection statistic for a targeted search for

continuous gravitational waves, known as the B-statistic. This is a Bayes factor

between signal and noise hypotheses, produced by marginalizing over the four

amplitude parameters of the signal. We show that by Taylor-expanding to first order

in certain averaged combinations of antenna patterns (elements of the parameter space

metric), the marginalization integral can be performed analytically, producing a closed-

form approximation in terms of confluent hypergeometric functions. We demonstrate

using Monte Carlo simulations that this approximation is as powerful as the full B-
statistic, and outperforms the traditional maximum-likelihood F-statistic, for several

observing scenarios which involve an average over sidereal times. We also show that

the approximation does not perform well for a near-instantaneous observation, so the

approximation is suited to continuous wave observations rather than transient modelled

signals such as compact binary inspiral.
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1. Introduction

The signal from a non-precessing source of gravitational waves (GWs) such as a rotating

neutron star or slowly-evolving binary system, can be described by phase-evolution

parameters, which determine the shape of the signal, and amplitude parameters. In the

case where the phase-evolution parameters are assumed to be known, the likelihood ratio

between models with and without signal is a function of the four amplitude parameters.

Jaranowski, Królak and Schutz [1] constructed a maximum-likelihood statistic (known

as the F -statistic), which is the basis of many existing searches for continuous GWs.

Prix and Krishnan [2] proposed a Bayesian alternative (the B-statistic) which instead

marginalized the likelihood ratio over these parameters, assuming a geometrically-

inspired prior distribution. Exact evaluation of the B-statistic requires integration over

the four-dimensional amplitude parameter space; Whelan et al [3] showed that two

of the integrals can be done analytically, but a two-dimensional numerical integration

remains. They also showed that the marginalization integrals can be done exactly if the

parameter-space metric (determined by averaged combinations of antenna patterns) has

a block-diagonal form. In this paper, we generalize this result to produce an analytical

approximation to the B-statistic by Taylor expanding to first order in the off-diagonal

metric elements.

This paper is laid out as follows: in section 2 we give a brief overview of the

background information and formalism related to this topic, including a discussion of

GW signal analysis and a description of the two detection statistics which already exist.

Section 3 contains the derivation of our approximation and in section 4 we test the power

of the approximation as a detection statistic. Section 5 concludes with a summary of

the results and their practical implications.

2. Formalism

2.1. Signal Parameters

We follow the conventions and notation of [3], where more details can be found. We

summarize the relevant expressions here. For a GW signal coming from a sky position

specified by right ascension α and declination δ, we can define a propagation unit vector
~k pointing from the source to the solar-system barycenter (SSB). The tensor GW can

then be resolved in a basis of traceless tensors transverse to ~k as

h
↔
(τ) = h+(τ) e

↔
+ + h×(τ) e

↔
× . (2.1)

For a nearly periodic signal, as from a rotating neutron star (NS), the polarization

components are

h+(τ) ≡
h0
2
(1 + χ2) cos[φ(τ) + φ0] and h×(τ) ≡ h0χ sin[φ(τ) + φ0] , (2.2)
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where χ = cos ι is the cosine of angle between the line of sight and the neutron star’s

rotation axis, and

h0 =
4G

c4
|Ixx − Iyy|Ω2

d
(2.3)

is the amplitude in terms of the equatorial quadrupole moments {Ixx, Iyy}, the rotation
frequency Ω, and the distance d to the source. The preferred polarization basis tensors

are given by

e↔+ = ε↔+ cos 2ψ + ε↔× sin 2ψ and e↔× = − ε↔+ sin 2ψ + ε↔× cos 2ψ . (2.4)

where ε↔+ = ~ı ⊗~ı − ~ ⊗ ~ and ε↔× = ~ı ⊗ ~ + ~ ⊗~ı are the fiducial basis tensors defined

using unit vectors orthogonal to ~k, with ~ı pointing “West on the sky” in the direction

of decreasing right ascension α, and ~ pointing “North on the sky” in the direction of

increasing declination δ. The polarization angle ψ measures the angle counter-clockwise

on the sky from ~ı to the NS’s equatorial plane.

The phase evolution φ(τ) in terms of the arrival time τ at the SSB can be written

in terms of NS rotation or spindown parameters, e.g.,

φ(τ) = 2π

(
f0τ + f1

τ 2

2
+ · · ·

)
, (2.5)

although it may be more complicated, e.g., for NSs in binary systems.

The strain, h, measured by an interferometric GW detector whose arms are parallel

to the unit vectors ~p1 and ~p2 is given by

h = h
↔
: d
↔

(2.6)

where‡
d
↔
=
~p1 ⊗ ~p1 − ~p2 ⊗ ~p2

2
(2.7)

is the detector tensor and : signifies the double dot product, defined by (~a⊗~b) : (~c⊗ ~d) =

(~a · ~d)(~b · ~c). The GW strain can also be expressed as

h = h+F+ + h×F× , (2.8)

where F+ and F× are the detector antenna pattern functions which depend on the 3

angles defining the source sky position and polarization basis relative to your detector,

which in our case would be the right ascension α, the declination δ and the polarization

angle ψ. If we separate out their dependence on ψ, then the pattern functions have the

form

F+(α, δ, ψ) = a(α, δ) cos 2ψ+ b(α, δ) sin 2ψ (2.9a)

F×(α, δ, ψ) = − a(α, δ) sin 2ψ + b(α, δ) cos 2ψ , (2.9b)

‡ We limit attention in this section to the long-wavelength limit, where the detectors are assumed to be

small compared to the gravitational wavelength c/f0, which is appropriate to most observations with

ground-based interferometric detectors. At higher frequencies, the detector tensor d
↔

(f) is frequency-

dependent and complex. See e.g.,[3] for more details.
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where a and b are amplitude modulation coefficients defined in terms of the detector

tensor d
↔
as

a ≡ ε↔+ : d
↔
, (2.10a)

b ≡ ε↔× : d
↔
. (2.10b)

These coefficients are defined with respect to the reference polarization basis and

depend both on the sky position of the GW source and the sidereal time at which

the measurement is taking place.

It is useful to divide the signal parameters into amplitude parameters§ {h0, χ, ψ, φ0}
and phase-evolution parameters such as the sky position {α, δ}, and any parameters

describing φ(τ). The dependence of the signal on the amplitude parameters can be

written simply as[1, 3]

h
↔
(τ ;A, λ) = Aµ̆ h

↔

µ̆(τ ;λ) , (2.11)

where the Einstein summation convention implies the sum
∑4

µ=1 over repeated indices.

The amplitudes {Aµ̆} are defined by‖

A1̆ = Ar cosφr and A2̆ = Ar sinφr ; (2.12a)

A3̆ = Al cosφl and A4̆ = Al sinφl , (2.12b)

where

Ar = h0

(
1 + χ

2

)2

and φr = φ0 + 2ψ ; (2.13a)

Al = h0

(
1− χ

2

)2

and φl = φ0 − 2ψ (2.13b)

are the amplitudes and phases of the right- and left-circularly-polarized components of

the signal, respectively.

2.2. Likelihood Function and Detection Statistics

If we denote the data recorded in the GW detector(s) as x, and assume those data to

consist of the signal Aµ̆hµ̆ plus Gaussian noise, the sampling distribution for the data

will be

pdf(x|A) ∝ exp

(
−1

2

(
x−Aµ̆hµ̆|x−Aµ̆hµ̆

))
(2.14)

The log-likelihood ratio will thus be

Λ({Aµ̆}; x) = ln
pdf(x|A)

pdf(x|0) = Aµ̆xµ̆ −
1

2
Aµ̆Mµ̆ν̆Aν̆ (2.15)

§ Note that φ0 is considered an amplitude parameter because it does not affect the time evolution of

the phase φ(τ) appearing in (2.2), which could be rewritten in terms of amplitudes hc = h0 cosφ0 and

hs = h0 sinφ0.
‖ Our coordinates {Aµ̆}, introduced in [3], are related to the more familiar Jaranowski-Królak-Schutz

(JKS) coordinates {Aµ} of [1] by A1 = A1̆ +A3̆, A2 = A2̆ −A4̆, A3 = −A2̆ −A4̆, A4 = A1̆ −A3̆.



Analytic B-stat Approximation 5

where xµ̆ ≡ (x|hµ̆) is the scalar product (see Appendix A) of the data with the template

waveform, and

{Mµ̆ν̆} ≡ {(hµ̆|hν̆)} =




I 0 L −K
0 I K L

L K J 0

−K L 0 J


 (2.16)

forms a metric on parameter space.

If we define {Mµ̆ν̆} as the matrix inverse of {Mµ̆ν̆}, we can write the maximum-

likelihood values of the amplitude parameters {Aµ̆} as

Âµ̆(x) = Mµ̆ν̆xν̆ , (2.17)

Since the maximum-likelihood parameters {Âµ̆(x)} contain equivalent information to

the projections {xν̆} (which form jointly sufficient statistics for the amplitude parameters

A), we can use {Âµ̆} as a representation of the relevant part of the data. Their sampling

distribution can be written as the multivariate Gaussian

pdf(Â|A) = (det 2πM)−1/2 exp

(
−1

2
(Âµ̆ −Aµ̆)Mµ̆ν̆(Âν̆ −Aν̆)

)
(2.18)

This is useful for conducting Monte Carlo simulations (as was done in [2]): one need

not simulate the full GW data, only generate draws of the four maximum-likelihood

parameters {Âν̆} representing the data.

It is also convenient to write the log-likelihood ratio in terms of Â as well:

Λ(A; Â) = Aµ̆Mµ̆ν̆Âν̆ − 1

2
Aµ̆Mµ̆ν̆Aν̆ . (2.19)

This is written explicitly in terms of the polar representation in Appendix B.

The F -statistic[1] is defined as the maximized log-likelihood ratio,

F(x) = max
A

Λ(A; x) = Λ(Â; x) =
1

2
Âµ̆Mµ̆ν̆Âν̆

=
1

2
IÂ2

r
+

1

2
JÂ2

l
+ ÂrÂl

[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

] (2.20)

The B-statistic[2] is defined as the Bayes factor between a model Hs with a signal of

the form (2.11) plus (Gaussian) noise and a model Hn with only noise:

B(x) = pdf(x|Hs)

pdf(x|Hn)
=

∫
pdf(x|A) pdf(A|Hs) d

4A
pdf(x|0) =

∫
eΛ({A

µ̆};x) pdf(A|Hs) d
4A (2.21)

Comparing the last form in (2.21) to the first form in (2.20), we see that while F(x)

is constructed by maximizing the (log-)likelihood ratio over the unknown amplitude

parameters, B(x) is made by averaging the likelihood ratio over those parameters,

weighted by the prior distribution pdf(A|Hs). The prior is taken to be uniform in

χ ∈ (−1, 1), ψ ∈ (−π/4.π/4) and φ0 ∈ (0, 2π), so that

pdf(h0, χ, ψ, φ0|Hs) =
pdf(h0|Hs)

2π2
(2.22)
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The convention introduced in [2] is to use an improper prior pdf(h0|Hs) = A, 0 < h <∞,

so that

B(x) = A

2π2

∫ 2π

0

∫ 1

−1

∫ π/4

−π/4

∫ ∞

0

eΛ({A
µ̆};x) dh0 dψ dχ dφ0

=
A

8π2

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0

eΛ({A
µ̆};x)dAr dAl dφr dφl√

ArAl

(2.23)

Note that the prior on χ and ψ corresponds to an isotropic distribution on the source’s

orientation, but the prior on h0 is an arbitrary choice motivated by convenience and

mathematical simplicity.

3. An approximate form for the B-statistic

Previous work [3] showed that the B-statistic integral (2.23) can be exactly evaluated in

the case where K = 0 = L, so that the metric (2.16) becomes diagonal and the left- and

right-circularly polarized subspaces decouple. We show in Appendix A that K and L

can be small compared to I = J , especially in continuous-wave observations containing

an average over sidereal times and/or detectors.

When K and L are small compared to I and J , it is fruitful to consider a Taylor

expansion of the B-statistic integral (2.23), which we carry out in Appendix B, and find

B(0) ≈ A[Γ(1
4
)]2

25/2(IJ)1/4
(3.1)

and

ln
B(x)
B(0) ≈ ln 1F1

(
1

4
, 1,

IÂ2
r

2

)
+ln 1F1

(
1

4
, 1,

JÂ2
l

2

)
+
[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

]
ÂrÂl

×


1
4


1F1

(
5
4
, 2, IÂ

2
r

2

)

1F1

(
1
4
, 1, IÂ

2
r

2

)


+

1

4


1F1

(
5
4
, 2, JÂ

2
l

2

)

1F1

(
1
4
, 1, JÂ

2
l

2

)


− 1

16


1F1

(
5
4
, 2, IÂ

2
r

2

)

1F1

(
1
4
, 1, IÂ

2
r

2

)




1F1

(
5
4
, 2, JÂ

2
l

2

)

1F1

(
1
4
, 1, JÂ

2
l

2

)






(3.2)

where 1F1(a, b, z) =M(a, b, z) is the confluent hypergeometric function [4] and the terms

omitted are second order and higher in K and/or L. It is convenient to factor out the

constant B(0), because the detection statistic ln B(x)
B(0)

is more directly comparable to

F(x). (For example, both vanish when x = 0.)

We can compare this to several limiting cases and alternative forms. First, note

that if K = 0 = L, we recover the result of section 6.1 of [3]. [See equation (6.11) of

that work.] Second, in the limit that Âr and Âl are both large, the asymptotic form of
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the confluent hypergeometric functions [see identity (13.5.1) of [4]]

1F1

(
1

4
, 1,

IÂ2

2

)
Â→∞−→ 1

Γ(1
4
)

(
IÂ2

2

)−3/4

eIÂ
2/2 (3.3a)

1F1

(
5

4
, 2,

IÂ2

2

)
Â→∞−→ 1

Γ(5
4
)

(
IÂ2

2

)−3/4

eIÂ
2/2 (3.3b)

says that

ln
B(x)
B(0)

Âr,Âl→∞−→ 1

2
IÂ2

r
+

1

2
JÂ2

l
+
[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

]
ÂrÂl

− 3

4
ln

(
1

2
IÂ2

r

)
− 3

4
ln

(
1

2
JÂ2

l

)
− 2 ln Γ

(
1

4

)

= F − 3

2
ln(ÂrÂl) + const (3.4)

which is the result in equation (5.37) of [3].

4. Evaluation of Approximation

We evaluate the approximation for three cases of interest, which are further detailed in

Appendix A:

(i) The case originally considered in [2]: a Tobs = 25hr observation of a source at

right ascension 2 radians, declination −0.5 radians, with a single detector (LIGO

Hanford, known as H1) beginning at GPS time 756950413 (2004 Jan 1 at 00:00

UTC), for which I = J = 0.388 Tobs
Sn(f0)

, K = −0.0207 Tobs
Sn(f0)

, and L = −0.0805 Tobs
Sn(f0)

.

so K/I = −0.0533 and L/I = −0.207. This is a typical long-observation case.¶
(ii) An observation with perfect sidereal-time averaging of a source on the celestial

equator (declination 0) using only H1. As shown in Appendix A, this is a worst-

case long-observation scenario, for which I = J = 0.305 Tobs
Sn(f0)

, K = 0, and

L = −0.1479 Tobs
Sn(f0)

. so K/I = 0 and L/I = −0.485. It provides an intermediate

case where the approximation has not broken down completely.

(iii) A short two-detector (LIGO Hanford and Livingston) observation of a source

at right ascension 2 radians, declination −0.5 radians, at Greenwich sidereal time

00:00, for which I = J = 0.679 Tobs
Sn(f0)

, K = 0.1604 Tobs
Sn(f0)

, and L = 0.6527 Tobs
Sn(f0)

.

so K/I = 0.236 and L/I = 0.961. This is a case where we do not expect the

approximation to perform well.

¶ Note that this case is slightly less favorable than another realistic alternative with the same sky

position, which averages over the O1 segments from LIGO Hanford and LIGO Livingston, for which

I = J = 0.373 Tobs

Sn(f0)
, K = −0.0120 Tobs

Sn(f0)
, and L = −0.0385 Tobs

Sn(f0)
. so K/I = −0.0321 and

L/I = −0.103. However, as we shall see, the approximation performs well enough for the case considered

that this more favorable case would be a redundant illustration.
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Note that in the investigations in Appendix A, three factors tend to impact the size of

L/I and K/I and the validity of the approximation:

• Observations which average roughly evenly over sidereal time suppress L/I and

especially K/I. Note that this is a side effect of long observation times, but the

observation time itself is not important once it exceeds one sidereal day.

• Sources closer to the poles produce a better approximation than sources closer to

the equator.

• Averaging over more detectors improves the approximation.

So, although case (ii) involves perfect sidereal averaging, it is not as good an

approximation as case (i) because case (ii) deliberately chooses a worst-case sky location.

4.1. Numerical Evaluation of B-statistic Integral

To compare our approximate form of the B-statistic to its exact value, we have to

evaluate the integral (2.23). It was shown in [3] that the log-likelihood ratio (2.15) can

be written in physical coordinates as

Λ({Aµ̆}; x) = h0 ω(x;χ, ψ) cos(φ0 − ϕ0(x;χ, ψ))−
h20[γ(χ, ψ)]

2

2
(4.1)

and the h0 and φ0 integrals performed explicitly to reduce the B-statistic to a double

integral+

B(x) = A√
2π

∫ 1

−1

∫ π/4

−π/4

I0(ζ(x;χ, ψ)) e
ζ(x;χ,ψ)

γ(χ, ψ)
dψ dχ , (4.2)

where

ζ(x;χ, ψ) =
[ω(x;χ, ψ)]2

4[γ(χ, ψ)]2
. (4.3)

We note here the explicit forms of γ(χ, ψ) and ω(x;χ, ψ). (The form of ϕ0(x;χ, ψ) is

irrelevant to the result of the integral.) From (B.2) we can see

γ(χ, ψ)2 =
Aµ̆Mµ̆ν̆Aν̆

h20
=

1

h20

[
IA2

r
+ JA2

l
+ 2ArAl [K sin(φr − φl) + L cos(φr − φl)]

]

= I

(
1 + χ

2

)4

+ J

(
1− χ

2

)4

+ 2

(
1 + χ

2

)2(
1− χ

2

)2

[K sin(4ψ) + L cos(4ψ)] .

(4.4)

while

ω(x;χ, ψ) cos(φ0 − ϕ0(x;χ, ψ)) =
Aµ̆xµ̆
h0

=

(
1 + χ

2

)2

(x1̆ cosφr + x2̆ sinφr) +

(
1− χ

2

)2

(x3̆ cosφl + x4̆ sinφl)

= U cosφ0 + V sinφ0 (4.5)

+ A similar reduction to a two-dimensional integral appears in [5], with the integrand empirically

estimated rather than evaluated analytically.
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so [ω(x;χ, ψ)]2 = U2 + V 2, where

U = cos 2ψ

[(
1 + χ

2

)2

x1̆ +

(
1− χ

2

)2

x3̆

]
+ sin 2ψ

[(
1 + χ

2

)2

x2̆ −
(
1− χ

2

)2

x4̆

]

(4.6a)

V = cos 2ψ

[(
1 + χ

2

)2

x2̆ +

(
1− χ

2

)2

x4̆

]
− sin 2ψ

[(
1 + χ

2

)2

x1̆ −
(
1− χ

2

)2

x3̆

]

(4.6b)

In the simulations that follow, we evaluate the integrals for the B-statistic using a 3000-

point Monte Carlo integration on the space χ ∈ (−1, 1), ψ ∈ (−π/4, π/4). This has the
advantage that, even when the integrand depends only weakly on ψ, we still estimate

the χ integral accurately. For 3000 points, we see Monte Carlo errors of O(1%).

4.2. Comparison of Statistic Values

We compare our approximation to the numerically-evaluated exact B-statistic, and to

the F -statistic. Each statistic is a function of the four data values {xµ̆}. However, if we
express it in terms of the maximum-likelihood parameters {Âµ̆}, we see that all of the

statistics are independent of the combination φ̂r+ φ̂l = 2φ̂0 and depend on the angles φ̂r

and φ̂l only in the combination φ̂r− φ̂l = 4ψ̂. Thus we can consider the statistics on the

three-dimensional space parameterized by Âr ≥ 0, Âl ≥ 0, and φ̂r − φ̂l ∈ [0, 2π). For

visualization purposes, we plot contours of constant statistic versus Âr and Âl on slices of

constant φ̂r−φ̂l, in analogy to Figure 3 of [3], which considered a metric withK = 0 = L,

for which the statistics were independent of φ̂r and φ̂l. If we plot φ̂r − φ̂l = 0 in the

first quadrant and φ̂r− φ̂l = π in the second, we are effectively plotting Âr cos(φ̂r− φ̂l)

versus Âl on the slice sin(φ̂r − φ̂l) = 0. Likewise, if we plot φ̂r − φ̂l = π
2
in the first

quadrant and φ̂r − φ̂l = −π
2
in the second, we are effectively plotting Âr sin(φ̂r − φ̂l)

versus Âl on the slice cos(φ̂r−φ̂l). Since the approximate B-statistic and the F -statistic

both depend on the combination K sin(φr−φl)+L cos(φr−φl), the former slice focuses

on the impact of L and the second on the impact of K. Note that another choice of

slice would be to chose φr − φl = tan−1
(
− L
K

)
, so that the K-and-L-dependent part of

the statistics vanished, or φr − φl = tan−1
(
K
L

)
, which would maximize the impact of

this term. In practice, for the examples we chose, |L| is significantly larger than |K|, so
these slices would be similar to the ones we plot.

We choose our contours for these plots to correspond to specific false-alarm

probabilities (estimated by drawing 107 random points {Âµ̆} from a Gaussian with

zero mean and variance-covariance matrix {Mµ̆ν̆}) rather than specific statistic values.

In figure 1, we see that for the case (i), with K/I = −0.0533 and L/I = −0.207, the

approximation works well and the approximate and exact B-statistic contours are nearly
indistinguishable. Figure 2 shows case (ii), for which K/I = 0 and L/I = −0.485.

Some discrepancy is visible for low false-alarm rates when the maximum-likelihood value

corresponds to linear polarization with ψ̂ ≈ 0, i.e., Âre
iφ̂r ≈ Âle

iφ̂l . Finally, in figure 3
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Figure 1. Comparison of B-statistic (2.23) and approximation (3.2), along with F-

statistic (2.20); using the assumptions of a 25-hour observation beginning 2004 Jan

1 at 00:00 UTC (GPS time 756950413) [case (i)], for which K/I = −0.0533 and

L/I = −0.207. The statistics depend on the data through the maximum-likelihood

parameters Âr, Âl, and φ̂r − φ̂l. Top: the slice sin(φ̂r − φ̂l) = 0, for which the L-

dependent terms of the statistics are important; bottom: the slice cos(φ̂r− φ̂l) = 0, for

which the K-dependent terms of the statistics are important. The contours of constant

exact and approximate statistic are nearly indistinguishable, indicating that this is a

good approximation for these metric values.
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Figure 2. Comparison of B-statistic and approximation, along with F-statistic,

assuming a source on the celestial equator and H1 observations which evenly sample

sidereal time [case (ii)], for which K/I = 0 and L/I = −0.485, contours and slices

constructed as in figure 1. There is some discrepancy between the approximate and

exact B-statistic contours at low false alarm rate in the case of linear polarization

Âr ≈ Âl. Note that the disagreement for this contour in other directions is because

it is drawn at the same false alarm probability, so the approximate B-statistic contour

must be inside the exact B-statistic contour to compensate for the deformation in one

direction.



Analytic B-stat Approximation 12

5 4 3 2 1 0 1 2 3 4 5

Âr
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Figure 3. Comparison of B-statistic and approximation, along with F-statistic,

assuming a single Greenwich sidereal time of 00:00 [case (iii)], for which K/I = 0.236

and L/I = 0.961, contours and slices constructed as in figure 1. Now the contours for

the approximate B-statistic are quite far off of those of the exact B-statistic. In fact,

the entirety of both plots lie above the median of the approximate B-statistic under

the no-signal hypothesis; the contour in the upper left of the top plot is a false alarm

probability of 0.05, and the one in the center of the lower plot is 0.0005. The origin

Âr = 0 = Âl is at the 98th percentile of the approximate B-statistic, but the minimum

of the exact B-statistic. Thus the approximation is, as expected, inappropriate for a

value of
√
K2 + L2/I so close to unity.
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Figure 4. ROC curves for B-statistic and approximation, along with F-statistic,

using the metric from case (i) (see figure 1). In this case, the approximate B-statistic
performs identically to the exact one. Compare figure 3 of [2].

we show the case (iii), with K/I = 0.236 and L/I = 0.961. The approximation performs

badly, as we’d expect for a first-order expansion in a quantity close to unity.

4.3. Monte Carlo Simulations

To evaluate the performance of our B-statistic approximation, we produced Monte

Carlo simulations by drawing 106 sets of signal parameters, using a fixed value of

h0 = 10Sn(f0)
Tobs

and drawing the parameters χ, ψ, and φ0 from uniform distributions.

Each of these sets of parameters was converted into a point Aµ̆, and then a signal

Âµ̆ was generated by drawing from a Gaussian with mean Aµ̆ and variance-covariance

matrix {Mµ̆ν̆}. A receiver-operating-characteristic (ROC) curve was generated for each

statistic by plotting the fraction of signal points above a signal threshold (detection

probability) against the fraction of noise points (described in the previous section) above

the same threshold. The latter fraction is known as false-alarm probability, Type I error

probability, or, in the language of hypothesis testing, significance. A superior detection

statistic will have a higher detection efficiency at a given false-alarm probability, and

thus be found above and to the left of an inferior one. Note that while an extension

of the Neyman-Pearson lemma due to Searle[6] states that the Bayes factor will be the
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Figure 5. ROC curves for B-statistic and approximation, along with F-statistic, using

the metric from case (ii) (see figure 2). Even though K/I = 0 and L/I = −0.485, the

approximate B-statistic, which is Taylor expanded in K/I and L/I, still performs as

well as the exact B-statistic (and better than the F-statistic) in this Monte Carlo.

optimal test statistic for a Monte Carlo using the same prior, this is not guaranteed to

be the case here, since the delta-function prior on h0 is not the same as the uniform

prior used in defining the statistic.

In figure 4 we show the ROC curve for case (i), in which our approximation was

shown to match the exact B-statistic well (see figure 1). As expected, the approximate

B-statistic performs as well as the exact one, and both outperform the F -statistic, as

shown in [2]. In figure 5 we show the ROC curve for case (ii), where our approximation

was shown in figure 2 to have some discrepancies with the exact B-statistic. Nonetheless,
we see that it again performs as well as the exact B-statistic and better than the F -

statistic. In figure 6 we show the ROC curve for case (iii), where our approximation was

shown in figure 3 to disagree considerably with the exact B-statistic. Unsurprisingly, we
find this approximation to be a poor detection statistic in this scenario, underperforming

both the exact B-statistic and the F -statistic.

4.4. Computation Time

.
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Figure 6. Comparison of B-statistic and approximation, along with F-statistic, using

the metric from case (iii) (see figure 3). Here K/I = 0.236 and L/I = 0.961, and we

see indeed that the approximate B-statistic performs poorly, considerably below both

the exact B-statistic and the F-statistic.

A comprehensive study of the computation time of the three statistics (F -statistic,

numerically-evaluated B-statistic and B-statistic approximation) is beyond the scope

of this project, but we report here some timing statistics based on the computations

used to produce the plots for this paper. The computation was done in Python, using

the Scientific Python libraries [7]. One should avoid reading too much into the exact

quantitative computing cost, given that 1) the Monte Carlo integration to evaluate

the numerical B-statistic was not exhaustively optimized, and 2) the multi-dimensional

arrays used in the Monte Carlo integration were too large to fit in memory, and so had to

be broken into pieces which were looped over. Note that because the F -statistic and the

approximate B-statistic are computed using many of the same quantities, the standard

version of the code computes them together in one function. However, an additional

test was done with the two in separate functions.

The timing measurements are summarized in table 1. The combined F -statistic

and approximate B-statistic computation took O(1 − 2 µs) per evaluation, while the

numerical integration for the exact B-statistic took O(1ms) per evaluation. A separate

test indicates that most of the cost of the former function is in the approximate B-
statistic computation.
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Table 1. Results of timing measurements. The Monte Carlo simulations for this

paper included some runs with 106 and some runs with 107 evaluations of the various

functions. The standard code included one function which calculated the F-statistic

(2.20) together with the approximate B-statistic (3.2), and another which computed

(by 3000-point Monte Carlo integration) the “exact” B-statistic integral (2.23). The

combined F-statistic and approximate B-statistic computation took O(1 − 2 µs) per

evaluation, while the numerical integration for the exact B-statistic took O(1ms) per

evaluation. A separate test indicates that most of the cost of the former function is

in the approximate B-statistic computation. Note that the absolute numbers are not

meant to be definitive, as described in the text.

Function # runs (106 calcs) # runs (107 calcs) median time/calcs (µs)

F & approx B 7 6 0.94

F 6 6 0.04

approx B 6 6 0.63

numerical B 7 7 943.89

Implementation of the B-statistic approximation in the LSC Algorithms Library

[8] is planned for the future. One potential challenge is that the approximate B
statistic is expressed in terms of confluent hypergeometric functions, which may be more

time-consuming to evaluate than the algebraic functions involved in the F -statistic, as

indicated by the Python tests presented here. Additionally, direct evaluation of these

confluent hypergeometric functions for large-amplitude signals can produce overflow,

even though the final approximation in terms of their logarithms and ratios may be well-

behaved. It may be necessary to supplement standard library functions with strategic

use of asymptotic forms.

5. Conclusions

We have produced an analytic approximation to the B-statistic, a Bayesian detection

statistic for continuous gravitational waves based on a Bayes factor between signal

and noise hypotheses. This approximation is based on a Taylor expansion in the

parameters K/I and L/I, which are related to observation-averaged combinations of

antenna patterns, and depend on the sky position of the source, detectors involved in

the observation, and distribution of the observations in sidereal time. For observations

which average over a range of sidereal times, these parameters tend to be small enough to

produce a good first-order approximation, and we showed via Monte Carlo simulations

that the approximate statistic performed as well as the exact B-statistic, even for a case

with an expansion parameter approaching 50%. The approximation is shown to break

down for observations at a single sidereal time, which indicates the approximation is

not likely to be an appropriate statistic for transient modelled signals such as compact

binary inspiral.

Unlike the exact B-statistic, which must be evaluated via a two-dimensional

numerical integral, our approximation (like the maximum-likelihood F -statistic) can
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be evaluated analytically, which should make it computationally more efficient, as

illustrated in section 4.4. This, combined with the better detection efficiency than the

F -statistic at the same false alarm rate, makes it a potentially useful replacement for,

or alternative to, the F -statistic in a semicoherent search which combines F -statistic

values at a range of signal parameters.
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Appendix A. Form and Behavior of the Metric Elements

Given some nearly monochromatic GW signal around frequency f0, the multi-detector

scalar product of two time series x and y, used in the definition (2.16), can be expressed

as

(x|y) ≡
∑

Xl

4

SXl (f0)
Re

∫ ∞

0

x̃X∗
l (f) ỹXl (f) df , (A.1)

where SXl (f0) is the one-sided noise power spectral density around the frequency f0
in detector X during time stretch l, and x̃Xl (f), ỹ

X
l (f) are the corresponding Fourier-

transforms of xX(t), yX(t) restricted to the time stretch l. This assumes the data from

each detector X has been divided into short stretches of data [tl, tl+Tsft) of length Tsft.

The metric components can be written as

I = A+B + 2E and J = A+B − 2E and K = 2C and L = A− B (A.2)

where, in the long-wavelength limit,

A =
∑

Xl

Tsft
SXl (f0)

(
aXl
)2

and B =
∑

Xl

Tsft
SXl (f0)

(
bXl
)2

and C =
∑

Xl

Tsft
SXl (f0)

aXl b
X
l

(A.3)

and E = 0 (so that I = J). As shown in [3], the more general expression, with a complex

frequency-dependent detector tensor d
↔
(f) and amplitude-modulation coefficients a(f)

and b(f), the (real) metric components can be more generally written as∗

I =
∑

Xl

Tsft
SXl (f0)

∣∣aXl (f0)− ibXl (f0)
∣∣2 and J =

∑

Xl

Tsft
SXl (f0)

∣∣aXl (f0) + ibXl (f0)
∣∣2

(A.4a)

L+ iK =
∑

Xl

Tsft
SXl (f0)

[
aXl (f0)− ibXl (f0)

]∗ [
aXl (f0) + ibXl (f0)

]
(A.4b)

∗ Note that equation (A.3b) of [3] has the formulas for K and L reversed.
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Figure A1. Plots of the metric element ratios K/I, L/I, and
√
K2 + L2/I versus sky

position of targeted source, along with cumulative probability distributions of these

ratios, assuming a randomly chosen sky location, using the assumption of a 25-hour

observation with LIGO Hanford Observatory (H1) beginning 2004 Jan 1 at 00:00 UTC

(GPS time 756950413).

In this form, we can see that the Cauchy-Schwarz inequality implies that

K2 + L2 = |L+ iK|2 ≤ IJ ; (A.5)

in the long-wavelength case, this becomes
√
K2 + L2 ≤ I = J .

Prix and Krishnan [2] give an example of a Tobs = 25hr observation of a source

at right ascension 2 radians, declination −0.5 radians, with a single detector (LIGO

Hanford, known as H1) beginning at GPS time 756950413 (2004 Jan 1 at 00:00 UTC)

and obtain metric components of values of A = 0.154 Tobs
Sn(f0)

, B = 0.234 Tobs
Sn(f0)

, and

C = −0.0104 Tobs
Sn(f0)

, which is equivalent to I = J = 0.388 Tobs
Sn(f0)

, K = −0.0207 Tobs
Sn(f0)

,

and L = −0.0805 Tobs
Sn(f0)

. or K/I = −0.0533, L/I = −0.207. We explore the robustness

of those ratios in figure A1, which calculated them for the same observing time and

different sky positions. The ratio K/I is small (< 0.10) everywhere, while the ratio L/I

is smaller away from the celestial equator.

As an alternative to the arbitrarily chosen 25-hour observing time of [2], we can

consider the idealization that a long observation will include roughly the same amount

of data from each sidereal time, and construct the corresponding metric components for

this case. Under this idealization, the metric components will be independent of right
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Figure A2. Left: Plots of metric elements I, K, and L, and the ratios K/I and L/I

versus declination of targeted source, assuming an observation using LIGO Hanford

Observatory (H1) that results in a perfect average over sidereal time. The spacing in

declination is chosen to be proportional to sky area. Right: Cumulative probability

distributions of the metric element ratios K/I, L/I, and
√
K2 + L2/I for this case,

assuming a randomly chosen sky location.

ascension, allowing us to simply plot them versus declination. In figure A2 we plot the

metric elements and their ratios versus declination. We find, as in figure A1, the ratio

L/I can approach 0.50 near the celestial equator. However, this is specific to the choice

of single-detector observations with H1 only. If we assume equal amounts of data from

LIGO Hanford (H1) and LIGO Livingston (L1), we find that L/I . 0.15 over the entire

sky, as shown in figure A3. We also notice that K = 0 for this choice of observing

time. This is a geometrical result related to the symmetries of the quantity aXbX under

rotations of the Earth.

To give a more realistic example of a typical observing time, we consider the H1 and

L1 segments associated with advanced LIGO’s first observing run (O1)♯, from the LIGO

Open Science Center[9]. We see that the ratios K/I and L/I, plotted in figure A4, are

small enough that a Taylor expansion should be promising.

As a worst-case example (and an illustration of why this approximation is better

suited to continuous-wave observations than to transients), in figure A5, we show

the relevant metric component ratios for an observation at a single time, assumed to

correspond to sidereal time 00:00 at the prime meridian. We see that in this case, the

bound
√
K2 + L2 ≤ I is nearly saturated for much of the sky.

♯ https://doi.org/10.7935/K57P8W9D



Analytic B-stat Approximation 20

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

S
ca
le
d
M
et
ri
c
C
m
p
t

Perfect averaging, H1 and L1

I

K

L

-90 -60 -30 0 30 60 90

Declination (degrees)

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

M
et
ri
c
C
m
p
t
R
a
ti
o

K/I

L/I

−0.10 −0.05 0.00 0.05 0.10

Metric Component Ratio

0.0

0.2

0.4

0.6

0.8

1.0

C
u
m
u
la
ti
v
e
D
is
tr
ib
u
ti
o
n

Perfect averaging, H1 and L1

K/I

L/I
√
K2 + L2/I

Figure A3. Left: Plots of metric elements I, K, and L, and the ratios K/I and L/I

versus declination of targeted source, assuming an observation using LIGO Hanford

Observatory (H1) and LIGO Livingston Observatory (L1) that results in a perfect

average over sidereal time. The spacing in declination is chosen to be proportional

to sky area. Right: Cumulative probability distributions of the metric element ratios

K/I, L/I, and
√
K2 + L2/I for this case, assuming a randomly chosen sky location.

Appendix B. Derivation of Taylor Expansion

Here we collect the detailed derivation of the Taylor-expanding B-statistic.
In terms of the polar representation,

Aµ̆Mµ̆ν̆Âν̆ = IArÂr cos(φr − φ̂r) + JAlÂl cos(φl − φ̂l)

+ArÂl

[
K sin(φr − φ̂l) + L cos(φr − φ̂l)

]
+AlÂr

[
−K sin(φl − φ̂r) + L cos(φl − φ̂r)

]

(B.1)

and [see eqn (5.10) of [3]]

Aµ̆Mµ̆ν̆Aν̆ = IA2
r
+ JA2

l
+ 2ArAl [K sin(φr − φl) + L cos(φr − φl)] (B.2)
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Figure A4. Plots of the metric element ratios K/I, L/I, and
√
K2 + L2/I versus sky

position of targeted source, along with cumulative probability distributions of these

ratios, assuming a randomly chosen sky location, for an observation corresponding to

the data segments (H1 and L1) from Advanced LIGO’s first observing run (O1).

so that

Λ(A; x) = I

(
−1

2
A2

r
+ ArÂr cos(φr − φ̂r)

)
+ J

(
−1

2
A2

l
+ AlÂl cos(φl − φ̂l)

)

+K
(
−ArAl sin(φr − φl) + ArÂl sin(φr − φ̂l)− ÂrAl sin(φl − φ̂r)

)

+ L
(
−ArAl cos(φr − φl) + ArÂl cos(φr − φ̂l) + ÂrAl cos(φl − φ̂r)

)

= Λr(Ar, φr; Âr, φ̂r) + Λl(Al, φl; Âl, φ̂l)

+
[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

]

×
[
ArAl

(
− cos(φr − φ̂r) cos(φr − φ̂r) + sin(φr − φ̂r) sin(φl − φ̂l)

)

+ ArÂl cos(φr − φ̂r) + ÂrAl cos(φl − φ̂l)
]

+
[
K cos(φ̂r − φ̂l) + L sin(φ̂r − φ̂l)

]

×
[
ArAl

(
cos(φr − φ̂r) sin(φl − φ̂l) + sin(φr − φ̂r) cos(φl − φ̂l)

)

+ ArÂl sin(φr − φ̂r) + ÂrAl sin(φl − φ̂l)

]

(B.3)
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Figure A5. Plots of the metric element ratios K/I, L/I, and
√
K2 + L2/I versus sky

position of targeted source, along with cumulative probability distributions of these

ratios, assuming a randomly chosen sky location, for a brief observation at Greenwich

sidereal time 00:00.

The likelihood ratio can be expanded, to first order, as

eΛ({A
µ̆};x) = eΛr(Ar,φr;Âr,φ̂r)+Λl(Al,φl;Âl,φ̂l)+Λ1(A;Â) ≈ eΛr(Ar,φr;Âr,φ̂r)eΛl(Al,φl;Âl,φ̂l)

(
1 + Λ1(A; Â)

)

(B.4)

In this form, we can factor the integrals in each of the terms; they all reduce to one of

three forms:
∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂)dAdφ√

A
= 2π

∫ ∞

0

e−
I
2
A2

I0(IAÂ)
dA√
A

(B.5a)

∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂) cos(φ− φ̂)

√
AdAdφ = 2π

∫ ∞

0

e−
I
2
A2

I1(IAÂ)
√
AdA

(B.5b)
∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂) sin(φ− φ̂)

√
AdAdφ = 0 (B.5c)

where In(x) = i−nJn(ix) is the modified Bessel function, and we have used the Jacobi-

Anger expansion[4], which tells us that

eIAÂ cos(φ−φ̂) = I0(IAÂ) + 2
∞∑

n=1

In(IAÂ) cos(n[φ− φ̂]) . (B.6)
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Both of the remaining integrals can be done using equation (11.4.28) of [4], which says,

in terms of the modified Bessel function, that, when Re(ν + µ) > 0 and Re(a2) > 0,

∫ ∞

0

e−a
2t2 tµ−1Iν(bt) dt =

Γ
(
ν+µ
2

) (
b
2a

)ν

2aµΓ(ν + 1)
1F1

(
ν + µ

2
, ν + 1,

b2

4a2

)
(B.7)

where 1F1(a, b, z) = M(a, b, z) is the confluent hypergeometric function. We apply this

with a2 = I/2, b = IÂ, µ = 1/2 and 3/2, and ν = 0 and 1, respectively, in (B.5a) and

(B.5b), to get

∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂)dAdφ√

A
= 2π

Γ
(
1
4

)

23/4I1/4
1F1

(
1

4
, 1,

IÂ2

2

)
(B.8a)

∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂) cos(φ− φ̂)

√
AdAdφ = 2π

Γ
(
5
4

)
Â

23/4I1/4
1F1

(
5

4
, 2,

IÂ2

2

)

(B.8b)

We can use these to evaluate the integral for the B-statistic (2.23) as

B(x) ≈ A

8π2

(
2π

Γ
(
1
4

)

23/4I1/4

)(
2π

Γ
(
1
4

)

23/4J1/4

)
1F1

(
1

4
, 1,

IÂ2
r

2

)
1F1

(
1

4
, 1,

JÂ2
l

2

)

×



1 +

[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

]
ÂrÂl

×


1
4


1F1

(
5
4
, 2, IÂ

2
r

2

)

1F1

(
1
4
, 1, IÂ

2
r

2

)


+

1

4


1F1

(
5
4
, 2, JÂ

2
l

2

)

1F1

(
1
4
, 1, JÂ

2
l

2

)


− 1
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
1F1

(
5
4
, 2, IÂ

2
r

2

)

1F1

(
1
4
, 1, IÂ

2
r

2

)




1F1

(
5
4
, 2, JÂ

2
l

2

)

1F1

(
1
4
, 1, JÂ

2
l

2

)









(B.9)

Appendix C. Recovery of F-Statistic

Our method expands the B-statistic to first order in the metric components K and L. It

has been shown in [2] that the Bayes factor constructed with a prior uniform in the {Aµ̆}
is equivalent to the F -statistic, which we note in (2.20) has only zeroth- and first-order

terms in these quantities. This means that applying the Taylor-expansion method with

this prior should reproduce the exact F -statistic.

If we replace the isotropic prior (2.22) with a uniform prior pdf(A1̆,A2̆,A3̆,A4̆|Hf ) =

C, the B-statistic integral (2.23) becomes

B(x) = C

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞

eΛ({A
µ̆};x) dA1̆ dA2̆ dA3̆ dA4̆

= C

∫ 2π

0

∫ 2π

0

∫ ∞

0

∫ ∞

0

eΛ({A
µ̆};x)ArAl dAr dAl dφr dφl

(C.1)
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The Taylor expansion of the likelihood, and the angular integrals, proceed as in

Appendix B, and the only difference is that the two principal integrals (B.5a) and

(B.5b), become

∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂) AdAdφ = 2π

∫ ∞

0

e−
I
2
A2

I0(IAÂ)AdA (C.2a)

∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂) cos(φ− φ̂)A2 dAdφ = 2π

∫ ∞

0

e−
I
2
A2

I1(IAÂ)A
2 dA (C.2b)

Using (B.7) with a2 = I/2, b = IÂ, µ = 2 and 3, and ν = 0 and 1, respectively, we find,

in place of (B.8),

∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂)AdAdφ =

2π

I
1F1

(
1, 1,

IÂ2

2

)
=

2π

I
e

IÂ2

2 (C.3a)

∫ 2π

0

∫ ∞

0

e−
I
2
A2+IAÂ cos(φ−φ̂) cos(φ− φ̂)A2 dAdφ =

2πÂ

I
1F1

(
2, 2,

IÂ2

2

)
=

2πÂ

I
e

IÂ2

2

(C.3b)

where we have used (13.6.12) of [4], which states that 1F1(a, a, z) = ez. This then gives

a statistic of

B(x) ≈ C

(
2π

I

)(
2π

J

)
e

IÂ2
r
+JÂ2

l

2

{
1 +

[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

]
ÂrÂl(1 + 1− 1)

}

(C.4)

So that, to first order in K and L,

ln
B(x)
B(0) ≈ IÂ2

r

2
+

JÂ2
l

2
+
[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

]
ÂrÂl (C.5)

Which is indeed the form given in (2.20) for the exact F -statistic.

Appendix D. Relationship to High-SNR Approximation

Recent work[10] by Dhurandhar, Krishnan and Willis (hereafter DKW) contains a

different approximate expression for the B-statistic, derived in the limit of high signal-

to-noise ratio, but without assumptions on the form of the metric. In their notation,

the approximate form is written [[10] equation (104)]

B(x) ≈
(

π2

2(ζ2 − k2)

)[
e

1

2
B̂

†
NB̂

(|B̂1||B̂2|)
3

2

]
(D.1)

To make contact with our results, we collect here the conversion between DKW’s

notation and ours. Their metric elements are ζ = I = J (they limit attention to
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the long-wavelength limit) and κ = L + iK, with k = |κ| =
√
K2 + L2. They define

complex amplitudes

B1 = h0e
−2iφ0

(1 + χ)2

4
e−2iψ = Are

− i
2
(3φr+φl) = B∗

4 (D.2a)

B2 = h0e
−2iφ0

(1− χ)2

4
e2iψ = Ale

− i
2
(φr+3φl) = B∗

3 (D.2b)

and a complex metric

N ≡ {Nµν} =
1

2




ζ κ∗ 0 0

κ ζ 0 0

0 0 ζ κ∗

0 0 κ ζ


 (D.3)

from which we see

1

2
B̂†NB̂ = Re

(
Âre

i
2
(3φ̂r+φ̂l)[L− iK]Âle

− i
2
(φ̂r+3φ̂l)

)

=
1

2
IÂ2

r
+

1

2
JÂ2

l
+ ÂrÂl

[
K sin(φ̂r − φ̂l) + L cos(φ̂r − φ̂l)

]
= F

(D.4)

and therefore their approximation can be written

B(x) ≈
(

π2

2(IJ −K2 − L2)

)[
eF

(ÂrÂl)
3

2

]
(D.5)

Written in this form, we see that the result is the same as equation (5.37) of [3]. The

difference between this and (3.4) is the normalization constant. (Note that DKW use

an improper prior equivalent to A = 2π2.)
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