Integrating Multi-level Tag Recommendation with External
Knowledge Bases for Automatic Question Answering

EDUARDO LIMA, WEISHI SHI, XUMIN LIU, and QI YU, Rochester Institute of Technology

We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions from
community-based Question-and-Answer (Q&A) websites. We propose a novel framework that integrates
multi-level tag recommendation with external KBs to retrieve the most relevant KB articles to answer user
posted questions. Different from many existing efforts that primarily rely on the Q&A sites’ own historical
data (e.g., user answers), retrieving answers from authoritative external KBs (e.g., online programming doc-
umentation repositories) has the potential to provide rich information to help users better understand the
problem, acquire the knowledge, and hence avoid asking similar questions in future. The proposed multi-
level tag recommendation best leverages the rich tag information by first categorizing them into different
semantic levels based on their usage frequencies. A post-tag co-clustering model, augmented by a two-step
tag recommender, is used to predict tags at different levels for a given user posted question. A KB article re-
trieval component leverages the recommended multi-level tags to select the appropriate KBs and search/rank
the matching articles thereof. We conduct extensive experiments using real-world data from a Q&A site and
multiple external KBs to demonstrate the effectiveness of the proposed question-answering framework.

CCS Concepts: « Information systems — Social tagging systems; Clustering;
Additional Key Words and Phrases: Question answering, tag recommendation, co-clustering

ACM Reference format:

Eduardo Lima, Weishi Shi, Xumin Liu, and Qi Yu. 2019. Integrating Multi-level Tag Recommendation with
External Knowledge Bases for Automatic Question Answering. ACM Trans. Internet Technol. 19, 3, Article 34
(May 2019), 22 pages.

https://doi.org/10.1145/3319528

1 INTRODUCTION

A Question-and-Answer (Q&A) site is an online community that builds its user base by providing
means for users to have their questions answered. The importance of this kind of system cannot
be overstated, as we have seen leading IT companies in the past decade have grown large commu-
nities around this framework. For example, Yahoo Answers, one of the pioneers, currently has an
estimated 4.6M unique U.S. visitors per month; Quora, a more recent one, has an estimated 1.9M

This research was supported in part an NSF IIS Award No. IIS-1814450 and an ONR Award No. N00014-18-1-2875. Lima
is also supported by CAPES (Brazil’s Federal Agency for Support and Evaluation of Graduate Education), CNPq (Brazil’s
Council for Scientific and Technological Development), and IFRN (Brazil’s Federal Institute of Rio Grande do Norte).
Authors’ addresses: E. Lima, W. Shi, X. Liu, and Q. Yu, Rochester Institute of Technology, 152 Lomb Memorial Drive,
Rochester, NY 14623-5608; emails: {ecl7037, ws7586, xumin.liu, qi.yu}@rit.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2019 Association for Computing Machinery.

1533-5399/2019/05-ART34 $15.00

https://doi.org/10.1145/3319528

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

https://doi.org/10.1145/3319528
mailto:permissions@acm.org
https://doi.org/10.1145/3319528

34:2 E. Lima et al.

unique U.S. visitors per month; and Stack Overflow has the most impressing numbers, with 12.5M
U.S. unique visitors and 48.3M global unique visitors' per month.

Even though there is a great number of answers being submitted by users, one persistent prob-
lem is still observed: It usually takes hours or days before a question gets acceptable answers. Some
questions have not been even answered at all. For users, it could be frustrating if they do not re-
ceive appropriate answers for their questions or need to wait for an undetermined long period
before getting answers. To deal with this situation, many existing systems, such as StackOverflow,
support users to leverage the historical data collected by the system to find answers. In particular,
standard information retrieval techniques, such as vector space model, tf-idf weighting, and ranked
retrieval, can be employed to support keyword-based search over existing questions/answers. If
similar questions with satisfactory answers already provided can be successfully located, then
users may directly exploit these answers as solutions to their questions.

Another interesting strategy that could serve as an effective alternative or complement the above
automatic question-answering approach is to extend the Q&A sites with external information
sources to provide possible answers. Besides suggesting answers from similar posts, information
retrieved from authoritative knowledge sources (e.g., online Java documentations for questions
related to Java programming) could be very helpful. Following this line, in this article, we aim
to discover information from external data sources that provides users with the content that fits
their information need. Meanwhile, it can offer additional details and context to motivate users to
engage in learning the knowledge while trying to find answers. Figure 1 shows an example, where
the user-provided answer refers to the official reference. The reference has a rich explanation that
not only answers the question but also enables the user to further understand related concepts and
also some reasoning about the matter.

In this article, we propose to effectively leverage information from external authoritative data
sources, referred to as Knowledge Bases or KBs, to automate question answering and promote user
learning. We focus on software development-related Q&A communities, as they so far have at-
tracted the largest number of users, but the proposed approach can be readily applied to other
domains as well. After going over multiple Q&A communities, it became clear that online pro-
gramming documentation libraries (e.g., Java and Python API references) are good candidates to
act as appropriate KBs to answer user questions from these communities. Figure 2 shows another
example where we can see a user provided answer links to the official reference contents.

Knowledge retrieval from external KBs for question answering has drawn significant attentions
in recent years [4, 5, 11, 17, 20, 23, 24, 26-28]. However, most existing efforts focused on structured
questions and/or KBs, such as relational databases and ontologies, leveraging the structural infor-
mation to perform queries on KBs. This makes them not applicable to community Q&A websites
due to the free-form and unstructured nature of both posts and KBs. Our approach, in contrast,
focuses on using natural language unstructured textual KBs, which is more commonly available
than structured ones, to find answers for user questions. The research challenges that we tackle in-
clude: (1) When considering multiple KBs, it is important to identify the proper one for a question,
such as choosing Java instead of PhP API documentation for a Java related question. (2) Within a
KB, it is nontrivial to discover the semantically relevant articles in a KB for a question, due to the
free text forms of both question and answers. (3) The tremendous amount of data from both the
Q&A sites and the external KBs poses scalability issue, which leads to significant computational
overhead if using traditional text mining techniques.

Thttps://www.quantcast.com/.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

https://www.quantcast.com/

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:3

. Dointerfaces inherit from oObject class in Java?

78 If nothen how we are able to call the method of object class on interface instance

v public class Test {
public static void main(String[] args) {
Employee e = null;
e.equals(null);
24 }

}

interface Employee {

}

java inheritance interface

share edit edited Jan 4 13 at 13:29 asked May 19 '11 at 8:58

aioobe
219k » 37 #488 592

Ao Do interfaces inherit from Object class in Java?

88
No, they don't. And there is no common "root" interface implicitly inherited by all interfaces either
v (as in the case with classes) for that matter.(")

If no then how we are able to call the method of object class on interface instance

An interface implicitly declared one method for each public method in Object . Thus the equals
method is implicitly declared as a member in an interface (unless it already inherits it from a
superinterface).

This is explained in detail in the Java Language Specification, § 9.2 Interface Members.

9.2 Interface Members
[...]

* |f an interface has no direct superinterfaces, then the interface implicitly declares a
public abstract member method m with signature s, return type r, and throws clause
t corresponding to each public instance method m with signature s, return type r,
and throws clause t declared in Object , unless a method with the same signature,
same return type, and a compatible throws clause is explicitly declared by the interface.

L]

(*) Note that the notion of subtype of is not equivalent to inherits from: Interfaces with no super interface are indeed
subtypes of Object (§4.10.2. Subtyping among Class and Interface Types) even though they do not inherit from
Object .

share edit edited Aug 28 at 8:09 answered Jun 3'11 at 12:18
aioobe
219Kk # 37 #488 592

Fig. 1. A question on Java programming and its corresponding answer.
We propose a novel framework that integrates multi-level tag recommendation with multiple
external KBs to address the challenges as outlined above. Our key contributions are summarized
as follows:

e We develop a Multi-level Tag Recommendation (MLTR) model to best leverage the rich
tag information available in the Q&A sites. We categorize a large collection of tags into

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:4 E. Lima et al.

4. Haven't Python iterators got a hasNext method?
45 python iterator

v share edit edited Dec 27 09 at 19:39 asked Dec 27 '09 at 18:04

1 Georg Schally 9 Juanjo Conti
759k #28 » 156 222 6,506 »12 » 57 «108

. No, there is no such method. The end of iteration is indicated by an exception. See the
documentation.

share edit answered Dec 27 '09 at 18:08
avakar

g 222k »4 »43 88

Fig. 2. A question on Python programming.

different semantic levels through the correlation between the semantics of tags and their
occurrence frequencies. Through post-tag co-clustering at each tag level, we recommend
different levels of tags to a user-posted question. This allows us to use some recommended
tags to locate the proper KBs while using others to search/rank the matching articles thereof.

e We develop a Knowledge Retrieval (KR) approach, which leverages the recommended tag
information to accurately retrieve the knowledge rich articles from external KBs.

e We employ a number of Data Reduction (DR) strategies, including dimensionality reduc-
tion for text data representation and tag selection to help the proposed approach scale to a
huge volume of data.

e We conduct extensive experiments over real-world data from a Q&A site (i.e., StackOver-
flow) and multiple KBs to evaluate the effectiveness of the proposed framework.

The remainder of the paper is organized as follows. In Section 2, we review and discuss some
representative related work. In Section 3, we outline the theoretical foundation for post-tag co-
clustering. In Section 4, we describe in detail the proposed framework for KB article retrieval. In
Section 5, we show our experimental results over real-world StackOverflow data. We conclude the
article and point out some important future directions in Section 6.

2 RELATED WORK

We discuss some representative related research efforts, which can be classified into query-
answering systems and tag recommendation for Stack Overflow.

2.1 Query-answering Systems

Knowledge retrieval for question answering is a longstanding research issue that has been inten-
sively investigated. The majority of this body of work relies on curated or structured KBs and
formal query languages to make matching between natural language questions and answers. Ref-
erence [5] uses an ontology-based KB to assist users by relating their questions to the concepts,
creating context for their questions, and inferring the required information to be included in the an-
swers. Reference [4] proposes an ontology-based approach to derive patterns to process questions,
modeling them as a collection of assertions and queries related to the KB. Users will then choose
query frames based on the presented patterns. The system computes F-logic queried based on
the frames and processes those queries through an ontology-based access method. Reference [11]

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:5

proposes to leverage both curated KBs such as Freebase or KBs automatically extracted from un-
structured text through Open Information Extraction. The questions are rewritten in terms of
queries and the potential answers are generated through keyword matching and string similar-
ity comparison along with the maximization of matching confidence. Reference [17] proposes a
question-answer matching approach that combines word-level and parse tree-level similarity. The
word level matching is performed through IR engines and CONTEX parser. The parse tree-level
matching is done through a QA Typology, which classifies the types of questions and the use of
WordNet, a concept ontology typically used as a cognitive synonyms lexicon.

Reference [24] proposes to answer questions through crawling web tables and leveraging their
hidden data schema to derive the entities and their relationships. It follows two steps to gen-
erate answers for a question. The first step focusing on topic matching between questions and
web tables, where deep neural networks are used to perform fine-grained matching. The second
step focusing on locating the answers by checking the returning results from a search engine.
Reference [1] proposes to integrate semantic parsing and question answering together instead of
treating them as separate steps. It models the problem as a set of translation steps. A question
is decomposed into several single-relation spans and each span is converted into formal triplets
regarding the KBs. The answers are generated through the maximization of matching probability
and minimization of accumulated errors. Reference [25] deals with the potential ambiguity issues
caused by simple queries. It crawls search logs of a curated KB, Freebase, offline and mines query
templates. It models questions as subject-relation pairs and selects relevant query templates for
them to instantiate queries, which will be processed in a web search method to retrieve answers.
Reference [23] crawls online unstructured KBs and stores the information in a structured database.
The attributes of the entities in KBs and their links to others are kept through the database tables.
Answering questions are performed through the mapping of a question to a set of queries and a
confidence score reflecting the likelihood of generating the required answers. Reference [8] pro-
poses a learn-to-rank (L2R) method to rank and recommend answers to questions in Q&A forums
such as Stack Overflow. It incorporates multiple types of features such as those related to users,
posts, user graphs, review styles, and readibility, and it uses those features to predict the ratings
of answers using random forests.

All of the above systems focusing on leveraging the structured knowledge from KBs to answer
questions. Our work, however, focusing on dealing with unstructured KBs.

2.2 Tag Recommendation for Stack Overflow

Reference [21] proposes an approach to automatically recommend tags for new Stack Overflow
posts. It represents each post as a term vector based on the terms in the post. It selects 843 popular
tags and solve the tag recommendation problem through multi-label classification, i.e., each tag
is considered as a post label. Support vector machine (SVM) is used for the classification. Refer-
ence [19] adopts n-gram to build feature space for Stack Overflow posts. This is to address the
issue of traditional term vector-based approaches where the order between terms is not consid-
ered. It also solve the tag recommendation problem based on classification but instead uses a neural
network to improve the recommendation accuracy. Both of these two methods recommend tags
through classification and would run into complexity issues when the number of tags is huge,
which is usually the case in real world scenario. Reference [29] proposes an indexing mechanism
to deal with the increasing number of posts and tags. It computes the similarity between a new
post and existing ones based on a term frequency method and recommend the tags from those
most similar posts. This work fails to achieve a high accuracy due to it overlooks other factors that
are related to similarity measurement.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:6 E. Lima et al.

Reference [22] proposes a collaborative filtering (CF)-based approach to recommend tags based
on users interests and topical folksonomy. The folksonomy captures user profiles, tags, topics, and
their relationships. It applies a topic modeling technique, LDA, to learn the latent topics of posts
and models users as a topic vector based on their interests. Tags are linked to topics based on their
usage frequencies for the topics. Our work captures the post-tag relationships in a different way:.
We leverage the tag descriptions and learned the relationships through the latent topics of both
posts and tags. Moreover, instead of assuming a flat structure among tags, our work builds the
hierarchical tag relationships, which cannot only recommend popular tags at the high level but
also less frequently used but topic specific ones at lower levels.

3 PRELIMINARIES

The proposed multi-level tag recommendation builds upon and makes unique extensions to the
spectral co-clustering framework, which has been demonstrated to be effective in dealing with
large-scale unstructured text corpora to simultaneously cluster documents and their associated
words [9]. To facilitate the later discussions, we provide an overview on spectral co-clustering,
focusing on its theoretical foundation.

Given two sets of objects: 7~ = {t1,...,ty}and P = {p1, ..., par}, which represent tags and posts
in the context of our discussion. A bipartite graph G = (7", P, W) can be constructed, where W;;
is the weight of the edge between t; and p;, reflecting their closeness or similarity. In a typical
document-word bipartite graph, the edge weight can be naturally represented using the occurrence
frequency of the word in the document. We will discuss in detail how to establish the edge weights
in our tag-post bipartite graph in next section. Since there are no edges among objects of the same
type, the adjacency matrix of bipartite graph is given by

a=lwr])

where A € RIM+NXM+N) We further define the degree of a vertex as the sum of the weights of
the edges linked to it: d(v;) = Zj‘:{N Wij. As a result, we have the degree matrix D = diag{d,, ...,
dyin}

Having the bipartite graph, simultaneously clustering the two types of objects (e.g., document
vs. word or tag vs. post in our case) can be achieved through graph partitioning, which is equivalent
to cutting off edges from G = (7, P, W). Assume that we aim to generate K clusters Cy, ..., Ck.
Let W(Cp,Cq) = Yiec,.jec, Wij denote the cut between two clusters. As the goal of clustering is to
remove the weakly connected edges while keeping the strongly connected ones, a good clustering

can be achieved by minimizing the overall cut as a result of graph partitioning, given by

K
Cut(Cy,- -, C) = 5 3 W(Ck, o) @)
k=1
where C}. is the complementary set of Cy.

Without any additional constraint, directly minimizing Equation (2) will lead to unbalanced par-
titioning, which tries to assign a single vertex to each of the K — 1 clusters and keep the remaining
vertices in one cluster. Normalized cut can be applied to achieve a more balanced clustering as-
signment. Let vol(Cy) denote the total sum of edge weights within cluster C. In essence, vol(Cy)
measures the size of Ci. Introducing vol(Cy) as a penalty factor to prevent from unbalanced par-
titioning, the normalized cut cost function is given by

W (Cr, Ck) _ EK] CUt(Cksék)' 3)

vol(Cy) 0ol (Cy)

K
1
nCut(Cy, . ..,Cx) = 5;

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:7

However solving Equation (3) exactly is NP-hard. To bypass the high computational cost, we in-
stead seek for a solution that can be computed much more efficiently while providing a good
approximation to the true optimal of Equation (3).

We start by constructing the Laplacian matrix of the bipartite graph:

_ | D1 -W
L—D—A—[_WT o |- ()
where D; = diag{d;,...,dn} and D, = diag{d+1, . . ., dm+n}. The Laplacian matrix L has two
important properties, which are useful for finding the approximate graph partition solution: (1) L
is semi-definite; and (2) The minimum eigenvalue of L is 0. (1) can be easily derived as for any
f e RM*N:

1M+N
fTszg D Walfi—£) =0 (5)

ij=1

For Equation (2), recall that d; = }}; W;;. Given a unit vector e = (1,.. ., DT of size (M + N), it
is clear that Le = 0. Due to Equation (1), all the eigenvalues of L are nonnegative. Hence, the
minimum eigenvalue of L is 0.

We are now ready to discuss the clustering process. Assume that we have K indicator vectors
{hy, ..., hg}, which assign the (M + N) objects into K clusters. In particular, we have hy € RM+N
and let

Vol (Cy) .
0 if v, & Ck

hkn =

—L — if v,eC
{ (6)

From Equation (6), we have hiThj =0,Yi,je[1,.,K],i #j and hiTh,- = vo+(C,) Let matrix H =
(hy,...,hg), and we have

H'DH=H'DH =1. (7)
Given the definition of the Laplacian matrix L, we have

cut(Cr, Cg)

hlLh; =
KTk vol(Cy)

®)
Note that Equation (8) is exactly the kth component of the normalized cut cost function Equa-
tion (3). Hence, we have

K
nCut(Cy, ..., Cx) = Z h! Lhy = Tr(H' LH), 9)
k=1

where Tr(X) is the trace of matrix X. Thus, we transform the clustering problem into solving the
K indicator vector matrix H, which is equivalent to

mbi[n Tr(HTLH) subject to HTDH =1. (10)

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:8 E. Lima et al.
Solving Equation (10) is equivalent to solving the generalized eigenvalue problem

Lh = ADh
=

RS FE Y

1 _1 1
Dix-D, *Wy = AD/x
1

(11)

=

-1 1 ’
-D,*W'x+ D’y = AD}y
1 1
where h = (x,y)”. Let u = D!x and v = D}y. The generalized eigenvalue problem can be more
efficiently tackled by solving a singular value decomposition problem with a much smaller size:

_1 _1
D, *WD,*v =ou
i N , (12)
DZZWTDzzuzov

rol—

IS
where o = (1 — 1). We can use the first K left and right singular vectors of matrix D, WD, ? to
approximate the discrete indicator vectors. The final clusters can be achieved by applying simple
clustering algorithms (e.g., K-means) to these approximated indicator vectors.

4 THE KB RETRIEVAL FRAMEWORK

We present the proposed knowledge retrieval framework in this section. We start by presenting
the overall system architecture, which gives a high-level overview of the framework. We then
elaborate on the two key components of the framework: multi-level tag recommendation (MLTR)
and knowledge retrieval (KR).

Figure 3 shows the overall system architecture. When a user posts a question, the post will be
first processed by the MLTR component. During the training process, MLTR separates the tags
associated with the historical user posts into multiple levels (e.g., hot and common tags) and con-
structs post-tag co-clusters at each level. Then, a supervised classifier is trained based on the clus-
ters at each level. When a new question is posted by a user, it is first classified by each of these
classifiers into one of the clusters at each level. Then, a set of similar historical posts are identi-
fied within the corresponding clusters and their user-assigned tags are used to recommend to the
new post. The KR component uses the recommended hot tags to select the appropriate KBs from
multiple candidates and other recommended tags to match and rank the articles in the selected
KBs.

4.1 Multi-level Tag Recommendation

Tags in the Q&A sites, especially those related to software development, usually come with rel-
atively rich descriptive information. For example, most tags in StackOverflow are described by
two individual child posts: excerpt and wiki. The excerpt part provides some general introduction
of the tag along with some expected questions. The wiki part usually includes more detailed in-
formation, such as commonly used libraries and tools, historical versions, code samples, question
samples, most frequent questions, similar tags, and references like external links and text books.

4.1.1 Computing the Weight Matrix W. As described in Section 3, to simultaneously cluster
both posts and tags, a key step is to compute the edge weight for each post-tag pair. Given the
rich descriptions of tags, we can use the classical term-based vector space model to represent both

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:9

Multi-Level Tag Recommendation
Post-Tag
/ co-clustering
Tag Supervised Classifier Top-N
Categorization —— Tag Recommendation
Knowledge Hot Common
Bases Tags Tags

Knowledge |Retrieval Knowledge Knowledge
Base Article
Selection Weighting
| |
User Document Document Document Ranked
Input Representation ——{ Similarity —= Ranker Results
(Query) Transformer Calculation

Fig. 3. System architecture.

posts and tags as term vectors. In particular, assume that we have a global vocabulary V, which
is composed of all the distinct terms from the posts and tag descriptions. Hence, the i-th post and
the j-th tag can be denoted as p; € R!V! and tj € RV, respectively. Furthermore, p;x and tjk are
set to the tf-idf of the kth term in the post and the tag, respectively. This will allow us to compute
Wij = p!'t; (or use cosine similarity by first normalizing p; and t;). Therefore, the entire weight
matrix can be computed as W = PTT, where P = (P1s>--->pm) and T = (ty,...,tN).

A major issue with the term-based vector space representation is the high computational cost
especially when scaling to a large number of posts and tags. It requires to store a large term vo-
cabulary V and the complexity of computing W is O(MN|V]), which increases linearly with the
size of V. As Wj; is mainly used to capture the semantic similarity between the ith post and the
Jj-th tag, we may exploit some dimensionality reduction approach to first project the large term
vectors onto a low-dimensional space while keeping the important semantics. This will allow us
to compute the post-tag similarity in the low-dimensional semantic space. We propose to employ
Latent Dirichlet Allocation (LDA) [2] to achieve this purpose. A key advantage of LDA over other
dimensionality reduction models is that it produces human interpretable latent semantics, referred
to as topics, where each topic is a distribution over terms in the term vocabulary. Through LDA,
a post p; (or tag t;) can be represented by a vector in a Z-dimensional topic simplex, where Z is
the number of topics. In particular, p; (or t;) € RZ, where p;y (or t;x) denotes the proportion of the
kth topic in the ith post (or jth tag). In this way, the cost of computing W is reduced to O(MNZ),
which is a significant improvement, since we have Z < |V].

Through the vector space or topic models, we can establish the post-tag similarity and hence
construct the bipartite graph for post-tag co-clustering. Meanwhile, we also notice that the histor-
ical posts in many Q&A sites (e.g., StackOverflow) already come with user assigned tags. As these
tags were carefully chosen by human users, it is beneficial to include this useful prior knowledge

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:10 E. Lima et al.

Post Set
Tag Set

arraylist

Fig. 4. Hierarchical structure of tags.

to construct the post-tag bipartite graph. In particular, if the jth tag is assigned to the ith post by
a user, it is reasonable to believe that they are semantically related, which should be captured by
the edge weight W;;. We propose the following strategy to incorporate this prior knowledge:

Wi = Wy X logitf; if tag; is assigned to post;, (13)
where itf; is the inverse tag frequency of tag;,

total number of posts

itf; = (14)

number of posts assigned with tag;’

which assigns higher weights to tags being rare across all posts.

4.1.2 Multi-level Post-Tag Co-clustering. The primary purpose of post-tag co-clustering is to
form cohesive groups of posts and tags. For a new post, we could find the most relevant post-
tag cluster and use the tags in that group for recommendation purpose. Since we do not assume
any structural constraints on posts aiming to leverage free-form text data, it becomes significantly
more challenging to create high-quality post-tag clusters for accurate tag recommendation.

One key challenge is the large and highly complex tag space. For example, there are over 40k
tags in the StackOverflow site. Besides those identifying high-level categories (e.g., Java or Python),
many tags are also used to help user specify the technical details about the questions (e.g., I/O and
arraylist). As a result, different tags may convey different levels of semantics and hence form a
hierarchical structure instead. As the vector space or the LDA-based topic models assume a flat
structure on the terms or the latent topics, they could lead to inappropriate grouping of posts and
tags during the co-clustering process.

Figure 4 illustrates this issue using StackOverflow tags. The arraylist tag represents a detailed
technical concept, which may appear in many programming languages or platforms, such as an-
droid, java, and C#. This implies that it is on a lower semantic level than other tags (as indicated
by the dashed lines in the figure). A solid line represents that a tag has been assigned to a cor-
responding post by a user (e.g., Postl has android as a tag). Ignoring such a hidden hierarchical

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:11

hot tag (freq from 500-2500) common tag (freq from 30-150)

40
35
30
25
20
15
10

5

0.0 0
500 1000 1500 2000 2500 20 40 60 80 100 120 140

600 ' rare tag (freq frolm 1-10)

T

500

8
=)

300
200

Number Of Tags

100

2 3 4 5 6 7 8 9
Post Frequency

Fig. 5. An example of the tag frequency levels.

structure, arraylist would be assigned into the same cluster with one of the higher-level tags that
it frequently co-occurs with, such as java as they co-occur in Post2 and Post4. This will cause
arraylist to be separated from android and C#, which are the languages using arraylist as well.
Hence, for posts fall into these two languages, there is no chance to recommend arraylist as a tag
even though it may be a highly relevant one.

We address the above issue through multi-level post-tag co-clustering, where tags are orga-
nized into multiple semantic levels (see below for details). The idea is that we build a post-tag
co-clustering model at each level. For each model, we include all the posts but only the tags in
that particular level. This will allow us to group a post with tags at different semantic levels. To
further illustrate, for the simple example in Figure 4, we can separate the tags into two levels:
level 1 (android, java, and C#) and level 2 (arraylist). In level 1 co-clustering, we create three clus-
ters: (Post1, android), (Post2, Post4, java), and (Post3, C#). In level 2 co-clustering, we create two
clusters: (Post1, Post2, Post3, arraylist) and (Post4). In this way, for a post that asks a question
about arraylist in C#, multi-level post-tag co-clustering will allow us to recommend both C# and
arraylist as relevant tags.

Now the only remaining issue is how to separate tags into different levels. Apparently, this can
be manually done by a group of domain experts. Instead, we propose a simple yet effective way
to automate this process based on an important observation. It turns out that the semantic levels
of tags have a strong correlation with their usage frequencies. Figure 5 shows the frequencies of
StackOverflow tags. Based on the frequencies of these tags, they fall naturally into three categories:
hot, common, and rare. As can be seen, there are some obvious gaps in terms of their frequencies
between tags in these categories.

We have manually conducted a thorough investigation on the key properties of the tags in each
of these categories and summarize our results in Table 1. By analyzing these results, we reach two

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:12 E. Lima et al.

Table 1. Tag Categories and Key Properties

Category (Examples) Key Properties
Hot: Javascript, java, C#, php, an- | 1. knowledge domain, 2. integrated develop environ-
droid, python, html, C++, ios ment, 3. popular programming language, 4. usually in-

dependent from other hot tags

Common: jquery, cmd, events, net- | 1. common operation, 2. popular technique, 3. further
working, serialization, recursion, | description under hot tags, 4. usually shared by multiple
thread-safe, multithreading hot tags

Rare: metacity, entourage, resig, | 1. out-of-date technique, 2. niche software/tool, 3. un-
ubiquity, smarthost, array-initialize, | common terminology, 4. content of the tag usually
netmon, ora-01652 poorly maintained

important conclusions. First, the hot and common categories provide a good approximation of
two semantic levels of tags, where the higher level corresponds to domain, language, or platform
and the lower level corresponds to the key techniques within the domain, language, or platform.
Given that many rare tags are outdated or less commonly used, we could ignore them during the
co-clustering process. This will significantly reduce both the computational and spatial cost given
the large number of rare tags. Despite not being considered by multi-level post-tag co-clustering,
highly relevant rare tags may still be recommended through our tag recommendation algorithm,
which will be described next.

4.1.3 Multi-level Tag Recommendation. Given a new post (with no tags), a straightforward way
to recommend tags is to first locate clusters at each semantic level and then recommend all the
tags within the identified clusters. There are two issues with such an approach. First, if the sizes of
the clusters are large, a large number of tags will be recommended, which may include some not
very relevant ones. Second, since we only build co-clustering models for hot and common tags,
there is no way to recommend highly relevant rare tags.

To address the issue, we propose to recommend tags through two steps. First, to leverage the
grouping information from post-tag co-clustering, we train a supervised classifier (SVM is used
in our experiments) for each level using the clusters as class labels. Second, we classify the new
post into one of the clusters at each level. Within the identified cluster, we choose the top-n most
similar posts and use the top-k most frequent tags of these posts for recommendation purpose.
This two-step approach is able to leverage both global structure of the data (through post-tag
co-clustering) and local neighborhood information (by searching the most similar historical posts
within the cluster) to achieve high recommendation accuracy. Furthermore, it may recommend
relevant rare tags when these tags are frequently assigned to the chosen similar posts.

Regarding the time complexity, at the kth level of tags, we need to first conduct the post-tag
co-clustering, which applies singular value decomposition to a My by Nj matrix, where My and
Ny are number of posts and tags at the kth level, respectively. This step has the complexity of
O(M,ZCN/(). Next, we use all posts at the current level and their belonged clusters as labels to fit a
multi-class SVM classifier. The multi-class SVM classifier adopts one-vs.-rest classification strategy
thus consists of Ly binary SVMs where Ly is the number of clusters at kth level. Each binary
SVM is optimized using sequential minimal optimization with the complexity of O(Mi). The total
training complexity at the kth level of tags is therefore O(LyMy?). However, the training of the
tag recommender can be performed offline. For real-time tag recommendation, the key operation
is to invoke the multi-class SVM for label prediction, which can be conducted very efficiently with
a performance linear to the number of support vectors.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:13

4.2 Knowledge Retrieval

The knowledge retrieval (KR) component of the framework performs two major tasks: selecting
appropriate KBs and then ranking matching documents within these KBs. In the following sub-
sections, we describe each of these tasks.

4.2.1 Knowledge Base Selection. Selecting appropriate KBs is critical to retrieve relevant KB
articles to answer user posted questions. This can be significantly facilitated using the tags rec-
ommended by the MLTR component as described in Section 4.1. In particular, as hot tags usually
correspond to knowledge domains, programming languages, or developer platforms, they can be
naturally used to match the main themes of the KBs. This observation allows us to assign a hot
tag to each of the available KBs beforehand (e.g., assign javascript to online JavaScript Reference
and php to online PHP Documentation). Then, we can use the recommended hot tags to choose
the appropriate KBs. We refer to all of these selected hot tags as knowledge base or KB tags.

We need to consider three possible scenarios: (1) One and only one KB tag is recommended. In
this case, we directly find the matching KB. (2) More than one KB tags are recommended. Although
this is rare as evidenced by our experimental results, it may still occur in practice. For example,
a user may explain what s/he can do in one language (e.g., Java) and ask how the same task can
be achieved using another language (e.g., python). In this case, it makes sense to retrieval relevant
articles from both KBs, where the articles from the first KB can serve as a reference to facilitate
the user to understand the articles from the second KB. (3) No KB tag is recommended. In this
case, we can always go back to the MLTR component to recommend more tags. However, as the
recommendation quality becomes lower, it may imply either the user is asking for a subject that is
not covered by any available KBs or the posted question is not properly formulated. In this case,
some feedback can be sent to the users to inform them the potential issues with their posts.

4.2.2 Retrieving and Ranking KB Articles. Because we wish to identify articles from a set of
chosen knowledge bases, we tackled this problem as an information retrieval task. By ranking
these articles by a similarity metric, we would be able to follow in this direction. While our MLTR
were able to leverage both high and low-level tag recommendations, for the purpose of ranking, we
only used the high-level tag recommendation, because we could not assure an accurate relationship
between a choosen KB set and a low-level tag for individual KB articles. For the purpose of tag
prediction, we processed the MLTR component for all KB articles. However time-consuming this
procedure might be, this tag recommendation procedure for KB articles can be conducted offline
beforehand, prior to the query processing, so that all articles have already been assigned tags
before users query online.

Since tags are predicted for both the newly posted question and each KB article, a straightfor-
ward way of retrieving relevant KB articles is to rank the articles using the Jaccard Coefficient

computed from their corresponding sets of tags, where jaccard(A, B) = }ﬁggl for sets A and B.

However, there is a potential issue with this strategy. Note that tag prediction is based on his-
torical tags assigned by Q&A community users. A small number of tags may be able to capture the
underlying semantics of a short question. However, they may not be sufficient for capturing all the
important details of KB articles with much longer content. Thus, simply performing tag matching
may miss important KB articles that are relevant to answering the question.

By taking advantage of the tag suggestions provided by our MLTR component, we effectively
augmented the term representation of our knowledge base articles. The size of the article varies,
but this is particularly beneficial when dealing with short articles. Table 2 presents some example
KB articles and the recommended tags. The examples clearly demonstrate the semantic relevance
between the articles and the recommended tags.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:14 E. Lima et al.

Table 2. KB Articles and Recommended Tags Examples

Knowledge Base Articles Recommended Tags

Resource Types This extension defines a XML-RPC | xml, android-layout url, spring, xml,
server resource returned by xmlrpc_server_create mysql web-applications, eclipse, file,
(...) regex

Once-only subpatterns With both maximizing and | regex, replace, split string, python-3.x,
minimizing repetition failure of what follows c++, design-patterns, performance,
normally causes the repeated item (...) if-statement

Recursive patterns Consider the problem of design-patterns, replace, loops split,
matching a string in parentheses allowing for regex, string, loops recursion,
unlimited nested parentheses (...) algorithm, c++

We propose to adopt a weighted query expansion strategy. We append the recommended tags
to the text of both the posted question and the KB article. Inspired by the tfidf heuristic, we chose
to increase the weight of a recommended tag by multiplying its term frequency in the question
(and the KB article) by its inverse tag frequency (or itf) in the corresponding KB, which is given by

total number of articles in the KB

itf; =

number of articles assigned with tag; " (15)
This strategy makes questions and KB articles that share the same tags more similar and hence
improve the ranking of these articles.

We adopt the term-based vectors to represent the question and all the KB articles, where the
standard tf-idf weighting can be used to quantify the importance of each term in the question (and
KB articles). Articles in the selected KBs can be ranked based on their cosine similarities with the
question and the top ranked ones will be returned to the user. There are two major reasons for
choosing a term vector-based presentation instead of a topic-based representation for KB article
retrieval. First, since the tags are predicted through the topic-based representation, they are ex-
pected to already capture the high-level semantics conveyed through the topic-based presentation.
Leveraging the term vector-based representation will allow us to also incorporate some important
low-level details conveyed through individual terms. Second, through KB selection, we reduce the
KB article search scope to one or a small number of KBs. Since we only need to compare a relatively
small number of KB articles, search efficiency can still be guaranteed with term-based presentation.

Regarding the time complexity of the Knowledge Retrieval component, we need to build the
tf-idf representation and an inverted index of a KB. Assuming we have D articles with a total W
terms, the complexity is O(W). This step, however, can be performed offline. Through an inverted
index, the matching between a query and potential KB articles can be performed very efficiently,
which is upper bounded by O(D) (when a question consisting of keywords that match all the KB
articles, which is unlikely to occur).

5 EXPERIMENTS

We have conducted extensive experiments over real-world data collected from StackOverflow. The
reason of choosing StackOverflow is due to its great popularity, large user base, huge amounts of
historical posts from users, and rich set of well-maintained tags. Furthermore, we choose six well-
known online API repositories as our potential KBs. The proposed approach can be conveniently
generalized to many other Q&A sites with a similar nature. We start by describing the experimental
data in detail. We then define important evaluation metrics and present our experimental result
and comparisons with the baseline and other alternative approaches.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:15

Table 3. Summary Statistics of StackOverflow Data

Statistic Original Experiment Set
Posts 2,430,480 64,793
Questions 534,611 12,000
Answers 1,895,869 52,793
Tags 15,379 3,247

Table 4. Summary Statistics of Processed KBs

Knowledge Base Title Article Count
Python KB (PSL + PLR combined) 5,469
Java KB (JPAS + TJLS combined) 1,994

PHP Documentation 12,843

Javascript Reference 790

Android Reference 5,469
Django Documentation 324

5.1 Description of the Dataset

The StackOverflow team periodically publishes updated data dumps with its content [10]. We
adopt the version published on August 18, 2015, which was the most up-to-date one when we
conducted this research. The StackOverflow questions and answers are represented in the dataset
individually as posts. The dataset has a score metric for each post that we used for data cleansing.
The score is a user voting measure and is simply the number of positive votes minus the number of
negative votes. To ensure the quality of our dataset, we extracted answers with a minimum score
of 1. We took questions with a minimum score of 1 and with a minimum of four answers among
the already-filtered list of answers. We then randomly sampled 2,000 questions for each knowledge
base with matching tags, totalling 12,000 questions along with over 50,000 linked answers. Table 3
shows the summary statistics of the dataset.

As discussed in Section 1, we choose online programming documentation libraries as exter-
nal KBs. In particular, we picked the following eight data sources: Python Standard Library [14],
Python Language Reference [13], Java Platform SE 8 API Specification [7], Java Language Speci-
fication, Java SE 8 Edition [6], PHP Documentation [16], JavaScript Reference [15], Android Ref-
erence [18], and Django Documentation [12]. We combine two or more sources into one if they
cover the same subject (e.g., Python Standard Library and Python Language Reference), resulting
in 6KBs. All references were downloaded and pre-processed. When no plain text was available the
reference was parsed to extract the plain text. When only HTML documentation was available, we
removed its structural tags, scripts and styling. Each resulting KB was stored as a single text file,
with one article per line. Table 4 presents summary statistics of the processed KBs.

5.2 Tag Recommendation Evaluation

5.2.1 Metrics to Evaluate MLTR. To evaluate the quality of the recommended tags, we vary
the number of recommendations and report the recall@K to evaluate how well the predicted tags
match the user assigned ones for a given set of testing posts. For each post in the testing set, we first
remove the original user-assigned tags. Once the tags are predicted, we essentially use the user-
assigned tags as our ground truth to compute the recall. Since the tags are assigned by a diverse
set of users, we may not expect all these tags are truly relevant and some of them may also be

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:16 E. Lima et al.

redundant. More importantly, the user assigned tags may not fully cover the underlying semantics
of the posts. Therefore, precision is not a good choice for evaluation of our recommendation result.
Later in our discussion, we will show that MLTR is able to recommend some novel tags that are
truly relevant to the posts but are not assigned by users.

The noisy nature of user assigned tags further motivates us to define a more robust evaluation
metric, referred to as Coverage, which allows the predicted tags to only partially match the user
assigned tags. Consider a set of testing posts #. For a given post p; € P, let R; denote the recom-
mended tags from different levels and O; denote the original tags assigned by users. We define an
indicator variable cover; to show whether R; overlaps O;:

1 RinO; #0
coveri = {0 otherwise. (16)
The Coverage is then defined as
N cover;
Coverage = ———— (17)

N

5.2.2 Results and Comparisons. We adopt tenfold cross-validation to evaluate the quality of
multi-level tag recommendation. To show the effectiveness of the proposed approach, we apply
post-tag co-clustering to tags with a flat structure (i.e., no separation into different levels) and use
it as the baseline for comparison. To have a more detailed view on the result, we evaluate the
recommendation accuracy at each of the tag levels: hot and common. The Coverage (or Recall) is
computed by comparing the user assigned tags with the predicted ones at the same level based
on Equation (17) (or the Recall function). We also investigate the effectiveness of using inverse
tag frequency to adjust the graph edge weights according to user assigned tags in the training set.
We set the number of clusters (at each level) as 12, number of topics of LDA as 12, and number of
recommended tags (at each level) as 5.

Figure 6(a) summarizes the results. First, multi-level recommendation significantly outper-
forms the baseline approach at both levels. Second, adjusting the edge weights (denoted as
Pow_Multilevel, the darkest bar in the figure) has a large positive impact on common tag rec-
ommendation. Different from hot tags, common tags usually have shorter and sometime insuffi-
cient descriptions. By leveraging users’ past usage of these tags, our approach essentially combines
both content-based and collaborative filtering recommendation to achieve high accuracy. Third,
the proposed approach achieves high recall and coverage, particularly for common tags. The rela-
tively short descriptions and lack of intensive usage by users make common tag recommendation
more challenging but extremely important, because choosing the right common tags can make a
post easily noticed by experts from its corresponding domain (usually indicated by the hot tag).
Furthermore, relevant common tags may directly lead a user to the solution. For example, common
tags jquery and for-loop recommended to the post “convert numerical value to a string filled with
a character in JavaScript”indicate that the user should find the solution using for-loop with jquery
functions. Finally, the effectiveness of multi-level co-clustering can also be seen from the shape of
the clusters. Our results indicate that the flat co-clustering usually leads to very unbalanced clus-
ters, some of which have one or two tags and even zero post. This is due to the hidden hierarchical
structure of tags as illustrated in Figure 4. Multi-level co-clustering effectively addresses this issue
and achieves perfectly balanced clusters (the actual cluster distributions are omitted due to the
lack of space).

We compare the performance of the proposed recommendation method with three competitive
tag recommendation methods in Figure 6(a): binary relevant machines (BR), non-negative matrix
factorization (NMF), and non-negative matrix tri-factorization (NMTriF) [3]. The BR method trains

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:17

[Baseline Cov Baseline Recall 600 1 LDA Representation
1204 O UnPow_Multilevel Cov UnPow_Multilevel Recall Vector-Space Representation
/A Pow_Multilevel Cov [Pow_Multilevel Recall(ours)
¥ NMTriF Cov NMTFiF Recall 1
— 1004 $3- BRCov BR Recall 500
X A <> NMF Cov NMF Recall
E © i 400
D 804 — "
v °
9] | - i3 c
g Z S (o} o
O 60 : i O O 300
Q I o, s o]
= i %)
= }/ ’/ \4
S 40 t | 2004
40 - ‘
& } /‘ Z
o ‘ o |
204 VA : 100
I I
1 /
0 } 1 0
Hot Common Training Time Testing Time

(a) Performance comparison with the baseline and (b) Execution time for topic representation and vector
using edge weight adjustment space representation

©
=]

~
o
T
pel
[0]
0O
L
~ @
o =]

~
=)

o
<)

Recall/Coverage(%)
= 3
Recall/Coverage(%)
o0

—o— Cov
o/ 1 55 —— Recall
2 4 6 10 12 16 5 10 15 20 25 30
(c) Recall/Coverage Vs. Number of clusters (d) Recall/Coverage Vs.Number of voting posts
a5 ; ; ; — ; ; ; ; ;
0O Cov 80 S —
3 80 &~ Recall 1 S 70f / 1
s s
3 | F_/—D—D—_D | 5| / /\/\/A 7
@© @©
E) 70f / , § 50 / / i
: e So |/ ,
= 65f] =
g / \ g 0| // |
o g0l S o4 / O0— Cov
= 20 4
3 &— Recall
55L E| L L L L L
4 8 12 16 20 1 3 5 7 10
(e) Recall/Coverage Vs. Number of topics (f) Recall/Coverage Vs. Number of recommended tags

Fig. 6. Multi-level tag recommendation.

a binary classifier for each tag and predicts tags independently. BR method may suffer from a high
computational cost when the number of tags is large. The NMF method factorizes the post-tag
matrix into the product of two non-negative matrices, W and H. Matrix Wis the k-components
representation of tags/posts where the components are jointly extracted from tags and posts. Then
we run K-means on W to cluster the posts and tags. The cluster assignment is used to train a
supervised model to predict the cluster of a test post tags for that post using the same voting
mechanism like the proposed method. In our experiment, k is set to 12, which is the optimal number
of LDA topics for the proposed model. The NMTriF method factories the tag-post matrix into the

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:18 E. Lima et al.

product of three non-negative matrices, G, S, and F. Matrix F is the one-out-of-k cluster assignment
of posts and is used for tag recommendation like the proposed method.

All methods have reasonable performance for hot tag recommendation but the proposed method
outperforms others for recommending common tags. The advantage of the proposed method on
common tags shows that edge weights adjustment provides useful information on tag-post rela-
tionships that are beneficial to multi-level co-clustering.

In Figure 6(b), we compare the execution time of using topic represented data with vector space
represented data. We show that the using LDA for dimensionality reduction not only improves the
recommendation performance but also significantly reduces the time complexity.

We also conduct a series of experiments to investigate the impact of the key parameters of the
model, which include the number of clusters (the same number is used for each tag level to simplify
parameter tuning), number of topics for the LDA model to derive the topic-based representation
of posts, the number of recommended tags (the same number is used for each level), and the top-n
posts used for recommending tags in the designated cluster. We vary one parameter while keeping
the others fixed to locate its optimal value. Figures 6(c), 6(e), 6(f), and 6(d) also show that Coverage
and Recall are relatively stable over a range of these parameters. For the retrieval component task,
we fixed both the number of topics and the number of cluster to 12.

Another important observation is that some recommended tags that do not match the user as-
signed ones might also be relevant to the posted question. For example, a user asked how to recog-
nize a piece of phone number through long strings and a hot tag python is assigned to the post. Our
approach not only recommends python as a hot tag but also if-statement and regex as common
tags. If precision@K were used for evaluation, then these two tags are both false positives, which
will decrease the precision. However, they provide the right combination with the recommended
hot tag to best characterize the user posted question. In another case, a user asked about how to
submit a form without a submit button but only assigned php as the tag. Our approach is able to
recommend jquery and ajax (besides php), which are two popular techniques that address the
posted question. These cases suggest that the proposed approach can recommend highly relevant
and oftentimes novel tags to help user better understand the questions and locate relevant answers
to address them.

5.3 Knowledge Retrieval Evaluation

5.3.1 Metrics to Evaluate KR. A key challenge to evaluate the overall performance of KB article
retrieval is the lack of ground truth. Since we aim to retrieve articles from external KBs to answer
questions, the user provided answers in the StackOverflow data are not directly applicable for
evaluation purpose as in multi-level tag evaluation. To address this challenge, we construct two
evaluation sets, Human-judged and Automated, to assess the accuracy of KB article retrieval.

The Human-judged evaluation set is manually created, which consists of 20 questions relevant
for each KB, totalling 120 questions. For each question, we manually go through the KB articles
and locate a set of most relevant articles, which will be used to compare with the system retrieved
ones. We also develop a heuristic to create a larger automated evaluation set and then evaluate our
overall system performance with a more representative testing set. Specifically, for each question
in our dataset, we concatenate all the user provided answers. This concatenated answer is then
compared with the articles in the corresponding KB and the top-10 most similar (e.g., by computing
their cosine similarity) ones are first selected as a candidate set S. Finally, an article is included in
the Automated evaluation set only if its similarity with the concatenated user provided answers
is no less than [mean(S) + sd(S)], where sd denote standard deviation.

Having these two evaluation sets, we can use the following metrics: Precision @K, Recall@K,
Mean Reciprocal Ranking (MRR), and Normalized Discounted Cumulative Gain (NDCG) with

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:19

Table 5. Tenfold Cross-validation Accuracy Estimates

Classifier
Tags SVC | LDA | QDA | LR | KNN | AB | GB | RF
java 50% | 65% 38% | 60% | 60% | 63% | 53% | 50%
javascript | 50% | 60% | 38% | 70% | 48% | 60% | 50% | 50%
php 50% | 68% 55% | 65% | 63% | 70% | 50% | 53%
python 50% | 65% 58% | 73% | 58% | 80% | 50% | 53%
android 50% | 65% 63% | 75% | 78% | 70% | 50% | 63%

binary (0 or 1) relevance. NDCG is particularly interesting when the order of the retrieved re-
sults is important. As our system returns a ranked list of articles, it is desired that the most highly
ranked results are likely the most important ones. This behavior is most accurately quantified us-
ing NDCG, because it introduces increasing discounts or penalties the higher the rank of a result.
We use the typical discount of m. Let ry,...,r, be the scores of a list of ranked articles
for a given query, DCG is given by ry + r2/10g2(2) + r3/loga(3) + - - - + rp/logs(n). To normalize the
obtained score to achieve the NDCG@K, we divide the calculated DCG by the ideal DCG at rank K:

DCG@K (calculated)
DCG@K (ideal)

where the ideal ranking information can be derived from the constructed Human-judged or
Automated evaluation sets.

NDCG@K = (18)

5.3.2 Results and Comparisons. To justify the effectiveness of the proposed approach, we also
implement two other KB article retrieval approaches. The first one, which is used as the baseline,
builds a term-based vector space model over the articles of all KBs and construct an inverted index
to facilitate the search of these articles. Relevant articles are identified and ranked based on their
cosine similarity with the questions in the testing set. The comparison with this baseline approach
will help show the effectiveness of using recommended tags for KB article retrieval. We also build
a supervised classifier using the historical posts and their user assigned tags to directly predict the
hot tags of a test question and use the predicted tags for article retrieval. For this classical machine-
learned tag recommender, we choose an Ada Boost-based model, the most performing classifier us-
ing 10-fold cross validation. The following models were tested: Supporting Vector Machine, Linear
Discriminant Analysis, Quadratic Discriminant Analysis, Logistic Regression, K Nearest Neighbor,
Ada Boosting, Gradient Boosting, and Random Forest. Table 5 summarizes each model accuracy.
We refer to this classical machine learning approach as TCRanker and it was aimed at checking
the effectiveness of MLTR in the context of KB article retrieval. Finally, we refer to our proposed
approach as TRRanker.

For the Automated evaluation set, we follow the same 10-fold CV strategy as used in eval-
uating MLTR to assess the performance of KB article retrieval. For the Human-judged set, we
use the entire 12,000 posts for training the system as they are distinct from the questions in the
Human-judged set. Figures 7 and 8 summarize all the major results. As can be seen, for all met-
rics, TRRanker is able to achieve consistent improvements over the baseline and TCRanker. Both
tag-based approaches outperform the baseline, which justify the effectiveness of using tags for KB
article retrieval.

It is also interesting to note that the performance advantage of TRRanker is more obvious for
the Human-judged set than the automatically generated one. Recall that the Automated evaluation
set is generated from historical user provided answers and through some heuristics. Therefore,

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:20 E. Lima et al.

Baseline 351 Baseline
TCRanker] 30| P TCRanker

40| B TRRanker | B TRRanker

MRR(%)

SRR
SO
SN

= N
o O

L

i R AN
S YR
NRNRNANRNY
ALY

@1 @3 @ @1 K=1 K=3 K=5 K=10
(a) NDCG@K (b) MRR@K
P Baseline o1 Baseline
0 TCRanker 7 TCRanker
Sob EmE TRRanker - I mmm TRRanker g |
2| B 2. _ B
Ssp =7 % B |
g g ” |
(] ['/- i o 20+ -
g P = « % % 7
Nl BB . ¢
A w HAAA
k=1 K=3 K=5 K=10 k=1 K=3 K=5 K=10
(c) Precision@K (d) Recall@K

Fig. 7. Results for the automated evaluation set.

the result from the Human-judged set is expected to be more accurate. We also noticed that when
applying the same heuristic to the questions in the Human-judged set, we extract a set of KB
articles, which only partially match the manually selected ones. However, the good performance
of our approach shows that it is able to retrieve KB articles that cover both the knowledge from
other users as well as the external KBs.

Finally, we also experiment by representing both the test questions and the KB articles using
LDA-based topics and fine tune the number of topics. It turns out that the term vector-based pre-
sentation consistently outperforms the topic-based one for KB article retrieval. This result justifies
our analysis that the recommended tags may already carry the semantics captured by the topics
(as multi-level co-clustering is achieved through the topic-based representation). Using the term-
based presentation complements tags by capturing the important low-level details through term
vectors.

6 CONCLUSIONS AND FUTURE WORK

We present an automatic question-answering framework by leveraging a novel multi-level tag
recommendation model to retrieve relevant articles from remote knowledge bases. To best har-
ness the rich tags assigned by Q&A community users, we categorize a large collection of tags
into multiple semantic levels and automate this process by following the correlation between tag
semantics and their usage frequencies. We build a post-tag co-cluster and a two-step supervised
tag recommender at each tag level to handle the hidden hierarchical dependencies among tags.
By leveraging the accurately recommended tags, we can locate the proper KBs and discover/rank
their articles most relevant to user posted questions. We have extensively evaluated the proposed

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

Integrating Multi-level Tag Recommendation with External Knowledge Bases 34:21

80F T T T T B 40F T T T T 3
Baseline Baseline

TCRanker] I TCRanker

€OF @A TRRanker | B2 TRRanker 1

MRR(%)
S

o B
L

I NN
I NN\

m
TN

K= K=
(a) NDCG@K (b) MRR@K
= Baseline | Baseline
TCRanker sor TCRanker
2or B2 TRRanker | 10| EEE TRRanker

30+

N

N

W
Recall(%)

Precision(%)

1 i
10+
| 20 772

|

| 7

| | ’ —

2 7 7 7
5

5
-
=)

K=1 K=3 K=5 K=10 K=1 K=3 K=

(c) Precision@K (d) Recall@K

Fig. 8. Results for the human-judged evaluation set.

framework using the large-scale StackOverflow data. Results show that the performance of our
framework is superior to both the baseline and other alternative approaches.

In this article, we primarily focus on software development related Q&A sites due to their great
popularity and large user bases. An interesting future direction is to apply the proposed framework
to other important domains, such as health related ones, or even the ones with open domains. One
challenge is the identification of potential KBs and how to better scale the system when a much
larger number of KBs are involved.

ACKNOWLEDGMENT

The views and conclusions contained in this article are those of the authors and should not be
interpreted as representing any funding agency.

REFERENCES

[1] Junwei Bao, Nan Duan, Ming Zhou, and Tiejun Zhao. 2014. Knowledge-based question answering as machine trans-
lation. Cell 2, 6 (2014).

[2] David M. Blei, Andrew Y. Ng, and Michael L. Jordan. 2003. Latent dirichlet allocation. J. Mach.-Learn. Res. 3 (2003),
993-1022.

[3] Yanhua Chen, Manjeet Rege, Ming Dong, and Jing Hua. 2008. Non-negative matrix factorization for semi-supervised
data clustering. Knowl. Info. Syst. 17, 3 (2008), 355-379.

[4] Philipp Cimiano, Michael Erdmann, and Giinter Ladwig. 2007. Corpus-based pattern induction for a knowledge-based
question answering approach. In Proceedings of the IEEE International Conference on Semantic Computing (ICSC’07).
IEEE, 671-678.

[5] Peter Clark, John Thompson, and Bruce Porter. 1999. A knowledge-based approach to question-answering. In Pro-
ceedings of the AAAI Conference on Artificial Intelligence (AAAI’99), Vol. 99. Citeseer, 43-51.

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

34:22 E. Lima et al.

(6]
(7]
(8]

(]

(10]

(1]

[12]
(13]

(14]
(15]

(16]
(17]

(18]
[19]
[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Oracle Corporation. [n.d.]. The Java Language Specification, Java SE 8th Edition. Retrieved from http://docs.oracle.
com/javase/specs/jls/se8/html/index.html.

Oracle Corporation. [n.d.]. Java Platform, Standard Edition 8 API Specification. Retrieved from https://docs.oracle.
com/javase/8/docs/api/index.html.

Daniel Hasan Dalip, Marcos André Gongalves, Marco Cristo, and Pavel Calado. 2013. Exploiting user feedback to
learn to rank answers in Q&A forums: A case study with stack overflow. In Proceedings of the International ACM
SIGIR Conference on Research and Development in Information Retrieval. ACM, 543-552.

Inderjit S. Dhillon. 2001. Co-clustering documents and words using bipartite spectral graph partitioning. In Proceed-
ings of the Conference on Knowledge Discovery and Data Mining (KDD’01). ACM, 269-274. DOI: https://doi.org/10.
1145/502512.502550

Stack Exchange. [n.d.]. Stack Exchange Data Dump. Retrieved from https://archive.org/details/stackexchange.
Anthony Fader, Luke Zettlemoyer, and Oren Etzioni. 2014. Open question answering over curated and extracted
knowledge bases. In Proceedings of the Knowledge Discovery and Data Mining (KDD’14). ACM, 1156-1165.

Django Software Foundation. [n.d.]. Django Documentation. Retrieved from https://docs.djangoproject.com/en/1.9/.
Python Software Foundation. [n.d.]. The Python Language Reference. Retrieved from https://docs.python.org/3/
reference/index.html.

Python Software Foundation. [n.d.]. The Python Standard Library. Retrieved from https://docs.python.org/3/library/
index.html.

The Mozilla Foundation. [n.d.]. JavaScript Reference. Retrieved from https://developer.mozilla.org/en-US/docs/Web/
JavaScript/Reference.

The PHP Group. [n.d.]. PHP Documentation, PHP 7. Retrieved from http://php.net/docs.php.

Ulf Hermjakob, Eduard H. Hovy, and Chin-Yew Lin. 2002. Knowledge-based question answering. In Proceedings of
the SCI Conference.

Google Incorporated. [n.d.]. Android Reference. Retrieved from http://developer.android.com/reference/packages.
html.

Jin Liu, Pingyi Zhou, Zijiang Yang, Xiao Liu, and John Grundy. 2018. FastTagRec: Fast tag recommendation for soft-
ware information sites. Auto. Softw. Eng. (2018), 1-27.

Stefania Mariano and Andrea Casey. 2007. The process of knowledge retrieval: A case study of an American high-
technology research, engineering and consulting company. VINE 37, 3 (2007), 314-330.

Avigit K. Saha, Ripon K. Saha, and Kevin A. Schneider. 2013. A discriminative model approach for suggesting tags
automatically for stack overflow questions. In Proceedings of the Mining Software Repositories Conference (MSR’13).
IEEE Press, 73-76.

A. K. Singh, N. K. Nagwani, and S. Pandey. 2017. TAGme: A topical folksonomy based collaborative filtering for
tag recommendation in community sites. In Proceedings of the 4th Multidisciplinary International Social Networks
Conference. ACM, 27.

Parikshit Sondhi and ChengXiang Zhai. 2014. Mining semi-structured online knowledge bases to answer natural
language questions on community QA websites. In Proceedings of the ACM International Conference on Information
and Knowledge Management (CIKM’14). ACM, 341-350.

Huan Sun, Hao Ma, Xiaodong He, Wen-tau Yih, Yu Su, and Xifeng Yan. 2016. Table cell search for question answering.
In Proceedings of the World Wide Web Conference (WWW’16). 771-782.

Robert West, Evgeniy Gabrilovich, Kevin Murphy, Shaohua Sun, Rahul Gupta, and Dekang Lin. 2014. Knowledge
base completion via search-based question answering. In Proceedings of the World Wide Web Conference (WWW’14).
ACM, 515-526.

Yiyu Yao, Yi Zeng, Ning Zhong, and Xiangji Huang. 2007. Knowledge retrieval (KR). In Proceedings of the Web Intel-
ligence Consortium (WIC’07). IEEE, 729-735.

Zhiping Zheng. 2003. Question answering using web news as knowledge base. In Proceedings of the Conference of the
European Chapter of the Association for Computational Linguistics (EACL’03). ACL, 251-254. DOI : https://doi.org/10.
3115/1067737.1067797

Zhou Zhibin, Shi Shuicai, Li Yuqin, and Lv Xueqiang. 2010. An answer extraction method of simple question based
on web knowledge library. In Proceedings of the Workshop on Education Technology and Computer Science (ETCS’10),
Vol. 1. IEEE, 308-311.

P. Zhou, J. Liu, Z. Yang, and G. Zhou. 2017. Scalable tag recommendation for software information sites. In Proceedings
of the IEEE 24th International Conference on Software Analysis, Evolution and Reengineering (SANER’17). 272-282.

Received November 2017; revised January 2019; accepted March 2019

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.

http://docs.oracle.com/javase/specs/jls/se8/html/index.html
http://docs.oracle.com/javase/specs/jls/se8/html/index.html
https://docs.oracle.com/javase/8/docs/api/index.html
https://docs.oracle.com/javase/8/docs/api/index.html
https://doi.org/10.1145/502512.502550
https://doi.org/10.1145/502512.502550
https://archive.org/details/stackexchange
https://docs.djangoproject.com/en/1.9/
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/reference/index.html
https://docs.python.org/3/library/index.html
https://docs.python.org/3/library/index.html
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
https://developer.mozilla.org/en-US/docs/Web/JavaScript/Reference
http://php.net/docs.php
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
https://doi.org/10.3115/1067737.1067797
https://doi.org/10.3115/1067737.1067797

