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Integrating Multi-level Tag Recommendation with External

Knowledge Bases for Automatic Question Answering

EDUARDO LIMA, WEISHI SHI, XUMIN LIU, and QI YU, Rochester Institute of Technology

We focus on using natural language unstructured textual Knowledge Bases (KBs) to answer questions from

community-based Question-and-Answer (Q&A) websites. We propose a novel framework that integrates

multi-level tag recommendation with external KBs to retrieve the most relevant KB articles to answer user

posted questions. Different from many existing efforts that primarily rely on the Q&A sites’ own historical

data (e.g., user answers), retrieving answers from authoritative external KBs (e.g., online programming doc-

umentation repositories) has the potential to provide rich information to help users better understand the

problem, acquire the knowledge, and hence avoid asking similar questions in future. The proposed multi-

level tag recommendation best leverages the rich tag information by first categorizing them into different

semantic levels based on their usage frequencies. A post-tag co-clustering model, augmented by a two-step

tag recommender, is used to predict tags at different levels for a given user posted question. A KB article re-

trieval component leverages the recommended multi-level tags to select the appropriate KBs and search/rank

the matching articles thereof. We conduct extensive experiments using real-world data from a Q&A site and

multiple external KBs to demonstrate the effectiveness of the proposed question-answering framework.
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1 INTRODUCTION

A Question-and-Answer (Q&A) site is an online community that builds its user base by providing

means for users to have their questions answered. The importance of this kind of system cannot

be overstated, as we have seen leading IT companies in the past decade have grown large commu-

nities around this framework. For example, Yahoo Answers, one of the pioneers, currently has an

estimated 4.6M unique U.S. visitors per month; Quora, a more recent one, has an estimated 1.9M
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unique U.S. visitors per month; and Stack Overflow has the most impressing numbers, with 12.5M

U.S. unique visitors and 48.3M global unique visitors1 per month.

Even though there is a great number of answers being submitted by users, one persistent prob-

lem is still observed: It usually takes hours or days before a question gets acceptable answers. Some
questions have not been even answered at all. For users, it could be frustrating if they do not re-

ceive appropriate answers for their questions or need to wait for an undetermined long period

before getting answers. To deal with this situation, many existing systems, such as StackOverflow,

support users to leverage the historical data collected by the system to find answers. In particular,

standard information retrieval techniques, such as vector spacemodel, tf-idf weighting, and ranked

retrieval, can be employed to support keyword-based search over existing questions/answers. If

similar questions with satisfactory answers already provided can be successfully located, then

users may directly exploit these answers as solutions to their questions.

Another interesting strategy that could serve as an effective alternative or complement the above

automatic question-answering approach is to extend the Q&A sites with external information

sources to provide possible answers. Besides suggesting answers from similar posts, information

retrieved from authoritative knowledge sources (e.g., online Java documentations for questions

related to Java programming) could be very helpful. Following this line, in this article, we aim

to discover information from external data sources that provides users with the content that fits

their information need. Meanwhile, it can offer additional details and context to motivate users to

engage in learning the knowledge while trying to find answers. Figure 1 shows an example, where

the user-provided answer refers to the official reference. The reference has a rich explanation that

not only answers the question but also enables the user to further understand related concepts and

also some reasoning about the matter.

In this article, we propose to effectively leverage information from external authoritative data

sources, referred to as Knowledge Bases or KBs, to automate question answering and promote user

learning. We focus on software development-related Q&A communities, as they so far have at-

tracted the largest number of users, but the proposed approach can be readily applied to other

domains as well. After going over multiple Q&A communities, it became clear that online pro-

gramming documentation libraries (e.g., Java and Python API references) are good candidates to

act as appropriate KBs to answer user questions from these communities. Figure 2 shows another

example where we can see a user provided answer links to the official reference contents.

Knowledge retrieval from external KBs for question answering has drawn significant attentions

in recent years [4, 5, 11, 17, 20, 23, 24, 26–28]. However, most existing efforts focused on structured

questions and/or KBs, such as relational databases and ontologies, leveraging the structural infor-

mation to perform queries on KBs. This makes them not applicable to community Q&A websites

due to the free-form and unstructured nature of both posts and KBs. Our approach, in contrast,

focuses on using natural language unstructured textual KBs, which is more commonly available

than structured ones, to find answers for user questions. The research challenges that we tackle in-

clude: (1) When considering multiple KBs, it is important to identify the proper one for a question,

such as choosing Java instead of PhP API documentation for a Java related question. (2) Within a

KB, it is nontrivial to discover the semantically relevant articles in a KB for a question, due to the

free text forms of both question and answers. (3) The tremendous amount of data from both the

Q&A sites and the external KBs poses scalability issue, which leads to significant computational

overhead if using traditional text mining techniques.

1https://www.quantcast.com/.
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Fig. 1. A question on Java programming and its corresponding answer.

We propose a novel framework that integrates multi-level tag recommendation with multiple

external KBs to address the challenges as outlined above. Our key contributions are summarized

as follows:

• We develop aMulti-level Tag Recommendation (MLTR) model to best leverage the rich

tag information available in the Q&A sites. We categorize a large collection of tags into

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.



34:4 E. Lima et al.

Fig. 2. A question on Python programming.

different semantic levels through the correlation between the semantics of tags and their

occurrence frequencies. Through post-tag co-clustering at each tag level, we recommend

different levels of tags to a user-posted question. This allows us to use some recommended

tags to locate the proper KBswhile using others to search/rank thematching articles thereof.

• We develop aKnowledge Retrieval (KR) approach, which leverages the recommended tag

information to accurately retrieve the knowledge rich articles from external KBs.

• We employ a number of Data Reduction (DR) strategies, including dimensionality reduc-

tion for text data representation and tag selection to help the proposed approach scale to a

huge volume of data.

• We conduct extensive experiments over real-world data from a Q&A site (i.e., StackOver-

flow) and multiple KBs to evaluate the effectiveness of the proposed framework.

The remainder of the paper is organized as follows. In Section 2, we review and discuss some

representative related work. In Section 3, we outline the theoretical foundation for post-tag co-

clustering. In Section 4, we describe in detail the proposed framework for KB article retrieval. In

Section 5, we show our experimental results over real-world StackOverflow data. We conclude the

article and point out some important future directions in Section 6.

2 RELATEDWORK

We discuss some representative related research efforts, which can be classified into query-
answering systems and tag recommendation for Stack Overflow.

2.1 Query-answering Systems

Knowledge retrieval for question answering is a longstanding research issue that has been inten-

sively investigated. The majority of this body of work relies on curated or structured KBs and

formal query languages to make matching between natural language questions and answers. Ref-

erence [5] uses an ontology-based KB to assist users by relating their questions to the concepts,

creating context for their questions, and inferring the required information to be included in the an-

swers. Reference [4] proposes an ontology-based approach to derive patterns to process questions,

modeling them as a collection of assertions and queries related to the KB. Users will then choose

query frames based on the presented patterns. The system computes F-logic queried based on

the frames and processes those queries through an ontology-based access method. Reference [11]
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proposes to leverage both curated KBs such as Freebase or KBs automatically extracted from un-

structured text through Open Information Extraction. The questions are rewritten in terms of

queries and the potential answers are generated through keyword matching and string similar-

ity comparison along with the maximization of matching confidence. Reference [17] proposes a

question-answer matching approach that combines word-level and parse tree-level similarity. The

word level matching is performed through IR engines and CONTEX parser. The parse tree-level

matching is done through a QA Typology, which classifies the types of questions and the use of

WordNet, a concept ontology typically used as a cognitive synonyms lexicon.

Reference [24] proposes to answer questions through crawling web tables and leveraging their

hidden data schema to derive the entities and their relationships. It follows two steps to gen-

erate answers for a question. The first step focusing on topic matching between questions and

web tables, where deep neural networks are used to perform fine-grained matching. The second

step focusing on locating the answers by checking the returning results from a search engine.

Reference [1] proposes to integrate semantic parsing and question answering together instead of

treating them as separate steps. It models the problem as a set of translation steps. A question

is decomposed into several single-relation spans and each span is converted into formal triplets

regarding the KBs. The answers are generated through the maximization of matching probability

and minimization of accumulated errors. Reference [25] deals with the potential ambiguity issues

caused by simple queries. It crawls search logs of a curated KB, Freebase, offline and mines query

templates. It models questions as subject-relation pairs and selects relevant query templates for

them to instantiate queries, which will be processed in a web search method to retrieve answers.

Reference [23] crawls online unstructured KBs and stores the information in a structured database.

The attributes of the entities in KBs and their links to others are kept through the database tables.

Answering questions are performed through the mapping of a question to a set of queries and a

confidence score reflecting the likelihood of generating the required answers. Reference [8] pro-

poses a learn-to-rank (L2R) method to rank and recommend answers to questions in Q&A forums

such as Stack Overflow. It incorporates multiple types of features such as those related to users,

posts, user graphs, review styles, and readibility, and it uses those features to predict the ratings

of answers using random forests.

All of the above systems focusing on leveraging the structured knowledge from KBs to answer

questions. Our work, however, focusing on dealing with unstructured KBs.

2.2 Tag Recommendation for Stack Overflow

Reference [21] proposes an approach to automatically recommend tags for new Stack Overflow

posts. It represents each post as a term vector based on the terms in the post. It selects 843 popular

tags and solve the tag recommendation problem through multi-label classification, i.e., each tag

is considered as a post label. Support vector machine (SVM) is used for the classification. Refer-

ence [19] adopts n-gram to build feature space for Stack Overflow posts. This is to address the

issue of traditional term vector-based approaches where the order between terms is not consid-

ered. It also solve the tag recommendation problem based on classification but instead uses a neural

network to improve the recommendation accuracy. Both of these two methods recommend tags

through classification and would run into complexity issues when the number of tags is huge,

which is usually the case in real world scenario. Reference [29] proposes an indexing mechanism

to deal with the increasing number of posts and tags. It computes the similarity between a new

post and existing ones based on a term frequency method and recommend the tags from those

most similar posts. This work fails to achieve a high accuracy due to it overlooks other factors that

are related to similarity measurement.
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Reference [22] proposes a collaborative filtering (CF)-based approach to recommend tags based

on users interests and topical folksonomy. The folksonomy captures user profiles, tags, topics, and

their relationships. It applies a topic modeling technique, LDA, to learn the latent topics of posts

and models users as a topic vector based on their interests. Tags are linked to topics based on their

usage frequencies for the topics. Our work captures the post-tag relationships in a different way.

We leverage the tag descriptions and learned the relationships through the latent topics of both

posts and tags. Moreover, instead of assuming a flat structure among tags, our work builds the

hierarchical tag relationships, which cannot only recommend popular tags at the high level but

also less frequently used but topic specific ones at lower levels.

3 PRELIMINARIES

The proposed multi-level tag recommendation builds upon and makes unique extensions to the

spectral co-clustering framework, which has been demonstrated to be effective in dealing with

large-scale unstructured text corpora to simultaneously cluster documents and their associated

words [9]. To facilitate the later discussions, we provide an overview on spectral co-clustering,

focusing on its theoretical foundation.

Given two sets of objects:T = {t1, . . . , tN } andP = {p1, . . . ,pM }, which represent tags and posts
in the context of our discussion. A bipartite graph G = (T ,P,W ) can be constructed, whereWi j

is the weight of the edge between ti and pj , reflecting their closeness or similarity. In a typical

document-word bipartite graph, the edgeweight can be naturally represented using the occurrence

frequency of the word in the document. We will discuss in detail how to establish the edge weights

in our tag-post bipartite graph in next section. Since there are no edges among objects of the same

type, the adjacency matrix of bipartite graph is given by

A =

[
0 W

W T 0

]
, (1)

where A ∈ R(M+N )×(M+N ) . We further define the degree of a vertex as the sum of the weights of

the edges linked to it: d (vi ) =
∑M+N

j=1 Wi j . As a result, we have the degree matrix D = diag{d1, . . . ,
dM+N }.

Having the bipartite graph, simultaneously clustering the two types of objects (e.g., document

vs. word or tag vs. post in our case) can be achieved through graph partitioning, which is equivalent

to cutting off edges from G = (T ,P,W ). Assume that we aim to generate K clusters C1, . . . ,CK .

LetW (Cp ,Cq ) =
∑

i ∈Cp, j ∈Cq Wi j denote the cut between two clusters. As the goal of clustering is to

remove the weakly connected edges while keeping the strongly connected ones, a good clustering

can be achieved by minimizing the overall cut as a result of graph partitioning, given by

Cut(C1, . . . ,CK ) =
1

2

K∑
k=1

W (Ck , C̄k ), (2)

where C̄k is the complementary set of Ck .

Without any additional constraint, directly minimizing Equation (2) will lead to unbalanced par-

titioning, which tries to assign a single vertex to each of theK − 1 clusters and keep the remaining

vertices in one cluster. Normalized cut can be applied to achieve a more balanced clustering as-

signment. Let vol (Ck ) denote the total sum of edge weights within clusterCk . In essence, vol (Ck )
measures the size of Ck . Introducing vol (Ck ) as a penalty factor to prevent from unbalanced par-

titioning, the normalized cut cost function is given by

nCut(C1, . . . ,CK ) =
1

2

K∑
k=1

W (Ck , C̄k )

vol (Ck )
=

K∑
k=1

Cut(Ck , C̄k )

vol (Ck )
. (3)
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However solving Equation (3) exactly is NP-hard. To bypass the high computational cost, we in-

stead seek for a solution that can be computed much more efficiently while providing a good

approximation to the true optimal of Equation (3).

We start by constructing the Laplacian matrix of the bipartite graph:

L = D −A =
[

D1 −W
−W T D2

]
, (4)

where D1 = diag{d1, . . . ,dM } and D2 = diag{dM+1, . . . ,dM+N }. The Laplacian matrix L has two

important properties, which are useful for finding the approximate graph partition solution: (1) L
is semi-definite; and (2) The minimum eigenvalue of L is 0. (1) can be easily derived as for any

f ∈ RM+N :

fTLf =
1

2

M+N∑
i, j=1

Wi j ( fi − fj )
2 ≥ 0 (5)

For Equation (2), recall that di =
∑

jWi j . Given a unit vector e = (1, . . . , 1)T of size (M + N ), it
is clear that Le = 0. Due to Equation (1), all the eigenvalues of L are nonnegative. Hence, the

minimum eigenvalue of L is 0.

We are now ready to discuss the clustering process. Assume that we have K indicator vectors

{h1, . . . , hK }, which assign the (M + N ) objects into K clusters. In particular, we have hk ∈ RM+N

and let

hkn =
⎧⎪⎨⎪⎩

1√
vol (Ck )

if vn ∈ Ck

0 if vn � Ck

. (6)

From Equation (6), we have hTi hj = 0,∀i, j ∈ [1, ..,K], i � j and hTi hi =
1

vol (Ci )
. Let matrix H =

(h1, . . . , hK ), and we have

H−1DH = HTDH = I . (7)

Given the definition of the Laplacian matrix L, we have

hTk Lhk =
cut (Ck , C̄k )

vol (Ck )
. (8)

Note that Equation (8) is exactly the kth component of the normalized cut cost function Equa-

tion (3). Hence, we have

nCut(C1, . . . ,CK ) =
K∑
k=1

hTk Lhk = Tr(HTLH ), (9)

where Tr(X ) is the trace of matrix X . Thus, we transform the clustering problem into solving the

K indicator vector matrix H , which is equivalent to

min
H

Tr(HTLH ) subject to HTDH = I . (10)
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Solving Equation (10) is equivalent to solving the generalized eigenvalue problem

Lh = λDh

⇒ [
D1 −W
−W T D2

] [
x

y

]
= λ

[
D1 0

0 D2

]
⇒

⎧⎪⎪⎨⎪⎪⎩
D

1
2

1 x − D
− 1

2

1 W y = λD
1
2

1 x

−D−
1
2

2 W T x + D
1
2

2 y = λD
1
2

2 y

,

(11)

where h = (x, y)T . Let u = D
1
2

1 x and v = D
1
2

2 y. The generalized eigenvalue problem can be more

efficiently tackled by solving a singular value decomposition problem with a much smaller size:

⎧⎪⎪⎨⎪⎪⎩
D
− 1

2

1 WD
− 1

2

2 v = σu

D
− 1

2

2 W TD
− 1

2

2 u = σv
, (12)

where σ = (1 − λ). We can use the first K left and right singular vectors of matrix D
− 1

2

1 WD
− 1

2

2 to

approximate the discrete indicator vectors. The final clusters can be achieved by applying simple

clustering algorithms (e.g., K-means) to these approximated indicator vectors.

4 THE KB RETRIEVAL FRAMEWORK

We present the proposed knowledge retrieval framework in this section. We start by presenting

the overall system architecture, which gives a high-level overview of the framework. We then

elaborate on the two key components of the framework: multi-level tag recommendation (MLTR)

and knowledge retrieval (KR).

Figure 3 shows the overall system architecture. When a user posts a question, the post will be

first processed by the MLTR component. During the training process, MLTR separates the tags

associated with the historical user posts into multiple levels (e.g., hot and common tags) and con-

structs post-tag co-clusters at each level. Then, a supervised classifier is trained based on the clus-

ters at each level. When a new question is posted by a user, it is first classified by each of these

classifiers into one of the clusters at each level. Then, a set of similar historical posts are identi-

fied within the corresponding clusters and their user-assigned tags are used to recommend to the

new post. The KR component uses the recommended hot tags to select the appropriate KBs from

multiple candidates and other recommended tags to match and rank the articles in the selected

KBs.

4.1 Multi-level Tag Recommendation

Tags in the Q&A sites, especially those related to software development, usually come with rel-

atively rich descriptive information. For example, most tags in StackOverflow are described by

two individual child posts: excerpt and wiki. The excerpt part provides some general introduction

of the tag along with some expected questions. The wiki part usually includes more detailed in-

formation, such as commonly used libraries and tools, historical versions, code samples, question

samples, most frequent questions, similar tags, and references like external links and text books.

4.1.1 Computing the Weight Matrix W . As described in Section 3, to simultaneously cluster

both posts and tags, a key step is to compute the edge weight for each post-tag pair. Given the

rich descriptions of tags, we can use the classical term-based vector space model to represent both

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.
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Fig. 3. System architecture.

posts and tags as term vectors. In particular, assume that we have a global vocabulary V , which

is composed of all the distinct terms from the posts and tag descriptions. Hence, the i-th post and

the j-th tag can be denoted as pi ∈ R |V | and tj ∈ R |V | , respectively. Furthermore, pik and tjk are

set to the tf-idf of the kth term in the post and the tag, respectively. This will allow us to compute

Wi j = pTi tj (or use cosine similarity by first normalizing pi and tj ). Therefore, the entire weight

matrix can be computed asW = PTT , where P = (p1, . . . , pM ) and T = (t1, . . . , tN ).
A major issue with the term-based vector space representation is the high computational cost

especially when scaling to a large number of posts and tags. It requires to store a large term vo-

cabulary V and the complexity of computingW is O (MN |V |), which increases linearly with the

size of V . AsWi j is mainly used to capture the semantic similarity between the ith post and the

j-th tag, we may exploit some dimensionality reduction approach to first project the large term

vectors onto a low-dimensional space while keeping the important semantics. This will allow us

to compute the post-tag similarity in the low-dimensional semantic space. We propose to employ

Latent Dirichlet Allocation (LDA) [2] to achieve this purpose. A key advantage of LDA over other

dimensionality reduction models is that it produces human interpretable latent semantics, referred

to as topics, where each topic is a distribution over terms in the term vocabulary. Through LDA,

a post pi (or tag tj ) can be represented by a vector in a Z -dimensional topic simplex, where Z is

the number of topics. In particular, pi (or tj ) ∈ RZ , where pik (or tjk ) denotes the proportion of the

kth topic in the ith post (or jth tag). In this way, the cost of computingW is reduced to O (MNZ ),
which is a significant improvement, since we have Z � |V |.
Through the vector space or topic models, we can establish the post-tag similarity and hence

construct the bipartite graph for post-tag co-clustering. Meanwhile, we also notice that the histor-

ical posts in many Q&A sites (e.g., StackOverflow) already come with user assigned tags. As these

tags were carefully chosen by human users, it is beneficial to include this useful prior knowledge

ACM Transactions on Internet Technology, Vol. 19, No. 3, Article 34. Publication date: May 2019.
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Fig. 4. Hierarchical structure of tags.

to construct the post-tag bipartite graph. In particular, if the jth tag is assigned to the ith post by

a user, it is reasonable to believe that they are semantically related, which should be captured by

the edge weightWi j . We propose the following strategy to incorporate this prior knowledge:

Wi j =Wi j × log itfj if tagj is assigned to posti , (13)

where itfj is the inverse tag frequency of tagj ,

itfj =
total number of posts

number of posts assigned with tagj
, (14)

which assigns higher weights to tags being rare across all posts.

4.1.2 Multi-level Post-Tag Co-clustering. The primary purpose of post-tag co-clustering is to

form cohesive groups of posts and tags. For a new post, we could find the most relevant post-

tag cluster and use the tags in that group for recommendation purpose. Since we do not assume

any structural constraints on posts aiming to leverage free-form text data, it becomes significantly

more challenging to create high-quality post-tag clusters for accurate tag recommendation.

One key challenge is the large and highly complex tag space. For example, there are over 40k
tags in the StackOverflow site. Besides those identifying high-level categories (e.g., Java or Python),

many tags are also used to help user specify the technical details about the questions (e.g., I/O and

arraylist). As a result, different tags may convey different levels of semantics and hence form a

hierarchical structure instead. As the vector space or the LDA-based topic models assume a flat

structure on the terms or the latent topics, they could lead to inappropriate grouping of posts and

tags during the co-clustering process.

Figure 4 illustrates this issue using StackOverflow tags. The arraylist tag represents a detailed

technical concept, which may appear in many programming languages or platforms, such as an-

droid, java, and C#. This implies that it is on a lower semantic level than other tags (as indicated

by the dashed lines in the figure). A solid line represents that a tag has been assigned to a cor-

responding post by a user (e.g., Post1 has android as a tag). Ignoring such a hidden hierarchical
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Fig. 5. An example of the tag frequency levels.

structure, arraylist would be assigned into the same cluster with one of the higher-level tags that

it frequently co-occurs with, such as java as they co-occur in Post2 and Post4. This will cause

arraylist to be separated from android and C#, which are the languages using arraylist as well.

Hence, for posts fall into these two languages, there is no chance to recommend arraylist as a tag

even though it may be a highly relevant one.

We address the above issue through multi-level post-tag co-clustering, where tags are orga-

nized into multiple semantic levels (see below for details). The idea is that we build a post-tag

co-clustering model at each level. For each model, we include all the posts but only the tags in

that particular level. This will allow us to group a post with tags at different semantic levels. To

further illustrate, for the simple example in Figure 4, we can separate the tags into two levels:

level 1 (android, java, and C#) and level 2 (arraylist). In level 1 co-clustering, we create three clus-

ters: (Post1, android), (Post2, Post4, java), and (Post3, C#). In level 2 co-clustering, we create two

clusters: (Post1, Post2, Post3, arraylist) and (Post4). In this way, for a post that asks a question

about arraylist in C#, multi-level post-tag co-clustering will allow us to recommend both C# and

arraylist as relevant tags.

Now the only remaining issue is how to separate tags into different levels. Apparently, this can

be manually done by a group of domain experts. Instead, we propose a simple yet effective way

to automate this process based on an important observation. It turns out that the semantic levels

of tags have a strong correlation with their usage frequencies. Figure 5 shows the frequencies of

StackOverflow tags. Based on the frequencies of these tags, they fall naturally into three categories:

hot, common, and rare. As can be seen, there are some obvious gaps in terms of their frequencies

between tags in these categories.

We have manually conducted a thorough investigation on the key properties of the tags in each

of these categories and summarize our results in Table 1. By analyzing these results, we reach two
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Table 1. Tag Categories and Key Properties

Category (Examples) Key Properties

Hot: Javascript, java, C#, php, an-

droid, python, html, C++, ios

1. knowledge domain, 2. integrated develop environ-

ment, 3. popular programming language, 4. usually in-

dependent from other hot tags

Common: jquery, cmd, events, net-

working, serialization, recursion,

thread-safe, multithreading

1. common operation, 2. popular technique, 3. further

description under hot tags, 4. usually shared bymultiple

hot tags

Rare: metacity, entourage, resig,

ubiquity, smarthost, array-initialize,

netmon, ora-01652

1. out-of-date technique, 2. niche software/tool, 3. un-

common terminology, 4. content of the tag usually

poorly maintained

important conclusions. First, the hot and common categories provide a good approximation of

two semantic levels of tags, where the higher level corresponds to domain, language, or platform

and the lower level corresponds to the key techniques within the domain, language, or platform.

Given that many rare tags are outdated or less commonly used, we could ignore them during the

co-clustering process. This will significantly reduce both the computational and spatial cost given

the large number of rare tags. Despite not being considered by multi-level post-tag co-clustering,

highly relevant rare tags may still be recommended through our tag recommendation algorithm,

which will be described next.

4.1.3 Multi-level Tag Recommendation. Given a new post (with no tags), a straightforward way

to recommend tags is to first locate clusters at each semantic level and then recommend all the

tags within the identified clusters. There are two issues with such an approach. First, if the sizes of

the clusters are large, a large number of tags will be recommended, which may include some not

very relevant ones. Second, since we only build co-clustering models for hot and common tags,

there is no way to recommend highly relevant rare tags.

To address the issue, we propose to recommend tags through two steps. First, to leverage the

grouping information from post-tag co-clustering, we train a supervised classifier (SVM is used

in our experiments) for each level using the clusters as class labels. Second, we classify the new

post into one of the clusters at each level. Within the identified cluster, we choose the top-n most

similar posts and use the top-k most frequent tags of these posts for recommendation purpose.

This two-step approach is able to leverage both global structure of the data (through post-tag

co-clustering) and local neighborhood information (by searching the most similar historical posts

within the cluster) to achieve high recommendation accuracy. Furthermore, it may recommend

relevant rare tags when these tags are frequently assigned to the chosen similar posts.

Regarding the time complexity, at the kth level of tags, we need to first conduct the post-tag

co-clustering, which applies singular value decomposition to a Mk by Nk matrix, where Mk and

Nk are number of posts and tags at the kth level, respectively. This step has the complexity of

O (M2
k
Nk ). Next, we use all posts at the current level and their belonged clusters as labels to fit a

multi-class SVM classifier. Themulti-class SVM classifier adopts one-vs.-rest classification strategy

thus consists of Lk binary SVMs where Lk is the number of clusters at kth level. Each binary

SVM is optimized using sequential minimal optimization with the complexity ofO (M2
k
). The total

training complexity at the kth level of tags is therefore O (LkMk
2). However, the training of the

tag recommender can be performed offline. For real-time tag recommendation, the key operation

is to invoke the multi-class SVM for label prediction, which can be conducted very efficiently with

a performance linear to the number of support vectors.
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4.2 Knowledge Retrieval

The knowledge retrieval (KR) component of the framework performs two major tasks: selecting

appropriate KBs and then ranking matching documents within these KBs. In the following sub-

sections, we describe each of these tasks.

4.2.1 Knowledge Base Selection. Selecting appropriate KBs is critical to retrieve relevant KB

articles to answer user posted questions. This can be significantly facilitated using the tags rec-

ommended by the MLTR component as described in Section 4.1. In particular, as hot tags usually

correspond to knowledge domains, programming languages, or developer platforms, they can be

naturally used to match the main themes of the KBs. This observation allows us to assign a hot

tag to each of the available KBs beforehand (e.g., assign javascript to online JavaScript Reference

and php to online PHP Documentation). Then, we can use the recommended hot tags to choose

the appropriate KBs. We refer to all of these selected hot tags as knowledge base or KB tags.
We need to consider three possible scenarios: (1) One and only one KB tag is recommended. In

this case, we directly find the matching KB. (2) More than one KB tags are recommended. Although

this is rare as evidenced by our experimental results, it may still occur in practice. For example,

a user may explain what s/he can do in one language (e.g., Java) and ask how the same task can

be achieved using another language (e.g., python). In this case, it makes sense to retrieval relevant

articles from both KBs, where the articles from the first KB can serve as a reference to facilitate

the user to understand the articles from the second KB. (3) No KB tag is recommended. In this

case, we can always go back to the MLTR component to recommend more tags. However, as the

recommendation quality becomes lower, it may imply either the user is asking for a subject that is

not covered by any available KBs or the posted question is not properly formulated. In this case,

some feedback can be sent to the users to inform them the potential issues with their posts.

4.2.2 Retrieving and Ranking KB Articles. Because we wish to identify articles from a set of

chosen knowledge bases, we tackled this problem as an information retrieval task. By ranking

these articles by a similarity metric, we would be able to follow in this direction. While our MLTR

were able to leverage both high and low-level tag recommendations, for the purpose of ranking, we

only used the high-level tag recommendation, becausewe could not assure an accurate relationship

between a choosen KB set and a low-level tag for individual KB articles. For the purpose of tag

prediction, we processed the MLTR component for all KB articles. However time-consuming this

procedure might be, this tag recommendation procedure for KB articles can be conducted offline

beforehand, prior to the query processing, so that all articles have already been assigned tags

before users query online.

Since tags are predicted for both the newly posted question and each KB article, a straightfor-

ward way of retrieving relevant KB articles is to rank the articles using the Jaccard Coefficient

computed from their corresponding sets of tags, where jaccard(A,B) = |A∩B ||A∪B | for sets A and B.
However, there is a potential issue with this strategy. Note that tag prediction is based on his-

torical tags assigned by Q&A community users. A small number of tags may be able to capture the

underlying semantics of a short question. However, they may not be sufficient for capturing all the

important details of KB articles with much longer content. Thus, simply performing tag matching

may miss important KB articles that are relevant to answering the question.

By taking advantage of the tag suggestions provided by our MLTR component, we effectively

augmented the term representation of our knowledge base articles. The size of the article varies,

but this is particularly beneficial when dealing with short articles. Table 2 presents some example

KB articles and the recommended tags. The examples clearly demonstrate the semantic relevance

between the articles and the recommended tags.
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Table 2. KB Articles and Recommended Tags Examples

Knowledge Base Articles Recommended Tags

Resource Types This extension defines a XML-RPC

server resource returned by xmlrpc_server_create

(...)

xml, android-layout url, spring, xml,

mysql web-applications, eclipse, file,

regex

Once-only subpatterns With both maximizing and

minimizing repetition failure of what follows

normally causes the repeated item (...)

regex, replace, split string, python-3.x,

c++, design-patterns, performance,

if-statement

Recursive patterns Consider the problem of

matching a string in parentheses allowing for

unlimited nested parentheses (...)

design-patterns, replace, loops split,

regex, string, loops recursion,

algorithm, c++

We propose to adopt a weighted query expansion strategy. We append the recommended tags

to the text of both the posted question and the KB article. Inspired by the tfidf heuristic, we chose

to increase the weight of a recommended tag by multiplying its term frequency in the question

(and the KB article) by its inverse tag frequency (or itf) in the corresponding KB, which is given by

itfj =
total number of articles in the KB

number of articles assigned with tagj
. (15)

This strategy makes questions and KB articles that share the same tags more similar and hence

improve the ranking of these articles.

We adopt the term-based vectors to represent the question and all the KB articles, where the

standard tf-idf weighting can be used to quantify the importance of each term in the question (and

KB articles). Articles in the selected KBs can be ranked based on their cosine similarities with the

question and the top ranked ones will be returned to the user. There are two major reasons for

choosing a term vector-based presentation instead of a topic-based representation for KB article

retrieval. First, since the tags are predicted through the topic-based representation, they are ex-

pected to already capture the high-level semantics conveyed through the topic-based presentation.

Leveraging the term vector-based representation will allow us to also incorporate some important

low-level details conveyed through individual terms. Second, through KB selection, we reduce the

KB article search scope to one or a small number of KBs. Since we only need to compare a relatively

small number of KB articles, search efficiency can still be guaranteedwith term-based presentation.

Regarding the time complexity of the Knowledge Retrieval component, we need to build the

tf-idf representation and an inverted index of a KB. Assuming we have D articles with a totalW
terms, the complexity isO (W ). This step, however, can be performed offline. Through an inverted

index, the matching between a query and potential KB articles can be performed very efficiently,

which is upper bounded by O (D) (when a question consisting of keywords that match all the KB

articles, which is unlikely to occur).

5 EXPERIMENTS

We have conducted extensive experiments over real-world data collected from StackOverflow. The

reason of choosing StackOverflow is due to its great popularity, large user base, huge amounts of

historical posts from users, and rich set of well-maintained tags. Furthermore, we choose six well-

known online API repositories as our potential KBs. The proposed approach can be conveniently

generalized tomany other Q&A sites with a similar nature.We start by describing the experimental

data in detail. We then define important evaluation metrics and present our experimental result

and comparisons with the baseline and other alternative approaches.
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Table 3. Summary Statistics of StackOverflow Data

Statistic Original Experiment Set

Posts 2,430,480 64,793

Questions 534,611 12,000

Answers 1,895,869 52,793

Tags 15,379 3,247

Table 4. Summary Statistics of Processed KBs

Knowledge Base Title Article Count

Python KB (PSL + PLR combined) 5,469

Java KB (JPAS + TJLS combined) 1,994

PHP Documentation 12,843

Javascript Reference 790

Android Reference 5,469

Django Documentation 324

5.1 Description of the Dataset

The StackOverflow team periodically publishes updated data dumps with its content [10]. We

adopt the version published on August 18, 2015, which was the most up-to-date one when we

conducted this research. The StackOverflow questions and answers are represented in the dataset

individually as posts. The dataset has a score metric for each post that we used for data cleansing.

The score is a user voting measure and is simply the number of positive votes minus the number of

negative votes. To ensure the quality of our dataset, we extracted answers with a minimum score

of 1. We took questions with a minimum score of 1 and with a minimum of four answers among

the already-filtered list of answers.We then randomly sampled 2,000 questions for each knowledge

base with matching tags, totalling 12,000 questions along with over 50,000 linked answers. Table 3

shows the summary statistics of the dataset.

As discussed in Section 1, we choose online programming documentation libraries as exter-

nal KBs. In particular, we picked the following eight data sources: Python Standard Library [14],

Python Language Reference [13], Java Platform SE 8 API Specification [7], Java Language Speci-

fication, Java SE 8 Edition [6], PHP Documentation [16], JavaScript Reference [15], Android Ref-

erence [18], and Django Documentation [12]. We combine two or more sources into one if they

cover the same subject (e.g., Python Standard Library and Python Language Reference), resulting

in 6KBs. All references were downloaded and pre-processed. When no plain text was available the

reference was parsed to extract the plain text. When only HTML documentation was available, we

removed its structural tags, scripts and styling. Each resulting KB was stored as a single text file,

with one article per line. Table 4 presents summary statistics of the processed KBs.

5.2 Tag Recommendation Evaluation

5.2.1 Metrics to Evaluate MLTR. To evaluate the quality of the recommended tags, we vary

the number of recommendations and report the recall@K to evaluate how well the predicted tags

match the user assigned ones for a given set of testing posts. For each post in the testing set, we first

remove the original user-assigned tags. Once the tags are predicted, we essentially use the user-

assigned tags as our ground truth to compute the recall. Since the tags are assigned by a diverse

set of users, we may not expect all these tags are truly relevant and some of them may also be
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redundant. More importantly, the user assigned tags may not fully cover the underlying semantics

of the posts. Therefore, precision is not a good choice for evaluation of our recommendation result.

Later in our discussion, we will show that MLTR is able to recommend some novel tags that are

truly relevant to the posts but are not assigned by users.

The noisy nature of user assigned tags further motivates us to define a more robust evaluation

metric, referred to as Coverage, which allows the predicted tags to only partially match the user

assigned tags. Consider a set of testing posts P. For a given post pi ∈ P, let Ri denote the recom-

mended tags from different levels and Oi denote the original tags assigned by users. We define an

indicator variable coveri to show whether Ri overlaps Oi :

coveri =

{
1 Ri ∩ Oi � ∅
0 otherwise.

(16)

The Coverage is then defined as

Coverage =

∑N
i=1 coveri

N
. (17)

5.2.2 Results and Comparisons. We adopt tenfold cross-validation to evaluate the quality of

multi-level tag recommendation. To show the effectiveness of the proposed approach, we apply

post-tag co-clustering to tags with a flat structure (i.e., no separation into different levels) and use

it as the baseline for comparison. To have a more detailed view on the result, we evaluate the

recommendation accuracy at each of the tag levels: hot and common. The Coverage (or Recall) is

computed by comparing the user assigned tags with the predicted ones at the same level based

on Equation (17) (or the Recall function). We also investigate the effectiveness of using inverse

tag frequency to adjust the graph edge weights according to user assigned tags in the training set.

We set the number of clusters (at each level) as 12, number of topics of LDA as 12, and number of

recommended tags (at each level) as 5.

Figure 6(a) summarizes the results. First, multi-level recommendation significantly outper-

forms the baseline approach at both levels. Second, adjusting the edge weights (denoted as

Pow_Multilevel, the darkest bar in the figure) has a large positive impact on common tag rec-

ommendation. Different from hot tags, common tags usually have shorter and sometime insuffi-

cient descriptions. By leveraging users’ past usage of these tags, our approach essentially combines

both content-based and collaborative filtering recommendation to achieve high accuracy. Third,

the proposed approach achieves high recall and coverage, particularly for common tags. The rela-

tively short descriptions and lack of intensive usage by users make common tag recommendation

more challenging but extremely important, because choosing the right common tags can make a

post easily noticed by experts from its corresponding domain (usually indicated by the hot tag).

Furthermore, relevant common tags may directly lead a user to the solution. For example, common

tags jquery and for-loop recommended to the post “convert numerical value to a string filled with
a character in JavaScript” indicate that the user should find the solution using for-loop with jquery

functions. Finally, the effectiveness of multi-level co-clustering can also be seen from the shape of

the clusters. Our results indicate that the flat co-clustering usually leads to very unbalanced clus-

ters, some of which have one or two tags and even zero post. This is due to the hidden hierarchical

structure of tags as illustrated in Figure 4. Multi-level co-clustering effectively addresses this issue

and achieves perfectly balanced clusters (the actual cluster distributions are omitted due to the

lack of space).

We compare the performance of the proposed recommendation method with three competitive

tag recommendation methods in Figure 6(a): binary relevant machines (BR), non-negative matrix

factorization (NMF), and non-negative matrix tri-factorization (NMTriF) [3]. The BRmethod trains
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Fig. 6. Multi-level tag recommendation.

a binary classifier for each tag and predicts tags independently. BR method may suffer from a high

computational cost when the number of tags is large. The NMF method factorizes the post-tag

matrix into the product of two non-negative matrices,W and H . MatrixW is the k-components

representation of tags/posts where the components are jointly extracted from tags and posts. Then

we run K-means on W to cluster the posts and tags. The cluster assignment is used to train a

supervised model to predict the cluster of a test post tags for that post using the same voting

mechanism like the proposedmethod. In our experiment,k is set to 12, which is the optimal number

of LDA topics for the proposed model. The NMTriF method factories the tag-post matrix into the
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product of three non-negative matrices, G, S, and F. Matrix F is the one-out-of-k cluster assignment

of posts and is used for tag recommendation like the proposed method.

All methods have reasonable performance for hot tag recommendation but the proposedmethod

outperforms others for recommending common tags. The advantage of the proposed method on

common tags shows that edge weights adjustment provides useful information on tag-post rela-

tionships that are beneficial to multi-level co-clustering.

In Figure 6(b), we compare the execution time of using topic represented data with vector space

represented data. We show that the using LDA for dimensionality reduction not only improves the

recommendation performance but also significantly reduces the time complexity.

We also conduct a series of experiments to investigate the impact of the key parameters of the

model, which include the number of clusters (the same number is used for each tag level to simplify

parameter tuning), number of topics for the LDA model to derive the topic-based representation

of posts, the number of recommended tags (the same number is used for each level), and the top-n

posts used for recommending tags in the designated cluster. We vary one parameter while keeping

the others fixed to locate its optimal value. Figures 6(c), 6(e), 6(f), and 6(d) also show that Coverage

and Recall are relatively stable over a range of these parameters. For the retrieval component task,

we fixed both the number of topics and the number of cluster to 12.

Another important observation is that some recommended tags that do not match the user as-

signed ones might also be relevant to the posted question. For example, a user asked how to recog-
nize a piece of phone number through long strings and a hot tag python is assigned to the post. Our

approach not only recommends python as a hot tag but also if-statement and regex as common

tags. If precision@K were used for evaluation, then these two tags are both false positives, which

will decrease the precision. However, they provide the right combination with the recommended

hot tag to best characterize the user posted question. In another case, a user asked about how to
submit a form without a submit button but only assigned php as the tag. Our approach is able to

recommend jquery and ajax (besides php), which are two popular techniques that address the

posted question. These cases suggest that the proposed approach can recommend highly relevant

and oftentimes novel tags to help user better understand the questions and locate relevant answers

to address them.

5.3 Knowledge Retrieval Evaluation

5.3.1 Metrics to Evaluate KR. A key challenge to evaluate the overall performance of KB article

retrieval is the lack of ground truth. Since we aim to retrieve articles from external KBs to answer

questions, the user provided answers in the StackOverflow data are not directly applicable for

evaluation purpose as in multi-level tag evaluation. To address this challenge, we construct two

evaluation sets, Human-judged and Automated, to assess the accuracy of KB article retrieval.

The Human-judged evaluation set is manually created, which consists of 20 questions relevant

for each KB, totalling 120 questions. For each question, we manually go through the KB articles

and locate a set of most relevant articles, which will be used to compare with the system retrieved

ones. We also develop a heuristic to create a larger automated evaluation set and then evaluate our

overall system performance with a more representative testing set. Specifically, for each question

in our dataset, we concatenate all the user provided answers. This concatenated answer is then

comparedwith the articles in the corresponding KB and the top-10most similar (e.g., by computing

their cosine similarity) ones are first selected as a candidate set S. Finally, an article is included in

the Automated evaluation set only if its similarity with the concatenated user provided answers

is no less than [mean(S) + sd (S)], where sd denote standard deviation.

Having these two evaluation sets, we can use the following metrics: Precision @K, Recall@K,

Mean Reciprocal Ranking (MRR), and Normalized Discounted Cumulative Gain (NDCG) with
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Table 5. Tenfold Cross-validation Accuracy Estimates

Classifier

Tags SVC LDA QDA LR KNN AB GB RF

java 50% 65% 38% 60% 60% 63% 53% 50%

javascript 50% 60% 38% 70% 48% 60% 50% 50%

php 50% 68% 55% 65% 63% 70% 50% 53%

python 50% 65% 58% 73% 58% 80% 50% 53%

android 50% 65% 63% 75% 78% 70% 50% 63%

binary (0 or 1) relevance. NDCG is particularly interesting when the order of the retrieved re-

sults is important. As our system returns a ranked list of articles, it is desired that the most highly

ranked results are likely the most important ones. This behavior is most accurately quantified us-

ing NDCG, because it introduces increasing discounts or penalties the higher the rank of a result.

We use the typical discount of 1
loд2 (rank )

. Let r1, . . . , rn be the scores of a list of ranked articles

for a given query, DCG is given by r1 + r2/loд2 (2) + r3/loд2 (3) + · · · + rn/loд2 (n). To normalize the

obtained score to achieve the NDCG@K , we divide the calculated DCG by the ideal DCG at rankK :

NDCG@K =
DCG@K (calculated)

DCG@K (ideal)
, (18)

where the ideal ranking information can be derived from the constructed Human-judged or

Automated evaluation sets.

5.3.2 Results and Comparisons. To justify the effectiveness of the proposed approach, we also

implement two other KB article retrieval approaches. The first one, which is used as the baseline,

builds a term-based vector space model over the articles of all KBs and construct an inverted index

to facilitate the search of these articles. Relevant articles are identified and ranked based on their

cosine similarity with the questions in the testing set. The comparison with this baseline approach

will help show the effectiveness of using recommended tags for KB article retrieval. We also build

a supervised classifier using the historical posts and their user assigned tags to directly predict the

hot tags of a test question and use the predicted tags for article retrieval. For this classical machine-

learned tag recommender, we choose an Ada Boost-basedmodel, themost performing classifier us-

ing 10-fold cross validation. The following models were tested: Supporting Vector Machine, Linear

Discriminant Analysis, Quadratic Discriminant Analysis, Logistic Regression, K Nearest Neighbor,

Ada Boosting, Gradient Boosting, and Random Forest. Table 5 summarizes each model accuracy.

We refer to this classical machine learning approach as TCRanker and it was aimed at checking

the effectiveness of MLTR in the context of KB article retrieval. Finally, we refer to our proposed

approach as TRRanker.

For the Automated evaluation set, we follow the same 10-fold CV strategy as used in eval-

uating MLTR to assess the performance of KB article retrieval. For the Human-judged set, we

use the entire 12,000 posts for training the system as they are distinct from the questions in the

Human-judged set. Figures 7 and 8 summarize all the major results. As can be seen, for all met-

rics, TRRanker is able to achieve consistent improvements over the baseline and TCRanker. Both

tag-based approaches outperform the baseline, which justify the effectiveness of using tags for KB

article retrieval.

It is also interesting to note that the performance advantage of TRRanker is more obvious for

the Human-judged set than the automatically generated one. Recall that the Automated evaluation

set is generated from historical user provided answers and through some heuristics. Therefore,
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Fig. 7. Results for the automated evaluation set.

the result from the Human-judged set is expected to be more accurate. We also noticed that when

applying the same heuristic to the questions in the Human-judged set, we extract a set of KB

articles, which only partially match the manually selected ones. However, the good performance

of our approach shows that it is able to retrieve KB articles that cover both the knowledge from

other users as well as the external KBs.

Finally, we also experiment by representing both the test questions and the KB articles using

LDA-based topics and fine tune the number of topics. It turns out that the term vector-based pre-

sentation consistently outperforms the topic-based one for KB article retrieval. This result justifies

our analysis that the recommended tags may already carry the semantics captured by the topics

(as multi-level co-clustering is achieved through the topic-based representation). Using the term-

based presentation complements tags by capturing the important low-level details through term

vectors.

6 CONCLUSIONS AND FUTURE WORK

We present an automatic question-answering framework by leveraging a novel multi-level tag

recommendation model to retrieve relevant articles from remote knowledge bases. To best har-

ness the rich tags assigned by Q&A community users, we categorize a large collection of tags

into multiple semantic levels and automate this process by following the correlation between tag

semantics and their usage frequencies. We build a post-tag co-cluster and a two-step supervised

tag recommender at each tag level to handle the hidden hierarchical dependencies among tags.

By leveraging the accurately recommended tags, we can locate the proper KBs and discover/rank

their articles most relevant to user posted questions. We have extensively evaluated the proposed
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Fig. 8. Results for the human-judged evaluation set.

framework using the large-scale StackOverflow data. Results show that the performance of our

framework is superior to both the baseline and other alternative approaches.

In this article, we primarily focus on software development related Q&A sites due to their great

popularity and large user bases. An interesting future direction is to apply the proposed framework

to other important domains, such as health related ones, or even the ones with open domains. One

challenge is the identification of potential KBs and how to better scale the system when a much

larger number of KBs are involved.
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