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Optimal Control of Heat Transfer in Unsteady Stokes Flows

Weiwei Hu and Omer San

Abstract— This paper is concerned with establishing a rigor-
ous mathematical framework to address optimal control designs
for heat transfer in unsteady Stokes flows. In particular, we
focus on the problem of enhancing convection-cooling between
two fluids via controlling the velocity of the cold fluid flow,
where both internal and boundary controls will be investigated.
This essentially leads to a bilinear control problem. We present
a rigorous proof of the existence of an optimal control and de-
rive the first-order necessary conditions for optimality by using
a variational inequality. Finally, we show that the uniqueness
of the optimal controller can be obtained if the control weight
is sufficiently large.

I. INTRODUCTION

We consider an optimal control problem of convection-
cooling between two fluids via an active control of the cold
fluid flow velocity, which is governed by the unsteady Stoke
equations. This is motivated by the control design of a tubular
counter-current heat exchanger; see, e.g., [1], [2], [3], [9],
[10], [11], [21], [22]. Effective circulation plays an important
role in keeping the cold fluid with suitably low temperatures
evenly. Very often liquid-cooled systems use a circulation
pump to avoid the occurrence of hot spots. The current
work aims at formulating an optimal strategy for enhancing
circulation of the cold fluid flow in order to achieve optimal
heat transfer.

Consider a simple convection-cooling model demonstrated
in Fig. 1, where Q,Q, C R? are open bounded with smooth
boundary dQ; and dQo,, respectively. Assume that the fluid
in Q is heated by the walls, while cooled down by the
cold fluid in ;. The convection-cooling between these two
fluids happens at the interface I', = dQ; NdQ;. The precise
mathematical model is governed by the following diffusion-
convection equations.

Fig. 1. Convection-cooling between two fluids
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where 7| represents a (scaled) temperature of a hot fluid
in Q; € R? convected by an incompressible fluid flow with
velocity vy, np is the outward normal unit vector with respect
to Qp, and 6 is a given heating function acting on the
boundary Q; \T,. Here T is the (scaled) temperature of a
cold fluid in €, satisfying

oT
TIZ =10AT, —v,- VT, x€Qy, 3)
T
Kzale|re =a(Ti - 1), Dlsor, =0. “4)
The initial conditions are given by
T1 (x70) = Tl()(x) and Tz(x, 0) = Tzo(x). (5)

In our model equations, k;,i = 1,2 stand for the diffusivity
and a is the heat transfer coefficient.

We assume that the hot fluid flow velocity v is prescribed
and driven by some time-dependent external body force.
Moreover, v is divergence free with no-penetration boundary
condition, i.e.,

V'Vl :07

In our previous work [17] we considered that the cold
fluid flow is governed by the steady Stokes equations. No
dynamics was incorporated for the flow velocity during the
cooling process. In the present paper we consider that the
cold fluid flow velocity v, is governed by the unsteady
Stokes equations, which are steered by internal (distributed)
or boundary controls. We formulate different types of control
designs in the next section.

x€Qp and v-niyg, =0. (6)

II. OPTIMAL CONTROL DESIGNS
A. Internal Control

Internal control is employed to steer the convection by
providing energy to the system in the interior of the flow
domain. For example, stirring a fluid back and forth can gen-
erate fluctuating velocities with respect to the flow barriers,
therefore engenders transport across them for achieving bet-
ter heat transfer [24], [25]. To formulate an internal control
problem, we consider that the control acts on a subdomain
o C Q with a smooth boundary d@,. The controlled Stokes
equations become

0
Sr =M= Vptmate, V=0, xeQ. (7)
with no-slip boundary conditions imposed on I

2o, =0, ®)

where mg(x) is a sufficiently smooth function with compact
support at @ and u is the control input. The initial condition
is given by v»(0) = vyo.
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B. Boundary Control

For boundary control, we consider that the control inputs
act tangentially along the wall through Dirichlet or Navier
slip boundary conditions. This is motived by the observation
that wall rotation or movement enhances heat transport in
the whole fluid domain [12], [13], [14], [15], [23]. Based
on these results, we investigate the control inputs that tan-
gentially act along the wall of the cold fluid to increase
circulation for enhancing heat transfer.

In this paper, we establish a rigorous theoretical frame-
work to study this phenomenon by employing two types of
controls for the cold fluid flow velocity field through non-
penetration boundary conditions and characterize the velocity
field for achieving optimal transport process. The boundary
conditions are formulated as follows.

VQ-n2|392=0 and }/kv2|992:u7 k:1,2, (9)

where n; is the outward normal unit vector with respect to
Q, and ny = —nj on I',. The boundary input u depends on
time and spatial position along the wall of Q,, which is the
manipulated function that generates the fluid flow in Q. ¥
and 7 are the trace operators defined through the Dirichlet
and the Navier slip boundary conditions, respectively. To be
more specific,

Nv2log, =u 10

and

(1)

where T(v2) = 2vD(vz) stands for the stress tensor with
D(va) = (1/2)(Vva + (V»2)T), 7 stands for the outward
tangental unit vector with respect to Q», and (T(v2)-n2)s,
is the tangential component of (T(vz)-ny). The friction
between the fluid and the boundary dQ, is proportional to
—v; with the positive coefficient of proportionality .

vv2laq, = (T(v2) -n2)e, +av2loq, =u,

C. Formulation of the Cost Functional

The objective of this paper is to minimize the average
temperature 77 in Q; over the time interval [0,7], with an
optimal input u

17T 2 y (T 2
J(u):f/ |/ Ty (x,1) dx| dr+—/ ullg,, dt.  (P)
2Jo Jo, 2 Jo ad

where 7 > 0 is the control weight parameter and U, is the
set of admissible controls. To set up the abstract formulation
for the velocity and the temperature, we define for s > 0,

Vi (Q2) = {ve H(Q): div v=0, v|yq, =0},

V,:(Q,) = {v IS HS(Qi): div v =0, V'”i‘agi — 0}) i=1,2,

Vr?(aQZ) - {M S Lz(ggz): M'I’l2|392 = 0}7

Hjor,(Q2) = {T € H'(Q) : T|s,r, = 0}
Let (-,-) and (-,-) stand for the L?-inner products in the
interior of the domain and on the boundary, respectively. In
the sequel, the symbol ¢ denotes a generic positive constant.

Due to one-way coupling between the temperature and
the velocity, investigating the optimal control design for

optimal heat transfer is tied to understanding the control
problem of the Stokes flows. Since the velocity and the
temperature are coupled nonlinearly via the advective term
vy - VT, in the temperature equation (3), linear control of
the Stokes flow essentially leads to a bilinear control of
the temperature. Therefore, problem (P) is a nonconvex
optimization problem. For convenience of our discussion, we
rewrite the controlled velocity field in a more compact form

0
%:Aw-}—Bku, k=0,1,2, (12)
v2(0) = voo, (13)

where A = PA is the Stokes operator associated with the
homogenous Dirichlet or Navier slip boundary conditions
given by (9), with domain
D(A) ={v € H*(Q): div v=0, v2-malpq, =0
and ka‘aﬂz :O}v k= 1a2a
P: L2(Qy) — VP(Qy) is the Leray projector and By is the
control input operator defined by the way how the control is

introduced to the system. Note that A is strictly negative and
self-adjoint. For the internal control,

BO == me,
whereas for the boundary control,
By =—-ARy, k=1,2,

where R; is the boundary lifting operator that maps the
boundary data to an interior function. To be more precise,
if vy = Ryu for u € L?(d€), then v, satisfies the boundary
value problem associated with different types of boundary
conditions

VAV, —Vp=0, V.1,=0,

1%) -nz‘r =0 and }’kV2|1“ =u,

(14)

k=12 (15

With the Dirichlet trace y;, By is so called the Dirichlet
boundary control input operator. The tangential Dirichlet
boundary control is thoroughly studied in [4], [5]. If let B}
be the L?-adjoint operator of Bj, then

d
10=—Ria= -2, WoeD@) 6

In contrast, with the Navier slip trace 7, B; is called the
Navier slip boundary control input operator. A general exis-
tence and regularity theory of the Stokes problem associated
with nonhomogenous Navier slip boundary conditions can be
found in (cf. [8]). In particular, if u € H~/ 2(9Qy,), then there
exists a unique weak solution (v2,p2) € V1(Qp) x L2(©;) to
(14)=(15). Moreover, if u € H'/?(9Qy,), then there exists a
unique strong solution (v2,p2) € V2(Qa) x H(Q;). If let B;
be the L2-adjoint operator of B», then

B¢ = —RA9 = $loo,, V9 € D(A).

Moreover, the velocity can be solved by using the variation
of parameters formula

v(1) = e*vo + (L) (1),

7)

k=0,1,2, (18)
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where ¢’ is an analytic semigroup generated by A on V°(Q),
Ly is given by

(Lyu)(t /eA’ IBu(t)dr, k=0,1,2, (19)
and its L?(0,T;-)-adjoint L} is given by
(Lio)(t / Bie A ¢ (1)dT. (20)

To simplify the notation, we replace L; by L without ambi-
guity for a generic approach in the rest of our paper.

Recall that problem (P) is well-posed if for any initial
condition (7o, Ta0,Vv20), there exit a control u € U,; and the
corresponding solution (77,75,v,) of the governing system
(1)—(6) and (12)—(13), such that the cost functional J(u) is
finite. However, the derivation of U,y requires a differen-
tiability analysis of the control-state map. In this work, the
first-order optimality conditions associated with problem (P)
will be derived by using a variational inequality [20], that is,
if u is an optimal solution to problem (P), then

T (u)- (g~
where J'(u) - g stands for the Géteaux derivative of J with
respect to u in every direction g € U,,. Therefore, U,y will

be chosen such that J(u) is Gateaux differentiable. In fact,
for the current model we chose

u) >0, g€Uu, 21

Uy = L*(0,T;L*(w)) (22)
for the internal control, and
Uug = L*(0,T:V2(0Q,)) (23)

for both Dirichlet and Navier slip boundary controls.

III. WELL-POSEDNESS OF THE MODEL AND EXISTENCE
OF AN OPTIMAL SOLUTION

The well-posedness of system (1)—(5) with steady Stokes
flows and the existence of an optimal solution to problem
(P) are addressed in [17]. In this work we assume that Tjp €
L*(Q) and Try € L™(Q,). Slightly modifying the proof of
[17, Theorem 1], we have the following result for the case
with unsteady Stokes flows. Some components of the proof
can be also found in [6, Theorem 1].

Theorem 1: Assume that vi € L*(0,T;V(Q;)) and v, €
L*(0,T;V2(Q,)). For Tp € L*(Q;),i = 1,2, and 6 €
L>(0,T;H'(9Q\T,)), there exists a unique solution (7}, 7»)
to the linear system of equations (1)—(5) satisfying

1Tl 0,720 T | Till 20,7501 (0 +|| ar HL2 (0,T:(H (Q:)))

+ ||v, VT”LZ 0,T:(H ())) = < C(TIO;T2079) (24)

for i=1,2.

Note that by Agmon’s inequality, ||71||z= < c||Ti|41+5,
0 <8 < 1/2, for dimension d = 2. It suffices to have
6 € L=(0,T;H'(dQ \T,)) based on the regularity of the
Dirichlet trace.

Next we establish the well-posedness of the Géateaux
derivatives of the state variables with respect to the control

input u. Let z; =T/ (u)-h,i= 1,2, and w =} (u) - h denote the
Gateaux derlvatwes of T; and v, with respect to u in every
direction & in Uy, respectively. Then w = Lh by (18) and
zi,i = 1,2, satisfy the following coupled linear equations

% =K1Az1 —vi - Vzy, (25)
% =10Az — (Ww- VI +v2-V2) (26)
with boundary conditions
Klg%h =a(z—z), ulser, =0, 27)
Kzg Ir, =alz1 —22), 22lso\r, =0, (28)
and initial conditions
21(x,0) =z2(x,0) = 0. (29)

Comparing (25)—(29) with (1)—(5), the essential difference
lies in the term w- VT, in (26). It is easy to show that
(25)-(29) is well-posed if T» € L*(0,T;L"(€,)) and w €
L2(0,T;V0(Q,)). Let vy € V(Qy). Then latter holds imme-
diately for u € U,y given by (22) or (23), due to the regularity
of L associated with different types of controls (cf. [4], [5],
(71, [16], [18]).

The following theorem provides the existence of an opti-
mal solution to problem (P). The proof follows the similar
procedures as constructed in [17, Theorem 2].

Theorem 2: Assume that v; € L>(0,T;V?(Q)). For Ty €
L*(Q),i = 1,2, 8 € L*(0,T;H'(dQ; \T.)), and vy €
V9(€,), there exists an optimal solution u* € Uyg to problem
(P) subject to (1)—(5) and (12)—(13).

IV. CONDITIONS OF OPTIMALITY AND UNIQUENESS OF
THE OPTIMAL CONTROLLER
A. First-order Necessary Conditions for Optimality

In this section, we derive the first-order conditions of
optimality for problem (P) by using a variational inequality
(21). Define the operator D: LZ(QI) — R by

DTy (x,t) = Ty (x,t)dx.

“Ql| Q
Then problem (P) can be rewritten as

1 /T y (T
J(”):E/o (D*DTl,Tl)Qldt+§/() (w,u)y,, dr.  (30)

If u is an optimal solution to (30), then (21) implies
T T
J/(u).h:/ (D'DTy.21)a, dt+y/ (u,h)y,, di >0,
0 0

€29

for every h € U,y.
Define the adjoint system of (1)—(5) associated with the
cost functional (30) by

0
g K1Aq1 +vi-Vq1 +D*DTy,

ot (32)
d
—% = KAgs +wi- Vo, (33)
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with boundary conditions

dqi

Klfmh =a(lg2—q1), qilao\r. =0 (34)
Kz%h =alq1—q2), qilagr, =0, (35)
where w = Lu. The final time conditions are given by
q1(x,T) = q2(x,T) =0. (36)
Then
q1 €C([0,T];L%(Q1))NL*(0,T;H (Qy)), T >0,
and
g2 € C([0,T]:L*(Q2)) NL*(0,T;H' (7)), T >0. (37)

The first-order necessary conditions for optimality are
stated in the following theorem. The result can be obtained
by slightly modifying the proof of [17, Theorem 3] and
utilizing the linearity of operator L. We provide the complete
proof for the convenience of the readers.

Theorem 3: Let vy € L*(0,T;VY(Q))), Ty € L*(),i =
1,2, and 6 € L*(0,T; H' (9Q1 \T.)). Assume that u°P* € U,y
is an optimal solution to problem (P). If (T1,T3,v;) is the
corresponding solution to the system governed by (1)—(5) and
(12)—~(13) and (g1,g2) is the solution to the adjoint system
(32)—(36), then

ul = *%,L*]P’(%VTz), (38)
where L* is the L?(0,T’;-)-adjoint operator of L give by (20),

which is defined through different types of controls.
Proof: By (31) and (32), we have

/ _ T dq
J(u)-h= A (_W_KIAQI_VI’VC]IaZI)QIdI

-‘v-)//(;T(M,h)Uad dt, (39)
where
/OT(—% — K1Aq1 —v1-Vq1,21)q, dt
= /OT(‘ZI,% —Ki1Az1 +vi-Vz1)g, dt
+ [ a2, a0, ~ lalaz 1) 20
= /OT<aZzafI1>re —(aga2,z1)r, dt. (40)

Moreover, with the help of (26) and (33) we have
r 9
0= /o (*% — KAqy — (Lu) - Vq2,22)0, dt
T 9z
= /0 (92, TIZ — Az + (Lu) - Vz2)q, dt

T
+ [ aar = 2).q20r, ~ falagr — g2).2)r, di
0

T T
:_/0 (6127(Lh)'VT2)92d1+/0 (az2,q1)r, — (ag2,z1)r, dt.

(41)

From (39)-(41) we get

T 9
/ (—qu —K1Agq1 —v1-Vq1,21)q, dt
0 t

T T
_ /0 (2, (Lh) - VT3)g, di = /0 (L"P(q2VT2), )y, dt.
(42)

Thus if u°”" is an optimal solution to (30), then

T
J/(uopt) h= /0 (L*]P(qzVTZ)ah)Uad dr
T
o =0
0

for every h € U,y. This yields the desired result (38). |
Remark 4: As mentioned in [7, Remark 6], since the
Leray projector P: L?(Q;) — V2(Q,) can be extended from
H*(Q,),s >0, to V(Qy), its adjoint P*: V(Qp) — L*(Qy)
can be extended as a bounded operator from (V5(Q;)) to
(H*(22))" by
Y @) rs()y e (00) = (VPO 0y i), (43)
for v € (V3(Q)), @ € Vi(Q). Therefore, if ¢.VT> €
L?(0,T;H*(Qy,)), where s < 0, then we replace P by P* in
the last equality of (42). In this case,

uort — — jl/L* (P*(q2VT2)). “44)

B. Uniqueness of the Optimal Controller

In this section, we discuss the uniqueness of the optimal
controller to problem (P). Due to the limited space, we focus
on the discussion for the case with Navier slip boundary
control. The proof can be easily applied to the internal
control, whereas the Dirichlet boundary control case will be
addressed in our future paper. The main result is given by
the following theorem.

Theorem 5: Let v € L*(0,T;V(Q1)), To € L*(Q;),i =
1,2, and 8 € L?(0,T;H'(dQ; \T,)). For ¥ sufficiently large,
there exists at most one optimal controller u’”" € U,y to
problem (P) with Navier slip boundary control, which can
be solved from (38).

Proof: Assume that there are two pairs of optimal
solutions to problem (P), denoted by (u',T!,7)',v}) and
(u,T2,T2,v3). The corresponding solutions to the adjoint
problem (32)—(36) are denoted by (¢1,¢}) and (¢3,43). Then
U=u'—u?, @ =T'-T2i=1,2, W=vl—v3 =LU, and
Q' =q! —q?,i=1,2, satisfy the following system

00!
- = KA®! —y, . VO, (45)
00?
== A®” — (LU)-VTy —v3-V@?, (46)
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with boundary conditions

00! 2 ol 1

ki 5, Ire = a(®* =01, ©'agr, =0, 47
002

K25, Ir =a(®' = %), ©lag,r, =0, (48)
an o 1 1 * 1

and *7 =KIAQ +v; VQ +D"DQ ) (49)

_90° 2 Vol 2).vo?

5, = A0+ (LU)-Vay + (Lur) - VO, (50)

with boundary conditions

a 1
KITSI‘D =a(@*=0"), Qilaa;r, =0, (51)
a 2
Kzfgz\re =a(Q' - 0%),

U:—%L*( (Q°VT) +43Ve?)).

O2)a0,\r, =0, (52)

where (53)

The initial conditions for ®' and ®* are given by ®!(0) =
©2(0) = 0. The final time conditions for Q! and Q? are given
by 0'(T) = Q*(T) =0

Applying the L?-estimate to (45)—(46), respectively, yields

1d1]|®"[,2
2 dr
—/(vl-V®1)® dx,
Q

1 dt||®?
1dt)|©7]2 n
2 dt

- / (LU)-VT,)® dx — / (2-VOH)@2dx, (55)
Q Q

K VO! 2 = / (@ — 010! dx
T

(54)
K‘2||V®2||L2=/ a(®! — @%)0%dx
T

e

Recall that the velocity is divergent free with no-penetration
conditions. We get

I
/(vl-V®1)®1dx:f/v1~V(®])2dx
Q 2Ja
I

= E(/BQI Vi '”1(®l)2dX—/QV-V1(®1)2dx) =0.

Similarly, [o,(v3-V®?)@?dx = 0. Adding (54)~(55) gives

1dt||@'|7, 1dt|@%7, 12 212
2 At 3 = T RIVOL + e Ve
+a(|®' |72, + 10772,

< 200" e, € e, + [ (L) - VT)0%dx
< a(1©' e, +1€% ) - [ (LOT - VORax

< a0z, + 1€7122c,)) + LU 2173 12| VP
< a0l 2y + 107122, )) + el T3 -

K
+ 5 1V07|7.. (56)

After simplification, we integrate (56) on both sides from 0
to T. Then making use of (24) yields

T
IIG)I(T)IILz+||®2(T)HL2+21<1/0 IVe'||7 dr
T T
+1<2/ ||V®2H§2dt§c/
0 0

T
gC(Tlo,Tzo,G)/O LU, d.

HLUHde’ sup ||73]|7-

t€[0.7]

(57

To proceed, we first recall the regularity of L and L* in the
case of Navier slip boundary conditions (c.f [7], [16], [18],
[19]). We have that

LeZ(1(0,T5(V2(992))), L2 (0, T;V(2))),  (58)
and
L€ 2 (12(0,T; (Vi *(22))),12(0,T:V,)(992))). (59)

With the help of the optimality condition (53), (58)—(59),
and Remark 4 we have

T 1 /T
[ Ul dr < [ ILL (BQPVE + V) s

2 T .
< [} B Q@VED s + [P @3V )
(60)

where 6 > 0 is sufficiently small. Moreover,

| Jo(Q*VT)) - (Po) dx|

IP(QVTY) [ gy1+s(yy = sup
2 )1+ (0y) pevl () [@ll1+s
> 1
VT. -
< s |2 VT 2l |l ©1)
¢€H1+6(92) H(pHH1+5
2|2 ||IVTy)
< sp  ALIRIVE ]l o (62)
peH!+5(2,) @llrs

< | @ lIVT -

From (61) to (62), we used Agmon’s inequality for dimen-
sion d = 2.

Similarly, for the second term on the right hand side of
(60) we have

IP*(@3VO?) | 4145 (0y)y < clldallp2 VO |2
Thus (60) becomes
r 2 e 212 112
A |LU||7.dt < 2 (2 IVTy |72
+cll@a[7.1IVO? | 72) dr

< 5w 1715 [ ivega
i t€[0.T

+ sup ||612||L2 [ verigzan.

1€(0,7T]
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With the help of the regularity results for T21, q%, and ©2
given by (24), (37), and (57), we further obtain that
r 1
| ILU I dr < € (10, T0,0)( sup 1€
0 Y 1€[0,T)

T
+/0 LU, dr). 63)

Moreover, applying the L2-estimate for Q% in (50) gives

T
sup |02/ < ¢ [ LU . (64

1€(0,7T]
Combining (63) with (64) yields

T 1 T
[ ILUIE: < Z5C(Tio.70.6) [ LU
0 Y 0
If let ¥ be sufficiently large such that

1
C(T107T2076)? <1 or y>(C(Tio,T2,6))"?,

then [ ||ILU ||i2 dt = 0. Finally, by the linearity of L we
derive that U = 0. Uniqueness of the optimal solution is
established for y sufficiently large. [ ]

V. CONCLUSION

In this paper we present a rigorous mathematical frame-
work for optimal control of cooling via convection in
unsteady Stokes fluid flows. Both internal and boundary
controls are addressed. We prove the existence of an optimal
control and establish the first-order necessary conditions
for optimality for solving the optimal control by using a
variational inequality. Moreover, we derive the uniqueness
of the optimal Navier slip boundary control when ¥ is
sufficiently large. The gradient based iterative schemes will
be employed to implement control designs in our future
work. It will also be interesting to investigate the cooling
rate with respect to the control actuation.
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