
Future Generation Computer Systems 98 (2019) 609–626

Contents lists available at ScienceDirect

Future Generation Computer Systems

journal homepage: www.elsevier.com/locate/fgcs

A parallel refined probabilistic approach for QoS-aware service
composition
Hongbing Wang a,∗, Shunshun Peng a, Qi Yu b

a School of Computer Science and Engineering and Key Laboratory of Computer Network and Information Integration, Southeast University, SIPAILOU
2, NanJing 210096, China
b College of Computing and Information Sciences, Rochester Institute of Tech, USA

h i g h l i g h t s

• We present a novel reactive technique for adaptive service composition.
• We refine the probabilistic distribution of solutions.
• We propose an on-the-fly cooperative mechanism.

a r t i c l e i n f o

Article history:
Received 12 June 2018
Received in revised form 3 February 2019
Accepted 31 March 2019
Available online 4 April 2019

Keywords:
Adaptive service composition
Estimation of distribution algorithm
Restricted boltzmann machine
Multi-agent technology

a b s t r a c t

Service composition integrates existing online services to provide a value-added service. With the
rapid growth of web services with similar functionalities, Quality of Service (QoS) has emerged as
an important quantitative criterion on non-functional aspects. The optimization of QoS-aware service
composition, depending on different aggregated QoS attributes has attracted significant attention. The
dynamic nature of QoS-aware service composition adds further challenges to the optimization problem.
Most existing approaches ignore the diversity of solutions, which have the potential to provide
alternative compositions when changes occur. A few works only partially explore the search space
and do not consider the optimality of solutions and the computational cost concurrently. To address
these issues, we propose a novel reactive approach, called MrEDA, which integrates the estimation
of distribution algorithm (EDA), restricted boltzmann machine (RBM), and multi-agent technology.
It constructs a refined probabilistic model to diversify alternative solutions and guide the search by
adaptively capturing the promising information of a service composition. Meanwhile, multiple agents
make use of a flexible parallelism with distinct explorations and adaptive sampling to improve the
global optimization and speed up the optimization. The effectiveness and efficiency of our approach
for adaptive service composition is validated through an extensive experimental evaluation.

© 2019 Elsevier B.V. All rights reserved.

1. Introduction

The service-oriented architecture (SOA) is a modern comput-
ing paradigm for developing distributed software applications
that concentrate on resource sharing and flexible dynamic pro-
cesses [1]. Built upon this paradigm, the application usually or-
chestrates several existing web services into a value-added com-
posite service. The business process of the application, defined
as a workflow, usually contains multiple tasks that are modeled
as abstract services. For each task, several web services may
be available to deliver the required functionality. The differ-
ence between these web services lies in their Quality of Ser-
vice (QoS), which quantifies the service from multi-dimensions,

∗ Corresponding author.
E-mail addresses: hbw@seu.edu.cn (H. Wang), pengshunshun@seu.edu.cn

(S. Peng), qi.yu@rit.edu (Q. Yu).

e.g., invocation cost, availability and so on. The optimization
of service composition needs to consider multiple QoS dimen-
sions simultaneously. With the increase of web services, finding
an optimal composition has posed a key challenge. In addition,
the different composition structures (e.g., sequential, parallel,
loop, and branch) lead to different QoS aggregation functions,
which may further increase the computational complexity of the
optimization.

The dynamic nature poses additional challenges to perform
QoS-aware service composition. Indeed, services are constantly
evolving since the service providers may deliver new services,
modify or remove current services. Furthermore, online services
may be not entirely reliable. This means, services verified in
design-time may not deliver what is expected in runtime. There
are several factors that influence the performance of services,
such as network quality, the location of a service, the service

https://doi.org/10.1016/j.future.2019.03.053
0167-739X/© 2019 Elsevier B.V. All rights reserved.

610 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

workload, and so on. Consider a composition application with 5
abstract services, which operate in a sequential manner. There are
105 compositions when each abstract service has 10 alternative
web services. Meanwhile, the multiple QoS constraints halve
the number of feasible compositions. It can be shown that the
search space grows in an exponential manner, which poses a key
computational bottleneck to find the optimal one. Since a web
service participating in the best composition becomes ineffective,
the optimization problem of QoS-aware service composition is
more difficult to solve. To allow dynamic service composition at
runtime, it is desirable to exploit the partial exploration mecha-
nism to approximate the optimal solution rather than exploring
all compositions to find an exact one. After all, exhaustive explo-
ration incurs high computational cost and may not adapt to the
dynamic changes within a reasonable time range. Therefore, how
to effectively and efficiently handle the optimization problem
of QoS-aware service composition in dynamic environment has
emerged as a fundamental issue.

Existing works to optimize QoS-aware service composition
in a dynamic environment can be divided into two categories:
proactive and reactive approaches. Proactive approaches predict
the changes before their occurrence and make corresponding
decisions for future operations [2–4]. In contrast, reactive ap-
proaches make decision on how to deal with the changes after
they occur [5]. Although proactive approaches lower the risk of
failure, they cannot measure various uncertainties in services and
their running environments. Reactive approaches avoid this issue
and a number of techniques have been used, including runtime
recovery [6–8], artificial intelligence [9–11], integer program-
ming [12], replacement [13,14].

Despite that some successes have been achieved, existing re-
active approaches suffer from some major limitations. First, these
approaches do not consider the diversity of alternative solutions.
Alternative solutions with higher diversity have better chance to
match the optimal requirement, which contributes to an adap-
tive adjustment of the optimal direction. Second, while some
approaches employ partial exploration to find a sub-optimal so-
lution, they do not explicitly balance between the optimality of
solution and computational cost. The number of web services
is increasing. For example, ProgrammableWeb.com hosts almost
15,000 web services in 2016 and app stores provide millions
of apps [15]. The large repositories make the search space of
service composition expand rapidly. Less exploration spending
less computational time may lead to local optima, while excessive
exploration spending more time may has a better approximation
to the optimal solution. Meanwhile, the partial exploration mech-
anism, which reduces candidate services without evaluating the
likelihood of being part of the optimal composition, may lead to
local optima.

To address the above challenges, we propose a novel reac-
tive approach, called MrEDA that is built upon and seamlessly
integrates the following three methods:

• Estimation of Distribution Algorithm (EDA) is a new com-
puting paradigm inspired by the evolutionary algorithms
and statistical learning. It has the advantage of revealing
useful information about the problem to be solved while
providing an efficient computational model. The key idea of
EDA is to use the statistical learning to establish a probabilis-
tic model, which represents the probabilistic distribution of
solutions. EDA has been implemented to solve a variety of
optimal problems [16,17].
• Restricted Boltzmann Machine (RBM) offers rich expression

that helps maintain the diversity of solutions with the capa-
bility of comprehensively learning the domain information
and exactly reflecting the difference between them.

• Multi-Agent Technology is employed to tackle a large ser-
vice space and its associated high computational cost. It
works in a cooperative manner to concurrently learn the
excellent degree and interaction information between the
services, which can significantly accelerate the convergence
speed and improve the global optimization.

Adaptation is the ability of a system to adjust its behavior
in response to changes in its environment. MrEDA can adapt
to an uncertain environment by choosing alternative solutions,
effectively exploring the search space through concurrent search-
ing, and estimating the optimal degree of candidate services. For
example, when the response time of the airline booking service
continues to increase, the completed activities (e.g., payment)
would be backtracked to a previous state. The reversion can be
supported by the composite service languages, such as BPEL [8].
Then, an alternative solution would be executed to adapt to the
changes. The realization of MrEDA includes four stages: primary
selection, parallel modeling, parallel training, and adaptive sam-
pling. In primary selection, the utility of the composite services
is computed using different QoS aggregation functions. Even if
the changes occur, the utility could vary with the QoS values by
binding new web services for a workflow. Then, the dominant
solutions are selected as training data by sorting the utility of the
candidate solutions in a descending order. In parallel modeling,
the probabilistic distribution of solutions is represented according
to the feature information of the service composition, which is
captured by multiple RBMs. Multiple agents cooperatively control
these RBMs to construct multiple probabilistic models according
to their distinct explorations. Following that, these probabilistic
models are trained in parallel in parallel training. For each proba-
bilistic model, contrastive divergence (CD) is used to iteratively
update the parameters of the RBM to make the probabilistic
distribution approximate the true distribution. Finally, in adaptive
sampling, according to the changeable neighborhood, multiple
samplings adaptively change their search scopes and evaluate the
probability of the degree that the selected services contributes
to the overall performance. Then, the selected services are com-
posed to generate the next generation. Our main contributions
are as follows:

(1) We present a novel reactive technique for adaptive service
composition that integrates evolutionary theory, statisti-
cal learning, and multi-agent methodology. The proposed
technique exploits the probabilistic models of solutions to
quantify the feature information of a service composition,
and manipulate them using parallel training and adaptive
sampling operators to generate new solutions.

(2) We refine the probabilistic distribution of solutions by
multiple RBMs to maintain the diversity of alternative so-
lutions, which allows adaptive adjustment to the opti-
mal direction when changes occur. This also improves the
efficiency of optimization.

(3) We propose an on-the-fly cooperative mechanism to par-
tially explore the search space of solutions efficiently and
effectively. This mechanism makes use of distinct explo-
rations and adaptive sampling to improve the global op-
timization of exploration. Meanwhile, it provides a flexible
parallelism to speed up the exploration at a given moment,
which improves the efficiency of exploration.

The application of RBM for adaptive service composition was
first presented as a conference article at the International Confer-
ence on Web Services (ICWS) [18]. In that article, we presented
a novel approach, referred as rEDA, which only makes use of a
RBM to maintain the diversity of alternative solutions for adaptive
service composition. This article makes nontrivial extensions to

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 611

rEDA in several directions, including parallel modeling, parallel
distinct explorations, parallel training, and adaptive sampling.
The remainder of the article is organized as follows. Section 2 de-
scribes an example of adaptive service composition. In Section 3,
we present the service composition model. Section 4 presents
the preliminary knowledge. Our approach for adaptive service
composition is presented in Section 5. In Section 6, some exper-
imental results are shown for evaluating the proposed approach.
Section 7 discusses the related work. Finally, Section 8 presents
the conclusion and the future work.

2. A motivating example

In this section, we present an illustrative example of a Travel
Managing Service (TMS), where the goal is to help users to man-
age their travel plan using a composite service. Suppose that the
workflow of the TMS includes five abstract services: Book Airline
service (BAS), Buy Air Insurance service (BAIS), Accept Bank Card
service (ABCS), Accept Credit Card service (ACCS) and Book Hotel
service (BHS). In particular, the BAS and BAIS are composed
using a parallel structure and the ABCS and ACCS are composed
using a conditional structure. Meanwhile, each abstract service
of TMS has three web services. The QoS of each web service is
represented by a vector QTMS = {qavail, qrtime}, where qavail and
qrtime represent availability and response time, respectively. The
workflow of the TMS is shown in Fig. 1.

Assume that the global constraints for availability and re-
sponse time are 500 ms and 55%, respectively, and their pref-
erences are the same. Upon receiving the requirement, the user
would consider both BAS and BAIS for a plane ticket. If airline1
service is selected, the insurance service is selected concurrently.
Similar workflow is executed when airline2 and airline3 are se-
lected. Consequently, the ticket is payed. According to the mode
of payment, the concrete service is selected from ABCS or ACCS.
In either case, the ticket is purchased. Then, the user would
book the hotel. Apparently, there are multiple possible composite
services, e.g., the composition1 (airline1- insurance1- bankcard1-
hotel1) and composition2 (airline3- insurance3- creditcard1 -
hotel1). These are alternative solutions because they satisfy user’s
functional requirement. According to the normalized values of the
availability and response time, the score of a composite service
can be computed to evaluate its utility. For composition1, we
have 0.5 ∗ (300−300300−100 +

180−100
180−100 +

220−95
220−95)+ 0.5(0.85−0.850.92−0.85 ∗

0.88−0.88
0.94−0.88 ∗

0.8−0.8
0.9−0.8)= 1, and for the composition2, the score is 0.5∗(300−200300−110+
140−100
140−100 +

220−95
220−95)+0.5∗ (0.89−0.820.95−0.82 ∗

0.85−0.85
0.91−0.85 ∗

0.8−0.8
0.9−0.8) =

24
19 . Then,

the optimal composition can be selected according to the scores.
With the increase of web services, there are many services that

have similar functionalities. For example, 170 APIs about hotel in-
formation can be located in ProgrammableWeb.com. If a user has
a complex requirement, the optimal solution may not be obtained
in a limited time. Let us further assume that the airline1 ser-
vice is canceled. Reactive approaches may map a new workflow
to concrete services. For example, the compositions: airline2-
insurance2- bankcard3- hotel3, airline2- insurance2- creditcard3-
hotel3, are selected as alternative solutions. Due to limit alter-
native solutions, there might not exist an alternative composite
service that could be optimal or near-optimal. In these cases, the
mechanism of maintaining the diversity of compositions within
the specified time could be used to provide more alternative
compositions for the user. To implement this mechanism, the
feature information of service composition needs to be captured
and distinguished. Meanwhile, efficient and effective exploration
of composition solutions is needed.

3. The service composition model

In this section, we introduce the compositional model used in
this article. The major notations are summarized in Table 1.

Table 1
Notations and definitions.
Notations Definitions

SOA Service-oriented architecture
QoS Quality of service
EDA Estimation of distribution algorithm
RBM Restricted boltzmann machine
MARL Multi-agent reinforcement learning
MAGA Multi-agent genetic algorithm
CD Contrastive divergence
ws Web service
attr iws The ith attribute of service
AS A set of abstract services
asi The ith abstract service
WSi A set of candidate services corresponding to the abstract

service asi
wsij The jth concrete service in WSi
qvi(ws) The normalized value of ith attribute
CS A composite service
SAW Simple additive weighting
vi The ith visible unit
hj The jth hidden unit
bi The bias of vi
cj The bias of hj
wij The wight associated with the connection between vi and hj
E(v, h) The energy function of the network
p(v, h) The probabilistic distribution of state(v,h)
p(vi = 1) The probability of vi = 1
p(vi = 0) The probability of vi = 0
pg (v) The join probability of all the visible units
p(ht

j = 1|vt) The hidden unit activation probability
p(vt+1j = 1|ht) The visible unit activation probability
xi The ith gene of a chromosome

3.1. Service composition

As a central concept in an SOA, the definition of web service
is given below.

Definition 1 (Web Service). A web service is a programmable
application with functional and non-functional characteristics. It
can be described by a four-tuple, ws = ⟨ID,Name,Oper,QoS⟩,
where ID identifies the uniqueness of web service; Name is a
specific term used to represent web service; Oper contains the
input and output information; QoS shows the quality of service,
which usually is measured by QoS attributes, such as response
time, cost, throughout and so on. QoS can be represented by a
n-tuple Attr = ⟨attr1, attr2, . . . , attrn⟩, where attri feedbacks the
ith QoS attribute.

To meet complex application requirements, modern software
systems need to combine multiple services into a value-added
one. Suppose that a user submits a requirement, the workflow
can be composed of a set of abstract services, which is denoted
as AS = ⟨as1, as2, . . . , asn⟩. For each abstract service asi ∈ AS,
possible concrete services can be represented by a candidate
service set WSi = ⟨wsi1, wsi2, . . . , wsim⟩. They can implement the
functionality and differ from each other in non-functional aspects.
When changes occur, new web services need to be selected to
participate in a composition. The web service rebinding is based
on the services with the same kind of interface, such as restful
or soap. Taking programableweb.com as an example, the restful
architecture is popular because of its universal and easy-to-use
interface [19]. It can be seen that the standardization of interfaces
is an important task in promoting the industrial application of
service composition, e.g., IBM [20], ORACLE [21], Microsoft [22],
Redhat [23]. Some solutions are under development to tackle
service rebinding issue and representative works include [24,25].
In the process of rebinding, the task that involves source code
generation depends on the application domain since the instances

612 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

Fig. 1. Travel Managing Service (TMS).

of classes are influenced by the concrete service’s WSDL file. Con-
sidering the change of QoS, we leave some relevant technologies
for rebinding operation to the application domain, focusing on
the problem of how to effectively and efficiently handle the op-
timization problem of QoS-aware service composition. A service
composition is achieved by selecting a service from each can-
didate service set WSi and orchestrating them in a composition
process. The result of service composition can be described as
follows.

Definition 2 (Composite Service). A composite service is a 2-
tuple⟨Var, Pro⟩, where Var is a set of selected concrete services,
denoted as ⟨wsi1, wsi2, . . . , wsim⟩, for each wsij ∈ WSi, it can
represent the selected service to achieve abstract service asi ∈ AS;
Pro is the orchestration or choreography process of the selected
services, e.g., sequential, parallel, looping, conditional, and so on.

As presented in Fig. 1, various possible combinations can be
identified. For example, Comb1 = airline1- insurance1-
bankcard1- hotel1, Comb2 = airline2- insurance2- bankcard1-
hotel1, . . . , CombN = airline3- insurance3- creditcard3- hotel3.
Due to the difference of participant services, these combinations
have different performances. Therefore, we need to select the
optimal combinations. The key criterion of selecting optimized
service composition is QoS.

The QoS attributes are divided into two categories: positive
and negative attributes. For a positive QoS attribute: a higher
value means a better quality, such as reliability, throughout, avail-
ability. Conversely, for negative attribute, such as cost, response
time, a higher value indicates a weaker quality. Due to different
units and ranges of these attributes, they need to be standardized
into a unified range:

qvi(ws) =

{
attr iws−attr

i
min

attr imax−attr
i
min
, attr imax ̸= attr imin

1, attr imax = attr imin

(1)

qvi(ws) =

{
attr imax−attr

i
ws

attr imax−attr
i
min
, attr imax ̸= attr imin

1, attr imax = attr imin

(2)

where attr iws represents the ith attribute value, attr imax and attr imin
are the maximum and minimum value of the ith attribute for all
candidate services. Under the particular circumstances of attr imax
equaling attr imin, the normalizing value of the ith attribute is set
to 1. That is, the ith attribute for all candidate services are same
or the set of candidate services has only one candidate service.

Given the existence of multiple QoS attributes, we need to
measure the overall QoS value of services. According to the utility
computation method of services [12,26], simple additive weight-
ing (SAW) is applied to compute the utility of services. The
computation involves the standardization of QoS values and the
weighting process. The standardization scales different QoS at-
tributes into a value between 0 and 1, and the weighting process
captures user preference. Following this calculation method, the
utility of ws is given:

LQoS(ws) =
na∑
i=1

qvi(ws)ωi

where ωi (ωi ∈ [0, 1] and
∑na

i=1 ωi = 1) represents the weight of
ith attribute.

3.2. Utility evaluation for service composition

The utility of a composite service is not only linked to the
component services, but also the composition structure, which
determines the execution order of multiple services participating
in the composition. In general, the composite structure contains
the four basic types: sequential, conditional, looping, and parallel.

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 613

Fig. 2. The basic composite structures.

Suppose a set of services are combined in a sequential structure,
each of them is selected to participate the composition in the
order of their corresponding abstract services. For the services or
composite services in a loop, they are executed continuously until
a termination criterion is reached. In a parallel structure, two or
more services are executed simultaneously. Fig. 2 shows the four
composition structures.

For different composition structures, the QoS of the selected
services with different attributes can be aggregated in different
ways. In this article, we focus on three QoS attributes: response
time, availability, and throughout. The QoS aggregation function
of different attributes for different composition structures are
given below:

• Response time. In a sequential structure, the overall re-
sponse time is the sum of those from the participating
services {ws1, ws2, . . . , wsn}. In a conditional structure, the
overall response time is the response time of the selected
branch, which may involve a service or composite service
wsl. In a loop structure, the overall response time is calcu-
lated by multiplying the loop count k by the response time
of services or composite services in the loop. In a parallel
structure, we use the maximum response time among all
participating services.
• Availability. In a sequential structure, we get the overall

availability by multiplying the availability of all participat-
ing services. In a conditional structure, availability of the
selected branch will be used, which may involve a service
or composite service wsl. In a loop structure, the value is
calculated by a power function in which the loop count
k is the power number and the value of the base is the
availability of services or composite services in the loop.
Finding the value in a parallel structure is done in same way
as in a sequence structure.
• Throughout. In a sequential structure, it is computed as the

minimum among all participating services. In a conditional
structure, it is the throughout of the selected branch. In a
loop structure, it is calculated the same as in a sequen-
tial structure. In a parallel structure, it is the sum of the
throughout of all services.

Table 2 summarizes all the aggregation functions. Based on
these aggregation functions of different attributes for different
composite structures, the QoS of the composite service can be
computed by the SAW method, too. Therefore, the overall QoS
utility of a composite service CS is given as

GQoS(CS) =
na∑
i=1

Fi(CS)ωi

where na is the number of attributes, Fi(CS) represents the ag-
gregation function of the ith attribute for the composite service
CS, and ωi(ωi ∈ [0, 1] and

∑na
i=1 ωi = 1) is the weight of the ith

attribute for the composite service CS.

3.3. Problem statement

The aim of service composition is to obtain the optimal service
combination that meets all QoS constraints. It is formally defined
as,

Definition 3 (Optimal Composition). Given a workflow consisting
of multiple abstract services AS = ⟨as1, as2, . . . , asn⟩ and the
QoS constraints C = ⟨c1, c2, . . . , cn⟩ for the workflow, an optimal
composition is a composition of concrete services CS such that
CS contains exactly one service for implementing each abstract
service asi and maximizes the global QoS, under the premise of
satisfying C.

To obtain the optimal composition, an exhaustive exploration
of all possible compositions is usually needed. However, the
search space exponentially grows with the increase in the num-
ber of services. In addition, different composite structures make
the search space more complicated. In fact, the optimization
problem of service composition can be modeled as a Multi-
dimensional Multi-choice Knapsack Problem (MMKP) [26], which
is NP-hard. Besides, the dynamic nature of the search space
poses additional challenges for solving the optimization problem.
Therefore, a viable direction is to find a near-optimal composition
that adapts to the dynamic change with guaranteed efficiency.

We propose to re-optimize the service composition for dy-
namic changes and explore the search space in parallel. The key
idea is how to adaptively adjust the optimal indirection, and
effectively find the (near-)optimal solution in a reasonable time.
The aim of our research is to address these challenges by main-
taining the diversity of solutions and considering the cooperative
manner in the exploration of the search space at the same time.

4. Preliminaries

In this section, we present the basic concepts of estimation
of distribution, restricted boltzmann machine, and multi-agent
technology to set the stage of later discussions.

4.1. The estimation of distribution algorithm

The estimation of distribution algorithm (EDA) is a new swarm
intelligence optimization algorithm based on statistical learning
principles [16,17]. Inspired by the ‘‘survival of the fittest’’ prin-
ciple of natural evolution, genetic algorithms (GAs) perform well
on optimization problems. However, GAs are not able to make
use of the network feedback in a timely manner, so that the
search speed is relatively slow. Furthermore, a large number of
parameters (such as crossover rate, mutation rate) need to be
adjusted to obtain good performance. EDA integrates GAs with
statistical learning to evolve to the next generation. Differ from
the traditional evolutionary operators, EDA exploits statistical
learning to improve the evolutionary operators, which can be
expressed as follows:

(1) Select dominant individuals from all alternative individu-
als.

(2) Exploit the selected individuals to construct the probability
model, which describes the population distribution and
evolution trend.

(3) Sample from the probabilistic model to generate new indi-
viduals.

614 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

Table 2
Aggregation functions for different composition structures.
Quality attribute Sequential structure Conditional structure Looping structure Parallel structure

Response time
n∑

i=1
q(wsi) q(wsl) k ∗ q(wsl)

n
max
i=1

q(wsi)

Availability
n∏

i=1
q(wsi) q(wsl) q(wsl)k

n∏
i=1

q(wsi)

Throughput
n

min
i=1

q(wsi) q(wsl) k ∗ q(wsl)
n∑

i=1
q(wsi)

These three phases are iteratively executed until the termi-
nation criterion is satisfied. This approach can capture the fea-
tures of the selected individuals and represent their probabilistic
distribution.

In practice, EDA can be modeled to solve the optimization
problem through univariate modeling, bivariate modeling, and
multivariate modeling. For univariate modeling, the decision vari-
ables are independent with each other, so it is easy to con-
struct the probabilistic model of decision variables. However,
it overlooks the linkage information of multiple decision vari-
ables, which may make EDA hard to solve complex problems.
For bivariate or multivariate modeling, the decision variables are
dependent with each other. The linkage information of multi-
ple decision variables may be captured to improve the ability
of EDA. However, with increased decision variables, the com-
plexity and computational time may increase quickly. Usually,
EDA is proposed to solve the optimization problem by exploiting
statistical inference to construct the probabilistic model of the
selected population. However, it may has a poor performance
since the probabilistic model cannot capture the accurate domain
information.

4.2. Restricted Boltzmann machine

Restricted Boltzmann machine (RBM) is a generative neural
network based on an energy function. It learns the probabilis-
tic distribution of data by inferencing and learning the energy
function [27,28]. Fig. 3 shows the structure of RBM. It can be
regarded as a bipartite graph with two layers: visible and hidden.
The visible layer is made up of a set of visible units, which are
binary units. The training data can be clamped to the visible layer
and each decision variable corresponds to each visible unit. The
hidden layer is also composed of a set of binary-valued units. The
intrinsic feature information of the training data can be detected
by the hidden layer, which is known as feature detectors. For the
visible and hidden layers, there exist connections between the
visible units and the hidden units, while there are no connec-
tions among the units from the same layer. Besides, neither of
these units or connections between units have the same degree.
Therefore, there are biases for visible and hidden units to measure
their wights. bi and cj are used to represent the biases for visible
unit vi and hidden unit hj, respectively. Meanwhile, wij is used
to represent the weight associated with the connection between
unit vi and hj.

Based on the parameters (bi, cj, wij) of an RBM, we can deter-
mine the energy function of the network. The objective of the
energy function is to provide a calculation on the energy of a
network configuration, which is used to define the probabilistic
value of the configuration. The energy function can be determined
as follows:

E(v, h) = −
m∑
i

vibi −
n∑
j

hjcj −
m∑
i

n∑
j

vihjwij (3)

Fig. 3. The network structure of a restricted Boltzmann machine.

Based on the energy function, the probabilistic distribution of
state (vi, hj) is given as follows:

p(v, h) =
e−E(v,h)∑

x,y

e−E(x,y)

where x and y represent the alternative states of visible and
hidden units, respectively.

4.3. The multi-agent technology

Multi-agent is a group of autonomous agents with their own
decisions and goals. They share a common environment [29].
Multi-agent technology has wide applications with an open, com-
plex and dynamic environment, such as resource management,
intelligent control, data mining, etc. It provides an alternative
perspective to solve problems that are difficult for a single agent.
For example, in intelligent control, while the intelligent operators
could be controlled by a central authority, identifying intelligent
operators with multiple agents may provide a helpful approach.
A typical multi-agent framework is shown in Fig. 4. It consists
of three layers: task, work, and decision layers. Given a complex
task, the task layer is used to split it into several subtasks and
allocate subtasks to agents in the work layer. After obtaining
the subtasks, the agents will execute them according to certain
working mechanism. The decision layer is the core of the frame-
work, which is mainly responsible for making the decision. In
the decision layer, the information about agents is integrated and
arbitrated. Then the agents are given decisions to implement their
subtasks.

According to the working mechanism, the multi-agent meth-
ods can be categorized into cooperative and competitive multi-
agent technologies. For the cooperative multi-agent technology,
the agents work for the common goal to maximize the interests
of all agents. In contrast, agents in the competitive multi-agent
technology benefit themselves at the expense of others’ interests.
In practice, multi-agent technology is more frequently used to
collaboratively work for the common goal. There are two major

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 615

Fig. 4. Multi-agent framework.

cooperation approaches to maximize the interests of all agents:
team technology and concurrent technology [30].

The team technology develops a single process that attempts
to discover a set of behaviors for all agents. Typically, each agent
has the goal that has always been aligned with the team and
shares the same knowledge. Therefore, team technology is a sim-
ple and easy method. However, due to the single process, team
technology may have a lower efficiency when there are many
agents or the state space is large. In concurrent technology, there
are multiple processes involved rather than a single one. Each
agent has a process to implement its task. Based on the process,
agents can have the abilities to control their own behaviors. Due
to multiple processes, concurrent technology is more efficient
than team technology when a complex task is split into multiple
subtasks. However, the management of multiple processes poses
great challenges.

5. The MrEDA approach

In this section, we describe the proposed MrEDA, which inte-
grates estimation of distribution algorithms (EDA) and restricted
boltzmann machine (RBM) with multi-agent technology to find
a near-optimal or optimal composite service. The optimization
of service composition is an iterative process that continuously
approximates the optimal solution by service selection and com-
position in each iteration. The optimal composite service can be
updated in order to consider the variability of services. Then,
the QoS values are estimated to determine whether they violate
the user-defined threshold. First, we make an observation on
the behavior status of each service participating in a composite
service. When a violation occurs, re-optimization is triggered by
reversing the completed activities. Then, the adjustment behavior
is realized by binding new web services for a workflow rather
than switching a revised service with a new service, as there may
be no alternative services. Re-optimization is needed due to the
QoS change of the new composition. For example, the cost needs
to be recomputed as it integrates the cost value of all services
participating in the composition. In MrEDA, multiple agents ex-
ploit distinct explorations of the search space of solutions and
conduct adaptive sampling to cooperatively maintain the diver-
sity of solutions, which provides more chance for selecting a
near-optimal or optimal solution. Furthermore, the cooperative
manner with a flexible parallelism accelerates the optimization
of service composition. The fundamental workflow of MrEDA is
presented in Fig. 5.

First, a set of initial individuals are randomly generated, known
as population initialization. Statistical learning operations are
then carried out on a generation to produce new generation. The
dominant individuals of a generation are selected as training data
by ranking the fitness of individuals. The individual that is ranked

Fig. 5. The workflow of MrEDA.

higher has a higher chance to be selected. Then, the probabilis-
tic distribution is constructed by multiple probabilistic models
to represent the domain information about individuals. To fit
the real probabilistic distribution, these probabilistic models are
trained in parallel by multiple agents. According to these models,
the adaptive sampling operator is applied to produce the new
generation. The statistical learning is an iterative process that
continuously updates until the termination condition is satisfied.

In MrEDA, EDA is in charge of constructing the probabilis-
tic model of individuals, training the model, and sampling new
individuals from the model. Each individual is considered as a
possible solution of a service composition and the iterative pro-
cess is considered as the approximation process of the optimal
solution. The constructional probabilistic model is to represent
the distribution information of composite services and model
training makes the probabilistic model fit the true probabilistic
distribution of composite services, and the sampling is used to
extract some individuals for training the probabilistic model.
Multiple RBMs help refine the feature information of service
composition, which provides valuable guidance in constructing
and training the probabilistic model. Therefore, the diversity of
solutions can be maintained by adaptive sampling from this prob-
abilistic model. When the operational environment changes, the
optimal direction can be adaptively adjusted by choosing the
alternative optimal solutions. The multi-agent technology allows
a complicated problem to be divided into some sub-problems and
collectively tackled by multiple agents. In the context of service
composition, the multi-agent technology coordinates a team of
agents for parallel modeling, parallel model training, and adaptive
sampling, which helps reduce the computation time and improve
global optimization.

The re-optimization of MrEDA is divided into four major
stages, i.e., primary selection, parallel modeling, parallel training,
and parallel adaptive sampling. The following sections explain
these stages in detail.

5.1. Primary selection stage

To better provide guidance on optimization direction, a set of
dominant solutions are preserved as training data to make the
probabilistic model fit the real probabilistic distribution.

616 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

Fig. 6. The chromosome structure.

In MrEDA, the solutions of service composition are the indi-
viduals produced in each iteration, which are encoded as chro-
mosomes. Usually, one solution is composed of a set of concrete
services, which can implement different functionalities of the
composite service. Accordingly, the genes of the chromosome
can be divided into several parts, each of which represents a
corresponding concrete service. For an example of a composite
service consists of three tasks and the corresponding chromo-
some structure can be shown in Fig. 6. The binary encoding for
the chromosome is used to represent the ID of each ws for easy
operation and analysis. The chromosome is divided into three
parts to represent the three selected concrete services. For each
concrete service, the genes are the code of this concrete service
that is selected from a set of candidate services for each task. For
example, the first part indicates that the selected concrete service
for task 1 is the 13th service from the candidate service set.

The worthiness of a chromosome measures the degree that
the chromosome may become a candidate solution of the service
composition. It plays an important role in selecting the opti-
mal solution. The chromosome with higher worthiness will have
higher chance of being selected into the training data. According
to the worthiness of all chromosomes in a generation, we can
construct the training data by selecting the dominant solutions.

Due to the multidimensional attributes of service, the worthi-
ness of candidate solutions need to be evaluated synthetically.
The fitness function, a particular type of objective function, is
used to test how close the candidate solution meets the over-
all specification. Given a composite service consisting of n con-
crete services CS = (ws1, ws2, . . . , wsn), the fitness function is
computed as follows:

Fitness(CS) = GQoS(CS) =
m∑
i=1

ωiFi(ws1, . . . , wsn)

where GQoS(CS) is the global utility of CS, m is the number
of QoS attributes, ωi is the weight of the ith attribute, and
Fi(ws1, . . . , wsn) is the aggregation function of the ith attribute.

Based on the fitness value, all composite services (size M)
satisfying the QoS constraints are ranked in descending order.
Then the top N composite services are selected as the training
data to construct the probabilistic model.

Like other methods [31,32], we can find out whether the
QoS of a web service is violated by checking the QoS state of
each service. If it changes, we have a revocation action, which
can cancel the completed operation and go back to the initial
state. The revocation task is achieved by basic BPEL activities,
e.g., ⟨invoke⟩. Before the process of the revocation, the original
states of each service in the workflow are stored as snapshot.
When the revocation begins, the current state is replaced by the
state prior to executing for service. Then the activity <invoke>
is used to execute new services invocation. These new services
are selected and composed as a solution for QoS-aware service
composition in dynamic environment, which is the main concern
of this article. In the process of service composition, the QoS
of the new composition is recomputed into the fitness and has
a effect on the future probabilistic model construction. During
the execution, we try to select N composite services with higher

fitness as the training data, so the variation of QoS will affect the
probabilistic model of solutions. In addition, MrEDA tries to ob-
tain a composite service with maximal fitness, thus any variations
of QoS will make system turn to a new optimal workflow, rather
than just replacing the bad service.

5.2. Parallel modeling stage

After obtaining the dominant solutions, the next stage is to
construct the probabilistic model, which can quantify the domain
information of services and reflect the difference among solu-
tions. Multiple RBMs are used to comprehensively capture the
feature information of service composition to refine the prob-
abilistic model for maintaining the diversity of solutions. The
multi-agent technology with distinct explorations is used to up-
date the optimization direction in parallel during the search
process. The workflow of constructing probabilistic models of
composite services can be described as follows. First, these dom-
inant solutions are split into multiple clusters. Then each cluster
is exploited to construct one probabilistic model by one RBM.

The split procedure consists of four steps. First, randomly
selecting a solution set PS ′ = {PS1, . . . , PSi, . . . , PSK }, K < N from
these dominant solutions set CS ′ = {CS1, . . . , CSi, . . . , CSN}. PSmi
is considered as the central point of the ith cluster and CSmi is
the ith dominant solution. Second, for each dominant solution,
we can compute the Euclidean distance between PSi and CSi as
follows:

ED(CSmi , PS
m
i) =

√ m∑
j=1

(CS ji − PS ji)2

where m represents the dimension of one solution.
According to the Euclidean distance, each solution is assigned

to the nearest central point. Then updating the central point
and computing the Euclidean distance until the central point is
unchanged. Then according to the K distinct clusters, we can
construct K different probabilistic models and execute distinct
explorations.

For the kth cluster, the chromosome of a dominant solution
is clamped to the visible layer. Each gene as a decision variable
of solution is related to the visible unit. Then RBM refines the
probabilistic distribution information by feature extraction. Since
different composite services are considered as input vectors, the
network configuration of RBM presents different states. According
to the different states, the network of RBM has different energy.
Therefore, we introduce the energy function to provide a calcu-
lation on the energy of a configuration of network for different
composite services. The energy function for different composite
services is computed as follows:

Ek
CS(v, h) = E(v, h) (4)

where E(v, h) is computed according to Eq. (3) and CS represents
the clamped composite service.

Through the energy function, we can compute the probability
distribution over any composite service by Eq. (5).

pk(v, h) =
e−E

k
CS (v,h)

Z
(5)

where Z is the sum of the energy of all possible composite
services

Z =
∑
x,y

e−E(x,y) (6)

For the energy of any composite service, its calculation in-
volves visible and hidden units. So the probability distribution
over any composite service is measured over visible and hidden

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 617

units depending on the energy of the composite service. Similarly,
the marginal probability over the visible unit is measured by
summing the probabilities over all composite services containing
the visible units. It can be represented as follows:

pk(v) =
∑
h

pk(v, h) =

∑
h

e−E
k
CS (v,h)

Z
(7)

Due to the binary-encoding of the genes, the visible unit only
has two states: vi− = 1 and vi = 0. Expanding Eq. (7), we can
compute the probability of vi=1 as follows:

pk(vi = 1) =

s∑
l=1

ψk
l (v
+

i)+ avg(
s∑

l=1

ψk
l (vi))

s∑
l=1

ψk
l (v
+

i)+
s∑

l=1

ψk
l (v
−

i)+ 2avg(
s∑

l=1

ψk
l (vi))

(8)

where s represents the number of the composite services gen-
erated in the lth generation; ψk

l (v
+

i) =
∑n

j=1 e
−EkCS (v

l
i=1,hj) can

compute the marginal cost of vi equaling 1, while ψk
l (v
−

i) =∑n
j=1 e

−EkCS (v
l
i=0,hj) computes the marginal cost of vi equaling 0;

avg(
∑s

l=1 ψ
k
l (vi)) =

∑s
l=1 ψ

k
l (vi)

s represents the average marginal
cost of the states of all units in ith generation .

After obtaining the probability of vi = 1, we can compute the
probability of vi equaling 0 as

pk(vi = 0) = 1− pk(vi = 1) (9)

The probabilities of all the visible units can be obtained. Then
the joint probability with m visible units can be measured by
multiplying all the probabilities of m visible units, which is rep-
resented as follows:

pkg (v) =
m∏
i=1

pk(vi) (10)

where g represents the generation number. pk(vi) can be com-
puted by Eq. (8) or (9) according to the state of vi. Due to
the correspondence between the genes and the visible units, the
probability of a chromosome with m genes can be obtained from
Eq. (10).

For all the dominant solutions in a generation, their probabil-
ities can be computed in the same way. Therefore, we can con-
struct the probabilistic distribution of these solutions. Similarly,
we can construct the K probabilistic models.

5.3. Parallel training stage

After obtaining the K probabilistic models, the next stage is to
train them. The key step is to adjust the parameters (wij, bi, cj) of
each probabilistic model such that the energy defined in Eq. (4)
is minimized, which is equivalent to a certain level of equilib-
rium of the network. Once the network reaches an equilibrium,
the probabilistic distribution of solutions converges. Contrastive
divergence (CD) [33], an efficient approach is applied to make the
probabilistic distribution to fit the real distribution of composite
services. It is an approximate algorithm of maximum likelihood
learning that executes a T-step process of adjusting the parame-
ters (wij, bi, cj) continually. Fig. 7 shows the process of CD, which
consists of two phases: positive phase and negative phase. In the
positive phase, the hidden states of the hidden layer are con-
structed under given the visible states. In the negative phase, the
acquired hidden states are used to reconstruct the visible states
of the visible layer. These two phases are alternately executed
until the stopping criterion (T steps) is reached. Then a set of

update rules learned by performing the partial derivatives with
respect to each parameter of (wij, bi, cj), is obtained to help train
the probabilistic model.

In the positive and negative phases, the sampling is need to
construct the states of network units. Due to the probabilistic
distribution of solutions involving multiple variables, it is hard
to sample from a joint distribution. To address this problem,
Gibbs sampling, approximating the joint distribution from the
condition distribution, is applied to sample the states of variables
from a conditional distribution. It starts by clamping the input
vector to the visible layer. Then it can iteratively sample the
states of visible and hidden units according to the conditional
distribution of units. The sampling of the T-step process is a set
of sampling events, in which the sampling events happen one
after another, and the next sampling event is determined only by
the current sampling event. The T-step process forms a Markov
chain, which makes the stationary distribution to be identical to
the joint probability distribution. The detailed T-step process can
be described as follows.

In positive phase, according to the given states of visible units,
the hidden unit activation probability is given by

p(ht
j = 1|vt) =

1

1+ e−
∑

i wijv
t
i+cj

(11)

Then, the hidden unit states can be obtained by sampling from
the probabilistic distribution of the hidden unit state. According
to the obtained hidden unit states, the visible unit activation
probability is given by

p(vt+1i = 1|ht) =
1

1+ e−
∑

j wijhtj+bi
(12)

where t represents the training steps. After knowing the acti-
vation probability of visible units, we can reconstruct the states
of the visible units. After T steps iterations, the final re-constru-
ctional states of the visible and hidden units are determined.

Next, according to the original states and re-constructional
states of the visible and hidden units, the stochastic gradient de-
scent is performed to minimize the log-likelihood of the training
data. The gradient values of parameters (wij, bi, cj) are computed
as

△wij =
∂ logp(v)
∂wij

(13)

= −

∑
h

p(h|v(org))
∂E(v(org), h)

∂wij

+

∑
v,h

p(v, h)
∂E(v, h)
∂wij

△bi =
∂ logp(v)
∂bi

(14)

= −

∑
h

p(h|v(org))
∂E(v(org), h)

∂bi

+

∑
v,h

p(v, h)
∂E(v, h)
∂bi

△cj =
∂ logp(v)
∂cj

(15)

= −

∑
h

p(h|v(org))
∂E(v(org), h)

∂cj

+

∑
v,h

p(v, h)
∂E(v, h)
∂cj

618 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

Fig. 7. The process of contrastive divergence.

where org has the meaning of original. Then the parameters
(wij, bi, cj) are updated by the following equations:

wij ← wij + ϵ△wij

bi ← bi + ϵ△bi
cj ← cj + ϵ△cj

(16)

where ϵ represents the learning rate.
The training of probabilistic models can work in parallel to fur-

ther reduce the search time. The main idea lies in the process of
constructing the probabilistic distribution of composite services
including multiple probabilistic models, where Gibbs sampling
and stochastic gradient descent can be conducted independently.
The training task can be assigned to multiple agents according to
K probabilistic models. The process is detailed as follows:

• According to the K probabilistic models, the training process
is split into K subprocesses and each subprocess has one
RBM.
• For each subprocess, clamping the genes of the training

sample to the visible units of the RBM.
• Computing the activation probabilities of the hidden units

according to the states of visible units.
• Sampling the states of hidden units from the activation

probabilities of hidden units.
• Computing the activation probabilities of the visible units

according to the states of hidden units.
• Sampling the states of visible units from the activation prob-

abilities of visible units.
• Obtaining the re-constructional states of the visible and

hidden units after executing T-steps of computation and
sampling.
• Updating the parameters of the RBM by positive gradient

and negative gradient.
• After updating all the parameters of multiple RBMs, com-

pleting the training process.

5.4. Adaptive sampling stages

After constructing the probabilistic distribution of service com-
position, the next stage is to perform the evolution of the next
generation on the K probabilistic models. The important problem
is how to produce next generation at each iteration: the quality
of composite services should be accurate enough for representing
the real distribution of a service composition, and the numbers
of composite services should be small enough for reducing the
computation. Therefore, we need to adaptively adjust the search
scope of samples and improve the exploitability of the limited
samples. Adaptive sampling is applied to make a tradeoff between
the exploitation and exploration.

When sampling new composite services, we need to select the
well-designed probabilistic model from the multiple probabilistic
models. The selection criteria is the least exploration and the best
performance. Since the probability of each decision variable of a
solution is identified after model training, the probability of the

selected services can be determined by aggregating the proba-
bility of decision variable of the selected service. However, how
to determine the probability for sampling the decision variables
is an important problem: the probability should be high enough
for finding the decision variable, while low enough for pruning
unfeasible decision variables. We exploit p(vi = 1) as a criterion
to randomly generate the probability of each decision variable of
a chromosome in the next generation, accordingly the value of
each decision variable is generated:

xi =
{
1, if random(0, 1) ≤ p(vi = 1)
0, otherwise

(17)

where xi is the ith decision variable of a solution. After obtaining
the decision variables of a solution, the corresponding composite
service is generated.

As mentioned above, Ns solutions can be sampled from the
K probabilistic models. According to the fitness value, a best
solutions set BS={CSbs1 , CSbs2 , . . . , CSbsK } can be selected from the
K probabilistic models, respectively. Let maxbs denote the best
solution in the best solutions set BS, the priority index of the k-th
probabilistic model can be computed:

PIndexk =
1

1+ eGQoS(CSmaxbs)−GQoS(CSbsk)
+

√
2In(K) (18)

A higher priority index implies a better the probabilistic model.
So we can select the best probabilistic model according to the
value of the priority index. Then new generation can be sampled
from the best model.

Algorithm 1 gives the detailed process of MrEDA. First, n
initial solutions p0 are randomly generated (line 1). For the initial
solutions, their worthiness is measured by exploiting SAW to
compute the fitness values from multiple aspects (line 2). The
fitness values of all composite services are sorted in a descending
order and then the N dominant solutions are selected as the
training samples by counting the top-N composite services (line
4). The N training samples are split into K clusters, where each
cluster has ⌊N/K⌋ training samples (line 5); For each training
sample in one cluster, the genes of the sample is considered as
an input vector and clamped to the visible units of a RBM (line
8). Due to the division of K clusters, K probabilistic models are
constructed and trained at the same time. The probabilistic model
of one cluster is trained by implementing the reconstruction of
the visible and hidden units (lines 10 to 13). After T-steps CD
(line 14), the parameters of the probabilistic model are updated
by computing the gradient values of these parameters (lines 15
to 17). After the probabilistic model of one cluster is trained, we
can sample several solutions from this model and select the best
solution (line 19–20). A best solution set is selected from K prob-
abilistic models and the well-designed probabilistic model can be
determined (line 22–23). Through the well-designed model, the
new offsprings can be generated by sampling (line 24). Then, the
fitness values of these offsprings are evaluated (line 25). Finally,
the new training samples are generated by ranking the offsprings
and their parents (line 26).

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 619

Algorithm 1: The MrEDA Algorithm
Require: abstract services
Ensure: the optimal solution
1: p0 ← generateInitialPopulation();
2: FitnessValues(p0);
3: while g≤ gmax do
4: N← selectTraindata();
5: M=⌊N/K⌋ ;
6: for k=1 to K do
7: for m=0 to M-1 do
8: ws[m]← the genes of the solution m;
9: for t=0 to T-1 do
10: V tq

← ws[m];
11: H tq

← gibbs(p(htq
j = 1|V tq));

12: V t+1
← gibbs(p(vt+1i = 1|Hstq));

13: H t+1
← gibbs(p(H t+1

j = 1|V t+1));
14: end for
15: wij ← wij + ϵ△wij;
16: bi ← bi + ϵ△bi;
17: cj ← cj + ϵ△cj;
18: end for
19: sampling();
20: BS[k]← the best solution of the k-th probabilistic model;
21: end for
22: Computing the priority index of each model according to the

best solution of each model and the best solution of all models;
23: Selecting the well-designed model;
24: generateOffspring();
25: FitnessValues(pg+1);
26: newPopulation();
27: end while
28: return bestfitness

6. Experimental evaluation

In order to evaluate the effectiveness and efficiency of the
proposed service composition approach, we conduct a series of
simulation experiments on real-world data. We first describe
the experimental settings. We then present the result on the
impact of the composite structure and the number of training
steps. Subsequently, we justify whether MrEDA improves the
solution quality, the diversity of alternative solutions, efficiency
and optimality. Some further discussions are given in the end.

6.1. Experimental setup

A collection of test cases of the service composition problems
are conducted on an Intel(R) Core(TM) i7-3770 CPU 3.340 GHz PC
with 8 GB RAM. Each test case is covered by a requirement with
n abstract services and m concrete services per abstract service.
We vary these parameters to generate different test cases. Con-
sidering that the size of the search space of solutions increases
with these parameters, we vary n in the interval [5, 50] and m in
the interval [100, 1000]. In QoS-aware service composition, the
performance of the composite service is evaluated by the fitness
values. We obtain the records of the QoS values from the QWS
Dataset,1 since it collects the data records from public source on
the Web including public registries, search engines and service
portals. There are 2507 web services and each record contains
9 QoS attributes. We consider three QoS attributes, including
response time, availability, and throughput, which are commonly
used as three important qualities of services. They include both
positive and negative attributes and their aggregation functions

1 http://www.uoguelph.ca/~qmahmoud/qws/.

Table 3
Parameter settings.
Parameter Value

Stopping criterion 200 gen for test instances

Population size #candidateservices
4

Number of sample for MrEDA, rEDA #candidateservices
20

Learning rate for MrEDA 0.1
Learning rate for MARL 0.6
Discount factor for MARL 0.9
Crossover rate for MAGA 0.7
Mutation rate for MAGA 0.3
Number of agents 7

Table 4
The fitness on different composite structures w.r.t training times.
Training times The fitness on different composite structures

Sequential Conditional Looping Parallel

2 1.3975697 1.3794732 1.1955550 1.1589068
3 1.4037557 1.3827525 1.2067215 1.1652399
4 1.3981403 1.373382 1.2141776 1.1678284
5 1.4049663 1.3805072 1.2250379 1.1692016
6 1.4085799 1.3851973 1.2265612 1.1722125

Table 5
The computation on different composite structures w.r.t training times.
Training times The computation on different composite structures

Sequential Conditional Looping Parallel

2 2.2906521 2.0988219 2.1436287 2.0114097
3 2.30147281 2.1690942 2.2001088 2.0638106
4 2.3275591 2.2536626 2.2147722 2.1082423
5 2.3862433 2.2429227 2.2593031 2.1419904
6 2.3908515 2.2732557 2.2979555 2.2224298

consist of additive, multiplicative, and minimum, which are also
representative.

The experiment aims to evaluate the performance of MrEDA
in terms of the QoS of composition solutions. Three algorithms,
including multi-agent reinforcement learning (MARL) [29], multi-
agent genetic algorithm (MAGA) [34], and rEDA [18] are chosen
for performance comparison with MrEDA.

• MARL is an extended multi-agent reinforcement learning
algorithm, which exploits a set of agents to re-optimize the
overall QoS in parallel, aiming to achieve adaptive service
composition effectively and efficiently.
• The multi-agent genetic algorithm uses a set of autonomous

agents based on genetic algorithms to cooperatively real-
ize service compositions by performing the crossover and
mutation operations.
• rEDA is an estimation of distribution algorithm based on re-

stricted boltzmann machine, which re-optimizes the service
composition by maintaining the diversity of solutions.

The parameters of these algorithms are described in Table 3.
These values are chosen based on the experiments reported ex-
isting literature. We run the experiments and report the average
results.

6.2. Impacts of composite structure

In this section, we evaluate the impact of different composite
structures on the fitness values of solutions and computational
time. Here, we create several test cases that consist of require-
ments with 3 abstract services, each having 100 concrete services.
These test cases are executed according to the composite struc-
tures in Fig. 2. The loop count is set as 2 in the looping structure

620 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

Fig. 8. Computing cost w.r.t. number of candidate services.

and the judgment condition of the branch is to choose the smaller
response time.

Tables 4 and 5 show the results. It appears that the fitness
value of solutions and the computational cost change with dif-
ferent composite structures. We can conclude that MrEDA can
handle service composition on different composite structures and
the influence of composite structure is less significantly. Besides,
all structures can be seen as a combination of sequential struc-
tures. For example, the conditional structure in Fig. 2(b) can be
expressed as the combination of two sequential structures of S4
to S5 and S4 to S6. Therefore, we mainly focus o the sequential
structure in the following experiments.

6.3. Impacts of training time

Since the main operation of MrEDA is to train the probabilistic
model of composite services, the computation cost of MrEDA is
mainly consumed in the training. Besides, the training of prob-
abilistic model can refine the feature information of composite
services, which helps improve the quality of optimal solutions.
Therefore, the performance of MrEDA is closely linked to the
training degree and training cost of the probabilistic model. The
training of the probabilistic model is a T-steps process such that
the training degree and training cost are related to the training
time, denoted as TTimes.

To analyze the effect of TTimes on the proposed algorithm,
the quality of composite services and computing time are taken
as the experimental objects. We consider two scenarios. The first
scenario is constructed by fixing the number of abstract services
as 5 and varying the number of concrete services from 100 to
1000. The second scenario fixes the number of concrete services
as 100 and varies the number of abstract services from 5 to 50.

To examine the effect of TTimes on the quality of optimal
solutions, we scale TTimes from 2 to 6. The results of the first
scenario are summarized in Table 6. It can be seen that with
the increase of TTimes, the fitness of the optimal solutions gets
improved. MrEDA achieves the best solution in most cases when
TTimes = 6. In Table 7, the results of the second scenario are
similar in most cases to the first scenario. The fitness values also
increase with the increase of TTimes and the number of abstract
services. The best fitness values with same number of abstract
services are achieved with TTimes=6. Besides, the increasing rate
with the increased number of abstract services is higher than that
with the increased number of candidate services.

In Figs. 8 and 9, we compare the computational cost of the
optimal solution in the first scenario and the second scenario, for
different training times, respectively. The lowest computational
cost is in the case of TTimes=2, leading to the fastest time. As
TTimes increases, the computational cost with different number
of candidate services and abstract services is higher. Besides, the

Fig. 9. Computing cost w.r.t. number of abstract services.

computational cost increases with the increased number of can-
didate services and abstract services, and the increasing rate of
abstract services increase remarkably. To achieve a good balance
between the computational cost and the quality of solutions, we
fix the TTimes as 4 in the following experiments.

6.4. Solution quality evaluation

The quality of the optimal solution is an important indicator
about the effectiveness of MrEDA in a dynamic environment.
Since the fitness value is the comprehensive evaluation of multi-
ple QoS values (i.e., response time, availability, and throughput), it
is used to measure the quality of the optimal solution. To examine
the effect of the solution space on the optimization performance,
we construct two scenarios by: (1) fixing the abstract services as 5
and varying the candidate services number from 100 to 1000, and
(2) fixing the candidate services as 100 and varying the number
of abstract services from 5 to 50.

Table 8 shows the result of scenario 1. It appears that the fit-
ness value of MrEDA is better than that of rEDA, MARL and MAGA
in most cases. In Table 9, the results of scenario 2 also show that
in most cases the fitness value of MrEDA is higher than that of
rEDA, MARL and MAGA in the scenarios of increasing the number
of abstract services. In particular, when fixing the number of
abstract services, the fitness values of all approaches change very
little with the increasing number of candidate services. While the
fitness values have a significant increase in varying the number
of abstract services when fixing the number of candidate services.
The reason is that MrEDA exploits multiple RBMs with distinct
explorations to refine the probabilistic model of solutions. The
model provides useful information on how well the selected
services contribute to the overall performance. In addition, the
adaptive sampling improves the quality of the probabilistic model
by adaptively adjusting the search of samples and improving the
exploitability of samples. When generating solutions, the proba-
bilistic model is instrumental for searching the optimal solution.
Therefore, MrEDA obtains high-quality solutions more easily than
other approaches. Furthermore, due to the normalization of QoS
values, the fitness values of optimal solutions with same amount
of abstract services are standardized to a level, so the fitness value
has little change in Table 8. However, with the increase of abstract
services, the number of services participating in composition
increase, so the fitness value has a significant increase with the
increase of abstract services.

6.5. Alternative solutions evaluation

To validate the adaptation of MrEDA, we evaluate the diversity
of alternative solutions. The composition scenario is changed
by varying the QoS values, which follow a normal distribution.

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 621

Table 6
The fitness of optimal solution with different number of candidate services w.r.t training times.
Training times The fitness of optimal solution with different number of candidate services

100 200 300 400 500 600 700 800 900 1000

2 1.9739 2.0089 2.0252 2.0360 2.0379 2.0438 2.0379 2.0455 2.0504 2.0573
3 1.9857 2.0087 2.0222 2.0384 2.0418 2.0486 2.0430 2.0564 2.0520 2.0510
4 1.9923 2.0112 2.0348 2.0469 2.0553 2.0617 2.0551 2.0628 2.0612 2.0627
5 1.9897 2.0200 2.0422 2.0532 2.0573 2.0626 2.0511 2.0675 2.0633 2.0640
6 1.9984 2.0355 2.0425 2.0587 2.0642 2.0606 2.0653 2.0679 2.0668 2.0632

Table 7
The fitness of optimal solution with different number of abstract services w.r.t training times.
Training times The fitness of optimal solution with different number of abstract services

5 10 15 20 25 30 35 40 45 50

2 1.9739 3.2296 4.6764 5.9758 7.3637 8.7672 10.1271 11.5639 12.9757 14.3436
3 1.9857 3.2300 4.6776 5.9853 7.3740 8.7713 10.1425 11.5689 12.9810 14.3541
4 1.9923 3.2563 4.6781 5.9903 7.4745 8.7702 10.1510 11.5823 12.9614 14.3815
5 1.9897 3.2577 4.6822 5.9969 7.4723 8.7793 10.1537 11.5829 12.9817 14.3842
6 1.9984 3.2583 4.6957 5.9928 7.4769 8.7867 10.1601 11.6008 12.9933 14.3904

Table 8
the fitness of optimal solution w.r.t number of candidate services.
Methods Number of candidate services

100 200 300 400 500 600 700 800 900 1000

MrEDA 1.9923 2.0112 2.0348 2.0469 2.0553 2.0617 2.0551 2.0628 2.0612 2.0627
MAGA 1.9859 1.9955 2.0368 2.0404 2.0449 2.0462 2.0470 2.0529 2.0499 2.0605
MARL 1.9845 2.0087 2.0325 2.0587 2.0453 2.0506 2.0379 2.0549 2.0504 2.0617
rEDA 1.9918 2.0226 2.0323 2.0456 2.0582 2.0610 2.0621 2.0605 2.0608 2.0615

Table 9
The fitness of optimal solution w.r.t number of abstract services.
Methods Number of abstract services

5 10 15 20 25 30 35 40 45 50

MrEDA 1.9923 3.2563 4.6781 5.9903 7.4745 8.7702 10.1510 11.5823 12.9614 14.3815
MAGA 1.9859 3.2360 4.5771 5.9795 7.3712 8.7623 10.1604 11.5640 12.9691 14.3509
MARL 1.9845 3.2363 4.5764 5.9803 7.3769 8.7713 10.1337 11.5713 12.9657 14.3541
rEDA 1.9918 3.2558 4.6444 5.9535 7.4760 8.7582 10.1457 11.6660 12.5650 13.9272

Besides, 5% of QoS values are changed after every 40 generations.
The dispersion degree is used to measure the stability of optimal
solutions. The smaller the dispersion degree is, these alternative
solutions are more stable for providing the optimal solution in a
dynamic environment. The dispersion degree is defined as

Dispersion =

√∑n
i=1(fitnessi − fitness)2

n
(19)

where fitness is the average value of all optimal solutions from
running the algorithm n times, and fitnessi is ith optimal fitness
value.

Fig. 10 shows the result, where we vary the number of can-
didate services from 100 to 1000 while fixing the number of
abstract services as five. As can be seen, with the increase of
candidate services the dispersion degree of MrEDA is lower than
that of rEDA, MAGA and MARL in most cases. In Fig. 11, we vary
the number of abstract services from 5 to 50 and fix number of
candidate services as 100. The dispersion degree of MrEDA is also
lower than rEDA, MAGA and MARL. Through these two sets of ex-
periments, we conclude that MrEDA obtains more stable optimal
solutions and has better adaptability than other approaches.

The performance advantage of MrEDA can be explained as
follows. MrEDA not only maintains the diversity of alternative
solutions for adapting to a dynamic environment, but also con-
siders the global QoS to improve the quality of optimal solution.
The learning mechanism of MrEDA can capture more compre-
hensive potential feature information (e.g.,promising patterns)

Fig. 10. Dispersion degree w.r.t. number of candidate services.

between solutions to enrich the diversity of solutions. Besides,
MrEDA assigns the probability for the selected services accord-
ing to the degree of how well these services contribute to the
global QoS. Although the environment changes, MrEDA can obtain
the high-quality solutions to support the adaptation of service
composition.

6.6. Efficiency evaluation

In this set of experiments, we evaluate the efficiency of our ap-
proach. The computational cost of obtaining the optimal solution
is used as a criterion to evaluate the efficiency. Fig. 12 shows the

622 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

Fig. 11. Dispersion degree w.r.t. number of abstract services.

Fig. 12. Computing cost w.r.t. number of abstract services.

Fig. 13. Computing cost w.r.t. number of candidate services.

computational cost of obtaining the optimal solution for service
composition with one execution path, where we vary the number
of abstract services from 5 to 50 and fix the number of candidate
services as 100. From the results, it is clear that the computational
cost of MrEDA is less than that of other approaches, and the value
increases with the number of candidate services. In particular, the
computational costs of MrEDA, MAGA, MARL are lower than that
of rEDA, and the gap between rEDA and other approaches gets
larger with the increase of candidate services. Fig. 13 shows the
computational cost of obtaining the optimal solution for service
composition with 5 abstract services. We vary the number of
candidate services from 100 to 1000. Again, the result shows that
MrEDA has lower computational cost than other approaches and
the increase trend of the cost is similar as before with the number
of abstract services. In addition, the gap between rEDA and other
approaches also gets larger with the increase of abstract services.

From the experimental results, we notice that MrEDA has a
obvious advantage in efficiency. The reason behind is that MrEDA
works in parallel and exploits the probabilistic distribution in-
formation to guide the optimal direction, which can speed up
the exploration of search space. In the process of exploration,

Fig. 14. Change 1% QoS values.

Fig. 15. Change 5% QoS values.

a probability is assigned to the selected service to feedback its
likelihood to meet the global QoS. According to the probability,
the non-potential services are pruned and the search direction
is moving to the optimal solution. However, MAGA and MARL
ignore the global optimal information to guide the exploration
of search space, so MrEDA is better than MAGA and MARL. In
addition, the main computational cost of MrEDA and rEDA is
consumed on the training of probabilistic model, the parallel
manner of MrEDA can speed up the computing time compared
with rEDA.

6.7. Optimality evaluation

MrEDA is an improved evolutionary algorithm, which adapts
to the QoS variation and approximates the optimal solution. To
evaluate the impact of QoS value changes against composition
usage, we need to measure the optimality of solution in different
change rates. Here, we set 5 abstract services and each abstract
service has 100 candidate services. The variation of services’ QoS
value occurs during execution after every 40 generations. The
change rate of QoS value is set to 1%, 5%, and 10%, respectively.
We obtain the optimal solution from the global optimization
method and compare the optimality of MrEDA with that of other
three algorithms. Based on [12,26], the optimality is measured
using the following formula

Optimality =
fitnessi

fitnessglobal
(20)

where fitnessglobal is the fitness value of the optimal solution ob-
tained from running the global optimization method, and
fitnessi(x) is the actual fitness value achieved from the four ap-
proaches (MrEDA, rEDA, MAGA, MARL) at the ith generation.

Figs. 14–16 show the growth of the optimality during the
evolutionary process at different change rates. As can be seen,
MrEDA significantly outperforms other approaches in term of
the optimality and converge time. Moreover, the four approaches
require longer converge time with the increasing change rate.
We can conclude that the changes do not stop the optimiza-
tion process, and the reactive mechanisms will work when the
changes occur. Besides, MrEDA achieves a good balance between
optimality and converge time.

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 623

Fig. 16. Change 10% QoS values.

6.8. Discussion

From the experimental results, we conclude that MrEDA out-
performs MARL, MAGA and rEDA approaches in terms of effi-
ciency, effectiveness and optimality. First, compared with rEDA,
MARL and MAGA, MrEDA achieves better quality of optimal solu-
tions in most cases. Second, the stability of the optimal solutions
is measured to demonstrate that MrEDA has more stable optimal
solutions than rEDA, MARL and MAGA in a dynamic environ-
ment. MrEDA not only concerns the quality and stability of the
optimal solution but also takes the computational time into con-
sideration. It is clear that MrEDA converges faster than rEDA,
MARL and MAGA. In particular, MrEDA, MARL and MAGA have
a faster convergence than rEDA. Last, by measuring the opti-
mality of solutions in different dynamic scenarios, we evaluate
the impact of QoS changes against composition usage and verify
that our approach approximate the optimal solution with lower
computational cost.

These results validate using MrEDA to solve the optimization
of service composition in a dynamic environment. The refined
probabilistic model of solutions captured by multiple RBMs is
effective to maintain the diversity of alternative solutions, which
help select alternative optimal solutions to adapt to the dynamic
environment of service composition. In addition, the integration
of parallel modeling, parallel training, and adaptive sampling
improves the global QoS optimization and speeds up the com-
putational time. In sum, our approach supports the adaptation
of service composition and improves the effectiveness, efficiency
and optimality.

7. Related work

A web service is modeled as a software component that im-
plements a set of operations. In the mid 90’s, some work was
developed for composing suitable components for a system. The
work in [35] exploits a domain-independent model to construct
the hierarchical software system. In the model, the software
components are composed in virtually arbitrary ways to support
the software design and implementation. Mili et al. [36] propose
an automated software repository technology to find the suitable
components for the design and implementation of software. It
utilizes the formal specifications and the refinement ordering
between specifications to improve the chances of recognizing the
components. The work of Novak et al. [37] employs a flexible
mechanism for effective software reuse. The mechanism provides
a implementation representation and a bidirectional mapping
for composing separate reusable components to construct the
application. These three approaches provide viable solutions to
improve software development and management. However, they
are insufficient to adapt to variable requirements and environ-
ment. Zinky et al. [38] present a new architecture, Quality of
Service for CORBA Objects. It provides a dynamic linking and

binding mechanism by extending the functional interface de-
scription language and specifying QoS regions. The work in [39]
uses component interaction abstraction to support distributed
multimedia applications over heterogeneous environment. This
approach focuses on reconfiguration of each component rather
than the application.

With the development of the web, the web service initiative
has been driven by some standards that are based on standard
universal markup language. More recently, research on the op-
timization of web service composition has attracted increased
attention. Several approaches have been developed to support
adaptive service composition. Proactive approaches form an im-
portant category of techniques based on data analysis and pre-
dictive technology [2–4,40].

The PROSDIN (PROactive Service Discovery and Negotiation)
framework adopts proactive service discovery, where SLA nego-
tiation is integrated into the service discovery process [40]. The
proactive SLA negotiation exploits the information of services
(such as interface, quality characteristics) to select alternative
candidate services to avoid the interruption of runtime service
composition when changes occur. The work in [2] considers the
problem prediction and future execution for the adaptive service
composition. It uses exponentially weighted moving average to
model the executed operation to support the alternative service
discovery. The work of Ding et al. [3] exploits the monitored
history information of service composition to predict the relia-
bility to support the adaptation of service composition. It locates
the fault component service by monitoring the historical running
conditions of services and replaces it with highly reliable ser-
vices. Wang et al. [4] provides a motifs-based dynamic bayesian
network to avoid the failure and enhance the reliability of ser-
vice composition. The motifs-based dynamic bayesian network
exploits the historical invocation records of services to predict the
reliability in the future. Although these approaches can adapt to
the dynamic environment by predicting the failure and replacing
with highly reliable services, they ignore the uncertain nature of
the replaced services.

Other approaches for adaptive service composition consider
runtime recovery [6–8,41], runtime substitution [12,42,43] or
re-optimization [29,44,45]. The work of [6] provides a comple-
mentary approach to detect the faults and give correct replicas.
In [41], a user-guided recovery framework is developed that
exploits three phases (preprocessing, monitoring and recovery)
to recover from QoS violations or service failures. Tan et al. [8]
integrate a genetic algorithm with a recovery plan to support
the development and execution of service-based application in a
dynamic environment. Angarita et al. [7] propose a non-intrusive
dynamic fault tolerant model for adaptive service composition.
It can detect the faults and achieve the best recovery strategy
by monitoring the environment states, execution states, and QoS
criteria.

Due to the rollback of fault and selection of alternative services
in the whole search space, the recovery approaches have a high
computational cost. Ardagna et al. [12] develop a novel modeling
method to solve the service composition problem by making use
of Mixed Integer Linear Programming (MILP). It exploits the local
and global constraints to reduce the optimization complexity. The
work of [42] and [43] propose the improved Linear Programming
approaches to support the adaptation. However, these runtime
substitution approaches have shortcomings, especially the scala-
bility issue. In [29], a hybrid approach is proposed that integrates
reinforcement learning with multi-agent techniques in order to
find the optimal solution. A lot of agents cooperatively select and
compose web services and adopt the Boltzmann learning policy
for biased exploration. The work of [44] provides the ant colony
algorithm for handling a dynamic environment. It exploits a set of

624 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

ants to update the pheromone information in reaction to different
changes according to several pheromone modification strategies.
Parejo et al. [46] propose a metaheuristic algorithm to support
service composition at runtime. It uses iterative optimization to
generate solutions and path relinking to improve the diversity
of solutions. Klein et al. [45] propose a network-aware approach
that support runtime adaptation by employing a self-adaptive
genetic algorithm. These re-optimization approaches can adapt
to a dynamic environment by selecting an alternative solution,
but the alternative solution may be poor. Besides, these reactive
approaches should be subject to efficiency in exploring the search
space and consider the likelihood of the services satisfying the
global performance.

In [47], the authors make use of a parallel partial selection
methodology to find optimal composite services. The skyline is
integrated with the dominance relation to support the partial
selection of services. A parallel work is used to speed up the
selection. The work in [9] exploits the parallel clustered particle
swarm algorithm (PCPSO) to approximate the optimal solution.
The algorithm consists of two phases: primary selection and op-
timum composition. In primary selection, PCPSO exploits a fitness
function to select potential services. Then, the particle swarm
algorithm is used to select concrete services from candidate ser-
vices to achieve composition. The parallel processing is used to
facilitate the optimization. The work of [48] utilizes a multi-
population parallel self-adaptive differential artificial bee colony
algorithm to solve the optimization of service composition. It
speeds up the exploration of the search space by parallel work.
Although these approaches consider the efficiency in exploring
the search space, they overlook the likelihood of the services
satisfying the global performance and the diversity of solutions
in reaction to the dynamic environment. In [49], Moustafa et al.
propose a stigmergic-based modeling approach to achieve adap-
tive service composition, which exploit trustworthiness to reduce
the search space. Ghezzi et al. [11] provide a model driven frame-
work to support the development and execution of software in
an uncertainty environment. The framework makes use of the
probability theory and probabilistic model checking to refine the
likelihood of how a composition to meet the QoS requirements.
The work of [50] proposes a probabilistic hierarchical refine-
ment approach to optimize the service composition by iteratively
refining the representative services. In [51], a novel empirical ap-
proach is proposed to accelerate QoS-aware runtime adaptation
by exploiting a support vector machine to capture the dynamic
information. Besides, the probability of candidate services par-
ticipating composition is predicted to reduce the search space.
Although these probabilistic approaches consider the likelihood
of the services satisfying the global performance, the diversity of
alternative solutions is not taken into account.

Different from existing efforts, the diversity of alternative
solutions and the efficiency in exploring the search space are con-
sidered in our approach, MrEDA, which integrates EDA, RBM and
multi-agent technology to implement adaptive service composi-
tion in a dynamic environment. It utilizes EDA to construct the
probabilistic model of solutions produced in each iteration and
leverages RBM to refine the probabilistic distribution to diversify
the solutions and direct to the search to the optima. In addition,
multi-agent technology is to used to train the probabilistic model
to speed up the computational time.

8. Conclusion and future work

In this section, we first present the concluding remarks and
then lay out some important future directions.

8.1. Conclusion

In this article, we present a novel reactive approach for adap-
tive service composition. We first select a set of dominant so-
lutions from all solutions produced in each iteration. We then
use multiple RBMs with distinct explorations to construct mul-
tiple probabilistic models in parallel. These models refine the
probabilistic distribution of solutions, which is used to quantify
the domain information about services and capture their differ-
ence. These models are trained in parallel to approximate the
real probabilistic distribution of solutions. We employ contrastive
divergence, an efficient approach that continually adjusts the
parameters of each RBM to minimize the log-likelihood of the
solutions. The diversity of solutions maintained by the proba-
bilistic distribution can help adapt to the dynamic environment
by selecting alternative solutions. We apply multi-agent tech-
nology with a parallel mechanism that balances between explo-
ration and exploitation to speed up the optimization and improve
the performance. Our experimental results demonstrate that the
proposed approach is efficient and effective in finding optimal
solutions.

8.2. Future work

We identify a number of interesting and important directions
for future research.

• First, in RBM, the complex parameter setting (such as the
number of hidden units, the learning rate, the number of
training steps) may slow down the performance of MrEDA.
A careful adjustment that is able to take into account the
effect of changing parameters may help further improve
performance of MrEDA.
• Second, in the sampling process, the correlation among the

decision variables should be taken into account. The decision
variables in a chromosome may have conflicting or identical
objectives. Instead of simple sampling, a more sophisticated
sampling mechanism that considers the explicit correlations
among decision variables may make the probabilistic distri-
bution of solutions better approximate the true probabilistic
distribution.
• Third, the impact of different dynamic scenarios should

be taken into account. For certain dynamic condition, the
optimization of service composition may not be influenced
or have less influence. There is no need to re-optimize the
service composition in this case. Making different strategies
for different dynamic scenarios would be useful for the
adaptation of service composition.
• Forth, the optimization multi-objective service composition

also should be considered. The multiple QoS attributes may
be conflicting, e.g., high reliable service requires high cost.
The trade-off among multiple QoS objectives may help select
the optimal solution.
• Fifth, the additional cost (e.g., the penalty of violating con-

tract) may influence the choice of service. Taking into con-
sideration the additional cost may improve the quality of
solution.

Acknowledgments

This work was partially supported by National Key Research
and Development Plan, China (No. 2018YFB1003800) and NSFC
Projects, China (Nos. 61672152, 61532013), Collaborative Innova-
tion Centers of Novel Software Technology and Industrialization
and Wireless Communications Technology, China. Qi Yu is sup-
ported in part by an NSF IIS award, USA IIS-1814450 and an
ONR award, USA N00014-18-1-2875. The views and conclusions
contained in this paper are those of the authors and should not
be interpreted as representing any funding agency.

H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626 625

References

[1] M.P. Papazoglou, P. Traverso, S. Dustdar, F. Leymann, Service-oriented
computing: a research roadmap, Int. J. Coop. Inf. Syst. 17 (02) (2008)
223–255.

[2] R. Aschoff, A. Zisman, Qos-driven proactive adaptation of service com-
position, in: Service-Oriented Computing — 9th International Conference,
ICSOC 2011, Paphos, Cyprus, December 5–8, in: 2011 Proceedings, 2011,
pp. 421–435.

[3] Z. Ding, T. Xu, T. Ye, Y. Zhou, Online prediction and improvement of
reliability for service oriented systems, IEEE Trans. Reliab. 65 (3) (2016)
1133–1148.

[4] H. Wang, L. Wang, Q. Yu, Z. Zheng, A. Bouguettaya, M.R. Lyu, Online
reliability prediction via motifs-based dynamic Bayesian networks for
service-oriented systems, IEEE Trans. Softw. Eng. 43 (6) (2017) 556–579.

[5] A. Zisman, G. Spanoudakis, J. Dooley, I. Siveroni, Proactive and reactive
runtime service discovery: A framework and its evaluation, IEEE Trans.
Softw. Eng. 39 (7) (2013) 954–974.

[6] P. Sousa, A.N. Bessani, M. Correia, N.F. Neves, P. Veríssimo, Highly available
intrusion-tolerant services with proactive-reactive recovery, IEEE Trans.
Parallel Distrib. Syst. 21 (4) (2010) 452–465.

[7] R. Angarita, M. Rukoz, Y. Cardinale, Modeling dynamic recovery strategy
for composite web services execution, World Wide Web 19 (1) (2016)
89–109.

[8] T.H. Tan, M. Chen, É. André, J. Sun, Y. Liu, J.S. Dong, Automated runtime
recovery for Qos-based service composition, in: 23rd International World
Wide Web Conference, WWW ’14, Seoul, Republic of Korea April 7–11,
2011, pp. 563–574.

[9] M.S. Hossain, M. Moniruzzaman, G. Muhammad, A. Ghoneim, A. Alamri,
Big data-driven service composition using parallel clustered particle swarm
optimization in mobile environment, IEEE Trans. Serv. Comput. 9 (5) (2016)
806–817.

[10] H. Wang, D. Yang, Q. Yu, Y. Tao, Integrating modified cuckoo algorithm and
creditability evaluation for Qos-aware service composition, Knowl.-Based
Syst. 140 (2018) 64–81.

[11] C. Ghezzi, L.S. Pinto, P. Spoletini, G. Tamburrelli, Managing non-functional
uncertainty via model-driven adaptivity, in: 35th International Conference
on Software Engineering, ICSE ’13, San Francisco, CA, USA, May 18–26,
2013, pp. 33–42.

[12] D. Ardagna, B. Pernici, Adaptive service composition in flexible processes,
IEEE Trans. Softw. Eng. 33 (6) (2007) 369–384.

[13] O. Moser, F. Rosenberg, S. Dustdar, Domain-specific service selection for
composite services, IEEE Trans. Softw. Eng. 38 (4) (2012) 828–843.

[14] H. Ma, F. Bastani, I. Yen, H. Mei, Qos-driven service composition with
reconfigurable services, IEEE Trans. Serv. Comput. 6 (1) (2013) 2034.

[15] A. Bouguettaya, M.P. Singh, M.N. Huhns, Q.Z. Sheng, H. Dong, Q. Yu, A.G.
Neiat, S. Mistry, B. Benatallah, B. Medjahed, M. Ouzzani, F. Casati, X. Liu, H.
Wang, D. Georgakopoulos, L. Chen, S. Nepal, Z. Malik, A. Erradi, Y. Wang,
M.B. Blake, S. Dustdar, F. Leymann, M.P. Papazoglou, A service computing
manifesto: the next 10 years, Commun. ACM 60 (4) (2017) 64–72.

[16] A.R. Gonçalves, F.J.V. Zuben, Online learning in estimation of distribution
algorithms for dynamic environments, in: Proceedings of the IEEE Congress
on Evolutionary Computation, CEC 2011, New Orleans, LA, USA, 5–8 June,
2011, pp. 62–69.

[17] X. Song, L. Tang, A novel hybrid differential evolution–estimation of
distribution algorithm for dynamic optimization problem, in: Proceedings
of the IEEE Congress on Evolutionary Computation, CEC 2013, Cancun,
Mexico, June 20–23, 2013, pp. 1710–1717.

[18] S. Peng, H. Wang, Q. Yu, Estimation of distribution with restricted
Boltzmann machine for adaptive service composition, in: 2017 IEEE In-
ternational Conference on Web Services, ICWS 2017, Honolulu, HI, USA,
June 25–30, 2017, pp. 114–121.

[19] A. Neumann, N. Laranjeiro, J. Bernardino, An analysis of public rest web
service APIs, IEEE Trans. Serv. Comput. (2018) 1–1.

[20] IBM, Web service binding. Website https://www.ibm.com/support/
knowledgecenter/en/SS8JB4_18.0.0/com.ibm.wbpm.main.doc/topics/
esbprog_bindings_ws1.html.

[21] ORACLE, Configuring web service bindings. Website https://docs.oracle.
com/cd/E17904_01/doc.1111/e15511/binding_ws.htm#JSCAL133.

[22] Microsoft, Howto:SpecifyaServiceBindinginConfiguration. Website
https://docs.microsoft.com/en-us/dotnet/framework/wcf/how-to-specify-
a-service-binding-in-configuration.

[23] Redhat, Webservicesbindings, Website https://access.redhat.
com/documentation/enus/red_hat_jboss_fuse/6.3/html/apache_cxf_
development_guide/cxfbindingspart.

[24] A.S. Bataineh, J. Bentahar, M. El-Menshawy, R. Dssouli, Specifying and
verifying contract-driven service compositions using commitments and
model checking, Expert Syst. Appl. 74 (2017) 151–184, (Online). Available:
https://doi.org/10.1016/j.eswa.2016.12.031.

[25] L. Barakat, S. Miles, M. Luck, Adaptive composition in dynamic service
environments, Future Gener. Comput. Syst. 80 (2018) 215–228, (Online).
Available: https://doi.org/10.1016/j.future.2016.12.003.

[26] M. Alrifai, T. Risse, Combining global optimization with local selection
for efficient Qos-aware service composition, in: Proceedings of the 18th
International Conference on World Wide Web, WWW 2009, Madrid, Spain,
April 20–24, 2009, pp. 881–890.

[27] T. Chen, K. Tang, G. Chen, X. Yao, Analysis of computational time of simple
estimation of distribution algorithms, IEEE Trans. Evol. Comput. 14 (1)
(2010) 1–22.

[28] Q. Zhang, H. Mühlenbein, On the convergence of a class of estimation of
distribution algorithms, IEEE Trans. Evol. Comput. 8 (2) (2004) 127–136.

[29] H. Wang, X. Chen, Q. Wu, Q. Yu, X. Hu, Z. Zheng, A. Bouguettaya, Integrating
reinforcement learning with multi-agent techniques for adaptive service
composition, ACM Trans. Auton. Adapt. Syst. 12 (2) (2017) 8:1–8:42.

[30] L. Panait, S. Luke, Cooperative multi-agent learning: The state of the art,
Auton. Agents Multi-Agent Syst. 11 (3) (2005) 387–434.

[31] G. Canfora, M.D. Penta, R. Esposito, M.L. Villani, Qos-aware replanning of
composite web services, in: 2005 IEEE International Conference on Web
Services, ICWS 2005, 11–15 July 2005, Orlando, FL, USA, 2005, pp. 121–129
(Online). Available: https://doi.org/10.1109/ICWS.2005.96.

[32] A. Lazovik, M. Aiello, M.P. Papazoglou, Planning and monitoring the
execution of web service requests, in: Service-Oriented Computing —
ICSOC 2003, First International Conference, Trento, Italy, December 15–18,
2003, Proceedings, 2003, pp. 335–350 (Online). Available: https://doi.org/
10.1007/978-3-540-24593-3_23.

[33] G.E. Hinton, Training products of experts by minimizing contrastive
divergence, Neural Comput. 14 (8) (2002) 1771–1800.

[34] N.P. Tizzo, J.M.A. Coello, E. Cardozo, Automatic composition of semantic
web services using a-teams with genetic agents, in: Proceedings of the
IEEE Congress on Evolutionary Computation, CEC 2011, New Orleans, La,
USA, 5–8 June, pp. 370–377.

[35] D.S. Batory, S.W. O’Malley, The design and implementation of hierarchical
software systems with reusable components, ACM Trans. Softw. Eng.
Methodol. 1 (4) (1992) 355–398, (Online). Available: http://doi.acm.org/
10.1145/136586.136587.

[36] A. Mili, R. Mili, R.T. Mittermeir, Storing and retrieving software com-
ponents: A refinement based system, in: Proceedings of the 16th
International Conference on Software Engineering, Sorrento, Italy, May
16–21, 1994, 1994, pp. 91–100 (Online). Available: http://portal.acm.org/
citation.cfm?id=257734.257748.

[37] G.S. Novak, Composing reusable software components through views, in:
Proceedings KBSE’94, the Ninth Knowledge-Based Software Engineering
Conference, Monterey, California, USA, September 20–23, 1994, 1994, pp.
39–47 (Online). Available: https://doi.org/10.1109/KBSE.1994.342679.

[38] J.A. Zinky, D.E. Bakken, R.E. Schantz, Architectural support for quality of
service for CORBA objects, Theory Pract. Object Syst. 3 (1) (1997) 55–73.

[39] D.G. Waddington, G. Coulson, A distributed multimedia component ar-
chitecture, in: 1st International Enterprise Distributed Object Computing
Conference, EDOC ’97, 24–26 October 1997, Gold Coast, Australia, Proceed-
ings, 1997, p. 334 (Online). Available: https://doi.org/10.1109/EDOC.1997.
628374.

[40] K. Mahbub, G. Spanoudakis, Proactive SLA negotiation for service based
systems: Initial implementation and evaluation experience, in: IEEE Inter-
national Conference on Services Computing, SCC 2011, Washington, DC,
USA, 4–9 July, 2011, 2011, pp. 16–23 (Online). Available: https://doi.org/
10.1109/SCC.2011.34.

[41] J. Simmonds, S. Ben-David, M. Chechik, Guided recovery for web service
applications, in: Proceedings of the 18th ACM SIGSOFT International
Symposium on Foundations of Software Engineering, 2010, Santa Fe, NM,
USA, November 7–11, 2010, pp. 247–256.

[42] V. Cardellini, E. Casalicchio, V. Grassi, S. Iannucci, F.L. Presti, R. Mirandola,
MOSES: A framework for qos driven runtime adaptation of service-oriented
systems, IEEE Trans. Softw. Eng. 38 (5) (2012) 1138–1159.

[43] V. Gabrel, M. Manouvrier, C. Murat, Optimal and automatic transactional
web service composition with dependency graph and 0–1 linear program-
ming, in: International Conference on Service-Oriented Computing, ICSOC,
Springer, 2014, pp. 108–122.

[44] L. Wang, J. Shen, J. Luo, Impacts of pheromone modification strategies in
ant colony for data-intensive service provision, in: 2014 IEEE International
Conference on Web Services, ICWS, 2014, Anchorage, AK, USA, June 27–July
2, 2014, pp. 177–184.

[45] A. Klein, F. Ishikawa, S. Honiden, SanGA: A self-adaptive network-aware
approach to service composition, IEEE Trans. Serv. Comput. 7 (3) (2014)
452–464.

[46] J.A. Parejo, S. Segura, P. Fernandez, A.R. Cortés, Qos-aware web services
composition using GRASP with path relinking, Expert Syst. Appl. 41 (9)
(2014) 4211–4223.

[47] Y. Chen, J. Huang, C. Lin, J. Hu, A partial selection methodology for efficient
Qos-aware service composition, IEEE Trans. Serv. Comput. 8 (3) (2015)
384–397.

626 H. Wang, S. Peng and Q. Yu / Future Generation Computer Systems 98 (2019) 609–626

[48] J. Zhou, X. Yao, Multi-population parallel self-adaptive differential artificial
bee colony algorithm with application in large-scale service composition
for cloud manufacturing, Appl. Soft Comput. 56 (2017) 379–397.

[49] A. Moustafa, M. Zhang, Q. Bai, Trustworthy stigmergic service compositio-
nand adaptation in decentralized environments, IEEE Trans. Serv. Comput.
9 (2) (2016) 317–329.

[50] T.H. Tan, M. Chen, J. Sun, Y. Liu, É. André, Y. Xue, J.S. Dong, Optimizing se-
lection of competing services with probabilistic hierarchical refinement, in:
Proceedings of the 38th International Conference on Software Engineering,
ICSE 2016, Austin, TX, USA, May 14–22, 2016, pp. 85–95.

[51] M. Yang, X. Hu, SVM-based efficient QoS-aware runtime adaptation for ser-
vice oriented systems, in: IEEE International Conference on Web Services,
ICWS 2016, San Francisco, CA, USA, June 27–July 2, 2016 pp. 396–403.

Hongbing Wang is a professor from School of Com-
puter Science and Engineering, Southeast University,
China. He received his Ph.D. in computer science
from Nanjing University, China. His research inter-
ests include Service Computing, Cloud Computing, and
Software Engineering. He published more than fifty ref-
ereed papers in international conferences and Journals,
e.g., Journal of Web Semantics, TSE, TAAS, JSS, TSC,
ICSOC, ICWS, SCC, CIKM, ICTAI, WI, etc. He is a member
of the IEEE. Webpage: http://wscomposition.seu.edu.cn/
hbw/index.html.

Shunshun Peng is currently working toward the Ph.D.
degree in the School of Computer Science and En-
gineering, Southeast University, China. Her research
interests include service computing and data mining.

Qi Yu received the Ph.D. degree in computer science
from Virginia Polytechnic Institute and State University
(Virginia Tech). He is an associate professor in the
College of Computing and Information Sciences at the
Rochester Institute of Technology. His current research
interests lie in the areas of machine learning, data
mining, and service computing. He has published over
80 papers, many of which appeared in top-tier venues
in these fields. He is a member of the IEEE. Webpage:
http://www.ist.rit.edu/~qyu/.

	A parallel refined probabilistic approach for QoS-aware service composition
	Introduction
	A motivating example
	The service composition model
	Service composition
	Utility evaluation for service composition
	Problem statement

	Preliminaries
	The estimation of distribution algorithm
	Restricted Boltzmann machine
	The multi-agent technology

	The MrEDA approach
	Primary selection stage
	Parallel modeling stage
	Parallel training stage
	Adaptive sampling stages

	Experimental evaluation
	Experimental setup
	Impacts of composite structure
	Impacts of training time
	Solution quality evaluation
	Alternative solutions evaluation
	Efficiency evaluation
	Optimality evaluation
	Discussion

	Related work
	Conclusion and future work
	Conclusion
	Future work

	Acknowledgments
	References

