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We prove the following dichotomy: if n = 2, 3 and f ∈ C1(Sn+1, Sn) is not homotopic to a constant map, then there is

an open set Ω ⊂ Sn+1 such that rank df = n on Ω and f(Ω) is dense in Sn, while for any n ≥ 4, there is a map

f ∈ C1(Sn+1, Sn) that is not homotopic to a constant map and such that rank df < n everywhere. The result in the case

n ≥ 4 answers a question of Larry Guth.

1 Introduction

In 1942, Sard [16] proved that if f ∈ Ck(Rm,Rn) for k > max{m− n, 0}, then the set of critical values of f has
measure zero; see also [17]. In particular, ifMm and Nn are closed manifolds of dimensions m ≥ n, respectively,
k > m− n, and f ∈ Ck(Mm,Nn) is a surjective map, then there is an open set Ω ⊂Mm such that rank df = n
everywhere in Ω and f(Ω) is dense in Nn.

Sard’s theorem is no longer true for k ≤ max{m− n, 0}. In fact, Kaufman showed in [14] that, for each
n ≥ 2, there exists a surjective map f ∈ C1([0, 1]n+1, [0, 1]n) with rank df ≤ 1 everywhere. However, Kaufman’s
mapping is a limit of a uniformly convergent sequence of mappings into finite, one dimensional, piecewise linear
trees, so it is topologically trivial in the sense that mimicking Kaufman’s construction in the case of C1 mappings
between spheres Sn+1 and Sn would result in a mapping f ∈ C1(Sn+1,Sn) with rank f ≤ 1 everywhere that is
homotopic to a constant map. Indeed, mappings into trees are contractible and so is their limit.

Since the homotopy groups πn+1(Sn) 6= 0 are non-trivial for n ≥ 2 (see e.g. [12]), one may ask whether it is
possible to construct a Kaufman type example that is not homotopic to a constant map.

A mapping f ∈ C2(Sn+1,Sn) that is not homotopic to a constant mapping is surjective and hence, according
to Sard’s theorem, there is an open set Ω ⊂ Sn+1 having the property that

rank df = n everywhere in Ω and f(Ω) is dense in Sn. (1.1)

In particular, there is no mapping f ∈ C2(Sn+1,Sn), satisfying rank df < n everywhere, that is not
homotopic to a constant map. Note that the condition rank df < n is much weaker than Kaufman’s rank df ≤ 1.
This leads to two natural questions.
Question 1. Is it possible to construct a mapping f ∈ C1(Sn+1,Sn), n ≥ 2, such that rank df < n everywhere
and f is not homotopic to a constant one?
Question 2. Let n ≥ 2 and 1 ≤ m < n be given. Is it possible to construct a mapping f ∈ C1(Sn+1,Sn) such
that rank df ≤ m everywhere and f is not homotopic to a constant one?

We note in passing that, in the more general context of C1-mappings between closed manifolds, it is easy
to give examples of mappings and manifolds answering both questions. Consider, for example, the smooth map
f : S1 × S1 × S1 → S1 × S1, (x, y, z) 7→ (x, yo), where yo ∈ S1, which is not homotopic to a constant map but
satisfies rank df = 1 everywhere.

The questions stated above are essentially due to Larry Guth [10, p. 1889], who asked: We don’t know any
homotopically non-trivial C1 maps from Sm to Sn with rank < n. Does one exist? Guth [10, Main Theorem]
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obtained a partial answer to Question 2 by showing a lower bound for the rank of the derivative of homotopically
non-trivial maps.

Theorem 1.1 (Guth). If n ≥ 2 and f ∈ C1(Sn+1,Sn) satisfies rank df <
[
n+2

2

]
, then f is homotopic to a

constant map.

Here [x] stands for the integer part of x. In particular, the following maps are necessarily homotopic to
constant maps:

f ∈ C1(S3,S2), or f ∈ C1(S4,S3), with rank df < 2, (1.2)

f ∈ C1(S5,S4), or f ∈ C1(S6,S5), with rank df < 3,

f ∈ C1(S7,S6), or f ∈ C1(S8,S7), with rank df < 4.

On the other hand, in the case of mappings f ∈ C1(S4,S3), Guth proved a stronger result than that in (1.2).
Namely he proved in [10, Proposition 13.4] that if f ∈ C1(S4,S3) and rank df < 3, then f is homotopic to a
constant map. This led him to the following conjecture:
Conjecture 1. (Guth) Let n ≥ 5 be odd. If f ∈ C1(Sn+1,Sn) and rank df <

[
n+3

2

]
, then f is homotopic to a

constant map.
Note that if n ≥ 2 is even, then the above claim is true by Theorem 1.1, and when n = 3, it is true by [10,

Proposition 13.4], but it is an open problem when n ≥ 5 is odd. Guth also conjectured that the above estimate
for the rank is sharp:
Conjecture 2. (Guth) If n ≥ 4, then there is a map f ∈ C1(Sn+1,Sn) with rank df ≤

[
n+3

2

]
that is not

homotopic to a constant map.
Note that the if n = 2, 3, then the above claim is obvious, because

[
n+3

2

]
= n, so any map satisfies the rank

condition.
The above conjectures were communicated to Piotr Haj lasz by Larry Guth.
The aim of this paper is to prove the following result.

Theorem 1.2. For n = 2, 3 and each map f ∈ C1(Sn+1,Sn) not homotopic to a constant map, there is an open
set Ω ⊂ Sn+1 such that rank df = n on Ω and f(Ω) is dense in Sn. In contrast, for each n ≥ 4, there is a map
f ∈ C1(Sn+1,Sn) that is not homotopic to a constant map and such that rank df < n everywhere.

The case n = 2 is relatively easy, it follows from Theorem 1.1, but, in fact, it has been known before, see
comments to Theorem 1.4. The known proofs are based on estimates of the Hopf invariant. For the sake of
completeness we provide a variant of such a proof. The case n = 3 was proved in [10, Proposition 13.4] with
a difficult argument based on the Steenrod squares. We provide a very different, and a more elementary proof
based on a generalized Hopf invariant introduced in [11]. However, the case n ≥ 4 is new. It answers Question 1
and Conjecture 2 for n = 4 in the affirmative.

Modifying our proof slightly, we could show that if f ∈ C1(Sn+1,Sn), n ≥ 3, and rank df < 3, then f is
homotopic to a constant map. This is consistent with the estimates obtained by Guth when n ≤ 5. However, in
higher dimensions Theorem 1.1 gives a better estimate.

Note that when n = 2 or n = 3 and f ∈ C1(Sn+1,Sn) is not homotopic to a constant map, then the
conclusion (1.1) of Sard’s theorem is still true, despite the fact that the mapping f has less regularity than
required in Sard’s theorem.

We find it somewhat surprising that the situation changes in the dimension n = 4. For example, π4(S3) =
π5(S4) = Z2, so the homotopy groups of the spheres are the same when n = 3 and n = 4, but the claim of
Theorem 1.2 is different in these dimensions.

The map constructed in the proof of Theorem 1.2 in the case n ≥ 4 has rank df = n− 1 on a set of positive
measure. We do not know whether there exists a map f ∈ C1(Sn+1,Sn) which is not homotopic to a constant
map and satisfies rank df ≤ n− 2 everywhere. Looking for such a map would be a first step towards answering
Conjecture 2.

The first part of Theorem 1.2 is a consequence of a slightly stronger result:

Theorem 1.3. If n = 2, 3 and f : Sn+1 → Sn is Lipschitz continuous and not homotopic to a constant map,
then there is a set A ⊂ Sn+1 of positive measure such that f is differentiable at every point of A, rank df = n
on A and f(A) is dense in Sn.

If now f ∈ C1(Sn+1,Sn) and rank df = n on A, then rank df = n on an open set that contains A, so the
first part of Theorem 1.2 follows.

For n = 2, Theorem 1.3 follows from the following more general result related to the Hopf invariant. This
result is known and it follows from the so called Hopf invariant inequality, see [8, Section 3.6], [9, pp. 358-359],
[10, p. 1805 and p. 1818], [15].
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Theorem 1.4. If f : S4n−1 → S2n is Lipschitz and Hf 6= 0, then there is a set A ⊂ S4n−1 of positive measure
such that f is differentiable at every point of A, rank df = 2n on A and f(A) is a dense subset of S2n.

Our proof is similar to the other known proofs. We decided to include the details as they play an important
role in the proof of Corollary 3.6.

Since a map f : S3 → S2 is not homotopic to a constant map if and only if the Hopf invariant Hf 6= 0 is
non-trivial (see Remark 3.2), we readily obtain that Theorem 1.4 yields Theorem 1.3 in this case. We note, again
in passing, that for each n ≥ 2 there are mappings S4n−1 → S2n which have a trivial Hopf invariant but which
are not homotopic to a constant map.

The proof of Theorem 1.4 (and hence the proofs of Theorems 1.2 and 1.3 when n = 2) is based on a
generalized Hopf invariant defined and studied in [11]. This is a non-standard generalization that requires the use
of the Lp-Hodge decomposition. The proof of Theorem 1.3 in the case n = 3 (and hence the proof of Theorem 1.2
when n = 3) is based on a mixture of methods from geometric measure theory (Eilenberg’s inequality), ideas
behind the proof of the Freudenthal suspension theorem [12] and the generalized Hopf invariant from [11]. As
explained above, Theorem 1.3 proves the first part of Theorem 1.2.

The second part of Theorem 1.2, i.e. the case of dimensions n ≥ 4, is also a consequence of a more general
result; recall that πn(Sn−1) = Z2 for n ≥ 4 (see e.g. [12]).

Theorem 1.5. If k + 1 ≤ m < 2k − 1 and πm(Sk) 6= 0, then there is a mapping f ∈ C1(Sm+1,Sk+1) that is not
homotopic to a constant map and such that rank df ≤ k everywhere.

The proof of Theorem 1.5 is based on a beautiful and surprising construction of Wenger and Young [18,
Theorem 2], who proved that if k + 1 ≤ m < 2k − 1 and g : Sm → Sk is Lipschitz continuous, then there is a
Lipschitz extension G : Bm+1 → Rk+1 such that rank dG ≤ k almost everywhere. Since we are interested in C1

mappings rather than Lipschitz ones, we have to modify their construction to make sure that we can find a
C1 extension G when g is C1. Our construction is explicit, while the arguments in [18] are based on homotopy
theory.

The article is organized in the following way. In Section 2 we recall well known facts related to suspension
and the Freudenthal suspension theorem. This material will be needed in the proofs of Theorem 1.3 (for n = 3)
and of Theorem 1.5. In Section 3 we discuss the generalized Hopf invariant introduced in [11] and we end the
section with the proof of Theorem 1.4, which easily follows from the properties of the generalized Hopf invariant.
The generalized Hopf invariant will also be used in the proof of Theorem 1.3 for n = 3. Recall that Theorem 1.4
implies Theorems 1.2 and 1.3 for n = 2. In Section 4 we prove Theorem 1.3 for n = 3. This completes the proofs
of Theorems 1.2 and 1.3 for n = 2, 3. In the final Section 5 we prove Theorem 1.5, which implies Theorem 1.2
for n ≥ 4.

Notation used in the article is pretty standard. By B` will always denote open balls, while the symbol B
can be used to denote open or closed balls. The hemispheres Sn± will always be closed. By a smooth mapping

we will always mean a C∞ smooth one. By a smooth diffeomorphism defined on a closed domain Ω we mean a
diffeomorphism that smoothly extends to a diffeomorphism in a larger domain that contains Ω.

2 The Freudenthal suspension theorem

With a continuous map f : Sn → Sk we can associate the suspension map Sf : Sn+1 → Sk+1, which maps
n-spheres parallel to the equator to the corresponding k-spheres parallel to the equator. On each of such spheres
the map Sf is a scaled copy of f .

Some basic and easy to verify properties of the suspension map are listed in the next three lemmata.

Lemma 2.1. If the maps f, g : Sn → Sk are homotopic, then their suspensions Sf, Sg : Sn+1 → Sk+1 are
homotopic as well.

The homotopy between Sf and Sg is simply the suspension of the homotopy between f and g.

Lemma 2.2. If a map f : Sn → Sk is homotopic to a constant map, then its suspension Sf : Sn+1 → Sk+1 is
homotopic to a constant map.

Indeed, since f is homotopic to a constant map fo, Sf is homotopic to Sfo (Lemma 2.1), but the image of
Sfo is a single meridian in Sk+1, which is contractible, so Sfo (and hence Sf) is homotopic to a constant map.

Lemma 2.3. If F : Sn+1 → Sk+1 maps the equator Sn ⊂ Sn+1 to the equator Sk ⊂ Sk+1, the upper hemisphere
Sn+1

+ to the upper hemisphere Sk+1
+ and the lower hemisphere Sn+1

− to the lower hemisphere Sk+1
− , then F is

homotopic to the suspension Sf of the mapping f = F |Sn : Sn → Sk between the equators.
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The homotopy is defined as the continuous family of mappings Ft, 0 ≤ t ≤ 1, such that on each n-sphere
parallel to the equator whose vertical distance to the equator is no larger than t, the mapping Ft coincides with
Sf and on polar caps consisting of points with the vertical distance to the equator at least t, the mapping Ft is
a scaled version of the mapping F on the hemispheres. Then F0 = F and F1 = Sf .

The next result is the celebrated Freudenthal suspension theorem [12, Corollary 4.24].

Lemma 2.4. If n ≤ 2k − 1, then every map F : Sn+1 → Sk+1 is homotopic to the suspension Sf of a map
f : Sn → Sk. If in addition n < 2k − 1, then Sf : Sn+1 → Sk+1 is homotopic to a constant map if an only if
f : Sn → Sk is homotopic to a constant map.

It follows from Lemma 2.2 that if f is homotopic to a constant map, then Sf is homotopic to a constant
map. However, if n = 2k − 1, it may happen that Sf is homotopic to a constant map, even though f is not.

Some ideas from the proof of the Freudenthal theorem are also used in Section 4. Actually, the ideas from
Section 4 have been used in [6] to find a somewhat new proof of the Freudenthal theorem (Lemma 2.4) that
uses only elementary methods from differential topology.

The usual statement of the Freudenthal theorem is that the reduced suspension homomorphism

Σ : πn(Sk)→ πn+1(Sk+1)

is an epimorphism for n ≤ 2k − 1 and an isomorphism for n < 2k − 1. However, we do not need to use the
reduced suspension in the article, merely the version stated in Lemma 2.4.

It is important to note that even if f is smooth, the suspension map Sf is not smooth at the north and
south poles. For example, as observed above, the suspension Sfo of a constant map fo : Sn → Sk maps Sn+1

into one meridian in Sk+1. If we go along a great circle in Sn+1 that passes through poles at a constant speed,
then in the image of Sfo we will go back and forth along one meridian, suddenly changing the direction of the
constant speed at the poles, showing that the derivative of Sfo is discontinuous at the poles. The discontinuity
of the derivative of the suspension will cause some technical problems in the proof of Theorem 1.5. However,
we can easily correct the suspension to a smooth mapping. If we parameterize the hemispheres Sn+1

± and Sk+1
±

as graphs over the balls Bn+1 and Bk+1, then in these coordinate systems the suspension Sf : Sn+1
± → Sk+1

±
restricted to the hemispheres becomes

Φ(x) = |x|f
(
x

|x|

)
.

The mapping Φ has discontinuous derivative at the origin, which corresponds to the discontinuity of the derivative
of Sf at the poles. If λε : [0, 1]→ [0, 1] is a smooth and non-decreasing function such that λε(t) = 0 on [0, ε] and
λε(t) = t on [1− ε, 1], then the mapping

Φε(x) = λε(|x|)f
(
x

|x|

)
is smooth and it coincides with Φ near the boundary of Bn+1. The mapping Φε induces a smooth mapping
Sεf : Sn+1 → Sk+1 that is homotopic to Sf and coincides with Sf in a neighborhood of the equator.

3 The generalized Hopf invariant

For a smooth map f : S4n−1 → S2n, the classical Hopf invariant is defined as follows (see [4]). Let αo be the
volume form on S2n with

∫
S2n αo = 1. Then df∗αo = f∗dαo = 0. Since the de Rham cohomology H2n(S4n−1) is

trivial, H2n(S4n−1) = 0, there is a smooth (2n− 1)-form ω on S4n−1 such that f∗αo = dω and the Hopf invariant
of f is defined by

Hf =

∫
S4n−1

ω ∧ dω.

The Hopf invariant is invariant under homotopies ([4, Proposition 17.22]), so it can be defined for any continuous
map f : S4n−1 → S2n. However, it is no longer given by the above formula if f is not sufficiently smooth.

Lemma 3.1. The Hopf invariant is a non-zero group homomorphism H : π4n−1(S2n)→ Z and it is an
isomorphism when n = 1.

Remark 3.2. For the proof that H is a group homomorphism, see [12, Proposition 4B.1]. Hopf [13, Satz II,
Satz II’] proved that for any n, there is a map h : S4n−1 → S2n with Hh 6= 0 and hence the homomorphism
H : π4n−1(S2n)→ Z is non-zero. Since the Hopf invariant of the Hopf fibration h : S3 → S2 equals 1 ([4,
Example 17.23]), H : π3(S2)→ Z is an isomorphism. However, for n ≥ 2 the Hopf invariant is never an
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isomorphism. Indeed, Adams [1] proved that mappings with Hopf invariant equal 1 exist only when n = 1, 2
and 4, so these are the only cases when one may suspect H to be an isomorphism, but π7(S4) = Z× Z12 and
π15(S8) = Z× Z120, so H cannot be an isomorphism.

Let f : S4n−1 → Rm, m ≥ 2n+ 1, be a Lipschitz map such that rank df ≤ 2n almost everywhere. Let α be
any C∞-smooth 2n-form on Rm. Following [11] we define a generalized Hopf invariant Hαf as described below.

According to Lemma 5.4 in [11], the form f∗α ∈ L∞(
∧2n S4n−1) is weakly closed. Since the L2-de

Rham cohomology of S4n−1 in dimension 2n is zero ([11, Proposition 4.5]), there is a Sobolev form ω ∈
W 1,2(

∧2n−1 S4n−1) such that dω = f∗α, and we define

Hαf =

∫
S4n−1

ω ∧ dω.

The main properties of Hα are described in the following results (see Propositions 5.5 and 5.8 in [11]).

Lemma 3.3. If ω1, ω2 ∈W 1,2(
∧2n−1 S4n−1) and dω1 = dω2 a.e., then the forms ωi ∧ dωi, i = 1, 2, are integrable

and ∫
S4n−1

ω1 ∧ dω1 =

∫
S4n−1

ω2 ∧ dω2.

In particular, the definition of Hαf does not depend on the choice of the form ω.

Lemma 3.4. Let f, g : S4n−1 → Rm, m ≥ 2n+ 1, be Lipschitz mappings such that rank df ≤ 2n and
rank dg ≤ 2n almost everywhere, and let α be a smooth 2n-form on Rm. If H : [0, 1]× S4n−1 → Rm is a Lipschitz
homotopy from f to g that satisfies rank dH ≤ 2n almost everywhere, then Hαf = Hαg.

This means the generalized Hopf invariant Hαf is invariant under homotopies whose rank of the derivative
does not exceed 2n.

If α is a smooth 2n-form on R2n+1 whose restriction to S2n coincides with the fixed volume form αo and
f : S4n−1 → S2n ⊂ R2n+1 is a Lipschitz map, then rank df ≤ 2n almost everywhere and hence the generalized
Hopf invariant Hαf is well defined.

Corollary 3.5. If f : S4n−1 → S2n is Lipschitz continuous, then Hαf = Hf .

Proof . If g : S4n−1 → S2n is smooth, then Hαg = Hg, because in that case the definition of Hαg is identical
with the classical definition of the Hopf invariant. If g is homotopic to f , then there is also a Lipschitz homotopy
H : [0, 1]× S4n−1 → S2n between f and g (by a standard approximation argument). Since H takes values in
S2n, rank dH ≤ 2n a.e. and hence Lemma 3.4 yields

Hαf = Hαg = Hg = Hf,

where the last equality follows from the homotopy invariance of the classical Hopf invariant.

The next result is essentially contained in [11, Theorem 1.7].

Corollary 3.6. If f : S4n−1 → S2n is Lipschitz continuous with Hf 6= 0 and F : B4n → R2n+1 is a Lipschitz
extension of f , then rank dF = 2n+ 1 on a set of positive 4n-dimensional measure.

Proof . Let f and F be as in the statement. Suppose to the contrary that rank dF ≤ 2n almost everywhere.
Then the Lipschitz homotopy

H(t, θ) : [0, 1]× S4n−1 → R2n+1, H(t, θ) = F (tθ)

from the constant map g(θ) = F (0) to f satisfies rank dH ≤ 2n almost everywhere. Since the mappings f, g,H
satisfy assumptions of Lemma 3.4, we have that Lemma 3.4 together with Corollary 3.5 yield

Hf = Hαf = Hαg = 0,

which is a contradiction.

Theorem 1.4 is now a straightforward consequence of Corollary 3.5.

Proof of Theorem 1.4. First we will prove that rank df = 2n on a set of positive measure. Suppose to the contrary
that rank df < 2n almost everywhere. Let α be as in Corollary 3.5. Then f∗α = 0, so Hαf = 0 and hence
Hf = Hαf = 0, which is a contradiction. This proves that the set A where df exists and satisfies rank df = 2n
has positive measure. It remains to prove that the set f(A) is dense in S2n. Suppose to the contrary that
f(A) ∩ B(yo, ε) = ∅ for some ball B(yo, ε) ⊂ S2n. Then, stretching along meridians with yo regarded as the north
pole, we can find a Lipschitz homotopy between f and a mapping f1 which maps A to the south pole. Hence
rank df1 < 2n almost everywhere, so by the first part of the proof Hf1 = 0 and therefore 0 6= Hf = Hf1 = 0,
which is a contradiction.
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4 Proof of Theorem 1.3

Recall that Theorem 1.4 completes the proof of Theorem 1.3 (and hence that of Theorem 1.2) when n = 2. Thus
we can assume that n = 3.

Let f : S4 → S3 be a Lipschitz map that is not homotopic to a constant map. Let A be the set of points
where f is differentiable and rank df = 3. We need to prove that A has positive measure and that its image f(A)
is dense in S3. Once we prove that the set A has positive measure, the fact that the set f(A) is dense in S3 will
follow from the same argument as the one in the last step in the proof of Theorem 1.4. Thus it remains to prove
that the measure of A is positive. Assume, to the contrary, that rank df ≤ 2 almost everywhere.

The idea is to show that f can be deformed to a Lipschitz map with the rank of the derivative less than or
equal to 2, that maps the equator S3 of S4 to the equator S2 of S3 and hemispheres to hemispheres. Since the
map f is not homotopic to the constant map, it easily follows from Lemmata 2.2 and 2.3 that the map between
the equators is not homotopic to a constant map either. Hence its Hopf invariant is not zero (Lemma 3.1).
However, it follows now from Corollary 3.6 that the rank of the derivative of its extension to the upper (or
lower) hemisphere has to be equal 3 on a set of positive measure, which is a contradiction.

The idea of deformation of the map to a map that sends the equator to the equator and hemispheres to
the hemispheres is closely related to the proof of the Freudenthal suspension theorem (i.e., Lemma 2.4). Indeed,
this and Lemma 2.3 imply that f : S4 → S3 is homotopic to the suspension of a map between equators, which
is a part of the statement of Freudenthal’s theorem. However, we cannot use the Freudenthal theorem in the
proof of Theorem 1.3 directly, because the homotopy between f and the suspension map may possibly increase
the rank of the derivative, i.e. the homotopic suspension map may have the rank of the derivative equal 3 on a
set of positive measure and we will not obtain any contradiction.

In the first step of the construction of the deformation we need to find two points y1, y2 ∈ S3 with ‘small’
pre-images f−1(y1), f−1(y2). To do this we use the next lemma.

Lemma 4.1. If f :Mm → Nn is a Lipschitz map between closed Riemannian manifolds of dimensions m and
n respectively, then H m−n(f−1(y)) <∞ for a.e. y ∈ Nn.

Here H m−n stands for the Hausdorff measure. This lemma is a direct consequence of Eilenberg’s
inequality [5, Theorem 13.3.1]. In particular, for almost all y ∈ S3, H 1(f−1(y)) <∞ and we would like to
conclude that for almost all y1, y2 ∈ S3, H 2(f−1(y1)× f−1(y2)) <∞. However, it cannot be directly concluded
from the estimate for the Hausdorff measure of the factors. In fact, the Hausdorff dimension of the Cartesian
product of compact sets A,B can be larger than the sum of Hausdorff dimensions of the sets A and B:
Theorem 5.11 in [7] provides an example of compact sets A,B ⊂ R, each of Hausdorff dimension zero, and
such that H 1(A×B) > 0. Fortunately, a small trick allows us to show that H 2(f−1(y1)× f−1(y2)) <∞ for
almost all y1, y2 ∈ S3 as a direct consequence of Lemma 4.1: Since the map

F : S4 × S4 → S3 × S3, F (x1, x2) = (f(x1), f(x2))

is Lipschitz continuous, it follows from Lemma 4.1 that

H 2(f−1(y1)× f−1(y2)) = H 2(F−1(y1, y2)) <∞

for almost all y1, y2 ∈ S3.
Choose such points y1, y2 ∈ S3, y1 6= y2. The sets f−1(y1) and f−1(y2) are compact and disjoint. We want

to show that there is a diffeomorphism of S4 that moves one of the sets to a small neighborhood of a north
pole and the other one to a small neighborhood of a south pole. To construct such a diffeomorphism it will be
easier to work in R4 rather than with S4, but that can be easily achieved. Let z ∈ S4 \ (f−1(y1) ∪ f−1(y2)) and
consider the stereographic projection from S4 onto R4 with z as a north pole. With a slight abuse of notation
we will denote by f−1(y1) and f−1(y2) the corresponding (compact and disjoint) images in R4.

Consider the map
π : f−1(y1)× f−1(y2)→ RP3 (4.1)

which assigns to any pair of points x1 ∈ f−1(y1) and x2 ∈ f−1(y2) the line passing through x1 and x2. It is
easy to see that π is Lipschitz, because the distance between the sets f−1(y1) and f−1(y2) is positive. Since
H 2(f−1(y1)× f−1(y2)) <∞, the set

π(f−1(y1)× f−1(y2)) ⊂ RP3

is compact and has finite two-dimensional Hausdorff measure. Since the space RP3 is three dimensional, the
mapping (4.1) is not surjective and we can find

v ∈ RP3 \ π(f−1(y1)× f−1(y2)).
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This simply means that the lines parallel to v and passing though the points of f−1(y1) do not intersect f−1(y2).
Denote the union of all lines parallel to v and passing through f−1(y1) by V . Note that V is closed, so there
is an open set U containing V , whose closure is disjoint from the compact set f−1(y2). The direction v defines
a vector field on V which can be extended to a bounded and smooth vector field with support contained in
U . The flow of this vector field defines a one-parameter group of diffeomorphisms of R4 which moves f−1(y1)
arbitrarily far away and does not move f−1(y2). Making a small adjustment so that the vector field vanishes
near the infinity we may transform it back to S4 through the stereographic projection. As a consequence we find
a diffeomorphism of S4 which does not move f−1(y2) but moves f−1(y1) arbitrarily close to the north pole.

Now, we can find a one-parameter group of diffeomorphisms that moves points along meridians towards
the south pole but does not move the image of f−1(y1) that is already near the north pole. This family of
diffeomorphisms moves f−1(y2) to the interior of the closed lower hemisphere S4

− of S4. This simply means that
there is a diffeomorphism Φ : S4 → S4 such that Φ(f−1(y1)) ⊂ intS4

+ and Φ(f−1(y2)) ⊂ intS4
−. Observe that Φ

is homotopic to the identity, because Φ is constructed through two one-parameter groups of diffeomorphisms
connecting Φ to the identity (or simply because any orientation preserving diffeomorphism of S4 is homotopic to
the identity, as a mapping of degree 1). Hence f1 = f ◦ Φ−1 is homotopic to f . Let S = S4

+ ∩ S4
− be the equator

of S4.
Note that y1 6∈ f1(S4

−) because f−1
1 (y1) = Φ(f−1(y1)) ⊂ intS4

+. Similarly y2 6∈ f1(S4
+). Hence, for a small

ε > 0,
B(y1, ε) ∩ f1(S4

−) = B(y2, ε) ∩ f1(S4
+) = ∅.

Let Ψt : S3 → S3 be a continuous family of smooth mappings such that Ψ0 = id and Ψ1 retracts S3 \ (B(y1, ε) ∪
B(y2, ε)) onto an equator S̃ of S3 that separates the sets B(y1, ε) and B(y2, ε). Namely, Ψ1 stretches the balls
B(yi, ε) ∩ S3, for i = 1, 2, in S3 onto the hemispheres S3

± of S3, retracting everything what is between these
ε-balls onto the equator.

Clearly, f1 (and hence f) is homotopic to

f2 = Ψ1 ◦ f1 = Ψ1 ◦ f ◦ Φ−1.

Note that
f2(S) ⊂ S̃, f2(S4

+) ⊂ S3
+, and f2(S4

−) ⊂ S3
−. (4.2)

Indeed,
f1(S4

+) ⊂ S3 \ B(y2, ε), so f2(S4
+) ⊂ Ψ1(S3 \ B(y2, ε)) = S3

+.

Similarly, f2(S4
−) ⊂ S3

− and hence

f2(S) = f2(S4
+ ∩ S4

−) ⊂ S3
+ ∩ S3

− = S̃.

Note that rank df2 = rank d(Ψ1 ◦ f ◦ Φ−1) ≤ 2 a.e. by the chain rule.
Since f2 : S4 → S3 is homotopic to f , it is not homotopic to a constant map. Now Lemma 2.3 and (4.2) yield

that the mapping f2 is homotopic to the suspension Sh of the map h = f2|S : S→ S̃. Since f2 is not homotopic
to a constant map, Sh is not homotopic to a constant map either. This and Lemma 2.2 imply that h : S→ S̃ is
not homotopic to a constant map.

As h is a mapping from a 3-sphere to a 2-sphere that is not homotopic to a constant map, its Hopf invariant
is non-zero (Lemma 3.1). Also, h is Lipschitz and the Lipschitz extension f2 of h maps S4

+ to S3
+, thus it follows

from Corollary 3.6 that df2 has rank 3 on a subset of S4
+ of positive measure, which is a contradiction. This

completes the proof of Theorem 1.3 and hence that of Theorem 1.2 when n = 2, 3. 2

Now it remains to prove Theorem 1.5.

5 Proof of Theorem 1.5

Let λs,r : R→ R, for 0 < s < r < 1, be a smooth, odd, and non-decreasing function such that λs,r(t) = 1 when
|t| > r and λ(t) = t for |t| < s.

The smooth mapping Λ : Rk+1 → Rk+1

(x1, x2, . . . , xk+1)
Λ7−→ (λs,r(x1), . . . , λs,r(xk+1)) (5.1)

maps Rk+1 onto the cube [−1, 1]k+1 in such a way that the interior neighborhood of the boundary ∂[−1, 1]k+1

is mapped onto the boundary, and the complement Rk+1 \ [−1, 1]k+1 is also smoothly mapped onto ∂[−1, 1]k+1.
Note, however, that Λ|∂[−1,1]k+1 6= id , and hence Λ is not a retraction.
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Obviously, x 7→ 1
2Λ(2x) has the same properties, with [−1/2, 1/2]k+1 in

place of [−1, 1]k+1, and similarly we can rescale and shift this mapping
to be used on any other cube in Rk+1.
Since πm(Sk) 6= 0, there is a φ ∈ C∞(Sm, ∂[− 1

2 ,
1
2 ]k+1) that represents a

non-trivial element in πm(∂[− 1
2 ,

1
2 ]k+1) = πm(Sk). Clearly, we can choose

φ to be continuous, but smoothing φ and then composing it with a
projection onto the boundary of the cube as described above gives a
mapping onto ∂[− 1

2 ,
1
2 ]k+1 that is C∞ smooth as a mapping into Rk+1.

We reduce the proof of Theorem 1.5 to the following lemma.

1rs−1

1

−1

Fig. 1: Function λs,r.

Lemma 5.1. There is a mapping F ∈ C1(Bm+1, [− 1
2 ,

1
2 ]k+1) satisfying rank dF ≤ k everywhere such that F

maps the boundary ∂Bm+1 = Sm to ∂[− 1
2 ,

1
2 ]k+1 and F |∂Bm+1 = φ.

Before we prove the lemma, we show how Theorem 1.5 follows from it. Once we have a mapping F as above,
we glue two copies of this mapping along the common boundary ∂Bm+1 = Sm. We obtain a mapping into two
copies of [− 1

2 ,
1
2 ]k+1 glued along the common boundary ∂[− 1

2 ,
1
2 ]k+1 ≈ Sk, so we essentially obtain a mapping

into Sk+1.
To do it in a smooth way and to have Sk+1 as the target, let ξ : [0,∞)→ [0,∞) be a smooth function

satisfying ξ(t) ≤ 1/t for all t > 0, ξ(t) = 1 for t ∈ [0, 1/8] and ξ(t) = 1/t for t ≥ 1/4. Then Ξ` : R` → R`,
Ξ`(x) = ξ(|x|)x, is smooth and maps R` to B` and maps ∂[− 1

2 ,
1
2 ]` onto ∂B`.

Since the composition does not increase the rank of the derivative, the derivative of the function f̃ =
Ξk+1 ◦ F ◦ Ξm+1 : Bm+1 → Bk+1 has rank at most k everywhere and it is constant along radii near ∂Bm+1,
which is guaranteed by Ξm+1. Thus the radial derivative of f̃ vanishes at ∂Bm+1, and f̃ maps ∂Bm+1 = Sm onto
∂Bk+1 = Sk. Let Φ± : Bk+1 → Sk+1

± be diffeomorphisms of Bk+1 onto the closed upper and lower hemispheres
that are smooth up to the boundary and equal to the identity on ∂Bk+1. Then we smoothly glue two copies of
f̃ , defining f : Sm+1 → Sk+1 by the formula

f(x1, . . . , xm+1, xm+2) =

{
Φ+ ◦ f̃(x1, . . . , xm+1) if xm+2 ≥ 0,

Φ− ◦ f̃(x1, . . . , xm+1) if xm+2 ≤ 0.

The mapping f |Sm : Sm → Sk, where Sm ⊂ Sm+1 and Sk ⊂ Sk+1 are equators, is not homotopic to a constant
map, because the mapping φ is not homotopic to a constant map. The mapping f : Sm+1 → Sk+1 is homotopic to
the suspension of f |Sm (Lemma 2.3) and since m < 2k − 1, it is not homotopic to the constant map (Lemma 2.4).
This completes the proof of Theorem 1.5 and it remains to prove Lemma 5.1.

Proof of Lemma 5.1. In what follows, we denote by B` the unit ball in R` centered at the origin. We also
denote by σB a ball concentric with B and with radius σ > 0 times that of B.

We shall repeatedly use the following geometric facts:

Lemma 5.2. Let B1, . . . , Bj ⊂ B` and B̃1, B̃2, . . . , B̃j ⊂ B` be two families of pairwise disjoint, closed balls.

Then there exists a smooth diffeomorphism Ψ : B` → B`, Ψ|∂B` = id , which maps Bi to B̃i for i = 1, 2, . . . , j in
such a way that Ψ|Bi is a translation and scaling.

Consider the cubical (k + 1)-dimensional complex obtained by partitioning the unit cube [− 1
2 ,

1
2 ]k+1 into

nk+1 equal cubes of edge-length 1/n; denote these cubes by Ji, i = 1, 2, . . . , N = nk+1 and by S =
⋃N
i=1 ∂Ji the

k-skeleton of the complex.

Lemma 5.3. There exists a smooth mapping R : Rk+1 → Rk+1 with the following properties:

• R maps a neighborhood of S to S:

– for each cube Ji, if Bi is the (k + 1)-dimensional ball inscribed into Ji, then Ji \ 1
2Bi is mapped onto

∂Ji,
– R projects Rk+1 \ [− 1

2 ,
1
2 ]k+1 onto ∂[− 1

2 ,
1
2 ]k+1,

• R is the same, up to translation, in each of the cubes Ji,
• R is homotopic to identity on ∂Ji for each i, and on ∂[− 1

2 ,
1
2 ]k+1.
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Proof . Observe that the unit ball Bk+1 is inscribed in the cube [−1, 1]k+1. The mapping Λ defined in (5.1)
maps the cube [−1, 1]k+1 onto itself in such a way that the interior neighborhood of the boundary ∂[−1, 1]k+1

is mapped onto the boundary. If we choose s = 1
4
√
k+1

, r = 2s, then everything in [−1, 1]k+1 lying outside the

cube [− 1
2
√
k+1

, 1
2
√
k+1

]k+1, in particular [−1, 1]k+1 \ 1
2B

k+1, is mapped onto ∂[−1, 1]k+1.

The mapping is obviously smooth and homotopic to identity on ∂[−1, 1]k+1.
We can use Λ (rescaled and translated) to project an interior neighborhood of the boundary of each Ji onto

that boundary of Ji. The resulting mapping is of class C∞ on the whole cube [− 1
2 ,

1
2 ]k+1. Even the corners of the

cubes Ji do not cause any problems, because the entire neighborhood of each of the corners is mapped into the
corner and the mapping is C∞ there as it is a constant one. This way R is defined already on [− 1

2 ,
1
2 ]k+1. Finally,

for x outside [− 1
2 ,

1
2 ]k+1 we have well defined nearest point projection π : Rk+1 \ [− 1

2 ,
1
2 ]k+1 → ∂[− 1

2 ,
1
2 ]k+1; we

take R(x) = R(π(x)). Although, π is not smooth, it is easy to see that the mapping R is smooth, because in the
normal directions to faces of any dimension, the mapping R ◦ π is constant in a neighborhood of the point on
the edge where we take the normal direction.

We concentrate now on the construction of F . We begin by choosing N = nk+1 disjoint closed balls Bi, of
radius 2

n , all inside 1
2B

m+1 (see Figure 2). This is possible if we choose n large enough. Indeed, the ball 1
2B

m+1

contains a cube of edge length 1√
m+1

, and in it one can fit at least
[

n
5
√
m+1

]m+1

cubes of edge length 5
n with

pairwise disjoint interiors, where [t] is the integer part of t.

For n > (10
√
m+ 1)m+1, we have[

n

5
√
m+ 1

]m+1

>

(
n

10
√
m+ 1

)m+1

= nm
n

(10
√
m+ 1)m+1

> nk+1.

Finally, in the interior of each of these cubes one can find a closed
ball Bi, of radius 2

n , concentric with the cube. Since the balls do not
touch the boundaries of the cubes, they are pairwise disjoint.

Let Ωo = Bm+1 \
⋃N
i=1 Bi. This will be the domain of the initial step

of our construction, which will be then iterated inside each of the
balls Bi. Note that Ω0 is an (m+ 1)-manifold with N + 1 boundary
components, all of which are m-spheres.

Fig. 2: Disjoint balls Bi
of radius 2

n lie inside 1
2B

m+1.

Using Lemma 5.2, we find a diffeomorphism G1 : Bm+1 → Bm+1 such that

• G1 is identity on ∂Bm+1,
• it maps the balls Bi into N identical closed balls K̂i, arranged along the xm+1 axis, mapping these balls

by a translation and scaling, see Figure 3.

Since n is large, the balls K̂i might have to be smaller than the balls Bi.

For the next step in the construction we will need the following lemma.

Lemma 5.4. Let φ ∈ C∞(Sm, ∂[− 1
2 ,

1
2 ]k+1) be as in Lemma 5.1. Then there is a smooth map

h ∈ C∞(Sm−1,Sk−1), not homotopic to a constant map, such that for any map P : Sk → ∂[− 1
2 ,

1
2 ]k+1 that

is homotopic to the radial projection π : Sk → ∂[− 1
2 ,

1
2 ]k+1, the map P ◦ Sh : Sm → ∂[− 1

2 ,
1
2 ]k+1 is homotopic

to φ.

Remark 5.5. Recall that the operation of smooth suspension Sε has been defined at the end of Section 2 and
it follows from Lemma 5.4 that P ◦ Sεh is homotopic to φ.

Proof of Lemma 5.4. Since π is a homeomorphism, the map φ̃ = π−1 ◦ φ : Sm → Sk is well defined and not
homotopic to a constant map. Next, m ≤ 2k − 2, thus it follows from Lemma 2.4 that φ̃ is homotopic to the
suspension Sh of a map h ∈ C∞(Sm−1,Sk−1). Hence π ◦ Sh is homotopic to φ and thus P ◦ Sh is homotopic
to φ for any map P as in the statement of the lemma. The map h is not homotopic to a constant map by
Lemma 2.2.



10 P. Goldstein, P. Haj lasz and P. Pankka

Bm+1 Bm+1

G1

Fig. 3: The diffeomorphism G1 rearranges the balls Bi, possibly shrinking them, so that their centers lie on the
xm+1 axis. It maps Bi to K̂i by a similarity (scaling+translation) transformation.

We extend h radially to the mapping

Rm 3 x H17−→ |x|h
(
x

|x|

)
∈ Rk,

so each sphere (centered at the origin) of radius r is mapped to the sphere of radius r by a scaled version of the
mapping h. Then we extend H1 to the mapping

Rm+1 3 (x, t)
H27−→

(
|x|h

(
x

|x|

)
, t

)
∈ Rk+1.

The mapping H2 maps the (m+ 1)-balls of radius r centered at the t-axis (i.e. xm+1 axis) to (k + 1)-balls of
radius r centered at the t-axis (i.e. xk+1 axis). Thus it maps Bm+1 onto Bk+1 and each of the balls K̂i to a
corresponding ball Ki in Rk+1.

Moreover, since H1 is a scaled version of h on each of the spheres centered at the origin, it follows that the
restriction of H2 to the boundaries of the balls

H2 : ∂Bm+1 → ∂Bk+1 and H2 : ∂K̂i → ∂Ki for i = 1, . . . , N, (5.2)

is the same mapping Sh : Sm → Sk (homotopic to φ̃), up to a similarity in source and target.
In particular, we have

H2 : Bm+1 \
N⋃
i=1

int K̂i → Bk+1 \
N⋃
i=1

intKi

and we will consider the mapping H2 restricted to that set only.
As explained at the end of Section 2, the mapping H1 is not smooth at the origin and hence H2 is not smooth

along the xm+1-axis. In particular, the restrictions of H2 in (5.2) are not smooth at the poles of the spheres.
However, the mappings (5.2) are homotopic to the smooth suspension Sεh discussed in Section 2. Therefore we
may modify H2 to obtain a mapping that coincides with a scaled version of Sεh on each of the spheres ∂Bm+1

and ∂K̂i and is smooth in a neighborhood of each of the spheres. The resulting mapping is still not smooth on
a compact subset of the xm+1-axis that is in the interior of the set Bm+1 \

⋃N
i=1 K̂i and hence it does not touch

the spheres. A standard mollification argument allows us to smooth it out and finally we obtain a smooth map

H : Bm+1 \
N⋃
i=1

int K̂i → Bk+1 \
N⋃
i=1

intKi

that coincides with a scaled version of Sεh on each of the spheres ∂Bm+1 and ∂K̂i (see Figure 4).
Let the unit cube Q = [− 1

2 ,
1
2 ]k+1 ⊂ Rk+1 be divided into an even grid of N = nk+1 cubes Ji, of edge length

1/n.
Note that Q ⊂ 1

2

√
k + 1Bk+1.

In the next step we again use Lemma 5.2 to find a diffeomorphism G2 that maps Bk+1 to 1
2

√
k + 1Bk+1 in

such a way that
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Bm+1

K̂1

K̂2

K̂N

H

Bk+1

K1

K2

KN

Fig. 4: The smooth mapping H maps the spheres ∂Bm+1 and ∂K̂i onto ∂Bk+1 and ∂Ki by a scaled copy of Sεh.

• G2 maps ∂Bk+1 to ∂( 1
2

√
k + 1Bk+1) by similarity (in fact, scaling),

• G2 maps each of the balls Ki into a ball Li such that the ball 11
10Li is inscribed into the cube Ji, and G2|Ki

is a similarity (translation+scaling).

The diffeomorphism G2 is depicted in Figure 5.

G2

Fig. 5: The diffeomorphism G2 rearranges the balls Ki in Bk+1, mapping ∂Bk+1 by scaling to a ball of radius
1
2

√
k + 1 and balls Ki to balls Li, almost inscribed into a grid obtained by partitioning the unit cube [− 1

2 ,
1
2 ]k+1

into N = nk+1 cubes of edge length 1
n .

Finally, we use the mapping R defined in Lemma 5.3 to project 1
2

√
k + 1Bk+1 \

⋃N
i=1 Li onto the k

dimensional complex S =
⋃
i ∂Ji, see Figure 6.

Let F̂ = R ◦G2 ◦H ◦G1 : Ωo = Bm+1 \
⋃N
i=1 Bi → S.

On the boundary of each ball Bi the mapping F̂ |∂Bi
→ ∂Ji is, up to a similarity in source and image,

identical with some fixed mapping g : Sm → ∂[− 1
2 ,

1
2 ]k+1, that is homotopic to φ by Lemma 5.4 and Remark 5.5,

see Figure 7. Similarly, F̂ |∂Bm+1 : ∂Bm+1 → ∂[− 1
2 ,

1
2 ]k+1 is homotopic to φ (but not necessarily equal, up to

scaling, to g).

Since we want to iterate the construction, by gluing into each of Bi a rescaled copy of the mapping F̂ , we
want to ensure that the maps indeed glue in a C∞ manner (although C1 would be enough). To this end, we
want to have F̂ |∂Bm+1 and F̂ |∂Bi

equal, up to scaling, to the mapping φ (given in the statement of Lemma 5.1).
Moreover, for the maps to glue in a C∞ manner we want the map F̂ , in a neighborhood of the boundary of
Ωo = Bm+1 \

⋃
i Bi, to be constant in the normal directions to the boundary of Ωo.

At the moment, F̂ |∂Bm+1 and F̂ |∂Bi
are only homotopic to φ. Let us thus correct F̂ in three steps in the

following way.
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R

Fig. 6: In the final step we use the mapping R to project the image of Ωo, here in darker shade, onto the
k-complex S.

∂Bi ∂K̂i ∂Ki

Ji

∂Li

∂Ji

G1

scaled

Sεh

H

G2 R

Fig. 7: The fate of ∂Bi throughout the construction.

- First, we modify F̂ to a smooth map F̂1 which coincides with F̂ on 2
3B

m+1 \
⋃N
i=1 Bi, and F̂1|∂Bm+1 equals

φ. This is possible, because F̂1|∂( 2
3Bm+1) and φ are smoothly homotopic (up to the scaling that identifies

∂( 2
3B

m+1) with ∂Bm+1) as mappings into ∂[− 1
2 ,

1
2 ]k+1.

- Next, we want to ensure that the mapping is constant along radii on Bm+1 \ 3
4B

m+1 (which is a smaller

annulus than Bm+1 \ 2
3B

m+1). We can do it by pre-composing F̂1 with the mapping

Bm+1 3 x Φ17−→ λ 2
3 ,

3
4
(|x|) x

|x|
∈ Bm+1,

where the function λs,t is as defined at the beginning of the proof. The mapping F̂2 = F̂1 ◦ Φ1 is constant

along the radii on Bm+1 \ 3
4B

m+1 and F̂2 equals φ on ∂Bm+1.

- Using the same argument as above we can modify F̂2 in a small neighborhood of each of the boundaries
∂Bi so that the resulting mapping Fo equals φ (up to scaling) on each of the spheres ∂Bi, is constant in
normal directions near ∂Bi and maps ∂Bi onto ∂Ji.

The mapping Fo : Ωo → S ⊂ [− 1
2 ,

1
2 ]k+1 is our initial step of the construction.

To inductively fill the map Fo into the holes Bi (up to a Cantor set), we associate to each Bi its center xi
and the similarity map

σi : Bm+1 → Bi, σi(x) =
2

n
x+ xi;

recall that the radius of Bi equals 2
n .

Each mapping σi maps Ωo into the ball Bi, so that if

Ω1 =

N⋃
i=1

σi(Ωo) and D1 = Ωo ∪ Ω1,

then the set D1 is obtained by adding to Ωo scaled copies of Ωo inside each of the holes Bi. The set Ωo has nk+1

holes, each of radius 2
n while D1 has (nk+1)2 holes, each of radius ( 2

n )2.
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F1

Fig. 8: The second iteration F1.

We define now inductively

Ω` =

N⋃
i=1

σi(Ω`−1), D` =
⋃̀
j=0

Ωj

so D` has (nk+1)`+1 holes, each of radius ( 2
n )`+1.

Let D =
⋃∞
`=0D` so C = Bm+1 \D is a Cantor set. The mapping Fo has already been defined and we define

inductively

F` : D` →
[
−1

2
,

1

2

]k+1

for each ` ≥ 1 by
F`|D`−1

= F`−1, F`|σi(Ω`−1) = τi ◦ F`−1 ◦ σ−1
i , i = 1, 2, . . . , N,

where

τi :

[
−1

2
,

1

2

]k+1

→ Ji
isometric
≈

[
− 1

2n
,

1

2n

]k+1

is the translation and scaling transformation.
Now F : D → [− 1

2 ,
1
2 ]k+1 is given by F |D`

= F` for each ` = 0, 1, 2, . . . This map is smooth in D and it
continuously extends to the Cantor set C. Moreover

‖dF`|Ω`
‖∞ =

1

n
‖dF`−1|Ω`−1

‖∞
n

2
= . . . =

1

2`
‖dFo|Ωo

‖∞ → 0.

Thus F is continuously differentiable also on the Cantor set C, with DF |C ≡ 0. This completes the proof (and
the article).
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