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a b s t r a c t

Top-k and skyline techniques have been used to address preference based queries for effective service
selection. However, they do not consider the dependencies between attributes in user preferences. In
this paper, we focus on developing top-k indexing methods based on Conditional Preference Networks.
We first determine whether the correlation among service attributes is clear and definite. After that, we
employ dimensionality reduction to reduce the dimensionality of the service space. We then use top-
k query to further improve the scalability. We conduct extensive experiment and compare with other
competitive indexing mechanism to demonstrate the effectiveness of the proposed approach.
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1. Introduction

With the large number of services being developed and de-
ployed nowadays, Web service recommendation techniques have
gained great popularitywhich can provide personalized services to
users based on their preferences. There are many models used to
describe user preferences. Top-k [1–4] and Skyline [5–9] are the
two representative preference models for quantitative preference
processing. Top-k retrieval assumes a utility function, which can
be used to determine the object scores calculated based on the
value of each attribute. In contrast, skyline does not depend on any
specific utility function. Instead, it uses Pareto-dominance to de-
cide object priority. However, both models are primarily designed
for numerical attributes. They do not consider the relationship
between attributes, either. Conditional Preference Network (CP-
net) is another widely used preference model that provides a good
tradeoff between expressiveness and simplicity [10–13]. Using a
set of attributes we obtained from candidate objects on a CP-net,
we can get users’ preference of each attribute and independencies
thereof. The nature of the CP-net model has been extensively stud-
ied in academia [11,14,15], but fewmethods have been developed
for data/service retrieval based on CP-net. One exception is in [16],
which employs CP-net for Top-k retrieval. However, it lacks an
efficient indexing method for multidimensional data, leading to
poor performance.

The difference between traditional indexing methods and di-
mensionality reduction methods is that the former assumes each
dimension is equally important. But for the data described by CP-
net, this assumption may not be true. When designing an index-
ing method, the relevance of attributes needs to be considered.
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Based on this, the dimensionality reduction indexing method can
be used to build the index to satisfy the user preference model.
In particular, we will develop an efficient indexing mechanism
that combines dimensionality with Top-k query. We use CP-net
to model user’s preference. We then evaluate whether the corre-
lation between each dimension of the data registration center is
determined by the multidimensional user preference model. If so,
we exploit Hilbert Curve [17] to reduce the dimensionality to one.
Otherwise, we apply Principal Component Analysis (PCA) [18] for
dimensionality reduction. Last, Top-k query is applied to reduced
space for efficient service retrieval.

Our main contributions presented in this paper are the follow-
ing: (1) We proposed a method composed of Top-k retrieval algo-
rithm and indexing mechanism based on CP-net, which helps us
to select a more suitable and personalized service for the user. (2)
We also present several data dimensionality reduction approaches
to improve the efficiency of data retrieval while meeting high-
dimensional data CP-net. (3) We conduct a lot of experiments to
compare our method with others, and the results show that the
method we put forward is effective and feasible.

The rest of this paper is organized as follows. In Section 2, we
discuss related work. We review the CP-net model and its primary
properties in Section 3. In Section 4, we introduce theHilbert Curve
and Principal value analysis (PCA), specifying their dimensionality
reduction process. Section 5 presents the Top-k indexing scheme
based on CP-net. In Section 6, we state our experimental setup and
comparative analysis of the empirical result. Finally, conclusion
and future work are given in Section 7.

2. Related work

Incorporation of user preference in query processing has re-
ceived increasing interest in recent years. The primary problem is

https://doi.org/10.1016/j.knosys.2018.10.040
0950-7051/© 2018 Elsevier B.V. All rights reserved.

https://doi.org/10.1016/j.knosys.2018.10.040
http://www.elsevier.com/locate/knosys
http://www.elsevier.com/locate/knosys
http://crossmark.crossref.org/dialog/?doi=10.1016/j.knosys.2018.10.040&domain=pdf
mailto:hbw@seu.edu.cn
mailto:qi.yu@rit.edu
https://doi.org/10.1016/j.knosys.2018.10.040


H. Wang, Y. Tao, Q. Yu et al. / Knowledge-Based Systems 164 (2019) 292–308 293

how to model user preferences and how to integrate them into
the database query language. In [19], Wenzel et al. proposed an
integrated database-driven recommendation approach using on-
line social networks to find people with common interests. In [20],
Sarwat et al. conducted extensive experiments that study the per-
formance of personalized recommendation applications based on
an actual implementation using real Movie recommendation and
location-aware recommendation scenarios. The model proposed
in [21] provides a set of constructors to express basic and atomic
user preferences. More complex preferences can be expressed by
compositions of the constructors. In [22] and [23], Yan et al. and
Hsueh et al. used the skyline operator to pre-process services and
find a set of candidate services which can satisfy users’ require-
ments. In [24], Benouaret et al. proposed an approach to select Top-
k cloud services combining the trust, determined by the reputation
of the provider, and the QoS. In [25] Purohit and Kumar improved
the PROMETHEE method and applied it to the most eligible web
services. A Maximizing Deviation based hybrid weight evaluation
mechanism is adopted to select the Top-k web services matching
closely with the QoS requirements of the users. In [26], Wang et al.
present a newuser interactionmodel inmulti-objective query pro-
cessing which allows the users to preset Weight Profiles and their
logical descriptions. Weight Profiles contain objective preferences
for the users before the query is executed. The work in [27,28]
considers how to enable preference in a relational database. It
proposes Preference SQL for expressing user preferences and de-
fines rules for translating Preference SQL into traditional queries
of relational databases. A contextual preference model is proposed
in [29] that is closest to the idea of CP-net. In [30], the author
adopts the constrained CP-net to model a set of constraints and
preferences for expressing users’ preferences, which return a set
of outcomes in the form of a suggestion list. This list is then sorted
according to user preferences. However, these models do not con-
sider the dominance relationship, but use quantitative measures
to rank query results. In [31,32], Boubekeur et al. proposed to use
CP-net to make their flexible information retrieval method more
easy and clear to represent qualitative queries. The author mainly
focuses on document indexing and query evaluation based on the
CP-net theoretical foundations. The semantics of CP-net have been
applied to the relational database in [33,34]. However, all of them
do not address the problem of Top-k retrieval. An approach in [35]
presented Top-k retrieval using CP-net, which can efficiently re-
trieve the most preferred data items based on a user’s CP-net. The
approach comprises a Top-k retrieval algorithm and an indexing
mechanism. Although the proposed method proves to be effective
in some degree, it ignores the problem of high dimensional data,
and does not use dimensionality reduction methods.

For a high-dimensional data CP-net, dimensionality reduction
can help reduce the data retrieval challenges. There are many
dimensionality reduction approaches, which are mainly divided
into two categories. One is linear dimensionality reduction with
PCA [36] and Wavelet Transform [37] as the representatives. Har-
rou [38] propose a strong PCA dimension reductionmethod, which
learns to ignore a large part of detailed spatial structure of in-
put and thereby estimates a linear pooling matrix. The other is
nonlinear. PCA transforms multiple variables into fewer dimen-
sions, while wavelet transform is mainly used to extract local
features. Hilbert curve [17] is a mapping method between multi-
dimensional space and 1-dimensional space that is mostly used in
the field of image processing andmulti-dimensional data indexing.
For example, in [39], the author proposes to use the index-based
Hilbert-Temporal Join algorithm thatmapsmultidimensional tem-
poral data into a Hilbert curve space. As for the Hilbert curve code
generation, the most important step of Hilbert curve dimension
reduction, there are two methods: a table-driven method with
high computational complexity and a calculation method. Table-
driven approach generates a curve by scanning the code scan list.

Fish [40] gives an iterative version for one-dimensional to two-
dimensional mapping. Cole [41] provides a reverse version for
two-dimensional to one-dimensional mapping. Jin and Mellor-
Crummey [42] propose a framework to efficiently generate space-
filling curve. [43] puts forward a new algorithm for N-dimensional
Hilbert scanning. The method of calculation calculates the one-to-
one mapping. Butz [44] calculates the corresponding coordinates
of an arbitrary point on the curve. [45] suggests some practical
improvements to the algorithm proposed by Butz. The Faloutsos
Roseman gave a non-iterative method to achieve this mapping by
analyzing the relation between Z-order and Hilbert. Both of these
two methods are widely used in Artificial intelligence, such as
in [46], the author uses multiscale PCA-learned filters for dynamic
texture recognition, and in [47], the author use Hilbert transform
to evaluate the error of phase estimation and to guide optimal filter
design.

Although there are many dimensionality reduction methods,
few of them are used to retrieve data in conjunction with CP-net,
which will be used in our work to handle the dependencies among
attributes. We propose to apply the Hilbert Curve and Principal
Component Analysis for dimensionality reduction to process the
CP-net data for efficient retrieval. We then use depth-first Top-k
retrieval to search the satisfied services.

3. CP-net model

CP-net [11] is a graphical model for representing and reasoning
with conditional preference in a compact, intuitive and structural
manner including directed dependence graph (DDG) and condi-
tional preference tables (CPTs) [10]. Here, we describe the CP-net
model and its main properties.

3.1. Model definition

The model of CP-net is defined as follows.

Definition 1 (CP-net). Let V = {X1, ..., Xn} be a set of attributes. A
CP-net over V is a directed graphG over X1, ..., Xn, whose nodes are
annotatedwith conditional preference tables, denoted by CPT (Xi) for
each Xi ∈ V . Each conditional preference table CPT (Xi) associates a
total order of Xi’s values with each instantiation of Xi’s parents.

Fig. 1 provides an illustrative example on CP-net. Suppose that
Anny plans to travel to Sydney. She has many things to decide,
such as when to leave and which hotel to stay. We can see that
the CPT provides important information. For example, spending a
weekend in Sydney ismore attractive than aweekday for her. She is
willing to stay in the suburb if it is aworking day but she prefers the
CBD (Central Business District) if it is a weekend. In addition, what
kind of hotel she will stay depends on where she lives. In the CBD,
she prefers economic hotel; in the suburb, she prefers a luxurious
hotel. From the figure, we can understand that an attribute may
determine the value of another attribute and a CP-net can express
this kind of conditional preference. Based on a CP-net, we could do
the dominance testing, which is used to compare two attributes to
select the dominant one.

Definition 2 (Dominance). Let N be a CP-net over a set of attributes
V . Given two instances e1 and e2, if for every attribute Xi ∈ V , (1) e1
and e2 assign the same values to Xi’s parents, and (2) based on the
corresponding entry in CPT (Xi), e1 assigns an equal or better value
to Xi than that assigned e2, then we say that e1 dominates e2. We
denote it by N |= e1 ≻ e2. Moreover, the dominance relationship
is transitive, i.e. N |= e1 ≻ e2 ∧ N |= e2 ≻ e3 implies N |= e1 ≻ e3.
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Fig. 1. CP-net example.

According to above definition, we can conclude that instanti-
ation {(time = weekend) ∧ (location = CBD) ∧ (type = budget)}
dominates {(time = weekend) ∧ (location = suburb) ∧ (type =

luxury)} based on Anny’s CP-net in Fig. 1(a). By specifying the
dominance relationships among all the possible instances, we can
get the detailed preference graph of Anny, which is shown in
Fig. 1(b). It should be noted that we consider only acyclic CP-net
in this paper as a cyclic CP-net can beget conflicts in practice.

3.2. The properties of CP-net

We present some of the important properties of CP-net [11,14,
15] in this section.

Property 1 (Dominance Testing is Complex). Given a CP-net N and
two instances e1 and e2, the dominance testing aims to determine if
one of the instances dominate the other. The testing must reach one of
the following three conclusions – (1) N ⊨ e1 ≻ e2 or (2) N ⊨ e2 ≻ e1
or (3) N ⊭ e1 ≻ e2 ∧ N ⊭ e2 ≻ e1 (also known as indifference).

Property 2 (Outcome Optimization is Easy). Given a acyclic CP-net
N, outcome optimization aims to find the best possible instance that
cannot be dominated by any other possible instance.

Property 3 (Ordering Testing is Easy). Given a acyclic CP-net N and
two instances e1 and e2, the ordering testing aims to reach one of the

following conclusions – (1) N ⊭ e1 ≻ e2 or (2) N ⊭ e2 ≻ e1 or (3)
both.

For Property 1, the solution of dominance testing depends on
the size of the CP-net. Boutilier et al. [11] have proven that dom-
inance testing for a binary-valued acyclic CP-net is NP-complete.
Although some special CP-net, such as tree structure, can find
effective algorithms to solve the problem, in general, such domi-
nance tests are expensive. Therefore, we conclude that dominance
testing for CP-net is intractable in general. For Property 2, it implies
that outcome optimization can be solved in linear time. A simple
algorithm for optimizing the result is forward scanning. This al-
gorithm scans from the top to the bottom along the CP-net, that
is, from the parent to the child, and gives the best value to the
child node according to the value of the parent node. As a result,
although optimization can be easily solved, it is not so useful in
the real world, which is attributed to the fact that the best cases
usually do not exist. In order to find a real optimal instance, one
way is to check a possible instance one after another, according to
the detailed preference map (Fig. 1(b)), until a certain instance is
found. For Property 3, it shows that ordering testing which aims to
find Top-k instances that are not dominated by any other instance,
can also be solved in linear time. Therefore, ordering testing is
more feasible than dominance testing. In a Top-k retrieval ordering
relation is very important. Although it cannot decide whether an
instance dominates another instance, it can at least illustrate that
an instance is not worse than another instance. And if we use the
ordering relation to sort a set of instances, a higher rank instance
will certainly be better than an instance with a lower rank in a dif-
ferent degree. As is shown later, ordering relationship is sufficient
for Top-k retrieval. Algorithm 1 demonstrates the ordering testing.
The complexity of the algorithm isO(n),wheren represents the size
of the CP-net, i.e., the number of nodes plus the number of edges.

Algorithm 1: Ordering Testing
Input: Let N be a CP-net over attributes V and e1 and e2 be two

instances.
begin

foreach Xi ∈ V do
if e1 and e2 assign the same values to the parents of Xi then

if given e1’s and e2’s values on the parents of Xi, e2 assigns
a more preferred value to Xi than e1 does then

set N ⊭ e1 ≻ e2 to true;
else

set N ⊭ e2 ≻ e1 to true;

4. Data dimensionality reduction

For a high-dimensional preference data described by the CP-
net, we utilize dimensionality reduction methods to decrease the
query space to effectively accelerate the retrieval. Dimensionality
reduction methods include linear and nonlinear dimension reduc-
tion techniques. The advantages of linear dimensionality reduction
technique are that it is simple and intuitive, and has no local
extremum or relative effectiveness, which is easy to implement.
In general, nonlinear dimensionality reduction methods are based
on linear dimensionality reduction methods to expand nonlinear
characteristics or use neural network to optimize dimensionality
reduction [48].Many techniques for dimensionality reductionhave
been proposed in the literature. In [49], PCA is by far one of the
most popular algorithms for dimensionality reduction. The PCA,
especially, is a well-known technique, whose idea is simple and
easy to understand. Additionally , the algorithm of PCA is brief and
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efficient. However, non-linear dimensionality reduction methods
suffer from huge computational costs [50]. In this paper, we use
the dimensionality reduction method to reduce the dimension of
the data and then establish the index, in order to find the index
which can improve the efficiency of Top-k retrieval. Although the
data in CP-net model is nonlinear, we do not need to consider the
situation that the nonlinear characteristics of data sets may be lost
after reducing the dimensions. Compared with the complex non-
linear dimensionality reduction method, the linear dimensionality
reduction is sufficient to reduce the data complexity and identify
themost important features. Therefore, in this paper, we use linear
dimensionality reduction method.

By analyzing the relationship between data attributes, we use
different dimensionality reduction for different data sets modeled
using a CP-net. The process is detailed as follows. By using the Top-
k search engine in user preference model to retrieve services in
the registration center in a database, the retrieval result contains at
least two service information. If the service information in search
result is not the same, it means different user preferences on each
attribute is not the same. Hence, the correlation of dimension
is determined. If the service information in the retrieval result
contains the same part, it means the correlation between the data
dimension is uncertain.

Based on whether the correlation is certain, we can use the PCA
and Hilbert Curve to reduce the data dimensionality. When the
correlation of attributes in a CP-net is determined, there is no need
to further dealwith the dependencies betweendata attributes. And
in this case, Hilbert Curve can be used to process the data sets,
which does not affect the information of the original data set, but
only maps the high-dimensional data to the one-dimensional data
set space. In this paper, wemainly uses Hilbert curve to reduce the
dimensionality, which is used to map a large number of data into
one dimensional data space. And then we establish corresponding
indexes, which contributes to reducing the number of single data
attribute comparison times and improving the retrieval efficiency.
When the correlation of CP-net data attributes is uncertain, the
data set cannot be processed directly. In this case, PCA can be
used to determine the correlation between data attributes and
further dealwith data optimization. PCA is able to analyze themain
affecting factors frommultiple things, thus revealing the essence of
these things. In fact, if themain attributes of the things are reflected
in several main variables, we just need to separate these variables
and analyze them in detail. In this paper, PCA will used to extract
the main characteristics of a data set to satisfy the user’s prefer-
ence and achieve the requirements of dimensionality reduction.
In summary, we apply Hilbert Curve to deal with dimensionality
reduction in the situation that the correlation between dimensions
is clear and definite and use PCA otherwise.

4.1. Hilbert curve

Hilbert Curve [17] describes a one-to-one mapping between N-
dimensional space and one-dimensional (1-D) space, which has
an important position in the field of image processing and multi-
dimensional data indexing. In this paper, we can obtain a unique
result byHilbert dimensionality reduction bymaintaining the orig-
inal partial order, so as to achieve maximum and lossless di-
mensionality reduction. Fig. 2 is the Hilbert Curve dimensionality
reduction process flowchart based on a table-driven method.

Hilbert Curve is usually used to simulate the growth of organ-
isms. Let RN denote a N-dimensions space. VN , . . . , V2, V1 is used to
represent the coordinate value of each dimension of RN . In order to
facilitate computation, every coordinate is encoded in binary. We
define if a Hilbert Curve can fill a 2m

× 2m
× · · · × 2m

× (2mN )
N-dimensions hypercube space. This curve can be regarded as the
mth generation of N-dimensional Hilbert Curve anddenoted byHN

m .

The coordinate ofRN transferred byHilbert Curve order is called the
Hilbert code, which is denoted by H-order.

In the description of the Hilbert Curve, we can interpret this
2m

× 2m
× · · · × 2m

× (2mN ) hypercube space in two different
ways. The first one is that it is a N-dimensional unit cube, which
is divided into 2m

× 2m
× · · · × 2m

× (2mN ); the second one is a
N-dimensional hypercube space with 2m length for each side. For
the latter case, in the codemapping, a N-dimensional Hilbert Curve
is a N-dimensional Hilbert unit when m = 1 and is expressed as
CN . A N-dimensional Hilbert gene is a series of information list for
transformation of coordinates. It controls how HN

m generates HN
m+1,

which is denoted by GN .
In short, multi-dimensional coordinates are translated into bi-

nary code representingmulti-dimensional data. Then based on the
new binary value, we query the CN table to get the H-order. We
then place the binary bit converted from H-order the highest po-
sition on the result. Finally, we obtain the conversion instructions
based on the H-order on the GN table.

4.2. Principal component analysis

PCA [18] is a linear dimensionality reductionmethod that trans-
forms multiple variables into a few synthetical variables based on
the internal structure of the covariancematrix of original variables.
For its simplicity and optimal linear reconstruction error, we adopt
it to process CP-Net data dimensionality reduction. Algorithm 2
shows the PCA dimensionality reduction process.

Algorithm 2: Principle Component Analysis
Parameter Specification: X is a n1 ∗ n2 matrix while n1 is the
sample size and n2 is the number of variables. N indicates that it
is projected into the space of N coordinates. P , as the return value,
is a transformation matrix. D represents all the eigenvalues and R
is the result of projection.
Y = XT ;
foreach row of Y do

foreach value of this row do
Compute the mean value of these values in the row;

All the values in each row of Y minus the mean value of this
row;

C = Y ∗ YT ;
Compute the eigenvalues and eigenvectors of C;
Sort the eigenvalues and eigenvectors of C in descending order;
Combine the ordered eigenvectors into a transformation matrix;
Calculate the sum of the first K eigenvalues and divide it by the
sum of all the eigenvalues, so as to get the contribution rate of the
first K dimensions;
R = X ∗ P;

ForN-dimensional data, we first calculate themean value of the
original data and subtract it. Then we calculate the sample covari-
ance matrix. Afterwards, we calculate the eigenvalue and eigen-
vectors to obtain independent variables. We sort the eigenvectors
according to their corresponding eigenvalues. The first eigenvector
with the largest eigenvalue is called the first principal component
and so on. In this way, by choosing the set of eigenvectors with the
largest eigenvalues, we construct a new variable space that keeps
the most information (i.e., variance) of the original data space.

5. Top-k indexing based on CP-Net

Top-k retrieval is to identify the k most preferred objects. This
section presents several indexingmethods based on the depth-first
algorithm.
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Fig. 2. Hilbert flow chart.

Definition 3 (Dependency Order of Attribute). Given a CP-Net N
and let V = {X1, ..., Xn} be a set of attributes, If in the CP-net N ,
Xi is pointed by Xj, it means preference for Xi depends on Xj. We
regard Xj as the parent of Xi, denoting Xj as P(Xi), namely there is a
dependency order from Xj to Xi.

Definition 4 (Top-k for CP-Net). Given a CP-Net N and a set of
instances E, the top-k instances of E on N is a set of k instances
E ′

= {e1, . . . , ek} ⊂ E, such that no instance in E − E ′ dominates
any instance in E ′.

From the conclusion of Property 1, we know that it is com-
putationally expensive to retrieve Top-k objects with dominance
testing. Fortunately, ordering dominance (Property 2) is enough to
get a valid Top-k set. Here are two lemmas [16].

Lemma 1. Given a CP-Net N and a set of instances E, we sort E based
on the outcomes of the ordering testing, i.e., if N ⊭ e2 ≻ e1, then e1 is
ranked before e2. Then, the first k instances of the sorted list is a top-k
set of E on N.

Based on the Lemma 1, we propose to use the Depth First
Top-k Retrieval to improve the efficiency of the selecting without
scanning the whole data. This method only retrieves the Top-k
instance. The pseudo-code of depth-first Top-k retrieval for CP-
Net is given in Algorithm 4. The process of the algorithm is as
follows: firstly, it sorts the attributes based on the dependency
order in the CP-net. Secondly, based on the sorted order of result,
this method chooses values from the k-optimal of the attributes.
For each attribute Xi, it retrieves the list of its instantiations vi

m ≻

vi
m−1 ≻ ... ≻ vi

1 from the CPT, and evaluates the instantiations
one by one according to the preference order. If one instantiation
can satisfy the data set, then this algorithm extends this instan-
tiation by traversing forward to the next attribute in the sorted

attribute list. Lastly, when all the instantiations of an attribute are
evaluated, the algorithm traverses back to the previous attribute to
continue its evaluation.When all the attributes are evaluated and a
complete instantiation is obtained, then the algorithm outputs the
corresponding data instance as amember of the Top-k results. This
depth-first traversal continues until k instances are identified.

Algorithm 3: Satisfiability test
Input: let N be a CP-net over attributes V ,

I = {X1 = v1, ..., Xi = vi
} an item and

E = {v1
m1

, v2
m2

, ..., vn
mn

} be a set of instances.
begin

sort V based on the top-down (ancestor-descendant) order of
N , let the sorted list be X1, X2, ...Xn;
let CPT (X1) = {v1

m ≻ v1
m−1 ≻ ... ≻ v1

1};
while j < i do

if the value of vj is the same as v
j
mj existing in E

then j + +;
else
return I is not satisfiable;
break;
return I is satisfiable;

Algorithm 3 shows the satisfiability test that will be used in
Algorithm 4. The algorithm takes the item I that needs to be tested
as the input. The algorithm proceeds by sorting the attribute nodes
in advance. After that, it compares the first attribute value of the
item with that in database (E). If a match is found, it extends
the item to compare with its second attribute value. Otherwise, it
changes to compare with the second value of the first attribute. If
the values of an attribute cannot be matched by E, the item is not
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Table 1
Instances in data set.
Attribute Time Location Type

Data
Weekend Suburb Luxury
Weekday CBD Budget
Weekday Suburb Luxury

Algorithm 4: Depth First Top-k Retrieval for CP-Net
Input: let N be a CP-net over attributes V , and E be a set of

instances.
begin

sort V based on the top-down (ancestor-descendant) order of
N , let the sorted list be X1, X2, ...Xn;
let CPT (X1) = {v1

m ≻ v1
m−1 ≻ ... ≻ v1

1};
for j = 1...m do

push {X1 = v1
j } into the stack ST ;

while ST is not empty do
pop out an item from ST , let it be
I = {X1 = v1, ..., Xi = vi

};
check if I can be satisfied by E;
if I is satisfiable then

if i == n then
/* i == nmeans that I is a complete instantiation. */
output the instances in E that satisfy I;
if the number of the total output instances reaches k
then

exit;
else

check the entry in CPT (Xi+1) that corresponds to
I = {X1 = v1, ..., Xi = vi

};
let the entry be vi+1

m ≻ vi+1
m−1 ≻ ... ≻ vi+1

1 ;
for j=1...m do

push {X1 = v1, ..., Xi = vi, Xi+1 = vi+1
j } into ST ;

satisfiable by E. In this way, the algorithm determines whether the
item can be satisfied by E.

To better understand the satisfiability test algorithm, we use
an example to further illustrate how it works. Suppose that the
corresponding data set contains only 3 instances, as shown in
Table 1. According to the CP-net in Fig. 1a, the algorithm first sorts
the attribute nodes into time, location, and type. If the input item
is given by I = {time = weekend, location = CBD, type = luxury},
we can clearly find that the first instance of the data set can bemet
with I . So we can conclude that item I can be satisfied by the data
set.

Algorithm 4 gives the details of the depth first top-k retrieval
for CP-Net, which consists of a series of satisfiability tests while
avoiding to assess the instances that cannot be satisfied. The al-
gorithm starts with those top attributes without parent nodes in
the CP-net. Every time, the algorithm only considers instances
with a subset of attributes. If there is an actual instance in the
database that has the same value on the attribute, then the instance
can be satisfied by the database. Next, the algorithm expands the
instance according to the topological order and repeats these steps.
If the database cannot meet the instance, other optimal values of
the instances will be evaluated. To ensure that the whole process
follows the depth priority, a stack ST is used to control the order of
partial composition to be evaluated. When a complete instance of
satisfaction is located, it is returned as one of the Top− k results in
the database.

Suppose that the corresponding data set contains only 3 in-
stances, as shown in Table 1. According to the CP-net in Fig. 1a,

Algorithm4 firstly sorts the attribute nodes into time, location, and
type. The first instance is {time = weekend}, which can be met
by the first instance of the data set. Then, we extend the instance
to be {time = weekend}{location = CBD}. However, the extended
instance cannot be found in the data set. Therefore, the value of the
location is changed to the second value in its preference sequence,
that is, {time = weekend}{location = suburb}. Continuing like this,
we can get the complete instance {time = weekend}{location =

CBD}{type = luxury} step by step, which can be satisfied in data
set. Finally, the algorithm returns this instance as Top-1 result. In
this way, we can finally find the Top-k instances satisfying E.

In this algorithm, we often need to test whether an instance of
a set of attributes can be satisfied in the data set. If we take the
satisfiability test of each part combination as a unit of calculation,
then the worst case of computational complexity for Algorithm
4 is O(D × C), and the best case is O(D), where D represents the
number of attributes (dimensionality) and C represents the values
(cardinality) of each attribute. If we find a complete instance of
satisfaction, which meets every attribute’s last value in the data
set, the maximum possible computational cost to retrieve a single
result is O(D× C). The best case corresponds to finding a complete
instance that is composed of the first value of every attribute, lead-
ing to a minimum possible computational cost as O(D). The above
analysis does not consider the retrieval time from the database.
Since the depth first searching of the outcome space constructs
a searching tree, if all the nodes in the searching tree are tested,
in the worst case, the time complexity of Algorithm 4 is O(CD).
In addition, the size of E is a constant, which is determined by
the database. Therefore, it does not affect the complexity of the
algorithm.

Lemma 2. Let N be a CP-Net over the attributes V . Let V ′ be a subset
of V , i.e., V ′

⊂ V , such that there is no a ∈ V ′ whose parents belong
to V − V ′. Let N ′ be a subgraph of N which contains all the attributes
in V ′ but not a single attribute in V − V ′. Then,

(1) N ′ is a valid CP-Net on V ′;
(2) Let e1 and e2 be two instantiations on V , and e′

1 and e′

2 be their
mappings on V ′ respectively. If e′

1 ̸= e′

2 and N ′ ⊭ e′

1 ≻ e′

2, then
N ⊭ e1 ≻ e2.

The Lemma 2 can be proved as follows. For one thing, since all
parents of node in V ′ are in V ′, then all the CPT of N ′ are complete.
So N ′ is a valid CP-net of V ′. For another thing, due to e′

1 ̸= e′

2
and N ′ ⊭ e′

1 ≻ e′

2, there must exist an attribute X ∈ V ′ that
makes e1 and e2 give an equal value to the parent of X and e1 and e2
give a better value than X . And according to the Ordering Testing
(Algorithm 1), we can deduce N ⊭ e1 ≻ e2.

In addition, Lemma 2 shows that an instance e1 does not dom-
inate(or equal) another instance e2 on a subset of attributes, then
e1 cannot dominate e2 on any superset of attributes. So we can use
this to get Top-k instances and use depth first search for instances’
space.

The effectiveness and the robustness of Algorithm 4 reflected
in the following three aspects. Firstly, simulated depth first search
is used in the whole process of data retrieval. That is to say, this
algorithm can extend the instances which can be satisfied by the
database in the top part of the composition. Taking advantage
of simulated depth first search, we can quickly find complete
instances satisfying the conditions. Secondly, in order to reduce
unnecessary instance evaluation, if the partial composition cannot
be satisfied by the database, the corresponding extension will not
be considered. Finally, as long as an element that belongs to the
Top-k subset is identified, it will be output immediately, which
greatly reduces the initial response time. However, the Algorithm
has some limitations. That is, this method cannot deal with looped
CP-nets, because a looped CP-nets will cause a conflict and cannot
be used in practice. To guarantee that the generated CP-net is
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acyclic, we employ an algorithm to generate provably acyclic CP-
nets uniformly at random. This algorithm is also computationally
efficient and allowed for multi-valued domains [51].

5.1. Indexing mechanism

We mentioned above the top-k depth-first search algorithm,
whose efficiency depends on the level of efficiency of satisfia-
bility test. Given an instance of a set of attributes, we need to
detect on the database whether exists instances containing the
same value on those attribute, which is also a key problem to be
solved in the online transaction processing system (OLTP). The two
prominent features of OLTP queries are randomness and multi-
dimensional, which require equal treatment of each dimension.
Therefore, we should allow the users to query multidimensional
data in accordance with the combination of any one dimension
or several dimensions. We consider following classical indexing
methods below.

5.1.1. B+-Tree
B+-Tree [52] is a commonly used tree-structure indexingmech-

anism in database systems and file systems. It is a variant of B-
tree in which all records are stored in the leaves and all leaves
are linked sequentially. Non-leaf node is equivalent to a leaf node
index and leaf node is equivalent to the data layer for the stored
data. B+-tree supports both random search starting from the root
node and sequential search. During the search, if a given value is
equal to a non-leaf node, we do not terminate, but continue down
until reaching a leaf node. Therefore, in the B+-tree, regardless
of the search result, each search is taking a path from the root
to a leaf node. Internal nodes of the B+-tree do not have the
pointer pointing to the keywords for specific information. Thus
its internal node relative to the B tree is smaller. If all the same
internal node keywords stored in the same disk block, then the
disk block can accommodate more number of keywords. There are
more keywords by disposable reading into memory, so relatively
IO read and write times will be reduced. Furthermore, due to the
non-leaf point is not the node pointing to the file, but the index of
leaf node keyword. Thus the search path of each keyword must be
from the root node to a leaf node. The same keyword query path
length will result in same data query efficiency.

The lookup time of each record in B+- tree is basically the same,
which needs to go from the root node to the leaf node, and the
keyword should be compared again in the leaf node. Because the
non-leaf nodes of the B+- tree do not store the actual data, so that
the number of elements which each node hold becomes more, but
the height of the tree becomes smaller. The advantage of this is to
reduce the number of disk access. The time of one disk access of the
B+- tree is equivalent to hundreds of times ofmemory comparison,
and the leaf nodes of the B+- tree are connected together by
pointers, which contributes to order traversal. For a m-order B+-
tree with h levels of index, the first layer has a node, at least two
branches, and the second layer has at least 2 nodes. When the
number of layers(i) is more than 3, each layer has at least 2 · ⌈

m
2 ⌉

i−2

nodes. If there are N nodes in them-order tree, we can deduce that
N must satisfy N ⩾ 2 · ⌈

m
2 ⌉

h−1
− 1. So if the retrieval is successful,

the height is h = 1 + log⌈m
2 ⌉ ·

(N+1)
2 . h is also the number of disk

access. Moreover, the space required to store the tree B+- is O(n).

5.1.2. B+-Tree on a composite key
A B+-Tree on a composite key [53] indexes the key values

as if the composite key was a single key, which is similar to
B+-Tree. We can see from this structure diagram about B+-Tree
above. In Fig. 3, (Bournemouth, 1000) is less than or equal to
(Bournemouth, 1000) and so it appears in the first leaf node.
However, (Bournemouth, 7500) is greater than (Bournemouth,

Fig. 3. B+-tree on composite key.

1000) and so it appears in the second leaf node. The order of
each attribute in the composite key is important, because we need
to successively compare each attribute’s value to determine the
size of keys. For example, although the second value of (Armagh,
1500) is greater than the second value of (Bournemouth, 1000),
the order of the attributes means that (Armagh, 1500) is less
than (Bournemouth, 1000). Therefore, the above B+-Tree may be
used to search for (branchname)or(branchname, balance) but not
(balance). For example, balance= 2000 appears in two paths of the
B+-Tree.

For a B+-Tree on a composite key(Bc) ofm-order with n domain
values, the number of levels (l) must satisfy l ⩽ log⌈

m
2 ⌉

N+1
2 + 1,

and the number of nodes (p) should be p =
N−1

⌈
m
2 ⌉−l + 1. Considering

the cost of adding a new relationwhich contains n1 attribute values
defined on the domainD of the Bc tree and let the existing Bc have n
domain values. The total number of attribute values in the resulting
composite tree will be nc = | n ∪ n1 |, and the number of new
attribute values to be insertedwill be nc − n1. The average number
of times a node will be split per insertion is 1

⌈
m
2 ⌉−l . Let us consider

two relations R with n1 and n2 separate values for the attribute on
which the equijoin is to be performed. Then a composite tree will
have at most nc = | n1 ∪ n2 | values and pc = 1 +

n−1
⌈
m
2 ⌉−l . The total

storage space for the internal nodes of the composite tree will be
larger than any one of the separate B+- trees. However, due to the
absence of duplicates, the space for the internal nodes of the Bc
tree will be less than the sum of the space required for the internal
nodes of the separate B+- trees. The storage requirements for a Bc
tree is between 1 +

nmin−1
⌈
m
2 ⌉−l and 1 +

nmax−1
⌈
m
2 ⌉−l where nmax = n1 + n2

and nmin = max (n1, n2).

5.1.3. Bitmap
Bitmap [54] is a widely used indexing mechanism for retrieve

data setswhichmeet the attributes of the instance. Bitmap for each
possible value of each attribute is appended to an array of bits,
where each bit in the array associates an instance in the database.
The right part of Fig. 4 shows a conventional bitmap. For an object,
if it is given attribute value, the corresponding bit of its bitmap
will set to 1, or the bit will be set to 0. To use the conventional
bitmap to conduct the satisfiability test, we need to get columns
that correspond to the instances, and then do and bit operations,
which requires a large proportion of the bitmaps.

The size of a Bitmap is c × n × m × N bits. c represents the
number of bits for encoding an attribute’s value, n is the number of
attributes,m is the average number of values for each attribute, and
N is the number of instances in the database. The size of Bitmap is
as big as that of the database, however, based on algorithm4, Top-K
retrieval usually requires only a small part of Bitmap loading into
the memory for satisfiability detection. Therefore, the overall I/O
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Fig. 4. Bitmap structure.

cost is much smaller than that of sequential scanning. Neverthe-
less, a drawback of the Bitmap is that the and bit operations will be
great while meeting large data sets.

5.1.4. Hierarchical bitmap
The hierarchical bitmap [55,56] increases abstraction layers to

avoid unnecessary data access on the basis of the original bitmap.
The structure of hierarchical bitmap is illustrated on the left of
Fig. 4, the abstract level of the hierarchical bitmap is actually a
compressed bitmap,which combines the columns of each attribute
into a smaller number of columns. To perform the merge, we use
a bitwise OR on the columns being merged. (While in Fig. 4, it
illustrates only one level of abstraction,multiple abstract levels can
be used in practice, where each level is an abstraction of another).
To test the satisfiability of an instantiation, the hierarchical bitmap
is used. Then the system starts with a scan of the most abstract
level. When there is a row R that satisfies the requirement, it will
descend to the more concrete levels to evaluate the rows that
correspond toR. Theprocesswill stopwhen the systemdescends to
the original bitmap and obtain a row that satisfies the requirement
or scanning the entire hierarchical bitmap. To better clarify it, we
put forward an example. To test the satisfiability of (A = a6)∧(C =

c1), firstly, we transfer the instantiation to the corresponding bit
strings. As illustrated in Fig. 4, Q and Q′ are the corresponding
bit strings for the original abstract bitmaps. Then the system will
scan the abstract bitmap, comparing the Q′ with each row. When
a match is identified, then the system will scan the corresponding
proportion of the original bitmap and compare this rows with Q.
If in this proportion, a row is same with the Q, we can obtain that
(A = a6) ∧ (C = c1) is satisfied and the process will be stopped.
When the whole bitmaps are scanned and no row is matched with
Q′, we can get that (A = a6)∧(C = c1) is not satisfied. As illustrated
in Fig. 4, we can finish the satisfiability test of (A = a6) ∧ (C = c1)
by evaluating 6 rows, 3 in the abstract bitmap and 3 in the original
bitmap.

Intuitively, regardless of whether the test instances occur fre-
quently in database, it is better to use the hierarchical Bitmap to do
satisfiability tests. If the instances occur frequently in data sets, the
scanning process is likely to stop at an early stage. If the instances
seldom occur in data sets, then the algorithm can skip the data
which is before matching rows in original Bitmap.

To retrieve the top-k results, a number of satisfiability tests are
conducted in Algorithm 4. Normally the evaluated data instanti-
ations share a significant number of attribute values because the
algorithm conducts the tests in the depth-first order. Therefore,
we can allow each satisfiability test to reuse the bitmap access of
previous tests to further improve the efficiency of top-k retrieval.

In Algorithm4,when one instantiation passes the satisfiability test,
it will be pushed back to the stack (i.e. ST) and extended with
an additional attribute. Then the system will mark the position
that the test has already reached in the bitmap, and the new
instantiation in the stack with the marks will be stored. When a
new instance is tested, we can scan the bitmap from the mark
position.

H-Bitmap can avoid a large number of unnecessary visits to
the original Bitmap. Assuming that there are D attributes, each
attribute can takeC possible values. In otherwords,D andC respec-
tively represent the dimensions and cardinality of data queries. So,
each of the lines at the bottom of H-Bitmap contains D × C bit.
Wemerge everym column attributes into one column to construct
the abstract Bitmap. The abstraction process continues until two
columns left. In this case, we finally got the logc

m layers. The in-
stance to test is set to be 1, which contains t properties. Firstly,
we assume that there is no abstract layer, then the algorithmmust
scan the original Bitmap until the first row matching instance 1 is
found. In this case, the expected value of the number of bit that
needs to be accessed is C t

× D × C . After using the abstract layer,
some of the rows in the original Bitmap will be skipped, and the
expected value of the number of bit that needs to be accessed in
original Bitmap is mt

× D × C . Then we consider the expected
value to be accessed in the first abstract layer in H-Bitmap. If we
assume that there are no other abstract layers above this level, this
expected value can be calculated to be ( CD )

t+1
× D. Applying this

calculation process to all abstract levels, we can get the expected
number of bit numbers to be accessed in the satisfiability test is
mt

× D × C ×
∑logcm

i=0 m−t . Since
∑logcm

i=0 m−1 is between 1 to 2, the
expected number mainly is mt

× D × C . As we can see, unless the
dimension is too high, the overhead of algorithm of H-Bitmap can
be relatively small.

6. Experiments and analysis

In this section, we have conducted an extensive set of experi-
ments to evaluate the feasibility and effectiveness of the proposed
approaches. Each group of experiments was performed for 10
times. We report the mean value (µ) of the ten runs and their
standard deviation (σ ). In addition, the statistical significance test
(p) is performed for comparison experiments.

The flow chart below shows the main process. According to
Fig. 5, first of all, we input the dimension of CP-net. Then we judge
the correlation of the attributes. Andwhen the correlation between
the data dimension is determined, we firstly exploit Hilbert Curve
to make high multidimensional data into one-dimensional, and
then compare the efficiency of Hilbert Curve plus bitmap and
Hilbert Curve plus B+-tree. When the correlation between the
data dimensions is non-determined, we utilize PCA to make high-
dimensional data into low dimensional data in the first place. We
then compare the performance of PCA plus bitmap and PCA plus
B+-tree.

In our experiments, we used both synthetic and real data. The
real data set is the QWS data set.1 In this data set, a Web Service
Crawler is used to collect QoS attributes of real web services. It
contains 2507 Web Services’ QoS attributes including, Response
Time, Availability, Throughput, Successability, Reliability, Compli-
ance, Best Practices, Latency, Documentation, Service Name, and
WSDL Address. Besides the real data, we also synthetically gener-
ate testing data, which allows us to change the characteristics of
a data set and observe the performance of the top-k approaches
in different circumstances. Based on the combination of both QWS
data sets and synthetic data sets, the experiments can be carried
out.

1 http://www.uoguelph.ca/~7eqmahmoud/qws/.

http://www.uoguelph.ca/~7eqmahmoud/qws/
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In both synthetic and real data set, user preferences are repre-
sented by a series of randomly generated CP-nets. Each generated
CP-net is a random partial order graph, among them the number
of the parent nodes varied from 0 to 3. Also, to make the order of
attribute values randomly distribute, the CPTs of CP-nets are also
randomly generated.

6.1. Correlation between the data dimensions is determined

In the case of correlation between the data dimensions being
determined, we compared three indexing methods, two of which
employ Hilbert dimension reduction. They are dimensionality re-
duction plus B+tree, dimensionality reduction plus Bitmap, and
Composite Key B+tree. Figs. 6, 7, 8, 9, 10, 11 summarize the exper-
imental results. And during these experiments, the size of the data
set defaults to 10000.

Overall, when the cardinality and k are determined, the higher
dimension the longer the response time. As can be seen from Figs.
6, 7, and 8, when k is five, different dimensions perform similarly
and the response time increases with the increasing k. When the
dimension is determined, the cardinality affects the performance
of bitmap indexes whose efficiency decreases rapidly when the
cardinality is larger than 20. When cardinality is 10, the three
methods have little difference. When the cardinality reaches 20,
the curves tend to be different. In sum, composite key outperforms
the other two methods.

Similarly, when the dimension and k are determined, the higher
the cardinality is, the longer response time. When the dimension
and k are determined as shown in Figs. 9, 10, 11, cardinality
changes have little effect on the response time. However, different
values of k still play an important role in the experimental result.
For a cardinality lower than 10, the performance of composite key
is ordinary, but improves with the increasing cardinality.

Note that the efficiency of composite key exceeds the two
reduction dimensional indices mainly because the time cost of
Hilbert curve dimension reduction encoding and decoding sur-
passes the benefits of dimension reduction. Alongwith the increase
of dimension, the retrieval efficiency of the two dimension reduc-
tion methods starts to outperform the composite key.

6.2. Non-determined data correlation

Under the condition of correlation between the data dimen-
sions being non-determined, we compare the indexes using PCA
dimension reduction with the original bitmap method. Figs. 12,
13, 14, 15, 16, 17, summarize the experimental results. And during
these experiments, the size of the data set defaults to 10000.

The PCA plus Bitmap method is overall superior to the original
multidimensional Bitmap. In the experiment, we set dimensions as
3-D, 6-D, and 9-D, and then compare the time based on cardinality
of 10, 20, 50. We can see from the result, in the low-dimensional
case (3-D), the efficiency is similar. However, in the 6-D and 9-D,
PCA plus bitmap outperforms the other two methods significantly
for cardinality of ten and twenty. Although the PCA plus Bitmap
is still better than the original Bitmap in the cardinality of fifty,
the advantage of the PCA plus Bitmap is not evident as other cases.
This can be explained as follows. The original Bitmap performance
has been adequate in low dimensional (3-D) itself. So it makes
no distinction. However, in high dimensional cases, PCA dimen-
sionality reduction can speed up retrieval effectively. Furthermore,
cardinality plays an important role in response time. Aswe can see,
when the cardinality is less than 20, the performance of Bitmap is
good. But it decreases rapidly when the cardinality exceeds 20.

As for PCA plus Hierarchical Bitmap, intuitively, it should be
more efficient. However, the result is not always the case. We can
see from the figure, when we set the dimension as 3-D, PCA plus

Hierarchical Bitmap even gives the worst performance. In 6-D, it
is slightly better than the original bitmap and worse than PCA
plus bitmap. This is because that Hierarchical Bitmap increases the
amount of i/o times which drags down the overall performance.

Here, we also expand the data set and conduct some compar-
ative experiments. And during these experiments, we adjust the
size of the data set from 2500 to 50000. The experimental results
are illustrated in Fig. 18, and from the figure, we can see that the
dimensionality reduction has a good performance on reducing the
response time.

6.3. Top-k methods comparison

In this section, we conduct a series of experiments to compare
the performance of different top-k methods. The first method uses
sequential scan without any indexing mechanism. This method is
an intuitive algorithm for Top-k retrieval. It scans the data items
in the database and outputs the Top-k data sets that are sorted
according to the ordering test. However, this algorithm costs too
much for large data sets. The reason is that even if you only retrieve
one best data item, you need to scan the entire database. The
second method uses the utility function based top-k method to
scan the database. The utility function adopts the idea of quick sort,
which divides the data recursively without searching the entire
database. Using the utility function to select the k elements with
the highest score in the data set, the most direct method is to
construct a small heap of k size and scan the elements of the data
set one by one. If the current element’s score is higher than that
of the top of the pile, it will be replaced. Then adjust the top stack
to maintain the property of ‘‘small top stack’’. After scanning the
data set, the elements in the small top stack are the k elements
with the highest scores. We use the idea of quick sort, which can
be divided by recursion. In this way, the initial response time of the
algorithmwill be improved in some cases. Because it does not need
to wait until the complete data set is scanned. The third method
uses the depth first retrieval introduced in our paper. To avoid
redundant experiment, we only use the PCA plus bitmap to reduce
the dimension.

In the first set of experiments, we fix the number of services as
7.5k, and the cardinality of attributes as 8. Fig. 19 shows the result
of efficiency comparison of different top-k methods on different
dimension. It can be seen that the response time of sequential scan
does not vary much with the increase of dimensionality. This is
because sequential search just needs to scan the total database
without considering the dimensionality of attributes. In contrast,
for utility function method and depth first retrieval, increasing the
dimensionality will increase the sparsity of the data, which forces
the algorithm to perform more satisfiability tests. The increase of
dimensionality also directly increases the depth of the search space
for the depth first algorithm.

In the second set of experiments, we fix the number of services
as 7.5k, and the dimensionality of data as 5. The result of the ef-
ficiency comparison of different methods on the different number
of cardinality is shown in Fig. 20. It can be seen that the cost of all
threemethods increase as the increase of the number of cardinality
of attributes. However, the cost of sequential scan grows faster
than other two methods. This is because sequential scan needs to
search the entire database, and cardinality increase leads to the
increase of records. For the other two methods, they need not to
search the entire database and hence performs more efficiently
than sequential scan.

In the third set of experiments, we fix the dimensionality of
data as 5, and the cardinality of attributes as 8. Additionally, we
adjust the size of the data set from 2500 to 15000. The result of
the efficiency comparison of number of services on different top-k
methods is illustrated in Fig. 21. It can be seen that the cost of all
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Fig. 5. Main flow chart.

Fig. 6. The efficiency of indexs for Top-k on three dimension.

Fig. 7. The efficiency of indexs for Top-k on six dimension.

three methods will increase with the increase of size of services.
But the value of k will not influence the performance of sequential

scan. As sequential scan needs to go through the complete data
set before generating the top-k result, its response time increases
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Fig. 8. The efficiency of indexs for Top-k on nine dimension.

Fig. 9. The efficiency of indexs for Top-k on ten cardinality.

Fig. 10. The efficiency of indexs for Top-k on twenty cardinality.

Fig. 11. The efficiency of indexs for Top-k on fifty cardinality.

linearly with the size of the data set. Its performance remains the
same no matter what k is.

6.4. Dimensionality reduction methods comparison

In this section, we conduct a series of experiments to compare
the performance of different dimensionality reduction methods.
The first method uses original bitmap without any dimensionality
reduction methods. The second method uses the Hilbert curve di-
mension reductionwith original bitmap. The thirdmethoduses the

PCAdimension reductionwith original bitmap. To avoid redundant
experiments, we only use the original bitmap index mechanism.

In the first set of experiments, we fix the dimensionality of
data as 6 and the cardinality of attributes as 20. In addition, we
adjust the size of the data set from 2500 to 50000. Moreover, these
experiments are done under the condition that the correlation
between the data dimensions is determined. In Figs. 24–26, we
report the response time in terms of the mean value (µ) of the ten
runs, their standard deviation (σ ), and the significant difference
(p) for different methods. We can see that p is almost to 1, which
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Fig. 12. The efficiency of indexs for Top-k on three dimension.

Fig. 13. The efficiency of indexs for Top-k on six dimension.

Fig. 14. The efficiency of indexs for Top-k on nine dimension.

Fig. 15. The efficiency of indexs for Top-k on ten cardinality.

indicates the data of ten runs is of slight difference. Therefore, we
use the µ for drawing the figures. And Fig. 22 shows the result of
efficiency comparison of different dimensionality reduction meth-
ods on the size of the data set. It can be seen that the response
time of bitmap method is the most among the three methods.
Hilbert curve plus bitmapmethod and PCA plus bitmapmethod are
both overall superior to the originalmultidimensional bitmap. This
is because that original bitmap ignores dimensionality reduction
which helps to reduce the times of retrieval process and improve

retrieval efficiency. What is more, we can see that Hilbert curve
plus bitmap method works better than PCA plus bitmap method,
which reflects that Hilbert curve is more suitable than PCA when
the correction is determined. The reasonmay be that Hilbert curve
processing data set does not affect the information of the original
data set.

In the second set of experiments, we fix the dimensionality
of data as 6 and the cardinality of attributes as 20. In addition,
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Fig. 16. The efficiency of indexs for Top-k on twenty cardinality.

Fig. 17. The efficiency of indexs for Top-k on fifty cardinality.

Fig. 18. The efficiency of indexs for different data sets on six dimension, twenty cardinality.

Fig. 19. The efficiency comparison of different top-k methods on the dimension.

we adjust the size of the data set from 2500 to 50000. More-
over, these experiments are done under the condition that the
correlation between the data dimensions is uncertain. The result
of the comparison of different dimensionality reduction methods
on the size of the data set is shown in Fig. 23. Similar to the
first set of experiments, it is obvious that bitmap method still

works the worst. However, the response time of PCA plus bitmap
method is less than Hilbert curve plus bitmap method. This could
be explained that PCA can be used to determine the correlation
between data attributes and optimize data processing. Therefore,
it is better to use PCA than Hilbert curve when the correction is
uncertain.
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Fig. 20. The efficiency comparison of different top-k methods on the cardinality.

Fig. 21. The efficiency comparison of different top-k methods on the size of services.

Fig. 22. The efficiency comparison for different dimensionality reduction methods when the correlation is determined.

Fig. 23. The efficiency comparison for different dimensionality reduction methods when the correlation is uncertain.

7. Conclusion and future work

7.1. Conclusion

In this paper, we develop effective indexing methods for top-
k retrieval using Conditional Preference Network (CP-Net). We
divide indexing methods of Top-k retrieval for CP-Net into two

categories based on whether the correlation between the data di-
mension is determined. In order to increase the retrieval efficiency,
we introduce twodimension reductionmethods, Hilbert Curve and
PCA. When the correlation between the data dimension is deter-
mined, we firstly exploit Hilbert Curve to make multi-dimensional
data into one-dimensional data, and then compare the efficiency
of composite key B+-tree, Hilbert Curve plus bitmap and Hilbert
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Fig. 24. Mean value, standard deviation and significant difference/first method in Dimensionality Reduction methods comparison.

Fig. 25. Mean value, standard deviation and significant difference/second method in Dimensionality Reduction methods comparison.

Fig. 26. Mean value, standard deviation and significant difference/third method in Dimensionality Reduction methods comparison.

Curve B+-tree. When the correlation between the data dimensions
is non-determined, we utilize PCA to make high-dimensional data
into low-dimensional data in the first place. We then compare the
performance of Bitmap, PCA plus bitmap and PCA plus Hierarchical
Bitmap. We conduct an extensive experimental study on both
real and synthetic data to demonstrate the effectiveness of those
indexingmethods, especially on large-scale high-dimensional data
sets.

7.2. Future work

This paper investigates the effectiveness and feasibility of tra-
ditional and reduction-dimensional indexingmechanisms on large
high-dimensional data sets. Traditional indexing research has been
quite mature, but the indexing methods on satisfiability testing,
particularly big high-dimensional data sets exhibit high compu-
tational cost. Therefore, improving the traditional indexing ap-
proaches becomes important. This paper reduces the dimension-
ality of the data sets and then builds the indexes. The choice for
dimensionality reduction methods have a direct impact on data
retrieval. We summarize the future work as follows:

• The dimensionality reduction methods used in this paper
have their limitations. For example, PCA extracts global fea-
tures of the data sets, andwill cause some loss of information.
Wavelet transform ismainly used to extract local features but

ignores the overall characteristics. So, further work may con-
sider to use other dimension reductionmethods and compare
their effectiveness.

• The selected dimensionality reductionmethods help improve
the efficiency of search results. Meanwhile, they may also
affect recommendation correctness. Different dimensionality
reduction methods may have different impact on the search
results and the accuracy of the recommendations. Therefore,
assessing the error rate for each dimensionality reduction
method is an interesting direction, which will be considered
in our future work.
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