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a b s t r a c t 

System of Systems (SoS) based on service composition is considered as an effective way to build large- 

scale complex software systems. It regards the system as a service and integrates multiple component 

systems into a new system. The performance of the component system may fluctuate at any time because 

of the complex and changeable running state and external environment of the component system, which 

will affect the running of the SoS. The online reliability prediction technology is used to predict the 

reliability of the component system of an SoS in the near future. It aims to find errors and correct them in 

time so as to ensure that the SoS can run continuously and smoothly. To tackle the reliability prediction 

problem of component system in a dynamic and uncertain environment, the paper integrates Maximum 

Entropy Markov Model (MEMM) with time series motifs to achieve a new prediction model (m_MEMM), 

which is referred to as motifs-based MEMM. Extensive experiments are conducted to demonstrate the 

effectiveness and accuracy of the proposed approach. 

© 2019 Elsevier Inc. All rights reserved. 
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1. Introduction 

As users’ requirements on software systems’ functionalities

have become increasingly complex and diversified, a tightly cou-

pled software development process is difficult to adapt quickly to

the changes demanded by the market and consumers. System of

Systems (SoS) can effectively solve the above problem as it treats

a system as a service and integrates a number of component sys-

tems into a new one through service composition. As an emerging

way to build large-scale complex softwares, SoS has attracted wide

attention in academia and industry ( Tekinerdogan and Erata, 2017;

Hall et al., 2016; Buscarino et al., 2018 ). 

In an SoS built from service composition, component systems

typically run in a complex and dynamic environment. Furthermore,

they are distributed and independent of each other. Therefore,

careful attention should be given to the collaboration and coordi-

nation among component systems in conjunction to the monitor-

ing and quality assurance of the entire SoS. Due to the complexity

of the internal running state and external environment of the

component systems, their performances may fluctuate at any time,

which will affect the performance of the entire SoS. Therefore,

quality assurance of the entire SoS is particularly challenging. 
∗ Corresponding author. 
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Online reliability prediction can help ensure an SoS to continu-

usly run in a healthy state. In particular, it predicts the reliability

f the component systems in the near future and the prediction

esult can be used to prevent and correct mistakes/errors in time.

owever, due to the complex running environment of the compo-

ent systems along with their internal running status, it is hard to

etect obvious regularities when an error occurs. In general, this

rediction problem faces the following challenges: 

1. It lacks obvious regularities when the component systems fail.

The state change of the system is usually random and uncer-

tain. 

2. User activities may lead to volatile behaviors of the system. For

example, when a sale promotion is ongoing, there will be a

large number of users accessing the system in a short period

of time. The system will be under enormous pressure and its

performance will be affected. 

3. There are limited system parameters that can be used to per-

form detailed system analysis. Because the component systems

are running and maintained separately, it is difficult to ob-

tain hardware layer parameters (such as memory, CPU, network,

etc.). On the other hand, application layer parameters, such as

throughput and response time, can be conveniently collected

through client calls to the component systems. 

https://doi.org/10.1016/j.jss.2019.02.023
http://www.ScienceDirect.com
http://www.elsevier.com/locate/jss
http://crossmark.crossref.org/dialog/?doi=10.1016/j.jss.2019.02.023&domain=pdf
mailto:hbw@seu.edu.cn
mailto:qi.yu@rit.edu
https://doi.org/10.1016/j.jss.2019.02.023


H. Wang, H. Fei and Q. Yu et al. / The Journal of Systems and Software 151 (2019) 180–193 181 

Table 1 

Notations. 

SoS System of Systems 

API Application Program Interface 

QoS Quality of Service 

SVM Support Vector Machine 

AMF Adaptive Matrix Factorization 

HMM Hidden Markov Model 

MEMM Maximum Entropy Markov Model 

m_MEMM motifs-based Maximum Entropy Markov Model 

CPD Conditional Probability Distribution 

GIS Generalized Iterative Scaling 

IIS Improved Iterative Scaling 

AVHR Average Value of Historical Reliability 

BR Bayes’ Rules 

Reg Regression 

 

p  

n  

F  

s  

(  

c  

f  

S  

c  

d  

s  

o  

p

 

b  

M  

m  

w  

n  

s

 

S  

s  

M  

M  

a  

p  

i  

p  

t  

s  

u

2

 

m  

c  

m  

a  

i  

c  

f  

p  

o  

f  

m  

m  

d

 

p  

t  

e  

w  

b  

m  

t  

e  

p  

s  

r  

p  

c  

d

 

i  

a  

t  

v  

c  

i  

t  

a  

p  

o  

c  

a  

p  

r  

c  

s  

v

 

a  

e  

t  

m  

m  

o  

t

3

 

M  

a  

M

3

 

a  

i  

f  

t  

c  

p

D  

b

 

The existing online prediction techniques, such as Bayesian

rediction based on conditional probability ( Csenki, 1990 ),

on-parametric prediction models ( Pfefferman and Cernuschi-

rias, 2002 ), curve fitting method ( Andrzejak and Silva, 2007 ),

emi-Markov models ( Salfner, 2006 ), component interaction graphs

 Kiciman and Fox, 2005 ), SVM ( Hoffmann et al., 20 06; 20 07 ), and

ollaborative filtering ( Zheng and Lyu, 2010; Yu, 2014 ), can not

ully cope with the complexity of the running environment of an

oS, the uncertainty of the component systems, and the uncertain

haracteristics of the error events. Most of these online error pre-

iction methods can only model error events that satisfy the Pois-

on distribution. As for reliability time series prediction problems

f uncertain error events, these methods still lack sufficient sup-

ort. 

The paper proposes an online reliability prediction method

ased on a probability graph model—Maximum Entropy Markov

odel (MEMM). The proposed prediction model, referred to as

_MEMM, integrates MEMM with time series motifs. The model

ill be trained by the historical system parameters of the compo-

ent systems, and then the reliability prediction of the component

ystem can be achieved. 

The remainder of this paper is organized as follows.

ection 2 gives an overview of related work. Section 3 presents

ome preliminaries about prediction model, including Hidden

arkov Model, Maximum Entropy Model, and Maximum Entropy

arkov Model. Section 4 introduces the definition of reliability

nd the concept of time series. It also formulates the research

roblem. In Section 5 , the motifs-based Maximum Entropy Model

s proposed for reliability prediction. In Section 6 , extensive ex-

eriments are conducted to verify the correctness and accuracy of

he prediction model. Section 7 concludes the paper and identifies

ome important future work. Table 1 shows the major notations

sed in this paper. 

. Related work 

Reliability prediction has received significant attention from

ultiple communities, including software engineering and service

omputing. Zheng and Lyu (2010) developed a reliability prediction

ethod for service systems. Collaborative filtering was adopted to

chieve the prediction purpose by using the historical user-service

nteractions. Specifically, performance parameters of services were

ollected by calling services. The probability that the service calls

ail is recorded. Finally, reliability is calculated as the average error

robability of the same service with multiple users over a period

f time. In this paper, we follow a similar approach to collect per-

ormance parameters. Zhu et al. (2014) proposed a QoS prediction

ethod based on Adaptive Matrix Factorization (AMF) in order to

ake adaptive decisions in a timely and accurate manner and pre-

ict effectively the QoS values for component services. 
The Bayesian predicting method ( Csenki, 1990 ) is simple and

ractical because it predicts the error probability of future mis-

akes through historical mistakes. However, it only supports error

vents that follow Poisson distribution, making it difficult to deal

ith dynamic and uncertain error events. The semi-Markov model-

ased prediction method ( Vaidyanathan and Trivedi, 1999 ) esti-

ates the system resource consumption rate through the load, and

hen predicts the system’s future errors. This method only consid-

rs the impact of the load on the system errors, and ignores other

otential factors for errors. The prediction method based on regres-

ion analysis ( Andrzejak and Silva, 2007 ) is to use the historical

eliability data of the system to fit the reliability trend, and then

erform the prediction of future system reliability. However, this

urve fitting method is difficult to deal with the prediction of ran-

om and uncertain error events. 

Amin et al. (2012b, 2012a, 2013) carried out system reliabil-

ty prediction from the perspective of time series, and proposed

 statistical time series model. It is a forward prediction where

he prediction of the current step relies on the result of the pre-

ious step. This may lead to cumulative errors so that it is diffi-

ult to cope with the online reliability time series predictions stud-

ed by this paper. Cheung (2008) used the Markov chain to model

he dynamic behaviors of traditional software components. They

nalyzed the execution process of the components, calculated the

robability of behavior transition, and then obtained the reliability

f software components. This prediction method does not analyze

omponent behavioral characteristics, leading to a poor prediction

ccuracy. Silic et al. (2013, 2014, 2015) proposed a clustering-based

rediction method that used data about users, services, and envi-

onment to find services similar to the one to be predicted. They

onsidered these services’ reliability as the ultimate prediction re-

ult. This method is based on the historical reliability of other ser-

ices, which may not lead to accurate prediction result. 

Since the hardware layer parameters of the component systems

re difficult to obtain, this paper collects application layer param-

ters by invoking the component systems. These parameters are

hen used to build a prediction model that combines the Maxi-

um Entropy Markov Model with time series motifs. The proposed

odel is able to deal with the dynamic and uncertain environment

f component systems and make accurate online reliability predic-

ion as demonstrated through our experiments. 

. Preliminaries 

In this section, we introduce the Maximum Entropy Markov

odel, which is a probabilistic graph model for time-series vari-

bles. It combines the advantages of Hidden Markov Model and

aximum Entropy Model, both of which will be briefly described. 

.1. Hidden Markov Model 

The Hidden Markov Model (HMM) ( Baum et al., 1970; Baum

nd Petrie, 1966 ) is an extension of the Markov process. While

ts states cannot be directly observed, their distribution can be in-

erred from observations. An HMM is a finite model that describes

he probability distribution between states and observations. It is

ommonly used in many applications including natural language

rocessing and speech recognition. 

efinition 1 (Hidden Markov Model) . A Hidden Markov Model can

e defined as a triplet HMM = < P, A, B >, where 

• P represents the probability distribution of the initial state; 
• A is the state transition matrix, A = [ a i j ] , where a ij is the prob-

ability of transition from state a i to state a j ; 
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Fig. 1. Hidden Markov Model. 
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• B is the observation distribution matrix, B = [ b ik ] , where b ik 
means that for the a i state, the probability of the k observation

is b ik . 

A typical HMM is shown in Fig. 1 . It has three hidden states

Y 1 , Y 2 , and Y 3 and their transition probabilities are given by a ij .

Each hidden state has three visible states: X 1 , X 2 , and X 3 , and they

are observed by the probability b ik . Both matrices A and B can

be learned from sample data. In fact, an HMM can be established

based on two basic assumptions: 

• First-order Markov assumption : The current state is only re-

lated to the previous state and has nothing to do with the ear-

lier state. 
• Observation independence assumption : The current observa-

tions are only related to the current state and have nothing to

do with other states. 

Many real-world applications do not meet these two assump-

tions, leading to poor modeling accuracy of an HMM. More discus-

sions will be given in Section 3.3 . 

3.2. Maximum Entropy Model 

Before introducing the Maximum Entropy Model, we first pro-

vide a definition of entropy. 

3.2.1. Concept of entropy 

Information entropy is used to represent the measure of uncer-

tainty. The greater the uncertainty, the greater the entropy. 

Definition 2 (Entropy) . Given a random variable X , its probability

distribution is P ( x ), and its entropy is defined as: 

H(X ) = −�x P (x ) logP (x ) (1)

For the two random variables X and Y , their joint entropy is

defined as: 

H(X, Y ) = −�P (x, y ) logP (x, y ) (2)
n the formula 2 , P ( x, y ) is the joint probability distribution of ran-

om variables X and Y . According to the joint entropy, the condi-

ional entropy for X and Y is defined as follows: 

(Y | X ) = H(X, Y ) − H(X ) = −�P (x, y ) logP (y | x ) (3)

.2.2. Mathematical model of maximum entropy 

Assume there is a classification model P ( Y | X ), where X repre-

ents the input data and Y represents the output data. There is a

arge amount of sample data D = { (x i , y i ) | 1 ≤ i ≤ n } , and the em-

irical joint probability distribution P̄ (x, y ) of X and Y and the em-

irical distribution P̄ (x ) of X can be computed easily. 

 ̄(x, y ) = 

number(x, y ) 

n 
(4)

 ̄(x ) = 

number(x ) 

n 
(5)

he number ( x, y ) and number ( x ) in the formulas 4 and 5 indicate

he total number of occurrences of the samples ( x, y ) and ( x ) in the

ample set D , respectively. 

In the Maximum Entropy Model, there is a two-valued feature

unction describing a kind of association of x and y , or certain

ules. Its definition is as follows: 

f (x, y ) = 

{
1 x and y have some correlations 
0 Others 

(6)

he empirical expectation of the feature function is E p̄ ( f ) , and the

rue expectation of the feature function is E p ( f ). They are defined

s follows: 

 ̄p ( f ) = 

∑ 

P̄ (x, y ) f (x, y ) (7)

 p ( f ) = 

∑ 

P̄ (x ) P (y | x ) f (x, y ) (8)

The Maximum Entropy Model can be learned from the training

et. We need to make an assumption on these two expectations

see formula 9 ). If the total number of feature functions is m , there

re m constraints. 

 ̄p ( f a ) = E p ( f a )(a = 1 , 2 , . . . , m ) (9)

The conditional entropy of the Maximum Entropy Model P ( Y | X )

s: 

(P ) = −
∑ 

P̄ (x ) P (y | x ) log P (y | x ) (10)

he goal of the entire model is to calculate the conditional proba-

ility P ( y | x ) when the conditional entropy H ( P ) is maximum under

he constraint condition (formula 9 ). 

The Maximum Entropy Model problem can be transformed into

n optimization problem with constraints, which can be solved us-

ng the Lagrangian multiplier method. The result is given by for-

ula 11 . 

 ω (y | x ) = 

exp( 
∑ m 

a =1 ω a f a (x, y )) 

N ω (x ) 

N ω (x ) = 

∑ 

y 

exp 

( 

m ∑ 

a =1 

ω a f a (x, y ) 

) 

(11)

n formula 11 , ω a is the weight of the a th feature function, and

 ω ( x ) is the Normalization Function. 

The Maximum Entropy Model is a model with maximum en-

ropy under all constraints, and the uncertain part of the model

s set to equal probability (ie, the maximum entropy), thereby re-

ucing the risk. Because there is no independence assumption like

MM, the selection of features in the Maximum Entropy Model

ill not be restricted. The complex and related features can be

exibly selected as constraints, and the fitness of the model to the

nknown data can be adjusted by the number of constraints. 
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Fig. 2. Hidden Markov Model. 

Y1 Y2 Yn-1

X1 X2 Xn-1

... Yn

Xn

Hidden State

Visible State

Fig. 3. Maximum Entropy Markov Model. 
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.3. Maximum Entropy Markov Model 

The Maximum Entropy Markov Model (MEMM) is an extension

f an HMM where the Maximum Entropy Model is introduced to

ombine the advantages of the two models. In the MEMM, a prob-

bility distribution P ( y | y ′ , x ) is used to replace the two probability

istributions in the Hidden Markov Model, namely the state transi-

ion probability distribution P ( y | y ′ ) and the observation probability
istribution P ( x | y ). Where P ( y | y ′ , x ) means the probability that the

urrent state is y under the conditions that the previous state is y ′ 
nd the observed value is x . 

Figs. 2 and 3 show HMM and MEMM, respectively. Their key

ifference lies in the direction between the hidden states and

he visible states. In the HMM, because of its observation inde-

endence assumption that the observation of the current state is

nly related to the current state and has nothing to do with the

ther states, it can be seen from the figure that each observed

alue of x only comes from a state y . In addition, the two ar-

ows in Fig. 2 represent two conditional probabilities, namely, the

tate transition probability and the observation probability. How-

ver, these two conditional probabilities are not the final objective

unction. The objective function needs to be transformed into a

osterior probability through the Bayesian formula. In the MEMM,

nly one conditional probability distribution P ( y | y ′ , x ) is needed to
escribe the entire model, and the conditional probability distri-

ution is also the final objective function. It can be seen from the

rrow that the current observation and the previous state jointly

etermine the current state. Conditional probability P ( y | y ′ , x ) re-
erred to as P y ′ (y | x ) in the following discussion. 

HMM follows the Markov property to be able to describe the

ransition relationship among different states. Due to the observa-

ion independence assumption, it is not possible to select features

exibly. On the contrary, the Maximum Entropy Model can flexibly

elect features and solve the optimal conditional probability P ( y | x )

ased on the known empirical distribution. However, it cannot cap-

ure the relationship among states due to lack of Markov chain like

MM. Therefore, the MEMM combines an HMM and a Maximum

ntropy Model to form a unified generative model to take full ad-
antage of the two models and make up for each other’s shortcom-

ngs. 

An MEMM uses a state-observation transition function to re-

lace the separated state and observation functions in an HMM.

his state-observation transition function can model observations

nd the transitions between states. Like the Maximum Entropy

odel, the definition of the feature function in the MEMM is un-

hanged (see the formula 6 ), but its two parameters have a spe-

ific meaning: x represents the observed value, and y represents

he current state. 

Consider an observation sequence (x 1 , x 2 , . . . , x n ) and the corre-

ponding sequence of states (y 1 , y 2 , . . . , y n ) . The empirical expecta-

ion of a feature function is E p̄ ( f ) , which is calculated as: 

 ̄p ( f ) = 

1 

n 

n ∑ 

i =1 

f (x i , y i ) (12)

We can calculate the true expectation E p ( f ) of the feature func-

ion using the estimated conditional probability: 

 p ( f ) = 

1 

n 

n ∑ 

i =1 

∑ 

y 

P y ′ (y | x i ) f (x i , y ) (13)

The Maximum Entropy Model considers the two expectations

o be equal, as given by the formula 14 , 

 ̄p ( f a ) = E p ( f a )(a = 1 , 2 , . . . , m ) (14)

here m is the total number of feature functions. Finally, an em-

irical distribution P y i −1 
(y i | x i ) can be available, which means the

robability that the current state is y i when the previous state of

he current state is y i −1 , and the current observation is x i . 

P y i −1 
(y i | x i ) = 

exp( 
∑ m 

a =1 ω a f a (x i , y i )) 

N ω (x i , y i −1 ) 

 ω (x i , y i −1 ) = 

∑ 

y 

exp 

( 

m ∑ 

a =1 

ω a f a (x i , y i ) 

) 

(15) 

here i = 1 , 2 , . . . , n, ω a is the weight of the a th feature function,

nd N ω (x i , y i −1 ) is a normalization function. Note that each feature

unction has a weight which is determined based on the maximum

ntropy principle, so that we can get the optimal conditional prob-

bility P y i −1 
(y i | x i ) under the constraints. 

. Problem formulation 

Due to the randomness and uncertainty of system errors, we

onsider that the running status of the system in the near future

s only related to the status of the latest period of time, and has

othing to do with the earlier running status. Therefore, we need

n online prediction technology to predict the reliability of the sys-

em in the future by observing the current system running sta-

us (current application layer parameters of the system) with the

rained model. 
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As shown in Fig. 4 , �t d is the window time, which corresponds

to the historical running status of the component systems. We can

use this period of time to train the model and learn its parameters.

�t l is the leading time, which is the time when the client recently

invoked the component systems. It starts at the current time t and

ends at the end of the call. �t p is a valid prediction period, which

starts at the time point when the leading time ends. Our goal is to

predict the reliability of the component system in the near future

( �t p ) based on the behaviors of the component systems during the

recent time ( �t l ) using a prediction model which is trained by his-

torical data in �t d . 

More specifically, we are looking for a function f such that 

� P r = f ( � P r ′ , � D rt , � D t ) (16)

where � P r is the reliability time series of the component system in

the near future t , � P r ′ is the reliability time series of the compo-

nent system at current t ′ , � D rt is the response time series of the

client-invoked component systems, and � D t is the throughput se-

ries of component systems. The time t and t ′ are two adjacent time

segments. It is worth to note that the reliability � P r of the compo-

nent system to be predicted is not for a specific point but a time

period. Therefore, it is a time series prediction problem. 

The concept of reliability may be interpreted differently

in diverse disciplines. For software engineering, the definition

of reliability given by the ISO/IEC/IEEE International Standard

( ISO/IEC/IEEE 24765:2010, 2010 ) consists of two descriptions: (1)

Reliability is the ability of a system or component to perform spec-

ified functions for a period of time under specified conditions; (2)

The ability of a software product to maintain a certain level of per-

formance under certain conditions. This definition is widely used

in the measurement of the reliability of software systems, and the

same applies to component systems of service-based SoS. However,

this definition only gives a qualitative description of reliability, and

a quantitative one is needed for our purpose. 

Software system reliability metrics are measured in many

forms, including (1) failure rate, (2) mean time between failures,

(3) mean time to failure, (4) demand failure rate. The component

system of the SoS based on the service composition leads to the

inconspicuous feature of the component system failure due to the

dynamics and uncertainties of the internal state of the system,

the external environment, and the load of the component system.

Therefore, the failure rate, mean time between failures, and mean

time to failure are not suitable for describing the reliability of

such a dynamic and uncertain component system. Demand failure

rate can be used to describe the reliability of a component system

( Brosch et al., 2012; Wang et al., 2017 ), which means that the sys-

tem does not have a failure at time t , and the probability of system

running failure after t . In this paper, we consider that the demand

fails in two cases. First, the system gives a wrong response. For ex-

ample, due to a problem with the internal state of the system, it

gives an error response, or no response. Second, system response

time is too long. For example, due to the external network envi-

ronment of the system, the system response times out. 

According to Brosch et al. (2012) and Wang et al. (2017) , we

give a formal definition of the reliability of the component system:
efinition 3 (Component System Reliability) . Let δ be a certain pe-

iod, and t δ be any point in the period δ. The component system is

alled multiple times during this period, and the number of failed

alls is N error . The number of failed calls per unit time is denoted

s μ, and the reliability is defined as: 

(δ) = e −μ

μ = 

N error 

δ
(17)

Note that the definition of the reliability of the component sys-

em is described by an exponential function. When the number of

ailed calls per unit time is mu = 0 , the reliability is r(δ) = e −μ =
 
−0 = 1 indicates that the component system is running normally

nd reliable during this time. When the number of failed calls per

nit time is mu → ∞ , 

(δ) = lim 

mu →∞ 

e −μ = 0 

ndicates that some kind of fault or error occurs in the operation

ithin the time for the component system, leading to a sharp de-

line in reliability. 

Based on Definition 3 , let’s consider a certain period �T for a

omponent system. We divide �T into n contiguously equal time

lices, δ1 , δ2 , . . . , δn . For each time slice to call the component sys-

em, the reliability on each time slice is calculated according to the

ormula 17 , and finally the reliability time series on �T is obtained,

p r 1 , p r 2 , . . . , p r n . As shown in Fig. 5 , δi = 200 ms , 
∑ n 

i =1 δi = 2 s, the

gure reflects the reliability time series of a component system in

s, � P r = (0 . 9 , 0 . 8 , 1 , 0 . 8 , 0 . 7 , 0 . 9 , 1 , 0 . 8 , 0 . 9 , 1) . 

A service-based SoS integrates multiple existing component

ystems into a larger system through service composition to meet

ore complex user requirements. Each component system encap-

ulates the functions into a service, such as a SOAP-based service

r a RESTful-based service. Through the service composition tech-

ology, numerous services are integrated to form a fully functional

nd powerful SoS. In order to ensure the overall running of the

oS, it is necessary to ensure that each component system (service)

an run reliably. This type of reliability is an online one which de-

cribes the running status of component systems in the near fu-

ure. Therefore, this paper needs to predict this online reliability of

he component system. 

Because different users have different lengths of call time for

he component system, the requirements for the continuous and

table running of the component system are not the same. In order

o ensure that the predicted results can adapt to different applica-

ion requirements, this article predicts the online reliability time

eries of component systems. The following is the definition of on-

ine reliability time series: 

efinition 4 (Online Reliability Time Series) . Let �t p be the ef-

ective prediction period (see the Fig. 4 ), divide �t p into n equal

ontinuous time slices, namely δ1 , δ2 , . . . , δn . We define the online

eliability time series ( � P r ) of the component system as a n dimen-

ional vector, i.e., � P r = (p r 1 , p r 2 , . . . , p r n ) Where p r i is the reliabil-

ty of the component system during the slice δi , i.e., p r = r(δi ) . 
i 
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Fig. 5. Reliability time series. 
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In general, the same component system has different running

tates at different times, showing different reliability time series.

hen the same component system is invoked by different clients,

t may deliver different performance. As a result, its online reliabil-

ty time series will be different. Therefore, this paper is concerned

ith the reliability prediction with regard to a specified client for

 given component system. 

. Prediction method 

In this section, we describe in detail the motifs-based Maxi-

um Entropy Markov Model (m_MEMM) for online reliability time

eries prediction of component systems. The system parameters

f the component system including the response time, through-

ut and historical reliability are obtained through client-side ser-

ice invocations. As shown in Fig. 6 , we use time series motifs to

epresent each node in the m_MEMM. In the figure, ̂ D rt and ̂ D t 

re the response time series motifs and the throughput time series

otifs, respectively, which are observations that describe the visi-

le state in the MEMM. ̂ P r is the reliability time series motifs used

o describe the hidden state in MEMM. The reliability time series

otifs describe the running state of a component system, and this
CPD CPD CPD

…

Fig. 6. Motifs-based Maximum Entropy Markov Model. 
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unning state is not observable, so we consider it is reasonable to

se it to describe the hidden state in MEMM. 

The time series motifs refer to the feature values in the histori-

al system parameters of the component system. Specifically, con-

idering the long-term historical system parameters of the compo-

ent system, this period can be divided into a number of consecu-

ive equal-length time slices, so that multiple time series of histor-

cal parameters of component system can be obtained. Feature val-

es can be found through unsupervised learning (e.g, clustering),

hich are referred to as time series motifs . The formal definition is

s follows: 

efinition 5 (Time Series Motifs) . Let D be a long-term system

arameter of the component system. Divide this system param-

ter into n equal-length continuous time series, denoted as � D =
( � D 1 , 

� D 2 , . . . , 
� D n ) . By clustering the time series of multiple sys-

em parameters, we get k cluster center points. These center

oints are called time series motifs on D and are denoted as ̂ D =
( ̂  D 1 , ̂

 D 2 , . . . , ̂
 D k ) . 

Fig. 7 shows a basic unit of a MEMM model, where the red part

ndicates the reliability time series motifs of the component sys-

ems within the effective prediction time �t p . ̂ P r ′ represents the
eliability time series motifs for the previous state, ̂ D rt and ̂ D t rep-

esents the time series motifs of the observation parameters of the

ecent time period �t l . As indicated by the arrow in the figure,
 
 r ′ , ̂ D rt and ̂ D t jointly determine the Conditional Probability Distri-

ution (CPD) of the time series motifs in the effective prediction

eriod. Below is the definition of m_MEMM: 

efinition 6 (m_MEMM) . A motifs-based Maximum Entropy

arkov Model (m_MEMM) can be defined as a four-tuple < H, H 
′ ,

, CPD > , where each node in the model is the time series motifs

f the corresponding parameters. More specifically, 

• H is the current state node. 
• H 

′ is the previous node of the current state node. 
• O is the set of observations in the current state, that is, the

collection of system parameters time series motifs. 
• CPD is the Conditional Probability Distribution (CPD) satisfying

maximum entropy, which describes the probability P ( H | H 
′ , O )

where the current state is H when the observation in the cur-
′ 
rent state is O , and the previous state is H . 
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Fig. 7. A base unit of m_MMEM. 
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The m_MEMM model combines the advantages of HMM and

Maximum Entropy Model, which allows it to capture the transition

relationship among hidden states while using a conditional proba-

bility distribution to meet the maximum entropy. 

The final exponential distribution in MEMM is P y i −1 
(y i | x i ) (see

the formula 15 ). After introducing motifs, the variables x and y

have new meanings. The variable x represents the response time

series motifs ̂ D rt and the throughput time series motifs ̂ D t , and the

variable y represents the reliability time series motifs ̂ P r . Then, the

expression for each conditional probability distribution CPD is: 

P ( ̂  P r i | ̂  P r i −1 
, ̂  D rt i , 

̂ D t i ) = 

exp( 
∑ m 

a =1 ω a f a ( ̂  D rt i , ̂
 D t i , 

̂ P r i )) 

N ω ( ̂  D rt i , ̂
 D t i 

̂ P r i −1 
) 

N ω ( ̂  D rt i , ̂
 D t i 

̂ P r i −1 
) = 

∑ 

̂ P r i 
exp 

( 

m ∑ 

a =1 

ω a f a ( ̂  D rt i , ̂
 D t i , 

̂ P r i ) 

) 

(18)

Based on the m_MEMM model as described above, online reli-

ability prediction of component systems can be achieved through

the following steps: 

1. Data collection and preprocessing, which divides the histori-

cal system parameters of the collected component system into

equal time series. 

2. The time series motifs computation, which takes the time series

of the well-divided component system parameters as input, and

searches for the time series motifs of historical system param-

eters through clustering. 

3. Marking time series motifs, which collects component system

parameters of the leading time in real time, and calculates the

nearest time series motifs. 

4. Parameter estimation, which estimates the motifs-based Max-

imum Entropy Markov Model parameters through the training

of the historical system parameters of the component system. 

5. Reliability prediction, which predicts the reliability of the com-

ponent system in the near future. 

5.1. Data collection and preprocessing 

In this step, the collected system parameters need to be pre-

processed so that they can be used for model training. Historical

system parameter data of the component system can be collected

through client-side invocations of the component system. These
arameters include response time, throughput, and historical re-

iability. We divide long-term historical system parameters of the

omponent system into multiple equal-length contiguous time se-

ies, as shown in Fig. 8 . 

We divide the historical parameters of the component system

nto two types: one is the observation parameter, which means

hat the component system parameters can be directly obtained,

ncluding the response time and throughput parameters. They cor-

espond to the visible state in the m_MEMM. The other type is

he reliability parameter, which indicates the reliability of the com-

onent system. It describes the running status of the component

ystem and is the hidden state in the m_MEMM. The division of

hese two types of parameters differs by one leading time �t l (see

ig. 4 ). 

According to the division method shown in Fig. 8 , we will

et the response time series � D rt , the throughput time series � D t ,

nd the reliability time series � P r . According to the definition of

_MEMM (see Definition 6 ), a sample for training the model

hould contain four sets of data: response time series � D rt (i ) ,

hroughput time series � D t (i ) , reliability time series of current time
�  r (i ) and reliability time series of previous time � P r (i − 1) , so it is

enoted as sample = ( � D rt (i ) , � D t (i ) , � P r (i ) , � P r (i − 1)) . 

.2. Time series motifs computation 

The component system parameter time series motifs represent

he feature values of the system parameter time series. Motifs are

ound by clustering a large number of system parameter time se-

ies. The center points of the clustering are called as the time se-

ies motifs. The m_MEMM model uses the time series motifs to

epresent each node of the model. For this purpose, the sample

ata obtained in the first step needs to be clustered separately. We

eed cluster the time series � D rt , � D t , � P r . 

In this paper, we use the K-Means algorithm for time series

lustering. K-Means is a classical clustering algorithm with good ef-

ciency and scalability. In order to measure the similarity between

ata, Euclidean distance is used to calculate the distance between

wo time series (see the formula 19 ). 

 
� D 1 , � D 2 ‖ = 

√ 

n ∑ 

i =1 

( � D 1 (i ) − � D 2 (i )) 2 (19)

here � D 1 and � D 2 represent two different system parameter time

eries, � D 1 (i ) represents the i -th dimension of time series � D 1 , and

 represents the total dimension. 

Here we take the reliability time series of the component sys-

em 
� P r as an example. After running the K-Means clustering algo-

ithm, we will get k clusters (center points), which are denoted as:

̂ 
 r = ( ̂  P r 1 , ̂

 P r 2 , . . . , ̂
 P r k ) (20)

.3. Marking time series motifs 

At this step, we need to mark the time series of the system

arameters. Marking refers to computing a distance between � D and
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 time series motifs. We mark it with the nearest motif to the time

eries. It can be denoted as: 

�  → arg min ̂ D i 

{‖ 
� D , ̂  D i ‖} i = 1 , 2 , . . . , k (21)

The time series motifs reflect the characteristics of the time se-

ies of the component system. The time series of each time slice

an be marked by the nearest time series motifs. For example, the

ollowing two time series motifs, ̂ D 1 and 
̂ D 2 are obtained in the

ample data: ̂ 
 1 = (0 . 72 , 0 . 85) ̂ 
 2 = (0 . 63 , 0 . 88) (22) 

There is a time series � D = (0 . 66 , 0 . 78) , and we calculate the Eu-

lidean distance from 
̂ D 1 and 

̂ D 2 as: 

 
� D , ̂  D 1 ‖ = 

√ 

(0 . 66 − 0 . 72) 2 + (0 . 78 − 0 . 85) 2 = 0 . 0922 

 
� D , ̂  D 2 ‖ = 

√ 

(0 . 66 − 0 . 63) 2 + (0 . 78 − 0 . 88) 2 = 0 . 1044 (23) 

From the calculation of the formula 23 , it can be concluded that

he time series � D is nearer to ̂ D 1 , then � D is marked as ̂ D 1 , which

s written as � D → ̂
 D 1 . 

By marking the time series divided in the first step, we will

et the response time series motifs ̂ D rt , the throughput time series

otifs ̂ D t , and reliability time series motifs ̂ P r . 

.4. Parameter estimation 

At this step, we will train the m_MEMM model through a large

umber of component system parameter data and estimate the pa-

ameters of the model. Specifically, we need to calculate condi-

ional probability distribution P ( ̂  P r i | ̂  P r i −1 
, ̂  D rt i 

, ̂ D t i 
) (See the formula

8 ), i.e., the weight of the feature function ω a , whose value is de-

ermined according to the principle of maximum entropy. 

In the reliability prediction of the component system, we need

o redefine the feature function f (see the formula 24 ). 

f i ( ̂  D rt i , ̂
 D t i , 

̂ P r i ) = 

{
1 < ̂

 D rt i , ̂
 P r i > or < ̂

 D t i , ̂
 P r i > 

0 Others 
(24)

here < ̂
 D rt i 

, ̂  P r i > means the time series motifs ̂ D rt i 
and the time

eries motifs ̂ P r i appear together, or in a sample. In particular, note

hat the two motifs have the same index i . < ̂
 D t i 
, ̂  P r i > has the same

eaning as above. 

Suppose we record the number of corresponding response time

eries motifs, throughput time series motifs, and reliability time

eries motifs as k , and the number of feature functions f a ( · ) as M .

ccording to the definition of the feature function it can be con-

luded that M = k . 

Note that ̂ D rt i 
and ̂ D t i 

are observation parameter data (see

ig. 8 ), describing the visible parameters of the component system;

he ̂ P r i belongs to the reliability parameter data and describes the

unning status of the component system. The definition of this fea-

ure function clearly reflects the causal relationship between the

wo sets of parameters. In the following text, for ease of writing,

eature function f a ( ̂  D rt i 
, ̂  D t i 

, ̂ P r i ) is written as f a ( · ). 
The Maximum Entropy Markov Model is essentially an exten-

ion of the Maximum Entropy Model. The commonly used algo-

ithms for solving the Maximum Entropy Model are the general-

zed iterative algorithm ( Darroch and Ratcliff, 1972 ) (Generalized

terative Scaling, GIS) and the improved iteration scale algorithm

 Berger et al., 1996 ) (Improved Iterative Scaling, IIS). Because GIS

lgorithm needs to iterate many times to converge and has low ef-

ciency, this paper uses IIS algorithm to solve the model m_MEMM

roposed in this paper. The specific solution steps mainly include

he following steps: 
1. calculate the empirical expectation of each feature function 

F a = 

1 

n 

n ∑ 

i =1 

f a (·) (25) 

2. compute the true expectation E 
( j) 
a for each feature function,

where j represents the j th iteration. 

E ( j) a = 

1 

n 

n ∑ 

i =1 

∑ 

y 

P y ′ (y | x ) f a (·) (26)

Among them, x represents the observation data, namely the re-

sponse time series motifs and the throughput time series mo-

tifs, and y represents the reliability parameter, i.e., the reliabil-

ity time series motifs. 

3. solve the equation about �ω a : ∑ 

x,y 

p̄ (x ) p y ′ (y | x ) F a (·) exp (�ω a 

M ∑ 

a =1 

f a (·)) = F a (27)

Since 
∑ M 

a =1 f a (·) is not a constant, we use Newton’s method to

solve and let g(ω a ) = 0 denoted as Eq. (27) . 

�ω 

(n +1) 
a = �ω 

(n ) 
a − g(�ω 

(n ) 
a ) 

g ′ (�ω 

(n ) 
a ) 

(28) 

4. repeat steps 2 and 3. When | �ω 
(n +1) 
a − �ω 

(n ) 
a | is small enough,

the algorithm is considered as converged. For a detailed algo-

rithm description, the Algorithm 1 shows all steps. 

Algorithm 1: m_MEMM model training. 

1 input: component system history parameters: response time 

series motifs ̂ D rt , throughput time series motifs ̂ D t , and 

component system history reliability time series motifs ̂ P r 
2 output: m_MEMM model parameter ω a 

1: Set ω 
(0) 
a to an initial value of 1 

2: repeat 

3: for each feature function do 

4: compute empirical expectation of feature function 

F a = 
1 
n 

∑ n 
i =1 f a (·) 

5: repeat 

6: for each iteration do 

7: In the j-th iteration, calculate the true expectatio

of each feature function using the current weight

�ω 

( j) 
a , E 

( j) 
a = 

1 
n 

∑ n 
i =1 

∑ ̂ P r P ̂  P r ′ ( ̂  P r | ̂  D rt , ̂
 D t ) F a (·) 

8: Solve the equation about �ω a (see formula 27), 

According to the formula 28, the weight of the 

( n + 1 )-th iteration can be obtained: �ω 
(n +1) 
a 

�ω 
(n +1) 
a = �ω 

(n ) 
a − g(�ω 

(n ) 
a ) 

g ′ (�ω 
(n ) 
a ) 

9: end for 

10: until The difference between �ω 
(n ) 
a and �ω 

(n +1) 
a is 

small enough 

11: end for 

12: until All feature function weights are solved 

.5. Reliability prediction 

At this step, we will collect the relevant parameter data of the

omponent systems of the recent time and predict the reliability

n future. 

1. Collect observations, including the current time component sys-

tem reliability time series � P r ′ , system’s response time series � D rt 
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Table 2 

MAE ( k = 20 ). 

Method N = 10 N = 20 N = 50 N = 100 N = 200 

m_MEMM 0.031 0.030 0.028 0.027 0.027 

AVHR 0.095 0.091 0.085 0.093 0.087 

BR 0.068 0.064 0.061 0.059 0.058 

Reg 0.058 0.056 0.053 0.048 0.051 

Table 3 

RMSE ( k = 20 ). 

Method N = 10 N = 20 N = 50 N = 100 N = 200 

m_MEMM 0.064 0.057 0.056 0.054 0.054 

AVHR 0.213 0.202 0.191 0.193 0.185 

BR 0.137 0.121 0.112 0.108 0.107 

Reg 0.112 0.098 0.097 0.093 0.094 

Table 4 

MAE ( k = 30 ). 

Method N = 10 N = 20 N = 50 N = 100 N = 200 

m_MEMM 0.030 0.030 0.027 0.026 0.026 

AVHR 0.095 0.091 0.085 0.093 0.087 

BR 0.065 0.063 0.061 0.058 0.058 

Reg 0.058 0.056 0.053 0.048 0.051 
and the throughput time series � D t in adjacent time period �t l 
(see Fig. 4 ). Where � P r ′ is obtained by invoking the component

system and referring to the Definition 3 . 

2. Mark time series motifs, referring to the Section 5.3 , the time

series � P r ′ , � D rt and � D t for time series motifs will be marked. They

are denoted as: 
• � P r ′ → 

̂ P r ′ 
• � D rt → 

̂ D rt 

• � D t → 
̂ D t 

3. Calculate the conditional probability. Specifically, for each re-

liability time series motif ̂ P r i , we substitute the time series

motifs obtained in second step into the formula 24 , compute

feature function values, and then take the calculation result

into the formula 18 to calculate the conditional probability

P ( ̂  P r i | ̂  P r i −1 
, ̂  D rt i 

, ̂ D t i 
) . Where ̂  P r i is a certain reliability time series

within the valid prediction period of the component system in

the time series motifs finding step (see Section 5.2 ). 

4. Analyse the prediction result. Comparing the calculation result

in the third step, we use the reliability time series motif with

the largest condition probability ̂ P r θ as the final predicted on-

line reliability time series ( � P r ), i.e., � P r = ̂
 P r θ . 

6. Experiment and analysis 

In this section, we conduct a series of experiments to assess the

proposed prediction model and method. We first report the predic-

tion result and compare it with other competitive models. We then

study the impact of different factors, including the number of mo-

tifs, the size of the dataset, and the length of the time series. At

last, we analyze the computational complexity. 

6.1. Experiment settings 

We use the two datasets, 24H and 1M, which were created in

Wang et al. (2017) . The performance parameters were collected

through client-side service invocations. These selected services are

commonly used services. The 24H dataset was collected by invok-

ing the services for a day and the 1M dataset consists of perfor-

mance parameters for a month. The prediction accuracy is mea-

sured using two metrics, which are defined as follows: 

MAE = 

∑ N 
i =1 

∑ λ
j=1 | � p j − � r j | 
N · λ (29)

RMSE = 

√ ∑ N 
i =1 

∑ λ
j=1 ( � p j − � r j ) 2 

N · λ (30)

where N is the number of experiments performed, and � p is the on-

line reliability time series of the component systems predicted by

the experiment. � r is the real reliability time series of the compo-

nent system, λ is the length of the time series, which is the di-

mension of � p . 

To demonstrate the effectiveness of the proposed approach, we

compare it with a number of representative models: Average Value

of Historical Reliability ( Zheng and Lyu, 2010 ) (AVHR), Bayesian

Rule based prediction ( Csenki, 1990 ) (BR), and Regression Analysis

based prediction ( Andrzejak and Silva, 2007 ) (Reg). These models

are described below: 

1. AVHR uses collaborative filtering to make predictions and uses

the average of component system reliability as the prediction

result. In this paper, we take the average of historical reliability

of the component system as the predicted value of each point

in the online reliability time series. 

2. BR predicts the probability distribution of the next error

through the past error behaviors of the software system, and

can effectively describe the evolution of the running state of
the software system. In this paper, the historical reliability time

series of component systems are clustered to obtain k reliability

time series motifs { ̂  P r i | i = 1 , 2 , . . . , k }. Based on this step, the pa-

per researches and analyzes the transition relationship of these

k reliability time series motifs. Then, we collect the reliability

time series � O r for the recent time of the component system and

mark the time series motifs (see Section 5.3 ), which is denoted

as ̂ O r . Finally, the ̂ P r i with the maximum conditional probabil-

ity P ( ̂  P r i | ̂  O r ) is considered as the online reliability time series of

the component system. 

3. Regression analysis (Reg) is a commonly used prediction

method. In Andrzejak and Silva (2007) , the least squares

method is used to perform polynomial curve fitting. The pre-

diction model is designed as: 

� y = a 0 + a 1 � p r + a 2 ( � p r ) 
2 (31)

where � p r is the recent time period reliability time series of the

component system. The loss function is 
∑ λ

i =1 ( � r i − � y i ) 
2 , � r is the

actual reliability time series, and λ is the length of the time se-

ries. The model parameters a 0 , a 1 and a 2 are trained by histori-

cal reliability time series data of the component system. Finally,

we take the reliability of the recent period component system

into the model to compute � y , and consider � y as the predic-

tion result of the online reliability time series of the component

system. 

All experiments are conducted using a Windows 10 64-bit op-

rating system, Intel(R) Core(TM) i7-6700 CPU 3.41GHz, 8GB of

emory. 

.2. Results and analysis 

In this section, we present the prediction performance, study

he impact of different factors and then analyze the computational

omplexity of the proposed method. 

.2.1. Prediction performance 

The prediction results of all the models are summarized in

ables 2–5 . In these tables, N represents the number of predictions

nd k represents the number of time series motifs. The number of

redictions for each method is 10, 20, 50, 100, 200, so we get 5
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Fig. 9. N = 50, the effect of the number of motifs on the prediction result. 
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Fig. 10. N = 100, the effect of the number of motifs on the prediction result. 

Table 5 

RMSE ( k = 30 ). 

Method N = 10 N = 20 N = 50 N = 100 N = 200 

m_MEMM 0.062 0.057 0.055 0.053 0.053 

AVHR 0.213 0.202 0.191 0.193 0.185 

BR 0.136 0.121 0.112 0.107 0.106 

Reg 0.112 0.098 0.097 0.093 0.094 
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inds of experimental results. The numbers of time series motifs

re 20 and 30, respectively. 

It can be seen that as N increases, the prediction accuracy of

he proposed method m_MEMM and BR is improved. The predic-

ion accuracy of the AVHR and the Reg fluctuates. The reason that

_MEMM and BR achieve performance is that there are some reg-

larities in the changes of the system parameter time series mo-

ifs in the component system, and these two methods can cap-

ure these regularities. In general, the proposed m_MEMM model

chieves the best prediction performance, which makes it more

uitable than other three methods for reliability prediction prob-

ems of component systems. 

In addition, by comparing Tables 2 and 4 (or Tables 3 and 5 ),

he number of time series motifs has no impact on AVHR and

eg prediction, indicating that the prediction results of AVHR and

eg have nothing to do with the number of time series motifs.

or m_MEMM and BR, the accuracy of the predictions increases

lightly with the increase in the number of time series motifs. In

rder to fully study the changes in the prediction results caused by

hanges in motifs number, we will discuss the effect of the number

f time series motifs on the results of various prediction methods

n next section. 

.2.2. The effect of number of motifs 

In order to study the effect of the number of time series motifs

n the prediction results, we vary the number of time series motifs
rom 5 to 40. For each reliability prediction method, we set the

umber of experiments N as 50 and 100 and observe the MAE and

MSE of all prediction methods. The experimental results are given

n Figs. 9 and 10 . 

As shown in Figs. 9 and 10 , the number of motifs does not

ffect the accuracy of AVHR and Reg. For m_MEMM and BR, the

hange in the number of motifs affects the accuracy of the pre-

iction. Figs. 9 and 10 show that the accuracy of the two predic-

ion methods gradually increase with the increase in the number

f motifs, and the increasing rate slows down and becomes stabi-

ized when the number of motifs reaches 20. In general, by setting

 suitable number of time series motifs, m_MEMM achieves higher

ccuracy than the other three methods. 

The number of motifs is a parameter to be set in time se-

ies motifs step in the reliability prediction step of the component

ystem. It represents the k clusters of the clustering algorithm K-

eans and reflects a certain feature of the time series. For the reli-

bility time series motifs, they represent the running states of the

omponent systems in the m_MEMM prediction model. In other

ords, the transition between the reliability time series motifs rep-

esents the transition between the running states of the compo-

ent systems. The number of time series motifs indicates the num-

er of running states of the component system. For a particular

omponent system, it may have numerous running states for a long

eriod of time. When the number of reliability time series motifs

s too small, the model cannot fully describe all the running states

f the component system and the transition relationship between

ifferent states. Thus, it is difficult to give a very good prediction

ccuracy. When the number of reliability time series motifs is too

ig, the model can describe all the running states of the compo-

ent system and their transition relationship. However, the redun-

ancy of the motifs will cause the model to become complex and

he computational cost will increase. Therefore, a range of approx-

mate motifs number can be selected first and then a fine tuning

an be performed to reach the optimal value. 
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Fig. 11. The effect of the size of the dataset 24H on the prediction results. 
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Fig. 12. The effect of the size of the dataset 1M on the prediction results. 
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Fig. 13. The effect of time series length on prediction results on dataset 24H. 
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6.2.3. The effect of data set size 

In this section, we will examine the effect of the dataset size on

the accuracy of the prediction results. Here, we compare and ana-

lyze the experimental results of several prediction methods on the

24H dataset and the 1M dataset. As shown in Fig. 11 , we extracted

10 0 0, 150 0, 20 0 0, 250 0, 30 0 0, 350 0, 40 0 0, 450 0, and 50 0 0 time

series from the 24H dataset. The model is trained and reliability

prediction is performed after the training. 

From Fig. 11 , we can see that the accuracy of AVHR, BR, and

Reg is not high at the beginning due to the limited amount of

training data. As the number of time series increases, the accu-

racy of these three methods is continuously improving. When the

number of time series reaches 40 0 0 or so, the accuracy of the

three methods starts to stabilize. The proposed m_MEMM model

achieves a higher prediction accuracy when the number of time

series is small. As the number of time series increases, its pre-

diction accuracy rate shows a small increase. As shown in Fig. 12 ,

the experimental dataset 1M consists of one month of invocation

data. We divide the dataset into 5-day, 10-day, 15-day, 20-day, 25-

day, and 30-day scale. The results show that as the dataset size
ecomes larger, the prediction accuracy of several methods shows

 small increase. In summary, we can conclude that m_MEMM is

ess sensitive to the dataset size than the other three prediction

ethods. In other words, it does not require a lot of sample data

nd has better performance. The reason is that the model com-

ines the Maximum Entropy Model with Hidden Markov Model,

hich effectively leverages the advantages of both models. In par-

icular, the Maximum Entropy Model can give a conditional prob-

bility distribution with maximum entropy for a small amount of

ample data or when information is incomplete, and it sets the un-

ertain parts to equal probability (maximum entropy). 

.2.4. The effect of the length of time series 

The choice of the length of the time series may also impact the

nal prediction result. To explore this effect, we set the length of

he time series to 5, 10, 15, 20, 25 and 30 to examine the ac-

uracy of different prediction methods. The results are shown in

igs. 13 and 14 . 

First of all, from the experimental results, with the changes in

he length of time series, the prediction accuracy of AVHR and
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Fig. 14. The effect of time series length on prediction results on dataset 1M. 

(a)Response Time (b) Throughput (c) Reliability
Fig. 15. The parameter comparison of the three scenarios. 
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Fig. 16. The effect of time series length on prediction results in different scenarios. 
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eg remains unchanged, indicating that the length of the time se-

ies has no effect on the accuracy of the AVHR and Reg predic-

ion methods. Second, m_MEMM and BR show the same trend as

he time series length changes. At the beginning, as the length of

he time series increases, the accuracy of the two prediction meth-

ds gradually improves and then decreases. This is mainly due to

he fact that the length of the time series is too short to fully de-

cribe a running state of the component system at a certain period

f time. It may take several time series of this length to describe

his kind of running state. Too long time series may describe two

r more running states of a component system. These two situa-

ions eventually result in the model being unable to analyze the

onversion relationship between different states of the component

ystem. Finally, with a suitable time series length, the proposed

_MEMM model achieves the best prediction accuracy. 

Furthermore, to help users select an appropriate length of time

eries, we chose three different services in the dataset to simulate

he component systems invoked by different clients, where the
ime period selected for each service is 24 hours. These correspond

o three different scenarios to show the effect of length of time

eries. Figs. 15 (a), (b), and (c) show the fluctuation of parameters

ver a period of time in 24 hours. 

The experimental results are given in Fig. 16 . As can be seen,

ith the increase of the length of time series, the prediction per-

ormance improves first and then becomes worse for all three sce-

arios. However, the optimal length of time series in different sce-

arios is different. A detail analysis shows that when the response

ime, throughput, and reliability parameters fluctuate with a higher

requency and larger amplitude, a shorter length of time series

eads to a better prediction accuracy. Otherwise, a longer time se-

ies results in better prediction results. Therefore, if a user invokes

 service with a high change frequency of parameters (e.g., in an

nvironment with high network fluctuation), a shorter time se-

ies length is preferred. In contrast, if the user is in more stable

etwork environment, the time series length can be increased ac-

ordingly to obtain better prediction results. 
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Therefore, in practice, the method proposed in this paper

should consider the historical parameter variation regularities of

the component system being invoked. The length of time series

can be adjusted accordingly to obtain optimal prediction accuracy

for online reliability time series prediction. 

6.2.5. Computational complexity 

The computational complexity of m_MEMM can be analyzed by

considering two parts: model training (collecting system parame-

ters and training the m_MEMM model) and reliability prediction

(performing predictions according to the trained model and the

current time system parameters). Since the training of the model is

an off-line process, the training process has no impact on the com-

putational complexity of the prediction process. Once the train-

ing process is completed, online reliability prediction can be per-

formed, whose computational complexity is mainly related to the

number of motifs. 

To analyze the effect of the number of motifs on the compu-

tational complexity of reliability prediction, the 24H dataset was

used with the number of motifs varying from 5 to 40 and the

number of predictions as N = 20. The execution time was com-

pared with other models. 

As shown in Fig. 17 , the execution time of m_MEMM and BR

increases with the growth of motifs number. In contrast, the ex-

ecution time of AVHR and Reg is almost constant. Among all the

methods, m_MEMM is the slowest but its execution time is still

acceptable for online reliability prediction. Furthermore, it achieves

the highest accuracy, as indicated by Figs. 9 and 10 . Therefore,

when a user prefers a faster prediction speed, a small motif num-

ber should be selected considering its approximate linear relation-

ship with the execution time. As a tradeoff, the prediction accuracy

will decrease accordingly. 

7. Conclusion and future work 

In this paper, we study and analyze the historical system pa-

rameters of component systems of an SoS. The proposed approach

exploits MEMM to model the running evolution of component sys-

tems. MEMM is a combination of a Maximum Entropy Model and

an HMM, which effectively leverages the advantages of both. We

further introduce the time series motifs, and propose a new pre-

diction model (m_MEMM) that can be constructed in five steps:

(1) data collection and preprocessing, (2) time series motifs cal-

culation, (3) marking time series motifs, (4) parameter estimation,

and (5) reliability prediction. We conduct a set of experiments to

study the impact of different factors that affect the prediction ac-

curacy of the model. Comparison with other prediction methods

demonstrates the effectiveness of the proposed approach. 
We identify three interesting future directions. Firstly, the

EMM model integrates two models, where the feature function

s introduced into the Maximum Entropy Model. Features can be

reely selected with the feature function, which can better reflect

he relationship between the input variable x and the output vari-

ble y , and infer the component system’s running state more ac-

urately through observation data. We only define one type of fea-

ure function in this paper. More feature functions can be tested

o further improve the prediction accuracy. Second, the prediction

odel requires a certain amount historical data from component

ystems to be trained before it can be used for prediction pur-

ose. A more robust model should be able to quickly adapt to the

hanges of business requirement. Therefore, the predictive model

eeds to perform prediction while training the model. Finally, the

rst-oder Markov property is a strong assumption, which may af-

ect the model accuracy. Higher order temporal dependencies may

e explored in the future work to improve the model accuracy. 
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