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ABSTRACT

System of Systems (SoS) based on service composition is considered as an effective way to build large-
scale complex software systems. It regards the system as a service and integrates multiple component
systems into a new system. The performance of the component system may fluctuate at any time because
of the complex and changeable running state and external environment of the component system, which
will affect the running of the SoS. The online reliability prediction technology is used to predict the
reliability of the component system of an SoS in the near future. It aims to find errors and correct them in
time so as to ensure that the SoS can run continuously and smoothly. To tackle the reliability prediction
problem of component system in a dynamic and uncertain environment, the paper integrates Maximum
Entropy Markov Model (MEMM) with time series motifs to achieve a new prediction model (m_MEMM),
which is referred to as motifs-based MEMM. Extensive experiments are conducted to demonstrate the
effectiveness and accuracy of the proposed approach.

© 2019 Elsevier Inc. All rights reserved.

1. Introduction

As users’ requirements on software systems’ functionalities
have become increasingly complex and diversified, a tightly cou-
pled software development process is difficult to adapt quickly to
the changes demanded by the market and consumers. System of
Systems (SoS) can effectively solve the above problem as it treats
a system as a service and integrates a number of component sys-
tems into a new one through service composition. As an emerging
way to build large-scale complex softwares, SoS has attracted wide
attention in academia and industry (Tekinerdogan and Erata, 2017;
Hall et al., 2016; Buscarino et al., 2018).

In an SoS built from service composition, component systems
typically run in a complex and dynamic environment. Furthermore,
they are distributed and independent of each other. Therefore,
careful attention should be given to the collaboration and coordi-
nation among component systems in conjunction to the monitor-
ing and quality assurance of the entire SoS. Due to the complexity
of the internal running state and external environment of the
component systems, their performances may fluctuate at any time,
which will affect the performance of the entire SoS. Therefore,
quality assurance of the entire SoS is particularly challenging.
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Online reliability prediction can help ensure an SoS to continu-
ously run in a healthy state. In particular, it predicts the reliability
of the component systems in the near future and the prediction
result can be used to prevent and correct mistakes/errors in time.
However, due to the complex running environment of the compo-
nent systems along with their internal running status, it is hard to
detect obvious regularities when an error occurs. In general, this
prediction problem faces the following challenges:

1. It lacks obvious regularities when the component systems fail.
The state change of the system is usually random and uncer-
tain.

2. User activities may lead to volatile behaviors of the system. For
example, when a sale promotion is ongoing, there will be a
large number of users accessing the system in a short period
of time. The system will be under enormous pressure and its
performance will be affected.

3. There are limited system parameters that can be used to per-
form detailed system analysis. Because the component systems
are running and maintained separately, it is difficult to ob-
tain hardware layer parameters (such as memory, CPU, network,
etc.). On the other hand, application layer parameters, such as
throughput and response time, can be conveniently collected
through client calls to the component systems.
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Table 1
Notations.
SoS System of Systems
API Application Program Interface
QoS Quality of Service
SVM Support Vector Machine
AMF Adaptive Matrix Factorization
HMM Hidden Markov Model
MEMM Maximum Entropy Markov Model
m_MEMM  motifs-based Maximum Entropy Markov Model
CPD Conditional Probability Distribution
GIS Generalized Iterative Scaling
N Improved Iterative Scaling
AVHR Average Value of Historical Reliability
BR Bayes’ Rules
Reg Regression

The existing online prediction techniques, such as Bayesian
prediction based on conditional probability (Csenki, 1990),
non-parametric prediction models (Pfefferman and Cernuschi-
Frias, 2002), curve fitting method (Andrzejak and Silva, 2007),
semi-Markov models (Salfner, 2006), component interaction graphs
(Kiciman and Fox, 2005), SVM (Hoffmann et al., 2006; 2007), and
collaborative filtering (Zheng and Lyu, 2010; Yu, 2014), can not
fully cope with the complexity of the running environment of an
SoS, the uncertainty of the component systems, and the uncertain
characteristics of the error events. Most of these online error pre-
diction methods can only model error events that satisfy the Pois-
son distribution. As for reliability time series prediction problems
of uncertain error events, these methods still lack sufficient sup-
port.

The paper proposes an online reliability prediction method
based on a probability graph model—Maximum Entropy Markov
Model (MEMM). The proposed prediction model, referred to as
m_MEMM, integrates MEMM with time series motifs. The model
will be trained by the historical system parameters of the compo-
nent systems, and then the reliability prediction of the component
system can be achieved.

The remainder of this paper is organized as follows.
Section 2 gives an overview of related work. Section 3 presents
some preliminaries about prediction model, including Hidden
Markov Model, Maximum Entropy Model, and Maximum Entropy
Markov Model. Section 4 introduces the definition of reliability
and the concept of time series. It also formulates the research
problem. In Section 5, the motifs-based Maximum Entropy Model
is proposed for reliability prediction. In Section 6, extensive ex-
periments are conducted to verify the correctness and accuracy of
the prediction model. Section 7 concludes the paper and identifies
some important future work. Table 1 shows the major notations
used in this paper.

2. Related work

Reliability prediction has received significant attention from
multiple communities, including software engineering and service
computing. Zheng and Lyu (2010) developed a reliability prediction
method for service systems. Collaborative filtering was adopted to
achieve the prediction purpose by using the historical user-service
interactions. Specifically, performance parameters of services were
collected by calling services. The probability that the service calls
fail is recorded. Finally, reliability is calculated as the average error
probability of the same service with multiple users over a period
of time. In this paper, we follow a similar approach to collect per-
formance parameters. Zhu et al. (2014) proposed a QoS prediction
method based on Adaptive Matrix Factorization (AMF) in order to
make adaptive decisions in a timely and accurate manner and pre-
dict effectively the QoS values for component services.

The Bayesian predicting method (Csenki, 1990) is simple and
practical because it predicts the error probability of future mis-
takes through historical mistakes. However, it only supports error
events that follow Poisson distribution, making it difficult to deal
with dynamic and uncertain error events. The semi-Markov model-
based prediction method (Vaidyanathan and Trivedi, 1999) esti-
mates the system resource consumption rate through the load, and
then predicts the system’s future errors. This method only consid-
ers the impact of the load on the system errors, and ignores other
potential factors for errors. The prediction method based on regres-
sion analysis (Andrzejak and Silva, 2007) is to use the historical
reliability data of the system to fit the reliability trend, and then
perform the prediction of future system reliability. However, this
curve fitting method is difficult to deal with the prediction of ran-
dom and uncertain error events.

Amin et al. (2012b, 2012a, 2013) carried out system reliabil-
ity prediction from the perspective of time series, and proposed
a statistical time series model. It is a forward prediction where
the prediction of the current step relies on the result of the pre-
vious step. This may lead to cumulative errors so that it is diffi-
cult to cope with the online reliability time series predictions stud-
ied by this paper. Cheung (2008) used the Markov chain to model
the dynamic behaviors of traditional software components. They
analyzed the execution process of the components, calculated the
probability of behavior transition, and then obtained the reliability
of software components. This prediction method does not analyze
component behavioral characteristics, leading to a poor prediction
accuracy. Silic et al. (2013, 2014, 2015) proposed a clustering-based
prediction method that used data about users, services, and envi-
ronment to find services similar to the one to be predicted. They
considered these services’ reliability as the ultimate prediction re-
sult. This method is based on the historical reliability of other ser-
vices, which may not lead to accurate prediction result.

Since the hardware layer parameters of the component systems
are difficult to obtain, this paper collects application layer param-
eters by invoking the component systems. These parameters are
then used to build a prediction model that combines the Maxi-
mum Entropy Markov Model with time series motifs. The proposed
model is able to deal with the dynamic and uncertain environment
of component systems and make accurate online reliability predic-
tion as demonstrated through our experiments.

3. Preliminaries

In this section, we introduce the Maximum Entropy Markov
Model, which is a probabilistic graph model for time-series vari-
ables. It combines the advantages of Hidden Markov Model and
Maximum Entropy Model, both of which will be briefly described.

3.1. Hidden Markov Model

The Hidden Markov Model (HMM) (Baum et al., 1970; Baum
and Petrie, 1966) is an extension of the Markov process. While
its states cannot be directly observed, their distribution can be in-
ferred from observations. An HMM is a finite model that describes
the probability distribution between states and observations. It is
commonly used in many applications including natural language
processing and speech recognition.

Definition 1 (Hidden Markov Model). A Hidden Markov Model can
be defined as a triplet HMM =< P, A, B >, where

P represents the probability distribution of the initial state;
* A is the state transition matrix, A = [a;;], where a;; is the prob-
ability of transition from state g; to state a;;
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Fig. 1. Hidden Markov Model.

e B is the observation distribution matrix, B = [b;,], where by,
means that for the g; state, the probability of the k observation
is bik'

A typical HMM is shown in Fig. 1. It has three hidden states
Y1, Y2, and Y3 and their transition probabilities are given by aj.
Each hidden state has three visible states: X;, Xy, and X3, and they
are observed by the probability b;. Both matrices A and B can
be learned from sample data. In fact, an HMM can be established
based on two basic assumptions:

o First-order Markov assumption: The current state is only re-
lated to the previous state and has nothing to do with the ear-
lier state.

« Observation independence assumption: The current observa-
tions are only related to the current state and have nothing to
do with other states.

Many real-world applications do not meet these two assump-
tions, leading to poor modeling accuracy of an HMM. More discus-
sions will be given in Section 3.3.

3.2. Maximum Entropy Model

Before introducing the Maximum Entropy Model, we first pro-
vide a definition of entropy.

3.2.1. Concept of entropy
Information entropy is used to represent the measure of uncer-
tainty. The greater the uncertainty, the greater the entropy.

Definition 2 (Entropy). Given a random variable X, its probability
distribution is P(x), and its entropy is defined as:

H(X) = —ZxP(x)logP(x) (1)

For the two random variables X and Y, their joint entropy is
defined as:

HX,Y) = —-XP(x,y)logP(x,y) (2)

In the formula 2, P(x, y) is the joint probability distribution of ran-
dom variables X and Y. According to the joint entropy, the condi-
tional entropy for X and Y is defined as follows:

H(Y|X) = H(X.Y) — H(X) = —XP(x.y)logP(y|x) 3)

3.2.2. Mathematical model of maximum entropy

Assume there is a classification model P(Y|X), where X repre-
sents the input data and Y represents the output data. There is a
large amount of sample data D = {(x;,y;)|1 <i <n}, and the em-
pirical joint probability distribution P(x,y) of X and Y and the em-
pirical distribution P(x) of X can be computed easily.

P(x.y)

_ number(x,y)
- n

(4)

B(x) = number(x)

(5)
The number(x, y) and number(x) in the formulas 4 and 5 indicate
the total number of occurrences of the samples (x, y) and (x) in the
sample set D, respectively.

In the Maximum Entropy Model, there is a two-valued feature
function describing a kind of association of x and y, or certain
rules. Its definition is as follows:

_J1 xand y have some correlations
fxy)= {0 Others (6)

The empirical expectation of the feature function is E;(f), and the
true expectation of the feature function is E,(f). They are defined
as follows:

Es(f) =) Px.y)f(x.y) (7)

Ep(f) =) PX)PYIX)f(x,y) (8)

The Maximum Entropy Model can be learned from the training
set. We need to make an assumption on these two expectations
(see formula 9). If the total number of feature functions is m, there
are m constraints.

E;j(fo) =Ep(fa)(@=1,2,....m) (9)

The conditional entropy of the Maximum Entropy Model P(Y|X)
is:

H(P) = =) PX)P(ylx)log P(y|x) (10)

The goal of the entire model is to calculate the conditional proba-
bility P(y|x) when the conditional entropy H(P) is maximum under
the constraint condition (formula 9).

The Maximum Entropy Model problem can be transformed into
an optimization problem with constraints, which can be solved us-
ing the Lagrangian multiplier method. The result is given by for-
mula 11.

P,(y|x) = eXP(Zanl wafa(X,¥))

Ny (%)

Ny (%) = ZEXP<Zwafa(XsY)> (11)
y a=1

In formula 11, w, is the weight of the ath feature function, and
Ny (x) is the Normalization Function.

The Maximum Entropy Model is a model with maximum en-
tropy under all constraints, and the uncertain part of the model
is set to equal probability (ie, the maximum entropy), thereby re-
ducing the risk. Because there is no independence assumption like
HMM, the selection of features in the Maximum Entropy Model
will not be restricted. The complex and related features can be
flexibly selected as constraints, and the fitness of the model to the
unknown data can be adjusted by the number of constraints.
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Fig. 3. Maximum Entropy Markov Model.

3.3. Maximum Entropy Markov Model

The Maximum Entropy Markov Model (MEMM) is an extension
of an HMM where the Maximum Entropy Model is introduced to
combine the advantages of the two models. In the MEMM, a prob-
ability distribution P(y|y’, x) is used to replace the two probability
distributions in the Hidden Markov Model, namely the state transi-
tion probability distribution P(y|y’) and the observation probability
distribution P(x|y). Where P(y|y’, x) means the probability that the
current state is y under the conditions that the previous state is y’
and the observed value is x.

Figs. 2 and 3 show HMM and MEMM, respectively. Their key
difference lies in the direction between the hidden states and
the visible states. In the HMM, because of its observation inde-
pendence assumption that the observation of the current state is
only related to the current state and has nothing to do with the
other states, it can be seen from the figure that each observed
value of x only comes from a state y. In addition, the two ar-
rows in Fig. 2 represent two conditional probabilities, namely, the
state transition probability and the observation probability. How-
ever, these two conditional probabilities are not the final objective
function. The objective function needs to be transformed into a
posterior probability through the Bayesian formula. In the MEMM,
only one conditional probability distribution P(y|y’, x) is needed to
describe the entire model, and the conditional probability distri-
bution is also the final objective function. It can be seen from the
arrow that the current observation and the previous state jointly
determine the current state. Conditional probability P(y|y’, x) re-
ferred to as P, (y|x) in the following discussion.

HMM follows the Markov property to be able to describe the
transition relationship among different states. Due to the observa-
tion independence assumption, it is not possible to select features
flexibly. On the contrary, the Maximum Entropy Model can flexibly
select features and solve the optimal conditional probability P(y|x)
based on the known empirical distribution. However, it cannot cap-
ture the relationship among states due to lack of Markov chain like
HMM. Therefore, the MEMM combines an HMM and a Maximum
Entropy Model to form a unified generative model to take full ad-

vantage of the two models and make up for each other’s shortcom-
ings.

An MEMM uses a state-observation transition function to re-
place the separated state and observation functions in an HMM.
This state-observation transition function can model observations
and the transitions between states. Like the Maximum Entropy
Model, the definition of the feature function in the MEMM is un-
changed (see the formula 6), but its two parameters have a spe-
cific meaning: x represents the observed value, and y represents
the current state.

Consider an observation sequence (X1, X5, ..., Xn) and the corre-
sponding sequence of states (yi,Ys,...,¥n). The empirical expecta-
tion of a feature function is E;(f), which is calculated as:

.1 n
E;(f) = HZf(Xi’Yi) (12)
i=1

We can calculate the true expectation E,(f) of the feature func-
tion using the estimated conditional probability:

ZZP lx) f(xi,¥) (13)

i=1

Ex(f) =

The Maximum Entropy Model considers the two expectations
to be equal, as given by the formula 14,

Eﬁ(fa)ZEp(fu)(GZ1v2,-~~,m) (14)
where m is the total number of feature functions. Finally, an em-
pirical distribution Py, , (y;|x;) can be available, which means the
probability that the current state is y; when the previous state of
the current state is y;_;, and the current observation is x;.

exp(Xalq wafa(Xi, ¥i))

By ilx) = No (%i, ¥i-1)
No (X, yi-1) = ZeXp Zwafa(xh%) (15)
a=1

where i =1,2,...,n, wq is the weight of the ath feature function,
and N, (x;, ¥;_1) is a normalization function. Note that each feature
function has a weight which is determined based on the maximum
entropy principle, so that we can get the optimal conditional prob-
ability Py, , (ilx;) under the constraints.

4. Problem formulation

Due to the randomness and uncertainty of system errors, we
consider that the running status of the system in the near future
is only related to the status of the latest period of time, and has
nothing to do with the earlier running status. Therefore, we need
an online prediction technology to predict the reliability of the sys-
tem in the future by observing the current system running sta-
tus (current application layer parameters of the system) with the
trained model.



184 H. Wang, H. Fei and Q. Yu et al./The Journal of Systems and Software 151 (2019) 180-193

history

leading time

window time

future

prediciton period

A
A

Ald

\J

Alp

t (current time)

\ 4

Fig. 4. Prediction period.

As shown in Fig. 4, At, is the window time, which corresponds
to the historical running status of the component systems. We can
use this period of time to train the model and learn its parameters.
At; is the leading time, which is the time when the client recently
invoked the component systems. It starts at the current time t and
ends at the end of the call. At is a valid prediction period, which
starts at the time point when the leading time ends. Our goal is to
predict the reliability of the component system in the near future
(Atp) based on the behaviors of the component systems during the
recent time (At;) using a prediction model which is trained by his-
torical data in Aty.

More specifically, we are looking for a function f such that

B = [ Dy D) (16)

where P is the reliability time series of the component system in
the near future t, P, is the reliability time series of the compo-
nent system at current t/, D,; is the response time series of the
client-invoked component systems, and D; is the throughput se-
ries of component systems. The time t and t’ are two adjacent time
segments. It is worth to note that the reliability P of the compo-
nent system to be predicted is not for a specific point but a time
period. Therefore, it is a time series prediction problem.

The concept of reliability may be interpreted differently
in diverse disciplines. For software engineering, the definition
of reliability given by the ISO/IEC/IEEE International Standard
(ISO/IEC/IEEE 24765:2010, 2010) consists of two descriptions: (1)
Reliability is the ability of a system or component to perform spec-
ified functions for a period of time under specified conditions; (2)
The ability of a software product to maintain a certain level of per-
formance under certain conditions. This definition is widely used
in the measurement of the reliability of software systems, and the
same applies to component systems of service-based SoS. However,
this definition only gives a qualitative description of reliability, and
a quantitative one is needed for our purpose.

Software system reliability metrics are measured in many
forms, including (1) failure rate, (2) mean time between failures,
(3) mean time to failure, (4) demand failure rate. The component
system of the SoS based on the service composition leads to the
inconspicuous feature of the component system failure due to the
dynamics and uncertainties of the internal state of the system,
the external environment, and the load of the component system.
Therefore, the failure rate, mean time between failures, and mean
time to failure are not suitable for describing the reliability of
such a dynamic and uncertain component system. Demand failure
rate can be used to describe the reliability of a component system
(Brosch et al., 2012; Wang et al., 2017), which means that the sys-
tem does not have a failure at time t, and the probability of system
running failure after t. In this paper, we consider that the demand
fails in two cases. First, the system gives a wrong response. For ex-
ample, due to a problem with the internal state of the system, it
gives an error response, or no response. Second, system response
time is too long. For example, due to the external network envi-
ronment of the system, the system response times out.

According to Brosch et al. (2012) and Wang et al. (2017), we
give a formal definition of the reliability of the component system:

Definition 3 (Component System Reliability). Let § be a certain pe-
riod, and tg be any point in the period §. The component system is
called multiple times during this period, and the number of failed
calls is Nerror. The number of failed calls per unit time is denoted
as i, and the reliability is defined as:

r@§) =e*
w= Ne(;ror (]7)

Note that the definition of the reliability of the component sys-
tem is described by an exponential function. When the number of
failed calls per unit time is mu = 0, the reliability is r(§) = e # =
e~0 =1 indicates that the component system is running normally
and reliable during this time. When the number of failed calls per
unit time is mu — oo,

r(d) = mluim e*=0

indicates that some kind of fault or error occurs in the operation
within the time for the component system, leading to a sharp de-
cline in reliability.

Based on Definition 3, let’s consider a certain period AT for a
component system. We divide AT into n contiguously equal time
slices, 81, 39, ..., 8p. For each time slice to call the component sys-
tem, the reliability on each time slice is calculated according to the
formula 17, and finally the reliability time series on AT is obtained,
Prys Pry. - -+ Pry. As shown in Fig. 5, §; = 200 ms, Y i ; §; = 2s, the
figure reflects the reliability time series of a component system in
2s, B = (0.9,0.8,1,0.8,0.7,0.9,1,0.8,0.9,1).

A service-based SoS integrates multiple existing component
systems into a larger system through service composition to meet
more complex user requirements. Each component system encap-
sulates the functions into a service, such as a SOAP-based service
or a RESTful-based service. Through the service composition tech-
nology, numerous services are integrated to form a fully functional
and powerful SoS. In order to ensure the overall running of the
SoS, it is necessary to ensure that each component system (service)
can run reliably. This type of reliability is an online one which de-
scribes the running status of component systems in the near fu-
ture. Therefore, this paper needs to predict this online reliability of
the component system.

Because different users have different lengths of call time for
the component system, the requirements for the continuous and
stable running of the component system are not the same. In order
to ensure that the predicted results can adapt to different applica-
tion requirements, this article predicts the online reliability time
series of component systems. The following is the definition of on-
line reliability time series:

Definition 4 (Online Reliability Time Series). Let At, be the ef-
fective prediction period (see the Fig. 4), divide At, into n equal
continuous time slices, namely 81, 85, ..., 8,. We define the online
reliability time series (P) of the component system as a n dimen-
sional vector, ie., P = (Pry+ Prys -, Dry) Where py, is the reliabil-
ity of the component system during the slice §;, i.e., pr, = r(6;).
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Fig. 5. Reliability time series.

In general, the same component system has different running
states at different times, showing different reliability time series.
When the same component system is invoked by different clients,
it may deliver different performance. As a result, its online reliabil-
ity time series will be different. Therefore, this paper is concerned
with the reliability prediction with regard to a specified client for
a given component system.

5. Prediction method

In this section, we describe in detail the motifs-based Maxi-
mum Entropy Markov Model (m_MEMM) for online reliability time
series prediction of component systems. The system parameters
of the component system including the response time, through-
put and historical reliability are obtained through client-side ser-
vice invocations. As shown in Fig. 6, we use time series motifs to
represent each node in the m_MEMM. In the figure, Dy and D;
are the response time series motifs and the throughput time series
motifs, respectively, which are observations that describe the visi-
ble state in the MEMM. P; is the reliability time series motifs used
to describe the hidden state in MEMM. The reliability time series
motifs describe the running state of a component system, and this

CPD

Fig. 6. Motifs-based Maximum Entropy Markov Model.

running state is not observable, so we consider it is reasonable to
use it to describe the hidden state in MEMM.

The time series motifs refer to the feature values in the histori-
cal system parameters of the component system. Specifically, con-
sidering the long-term historical system parameters of the compo-
nent system, this period can be divided into a number of consecu-
tive equal-length time slices, so that multiple time series of histor-
ical parameters of component system can be obtained. Feature val-
ues can be found through unsupervised learning (e.g, clustering),
which are referred to as time series motifs. The formal definition is
as follows:

Definition 5 (Time Series Motifs). Let D be a long-term system
parameter of the component system. Divide this system param-
eter into n equal-length continuous time series, denoted as D =
(Dy, Dy, ...,Dy). By clustering the time series of multiple sys-
tem parameters, we get k cluster center points. These center
points are called time series motifs on D and are denoted as D =
(D1,Dy,....Dy).

Fig. 7 shows a basic unit of a MEMM model, where the red part
indicates the reliability time series motifs of the component sys-
tems within the effective prediction time Atp. ﬁr/ Tepresents the
reliability time series motifs for the previous state, D;; and D; rep-
resents the time series motifs of the observation parameters of the
recent time period At;. As indicated by the arrow in the figure,
13;/, 5n and 5t jointly determine the Conditional Probability Distri-
bution (CPD) of the time series motifs in the effective prediction
period. Below is the definition of m_MEMM:

Definition 6 (m_MEMM). A motifs-based Maximum Entropy
Markov Model (m_MEMM) can be defined as a four-tuple <H, H’,
0, CPD >, where each node in the model is the time series motifs
of the corresponding parameters. More specifically,

e H is the current state node.

e H' is the previous node of the current state node.

e O is the set of observations in the current state, that is, the
collection of system parameters time series motifs.

e CPD is the Conditional Probability Distribution (CPD) satisfying
maximum entropy, which describes the probability P(H|H’, O)
where the current state is H when the observation in the cur-
rent state is O, and the previous state is H'.
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Fig. 7. A base unit of m_MMEM.

The m_MEMM model combines the advantages of HMM and
Maximum Entropy Model, which allows it to capture the transition
relationship among hidden states while using a conditional proba-
bility distribution to meet the maximum entropy.

The final exponential distribution in MEMM is P, | (y;lx;) (see
the formula 15). After introducing motifs, the variables x and y
have new meanings. The variable x represents the response time
series motifs ﬁrt and the throughput time series motifs 5r. and the
variable y represents the reliability time series motifs B.. Then, the
expression for each conditional probability distribution CPD is:

exp(X™ , @afa(Drt,, Dy, B))

P(B, |B,,.Dy,. Dy) = AL
( T; | Tiigs Urt; t,) Nw(Drtl,Dt,- Pr,,l)

No(Dr. Dy, P,)) = d_exp Zwafa(Dn, D. B,) (18)

P a=1

i

Based on the m_MEMM model as described above, online reli-
ability prediction of component systems can be achieved through
the following steps:

1. Data collection and preprocessing, which divides the histori-
cal system parameters of the collected component system into
equal time series.

2. The time series motifs computation, which takes the time series
of the well-divided component system parameters as input, and
searches for the time series motifs of historical system param-
eters through clustering.

3. Marking time series motifs, which collects component system
parameters of the leading time in real time, and calculates the
nearest time series motifs.

4. Parameter estimation, which estimates the motifs-based Max-
imum Entropy Markov Model parameters through the training
of the historical system parameters of the component system.

5. Reliability prediction, which predicts the reliability of the com-
ponent system in the near future.

5.1. Data collection and preprocessing

In this step, the collected system parameters need to be pre-
processed so that they can be used for model training. Historical
system parameter data of the component system can be collected
through client-side invocations of the component system. These

Observation
parameters

T timeline

Reliability
parameters

Fig. 8. A schematic diagram of time series division of historical component system
parameters.

parameters include response time, throughput, and historical re-
liability. We divide long-term historical system parameters of the
component system into multiple equal-length contiguous time se-
ries, as shown in Fig. 8.

We divide the historical parameters of the component system
into two types: one is the observation parameter, which means
that the component system parameters can be directly obtained,
including the response time and throughput parameters. They cor-
respond to the visible state in the m_MEMM. The other type is
the reliability parameter, which indicates the reliability of the com-
ponent system. It describes the running status of the component
system and is the hidden state in the m_MEMM. The division of
these two types of parameters differs by one leading time At; (see
Fig. 4).

According to the division method shown in Fig. 8, we will
get the response time series Dy, the throughput time series D,
and the reliability time series P.. According to the definition of
m_MEMM (see Definition 6), a sample for training the model
should contain four sets of data: response time series D (i),
throughput time series D (i), reliability time series of current time
P-(i) and reliability time series of previous time P.(i — 1), so it is
denoted as sample = (D (i), D (i), P-(i), P-(i — 1)).

5.2. Time series motifs computation

The component system parameter time series motifs represent
the feature values of the system parameter time series. Motifs are
found by clustering a large number of system parameter time se-
ries. The center points of the clustering are called as the time se-
ries motifs. The m_MEMM model uses the time series motifs to
represent each node of the model. For this purpose, the sample
data obtained in the first step needs to be clustered separately. We
need cluster the time series Dy, D;, P.

In this paper, we use the K-Means algorithm for time series
clustering. K-Means is a classical clustering algorithm with good ef-
ficiency and scalability. In order to measure the similarity between
data, Euclidean distance is used to calculate the distance between
two time series (see the formula 19).

D1, D2l = | Y (D1 (i) — Dy (i))? (19)
i1

where D1 and D, represent two different system parameter time
series, Dy (i) represents the i-th dimension of time series Dy, and
n represents the total dimension.

Here we take the reliability time series of the component sys-
tem P as an example. After running the K-Means clustering algo-
rithm, we will get k clusters (center points), which are denoted as:

P=(P.P,.....P) (20)
5.3. Marking time series motifs

At this step, we need to mark the time series of the system
parameters. Marking refers to computing a distance between D and
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k time series motifs. We mark it with the nearest motif to the time
series. It can be denoted as:

D— argmin{||D,D;||} i=1,2,....k (21)
D;

The time series motifs reflect the characteristics of the time se-
ries of the component system. The time series of each time slice
can be marked by the nearest time series motifs. For example, the
following two time series motifs, 51 and 52 are obtained in the
sample data:

D; = (0.72, 0.85)
D, = (0.63, 0.88) (22)

There is a time series D= (0.66,0.78), and we calculate the Eu-
clidean distance from D; and D, as:

|D, D; || = v/(0.66 — 0.72)2 + (0.78 — 0.85)2 = 0.0922
|D. Dy || = v/(0.66 — 0.63)2 + (0.78 — 0.88)2 = 0.1044 (23)

From the calculation of the formula 23, it can be concluded that
the time series D is nearer to Dl, then D is marked as D1, which
is written as D — Dl

By marking the time series divided in the first step, we will
get the response time series motifs D¢, the throughput time series
motifs 5[, and reliability time series motifs 13;

5.4. Parameter estimation

At this step, we will train the m_MEMM model through a large
number of component system parameter data and estimate the pa-
rameters of the model. Specifically, we need to calculate condi-
tional probability distribution P(ﬁri |13r1.71 , 5”1., 5[i) (See the formula
18), i.e., the weight of the feature function wq, whose value is de-
termined according to the principle of maximum entropy.

In the reliability prediction of the component system, we need
to redefine the feature function f (see the formula 24).

A A 1y )1 <5ni,13;i>0r<5t[,13;>
fiDry. Dy By = {0 Sore (24)

where < 5”,.,13”. > means the time series motifs Err,- and the time
series motifs I?r,. appear together, or in a sample. In particular, note
that the two motifs have the same index i. < 5&* 13r1. > has the same
meaning as above.

Suppose we record the number of corresponding response time
series motifs, throughput time series motifs, and reliability time
series motifs as k, and the number of feature functions f;(-) as M.
According to the definition of the feature function it can be con-
cluded that M = k.

Note that ﬁrt,- and ﬁt,- are observation parameter data (see
Fig. 8), describing the visible parameters of the component system;
The P, belongs to the reliability parameter data and describes the
running status of the component system. The definition of this fea-
ture function clearly reflects the causal relationship between the
two sets of parameters. In the following text, for ease of writing,
feature function fa(ﬁmﬁti, ﬁi) is written as fy( - ).

The Maximum Entropy Markov Model is essentially an exten-
sion of the Maximum Entropy Model. The commonly used algo-
rithms for solving the Maximum Entropy Model are the general-
ized iterative algorithm (Darroch and Ratcliff, 1972) (Generalized
Iterative Scaling, GIS) and the improved iteration scale algorithm
(Berger et al., 1996) (Improved Iterative Scaling, IIS). Because GIS
algorithm needs to iterate many times to converge and has low ef-
ficiency, this paper uses IIS algorithm to solve the model m_MEMM
proposed in this paper. The specific solution steps mainly include
the following steps:

1. calculate the empirical expectation of each feature function
1 n
- - . 25
o .2_1 fa() (25)

2. compute the true expectation Eéj) for each feature function,
where j represents the jth iteration.

EY = ZZP V1x) fa() (26)
i=1
Among them, x represents the observation data, namely the re-
sponse time series motifs and the throughput time series mo-
tifs, and y represents the reliability parameter, i.e., the reliabil-
ity time series motifs.
3. solve the equation about Awq:

M
Zﬁ(x)py’(ylx)ﬂl(‘)exl)(AwaZfa(')) =k (27)
Xy

Since M | f,(-) is not a constant, we use Newton’s method to
solve and let g(wq) = 0 denoted as Eq. (27).

g(Aa")
g(ha”)
4. repeat steps 2 and 3. When |Aw, Aw,(]”)l is small enough,

the algorithm is considered as converged. For a detailed algo-
rithm description, the Algorithm 1 shows all steps.

Aw (n+l)

=AW — (28)

(n+1)

Algorithm 1: m_MEMM model training.

1 input: component system history parameters: response time
series motifs 5r[, throughput time series motifs 5[. and
component system history reliability time series motifs J2)

2 output: m_MEMM model parameter wq

1: Set a),(lo) to an initial value of 1

2: repeat

3:  for each feature function do

4: compute empirical expectation of feature function
B = %Z?:l fa(')

5: repeat

6: for each iteration do

In the j-th iteration, calculate the true expectation
of each feature function using the current weight
Ao B = ¥ Y5 s, (BIDr. DOF: ()

8: Solve the equation about Aw, (see formula 27),
According to the formula 28, the weight of the

(n+ 1)-th iteration can be obtained: Aw("”)
Aw™
AV — Al — g(Awy ")
g (Aw”)
9: end for
10: until The difference between Aw{™ and Aw{™ is

small enough
11:  end for
12: until All feature function weights are solved

5.5. Reliability prediction

At this step, we will collect the relevant parameter data of the
component systems of the recent time and predict the reliability
in future.

1. Collect observations, including the current time component sys-
tem reliability time series P, system’s response time series Dy
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and the throughput time series D; in adjacent time period At
(see Fig. 4). Where P is obtained by invoking the component
system and referring to the Definition 3.

2. Mark time series motifs, referring to the Section 5.3, the time
series P/, Dy and D; for time series motifs will be marked. They
are denoted as:

L4 ;/ — 13;/
o ﬁrt g 5rt
L4 5[ g 5{

3. Calculate the conditional probability. Specifically, for each re-
liability time series motif P, we substitute the time series
motifs obtained in second step into the formula 24, compute
feature function values, and then take the calculation result
into the formula 18 to calculate the conditional probability
P(ﬁri |I3,H , ﬁrtp Efi)- Where 13;,— is a certain reliability time series
within the valid prediction period of the component system in
the time series motifs finding step (see Section 5.2).

4, Analyse the prediction result. Comparing the calculation result
in the third step, we use the reliability time series motif with
the largest condition probability ﬁe as the final predicted on-
line reliability time series (), i.e., P = ﬁrg.

6. Experiment and analysis

In this section, we conduct a series of experiments to assess the
proposed prediction model and method. We first report the predic-
tion result and compare it with other competitive models. We then
study the impact of different factors, including the number of mo-
tifs, the size of the dataset, and the length of the time series. At
last, we analyze the computational complexity.

6.1. Experiment settings

We use the two datasets, 24H and 1M, which were created in
Wang et al. (2017). The performance parameters were collected
through client-side service invocations. These selected services are
commonly used services. The 24H dataset was collected by invok-
ing the services for a day and the 1M dataset consists of perfor-
mance parameters for a month. The prediction accuracy is mea-
sured using two metrics, which are defined as follows:

21{\1:1 Z?ﬂ |ﬁj - Fj|
N.-A

N S g )2
RMSE = \/ it Z’T\}Fij i) (30)

where N is the number of experiments performed, and p'is the on-
line reliability time series of the component systems predicted by
the experiment. 7 is the real reliability time series of the compo-
nent system, A is the length of the time series, which is the di-
mension of p.

To demonstrate the effectiveness of the proposed approach, we
compare it with a number of representative models: Average Value
of Historical Reliability (Zheng and Lyu, 2010) (AVHR), Bayesian
Rule based prediction (Csenki, 1990) (BR), and Regression Analysis
based prediction (Andrzejak and Silva, 2007) (Reg). These models
are described below:

MAE = (29)

1. AVHR uses collaborative filtering to make predictions and uses
the average of component system reliability as the prediction
result. In this paper, we take the average of historical reliability
of the component system as the predicted value of each point
in the online reliability time series.

2. BR predicts the probability distribution of the next error
through the past error behaviors of the software system, and
can effectively describe the evolution of the running state of

the software system. In this paper, the historical reliability time
series of component systems are clustered to obtain k reliability
time series motifs {I?rl.|i =1,2,...,k}. Based on this step, the pa-
per researches and analyzes the transition relationship of these
k reliability time series motifs. Then, we collect the reliability
time series O, for the recent time of the component system and
mark the time series motifs (see Section 5.3), which is denoted
as O. Finally, the 13;1. with the maximum conditional probabil-
ity P(ﬁri|6r) is considered as the online reliability time series of
the component system.

3. Regression analysis (Reg) is a commonly used prediction
method. In Andrzejak and Silva (2007), the least squares
method is used to perform polynomial curve fitting. The pre-
diction model is designed as:

VY=a+apr+a (15r)2 (31)

where p; is the recent time period reliability time series of the
component system. The loss function is Z{L (F; — ¥;)?, T is the
actual reliability time series, and A is the length of the time se-
ries. The model parameters ag, a; and a, are trained by histori-
cal reliability time series data of the component system. Finally,
we take the reliability of the recent period component system
into the model to compute y, and consider y as the predic-
tion result of the online reliability time series of the component
system.

All experiments are conducted using a Windows 10 64-bit op-
erating system, Intel(R) Core(TM) i7-6700 CPU 3.41GHz, 8GB of
memory.

6.2. Results and analysis

In this section, we present the prediction performance, study
the impact of different factors and then analyze the computational
complexity of the proposed method.

6.2.1. Prediction performance

The prediction results of all the models are summarized in
Tables 2-5. In these tables, N represents the number of predictions
and k represents the number of time series motifs. The number of
predictions for each method is 10, 20, 50, 100, 200, so we get 5

Table 2

MAE (k = 20).
Method N=10 N=20 N=50 N=100 N=200
m_MEMM  0.031 0.030 0.028 0.027 0.027
AVHR 0.095 0.091 0.085 0.093 0.087
BR 0.068 0.064 0.061 0.059 0.058
Reg 0.058 0.056 0.053 0.048 0.051

Table 3

RMSE (k = 20).
Method N=1 N=20 N=50 N=100 N =200
m_MEMM  0.064 0.057 0.056 0.054 0.054
AVHR 0.213 0.202 0.191 0.193 0.185
BR 0.137 0.121 0.112 0.108 0.107
Reg 0.112 0.098 0.097 0.093 0.094

Table 4

MAE (k = 30).
Method N=10 N=20 N=50 N=100 N =200
m_MEMM  0.030 0.030 0.027 0.026 0.026
AVHR 0.095 0.091 0.085 0.093 0.087
BR 0.065 0.063 0.061 0.058 0.058
Reg 0.058 0.056 0.053 0.048 0.051
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Table 5 from 5 to 40. For each reliability prediction method, we set the
RMSE (k = 30). number of experiments N as 50 and 100 and observe the MAE and
Method N=10 N=20 N=50 N=100 N =200 RMSE of all prediction methods. The experimental results are given
m_MEMM 0062 0057 0055 0053 0.053 in Figs. 9 and 10. )
AVHR 0.213 0.202 0.191 0.193 0.185 As shown in Figs. 9 and 10, the number of motifs does not
BR 0.136 0121 0112 0.107 0.106 affect the accuracy of AVHR and Reg. For m_MEMM and BR, the
Reg 0112 0098 0097  0.093 0.094 change in the number of motifs affects the accuracy of the pre-

kinds of experimental results. The numbers of time series motifs
are 20 and 30, respectively.

It can be seen that as N increases, the prediction accuracy of
the proposed method m_MEMM and BR is improved. The predic-
tion accuracy of the AVHR and the Reg fluctuates. The reason that
m_MEMM and BR achieve performance is that there are some reg-
ularities in the changes of the system parameter time series mo-
tifs in the component system, and these two methods can cap-
ture these regularities. In general, the proposed m_MEMM model
achieves the best prediction performance, which makes it more
suitable than other three methods for reliability prediction prob-
lems of component systems.

In addition, by comparing Tables 2 and 4 (or Tables 3 and 5),
the number of time series motifs has no impact on AVHR and
Reg prediction, indicating that the prediction results of AVHR and
Reg have nothing to do with the number of time series motifs.
For m_MEMM and BR, the accuracy of the predictions increases
slightly with the increase in the number of time series motifs. In
order to fully study the changes in the prediction results caused by
changes in motifs number, we will discuss the effect of the number
of time series motifs on the results of various prediction methods
in next section.

6.2.2. The effect of number of motifs
In order to study the effect of the number of time series motifs
on the prediction results, we vary the number of time series motifs

diction. Figs. 9 and 10 show that the accuracy of the two predic-
tion methods gradually increase with the increase in the number
of motifs, and the increasing rate slows down and becomes stabi-
lized when the number of motifs reaches 20. In general, by setting
a suitable number of time series motifs, m_MEMM achieves higher
accuracy than the other three methods.

The number of motifs is a parameter to be set in time se-
ries motifs step in the reliability prediction step of the component
system. It represents the k clusters of the clustering algorithm K-
Means and reflects a certain feature of the time series. For the reli-
ability time series motifs, they represent the running states of the
component systems in the m_MEMM prediction model. In other
words, the transition between the reliability time series motifs rep-
resents the transition between the running states of the compo-
nent systems. The number of time series motifs indicates the num-
ber of running states of the component system. For a particular
component system, it may have numerous running states for a long
period of time. When the number of reliability time series motifs
is too small, the model cannot fully describe all the running states
of the component system and the transition relationship between
different states. Thus, it is difficult to give a very good prediction
accuracy. When the number of reliability time series motifs is too
big, the model can describe all the running states of the compo-
nent system and their transition relationship. However, the redun-
dancy of the motifs will cause the model to become complex and
the computational cost will increase. Therefore, a range of approx-
imate motifs number can be selected first and then a fine tuning
can be performed to reach the optimal value.
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6.2.3. The effect of data set size

In this section, we will examine the effect of the dataset size on
the accuracy of the prediction results. Here, we compare and ana-
lyze the experimental results of several prediction methods on the
24H dataset and the 1M dataset. As shown in Fig. 11, we extracted
1000, 1500, 2000, 2500, 3000, 3500, 4000, 4500, and 5000 time
series from the 24H dataset. The model is trained and reliability
prediction is performed after the training.

From Fig. 11, we can see that the accuracy of AVHR, BR, and
Reg is not high at the beginning due to the limited amount of
training data. As the number of time series increases, the accu-
racy of these three methods is continuously improving. When the
number of time series reaches 4000 or so, the accuracy of the
three methods starts to stabilize. The proposed m_MEMM model
achieves a higher prediction accuracy when the number of time
series is small. As the number of time series increases, its pre-
diction accuracy rate shows a small increase. As shown in Fig. 12,
the experimental dataset 1M consists of one month of invocation
data. We divide the dataset into 5-day, 10-day, 15-day, 20-day, 25-
day, and 30-day scale. The results show that as the dataset size

becomes larger, the prediction accuracy of several methods shows
a small increase. In summary, we can conclude that m_MEMM is
less sensitive to the dataset size than the other three prediction
methods. In other words, it does not require a lot of sample data
and has better performance. The reason is that the model com-
bines the Maximum Entropy Model with Hidden Markov Model,
which effectively leverages the advantages of both models. In par-
ticular, the Maximum Entropy Model can give a conditional prob-
ability distribution with maximum entropy for a small amount of
sample data or when information is incomplete, and it sets the un-
certain parts to equal probability (maximum entropy).

6.2.4. The effect of the length of time series

The choice of the length of the time series may also impact the
final prediction result. To explore this effect, we set the length of
the time series to 5, 10, 15, 20, 25 and 30 to examine the ac-
curacy of different prediction methods. The results are shown in
Figs. 13 and 14.

First of all, from the experimental results, with the changes in
the length of time series, the prediction accuracy of AVHR and
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Fig. 16. The effect of time series length on prediction results in different scenarios.

Reg remains unchanged, indicating that the length of the time se-
ries has no effect on the accuracy of the AVHR and Reg predic-
tion methods. Second, m_MEMM and BR show the same trend as
the time series length changes. At the beginning, as the length of
the time series increases, the accuracy of the two prediction meth-
ods gradually improves and then decreases. This is mainly due to
the fact that the length of the time series is too short to fully de-
scribe a running state of the component system at a certain period
of time. It may take several time series of this length to describe
this kind of running state. Too long time series may describe two
or more running states of a component system. These two situa-
tions eventually result in the model being unable to analyze the
conversion relationship between different states of the component
system. Finally, with a suitable time series length, the proposed
m_MEMM model achieves the best prediction accuracy.
Furthermore, to help users select an appropriate length of time
series, we chose three different services in the dataset to simulate
the component systems invoked by different clients, where the

time period selected for each service is 24 hours. These correspond
to three different scenarios to show the effect of length of time
series. Figs. 15 (a), (b), and (c) show the fluctuation of parameters
over a period of time in 24 hours.

The experimental results are given in Fig. 16. As can be seen,
with the increase of the length of time series, the prediction per-
formance improves first and then becomes worse for all three sce-
narios. However, the optimal length of time series in different sce-
narios is different. A detail analysis shows that when the response
time, throughput, and reliability parameters fluctuate with a higher
frequency and larger amplitude, a shorter length of time series
leads to a better prediction accuracy. Otherwise, a longer time se-
ries results in better prediction results. Therefore, if a user invokes
a service with a high change frequency of parameters (e.g., in an
environment with high network fluctuation), a shorter time se-
ries length is preferred. In contrast, if the user is in more stable
network environment, the time series length can be increased ac-
cordingly to obtain better prediction results.
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Fig. 17. Execution time comparison.

Therefore, in practice, the method proposed in this paper
should consider the historical parameter variation regularities of
the component system being invoked. The length of time series
can be adjusted accordingly to obtain optimal prediction accuracy
for online reliability time series prediction.

6.2.5. Computational complexity

The computational complexity of m_MEMM can be analyzed by
considering two parts: model training (collecting system parame-
ters and training the m_MEMM model) and reliability prediction
(performing predictions according to the trained model and the
current time system parameters). Since the training of the model is
an off-line process, the training process has no impact on the com-
putational complexity of the prediction process. Once the train-
ing process is completed, online reliability prediction can be per-
formed, whose computational complexity is mainly related to the
number of motifs.

To analyze the effect of the number of motifs on the compu-
tational complexity of reliability prediction, the 24H dataset was
used with the number of motifs varying from 5 to 40 and the
number of predictions as N = 20. The execution time was com-
pared with other models.

As shown in Fig. 17, the execution time of m_MEMM and BR
increases with the growth of motifs number. In contrast, the ex-
ecution time of AVHR and Reg is almost constant. Among all the
methods, m_MEMM is the slowest but its execution time is still
acceptable for online reliability prediction. Furthermore, it achieves
the highest accuracy, as indicated by Figs. 9 and 10. Therefore,
when a user prefers a faster prediction speed, a small motif num-
ber should be selected considering its approximate linear relation-
ship with the execution time. As a tradeoff, the prediction accuracy
will decrease accordingly.

7. Conclusion and future work

In this paper, we study and analyze the historical system pa-
rameters of component systems of an SoS. The proposed approach
exploits MEMM to model the running evolution of component sys-
tems. MEMM is a combination of a Maximum Entropy Model and
an HMM, which effectively leverages the advantages of both. We
further introduce the time series motifs, and propose a new pre-
diction model (m_MEMM) that can be constructed in five steps:
(1) data collection and preprocessing, (2) time series motifs cal-
culation, (3) marking time series motifs, (4) parameter estimation,
and (5) reliability prediction. We conduct a set of experiments to
study the impact of different factors that affect the prediction ac-
curacy of the model. Comparison with other prediction methods
demonstrates the effectiveness of the proposed approach.

We identify three interesting future directions. Firstly, the
MEMM model integrates two models, where the feature function
is introduced into the Maximum Entropy Model. Features can be
freely selected with the feature function, which can better reflect
the relationship between the input variable x and the output vari-
able y, and infer the component system’s running state more ac-
curately through observation data. We only define one type of fea-
ture function in this paper. More feature functions can be tested
to further improve the prediction accuracy. Second, the prediction
model requires a certain amount historical data from component
systems to be trained before it can be used for prediction pur-
pose. A more robust model should be able to quickly adapt to the
changes of business requirement. Therefore, the predictive model
needs to perform prediction while training the model. Finally, the
first-oder Markov property is a strong assumption, which may af-
fect the model accuracy. Higher order temporal dependencies may
be explored in the future work to improve the model accuracy.
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