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Abstract—The high cost for labeling data instances is a key
bottleneck for training effective supervised learning models.
This is especially the case in domains such as medicine and
bioinformatics, where expert knowledge is required for under-
standing and extracting the underlying semantics of data. Active
learning provides a means to reduce human labeling efforts by
identifying the most informative data instances. In this paper,
we propose a cost-effective active learning framework to further
lessen human efforts, especially in knowledge-rich domains where
a large number of classes may be subject to scrutiny during
decision making. In particular, this framework employs a novel
many-class sampling model, MC-S, for data sample selection.
MC-S is further augmented with convex hull-based sampling to
achieve faster convergence of active learning. Evaluation studies
conducted over multiple real-world datasets with many classes
demonstrate that the proposed framework significantly reduces
the overall labeling efforts through fast convergence and early
stop of active learning.

Index Terms—active learning; data sampling; knowledge-rich
domains

I. INTRODUCTION

Obtaining labeled data in knowledge-rich domains (e.g.,
bioinformatics and medicine) is usually challenging and ex-
pensive. For example, labeling a data instance in the medical
domains is equivalent to making a diagnosis based on a
patient’s medical condition on file. Such annotation process
heavily relies on physicians’ domain knowledge that is ob-
tained through years of medical training. The difficulty of
collecting training data in knowledge-rich domains stimulates
the high drive for an efficient computational framework to
reduce the overall data labeling costs.

Active learning (AL) provides an effective means to reduce
human labeling efforts by selecting the most informative data
instances. It has been successfully applied in various appli-
cations [1]-[3]. One fundamental question in active learning
is how to choose the most informative data instances from a
candidate pool. Ideally, these data instances should contribute
most to the increase of model accuracy, and practically a
classic active learner selects the instances which are the
most confusing to the classifier. A Support Vector Machines
(SVMs) classifier has been widely used in active learning as it
provides a convenient way to choose confusing data instances
from the unlabeled pool [4]-[6]. For a typical binary-class
problem, the selected data instances are those closest to the
current decision boundary. This simple strategy, as well as its
variations, achieves high accuracy efficiently [4].

In knowledge-rich domains, such as dermatology and radi-
ology, extracting semantics from data instances requires much
expert knowledge. Due to the complexity of the body of
knowledge, decision making in these domains may involve a
large number of classes (the many-class problem). For this
reason, directly applying active learning in knowledge-rich
domains introduces additional challenges: (1) From the ma-
chine perspective: The classic active learning is not specially
designed to select data samples that efficiently update as many
decision boundaries. Due to the interplay of a large number of
classes, the decision boundaries can be very complicated. This
undoubtedly makes data sample selection more challenging, in
spite of some existing approaches that can deal with multiple
classes [7]. As a consequence, the classic active learning suf-
fers from slow convergence. (2) From the expert perspective:
Labeling a single data instance may become nontrivial, as a
large number of classes are candidates, where each requires
serious inspection of domain-specific details. This affects the
performance of domain experts, because high mental workload
causes fatigue [8].

To address the aforementioned challenges, the framework
proposed in this paper benefits the application fields and
contributes to the literature as follows:

o We develop a Many-Class Sampling (MC-S) model that
prefers a data sample that is both confusing in terms of
the predicted class label and uncertain over the remaining
classes. By achieving a good balance between confusion
and uncertainty, MC-S selects the data samples that are
most effective to improve the decision boundaries of a large
number of classes.

o We further define a unified objective function that allows
choosing data samples with the potential to significantly
change the current model. Data sampling is achieved by
solving a convex optimization problem, which can be done
efficiently. Meanwhile, by monitoring the model change,
active learning can terminate early without being tested on a
hold-out dataset, which further reduces the labeling efforts.

We conducted evaluation experiments over multiple real-
world datasets from diverse domains with many classes. The
experimental results demonstrate the effectiveness and effi-
ciency of the proposed many-class active learning framework.
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II. RELATED WORK

We group the recent studies on active learning to reduce
human data labeling efforts into two categories, and in each
category we compare the existing studies with our proposed
approach to highlight the key differences.

A. Candidate Data Instance Sampling

To address the multi-class problem, Culotta and McCal-
lum extended the uncertainty sampling by first identifying
the dominant class of each data instance and then selecting
among all instances the one whose dominant class has the
smallest probability [9]. However, this approach may be stuck
with selecting instances whose class probabilities are evenly
distributed. As an improvement, a marginal sampling strategy
was developed to choose the data instance with minimal
difference between its most and second most probable classes,
a.k.a., Best-versus-Second Best (BvSB) model [7]. However,
BvSB only considers the two most probable classes (the
local pairwise class distribution), which ignores the probability
distribution of other classes. This makes it less effective
when a large number of classes are involved. Entropy-based
sampling is shown to be effective to quantify uncertainty
for multi-class active learning in multiple studies [10], [11].
However, this sampling approach can be unstable when no
precise entropy information can be provided due to lack of
instances in each class at the beginning of active learning. This
could be even worse in the case where there are a large number
of classes. Probabilistic models provide an alternative way of
considering all potential classes. Kottke et al. proposed a multi-
class probabilistic active learning model (McPAL), which
computes the expectation of the classification error within
a neighbourhood of a candidate as a sampling score [12].
A closed-form solution is developed for efficient expectation
computation. However, our empirical study shows that the
computational cost still increases significantly with the number
of classes, making it infeasible to handle many-class problems
in practice.

The proposed MC-S sampling aims to address the above
issues by choosing data samples that are effective to improve
the decision boundaries of a large number of classes. A convex
hull-based objective function is also developed to guide the
sampling process so that the entire sample space can be
efficiently explored to ensure fast convergence.

B. Termination Criterion

A common way to determine a termination criterion of
active learning is to estimate model confidence on a holdout
validation dataset [13], [14]. This approach suffers from late
termination and hence requires more labeling efforts [15]. In
addition, extra human efforts are needed to label the validation
set [16], making it less attractive for knowledge-rich domains.
As a substitute, sample diversity-based approaches do not
depend on a labeled validation set [17], [18]. However, they
instead require solving a convex optimization problem on the
entire unlabeled data pool to maximize sample diversity, which
is inefficient in case of a large-scale pool. Termination can
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also be indicated by some model properties [4], [6]. However,
these approaches tend to stop late as they rely on high-level
statistical summary of the model rather than on the localized
learning behaviors that can be obtained during active learning.

In this paper, we propose automatic termination criteria
based on data sample skipping and convex approximation
error of selected samples using a small subset of labeled data,
respectively. They both achieve early termination in multiple
evaluation studies.

III. KNOWLEDGE-RICH DATASETS

We provide a detailed description of two datasets collected
from a knowledge-rich domain. These are two transcribed
speech corpora that are collections of dermatology diagnostic
narration documents. Derm 1 is collected by instructing 16
participating physicians to describe each image content toward
a diagnosis. The 50 dermatology images (50 diagnoses) form
a total of 50 classes. Derm 2 is collected with 29 physicians
and 30 images (classes). For each class, there are 29 data
instances, each from one physician. The narration documents
are of drastically different lengths due to the narration styles
used by different physicians. A large portion of each narration
document is formed by specialized medical terms whose
meanings can only be interpreted by experts.

The dermatology corpora are an ideal testbed for our active
learning framework for these reasons: (1) Dermatology is a
medical specialty that highly depends on specialized skills
obtained through years of training. Recruiting the appropriate
experts to label dermatology data is both challenging and
expensive. Reducing document labeling costs in this domain
showcases a tight connection of the proposed framework to
the real-world clinical settings. (2) Both datasets contain a
relatively large number of potential classes (diagnoses) to
choose from for labeling. This highlights the major advantages
of our learning framework against its counterparts. (3) Suc-
cessful application to such highly specialized and challenging
datasets helps demonstrate the applicability of our model to
other datasets and domains where similar challenges arise.

IV. THE ACTIVE LEARNING FRAMEWORK

In this section, we first describe a basic model for multi-
class SVM active learning. We proceed to describe the pro-
posed many-class sampling (MC-S) model and highlight its
key difference and advantage. We then present a key exten-
sion of MC-S, which leverages a convex hull-based unified
objective function for data sampling (MC-CH).

A. Multi-Class SVM Active Learning

An SVM active leaner uses the distance to the separating
hyperplane as a way to choose the most informative data
sample to label. However, this criterion is not directly appli-
cable to multi-class problems given the interplay of multiple
hyperplanes. A principled approach is to compute the posterior
probabilities of all the classes and use them to guide data
sample selection. While most probabilistic models provide a
natural way to generate the posterior probabilities, we choose



an SVM classifier since some important properties of the
support vectors (i.e., sparsity and closeness to the decision
boundary) can further benefit the active learning process. In
particular, Platt scaling [19] and pairwise coupling [20] are
used to convert the decision function of an SVM to posterior
probabilities of classes.

B. Many-Class Sampling (MC-S)

Consider a pool of M unlabeled data samples: X € RM*N,
where N denotes the number of features. The probabilistic
output of an SVM classifier can be denoted by a matrix
C € RM*E where K is the number of classes and C; ; =
p(Cj|x;) and Zle C;; = 1,Vi € [1, M]. The predicted label
of x; is given by

)

§; = argmax p(C}|x;) = argmax C; ;
pi J

We refer to a prediction as a non-confusing one if C; 4, >
max;xg, C; ;j, which implies that x; is located on the far
positive side of the class ¢; and far negative side of other
classes. Since a non-confusing sample is far away from the
decision surface of the SVM, adding it into the training set
will not typically improve the current classifier. Based on this,
Joshi et. al [7] developed a sampling mechanism, referred to
as Best-versus-Second Best (BvSB), which chooses the most
confusing data sample using the following rule:

argmin (C; 3, — maxCj ;) ()
i J# Y

A sample is selected when the posterior probability of its
predicted class has the smallest difference from that of its most
competitive class. In essence, BvSB chooses the data sample
that is most confusing for label assignment. For K = 2, BvSB
reduces to the binary SVM active learner [7]. Generalized
to the multi-class case, BvSB ensures the decision boundary
of the two most probable classes to be effectively updated
by sampling the most confusing data sample. However, its
impact on other classes is not guaranteed and can be minor.
Consequently, this requires more data instances to update the
model for all classes, which is less effective, especially in case
of a large number of classes.

1) Sampling Rule of MC-S: The proposed MC-S model
addresses this issue by considering both local pairwise class
distribution and the global class distribution of all classes.
More specifically, we can use

P(Ri) =1 = Cig, — max Ci @
J#Yi
Ri={k €1, Klk # gisk # argmax Cij} - (4)
I7FYi

to denote the chance of updating all the remaining classes.
Note that max p(R;) = (K —2)/K is obtained when H(C;) is
maximized where H (C’z) is the entropy of random variable C;
denoting the predicted posterior probabilities of x;. Therefore,
MC-S uses the following rule for data sampling:
K
arg rn_in FMC—S = (Ci’gl — max Ci’j) + A Z C»L"j log Ciyj
i J#Gi

j=1
©)
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where the second term is the negative entropy (—H (C;))
as we try to minimize the entire objective function. The
sampling rule in Eq. (5) aims to choose a data sample that
is both confusing in the predicted label and uncertain over
the remaining classes. The first term ensures that the decision
boundary around the predicted class will be significantly
updated while the second term allows a decent chance for
other classes’ decision boundaries to be updated, making it
more effective in a many-class situation.

2) Dynamic Update of A\: In the initial phase of active
learning, since the model is not well trained yet, the entropy
term may be estimated very inaccurately. As active learning
continues and the model accuracy keeps improving, the en-
tropy term should play a more important role as it helps choose
data samples that are uncertain over a large number of classes
(hence improve their decision boundaries if being labeled). We
propose to dynamically adapt A\ according to the progression
of active learning. The rationale is that the model accuracy is
expected to be higher when more data instances are labeled.
More specifically, let Ay denote the initial value of A (which
is set to 0.7 in our experiments to give more weight to the
first term in Eq. (5) in the initial phase of active learning) and
n denote the iteration number of active learning. The update
rule is given by

A= o+ | =
= Ao+ {?J X (6)
where r is the increasing rate, which is set to 0.05 in our
experiments but other values in a similar range work equally
well. In essence, this update rule increases the weight of the
entropy term by 0.1 after every 2K samples are labeled.

C. Convex Hull-based Unified Sampling

The MC-S model relies on the current decision boundaries
for sampling, making it sensitive to the initialization of the
active learner. It also tends to choose data samples that are
close to the current decision boundaries and hence is less
effective to explore the entire data sample space. These may
limit the convergence speed of MC-S.

These issues can be addressed if we avoid labeling the
data samples that are less effective to update the current
decision boundaries. We refer to the data samples selected
by the active learner that do not bring significant changes to
the current decision boundaries as non-sensitive data samples.
These samples can be identified by checking whether their
contribution to the decision boundaries can be approximated
by existing support vectors. The reason of using support
vectors to approximate the new data sample is two-fold: (1)
they are close to the decision boundaries and comparing with
them allows us to assess how much the data sample may
change the decision boundaries, and (2) they are sparse, which
guarantees good efficiency.

A straightforward way to implement the idea above is to
check whether we can find a support vector from the predicted
most probable class that is close enough to a selected data
sample. If so, we skip this sample from labeling it. We
refer this strategy as Nearest Neighbor-based Sample Skipping



(MC-NN). However, there are two limitations with such an
approach: (1) Its effectiveness for identifying non-sensitive
data samples may be limited when the support vectors are very
sparse. (2) Some useful data samples may be wrongly skipped
due to the inaccurate prediction of their labels. Since these data
samples are permanently skipped and never got labeled, MC-
NN may lead to a much lower model accuracy at the end of
the active learning process, which is not desired.

We present a convex hull-based unified sampling function
(MC-CH), which addresses the above issues while ensuring a
fast convergence of active learning. The MC-CH is motivated
by the following theorem.

Theorem 4.1: Adding a data sample that falls into the convex

hull of the support vectors from the same class does not change
the decision boundary of an SVM. |}
The theorem can be proved by verifying the optimal sepa-
rating hyperplane of the SVM and the KKT condition re-
main unchanged after adding a data sample described above
(detailed proof is skipped due to the lack of space). Instead
of using individual support vectors, MC-CH leverages all the
support vectors in the predicted class to increase the chance
of skipping non-sensitive data samples. Different from MC-
NN that focuses on a local neighborhood, MC-CH considers
the overall geometric structure of the decision boundaries. It
uses the convex hull of the support vectors to approximate the
decision boundary of the predicted class.

1) Avoiding Wrong Skips: MC-CH addresses the wrong
skipping issue of MC-NN by penalizing the non-sensitive
data samples instead of skipping them. The penalty may only
slightly postpone the labeling of useful data samples when
the model becomes more accurate. Therefore, the model will
still benefit from labeling those data samples, which ensures
convergence to a high accuracy (see Fig. 2 for the result).

The key idea of penalty-based sampling is to add a penalty
term to the many class sampling rule in Eq. (5), where the
penalty term is proportional to the distance of a data sample
to the support vectors from the same predicted class. Given a
candidate data sample x’ and its predicted label, its distance to
the convex hull of all the support vectors in the same predicted
class can be measured through the residual error by using the
convex combination of these support vectors to approximate
x'. More formally, let S = (sy,...,8;) denote the support
vectors of interest and @ = (61, ...,0;)" denote the combi-
nation coefficients. The approximation error function of x’ is
given by e(x’;0) = ||ST0—x'||. To determine the minimum
approximation error, denoted by é(x’) = ming e(x’; 0), we
solve the following quadratic (and convex) problem:

6= argrrgne(x’;O)
k
subject to 0; > 0,(i=1,..,k) Y 6i=1 ()
i=1

A small approximation error é(x’) indicates that x’ stays close
to the convex hull of its predicted class. This implies that x’
will not significantly change the current decision boundary
and hence should be penalized to reduce its chance of being
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sampled. Conversely, a large error means that x’ is far from
all the support vectors in the predicted class. In this case, x’ is
expected to bring a significant enough change to the decision
boundary to achieve fast convergence, which should give it
a better chance to be sampled. Since MC-S samples data by
minimizing Fy;c_g, we propose to use —é(x) as the penalty
term, which leads to the unified sampling rule:

x' = argmin Fyo—cp (x)
X
3

where x denotes each data sample in the current unlabeled
pool. The first term in Eq. (8) tends to choose data samples
that are effective to refine multiple decision boundaries of the
current model while the second term sets the further preference
to the samples with a potential to dramatically change the
model. In our experiments, we use the same dynamic update
rule of X\ to update ~.

= arg min Fyo—s(x) — vé(x)

D. Automatic Termination Detection

Both MC-NN and MC-CH allow automatic termination of
active learning without relying on a hold-out labeled dataset,
making them more attractive for knowledge-rich domains.
Specifically, MC-NN skips all the non-sensitive data samples.
Active learning is terminated when all the unlabeled samples
have been visited by MC-NN. Since a large number of data
samples are skipped without being labeled, early termination
can usually be achieved (see Fig. 2 for the result).

Instead of skipping data samples, MC-CH computes the
approximation error of data samples using support vectors of
the predicted class. At the convergence of active learning, the
decision boundaries become stable. This implies that the new
data samples stay close to the convex hulls of their respective
classes and hence can be well approximated by the convex
combination of their support vectors. Therefore, we observe
a significant drop of the approximation error, which serves
as an important indicator to terminate the active learning
process as early as possible. Our experimental results confirm
this (see Fig 2) and provide empirical evidence that MC-CH
automatically detects the stopping condition of active learning
without relying on a labeled holdout dataset.

V. EXPERIMENTS

We have conducted extensive experiments to evaluate the
proposed many-class active learning framework. The evalua-
tion covers the following major aspects: many-class sampling
performance and effectiveness of convex hull-based unified
sampling function.

A. Datasets and Settings

Besides the two dermatology corpora as described in Sec-
tion III, the experiments also include four additional datasets
with a decent number of classes. These datasets are collected
from diverse domains and evaluation over them help demon-
strate the general applicability of the proposed active learning
framework. Table I summarizes the major characteristics of all
datasets. Below is a brief description of additional datasets:



Dataset #Inst  #Attr  #Classes  Class Distr.  Domain
Derm 1 800 1391 50 Even Medical
Derm 2 868 1554 30 Even Medical
Penstroke 1144 500 26 Even Image
Yeast 1484 8 10 Skewed Biology
Auto-drive 58509 48 11 Even Auto
Reuters 10788 5227 75 Skewed News

TABLE I: Description of Datasets

« Penstroke is comprised of images of hand-written English
characters by people with distinct writing styles.

« Yeast is a biological dataset that consists of localization
sites of proteins in bacteria.

o Auto-drive aims to predict abnormal conditions of auto-
mobiles without implementing additional sensors.

« Reuters is from the text domain that consists of a large
collection of Reuters news reports.

To best reflect the high labeling cost for knowledge-rich
domains, we use very limited labeled samples to initialize
the active learning process. For relatively small datasets with
evenly distributed classes, including the two dermatology and
Penstroke datasets, one data sample per class is used. For
Auto-drive, we use 20 labeled samples per class. For the two
datasets with unevenly distributed classes, including Yeast and
Reuters, we select 1% and 2% data samples from each class,
respectively, according to the sizes of the datasets. All the
labeled samples are randomly selected. The experiments are
conducted three times with the averaged performance reported.

B. Active Learning Models for Comparison

We compare the proposed MC-CH active learning method
with three competitive active learning models that can be
applied to multi-class problems.

« Best-vs-Second-Best (BvSB) sampling method selects a
data instance that minimizes the posterior difference be-
tween its most and second most probable classes [7].

o Multi-class Probabilistic Active Learning (McPAL) de-
termines the sampling score of a data instance using a
density weighted performance gain [12].

« Entropy-based sampling method (Entr) uses the Shannon
entropy of the predicted class distribution of each candidate
as the sampling score [21].

For McPAL, we use Radial Basis Function kernel (RBF)
to compute the neighbor frequency vector. The length scale
(9) of the kernel function and the number of hypothetically
considered labels (m) are set to 0.7 and 2, respectively, as
suggested by the original paper. In contrast to other models, the
sampling behavior of McPAL is independent from the choice
of the classifier. Therefore, we use SVM rather than a Parzen
window classifier or probabilistic KNN in the original paper to
achieve a fair comparison with other models. Finally, random
sampling (Random) is used as the comparison baseline.

C. Sampling Performance Comparison

Fig. 1 shows the comparison result over six datasets. An
effective active learning algorithm is characterized by its fast
converging rate, i.e., using less labeled samples to achieve a
high model accuracy. MC-CH outperforms all its competitors
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Fig. 1: Sampling Performance Comparison

Dataset MC-CH  [é(z) computed] BvSB  Entr  MCPAL
Derm 1 0.55 [18.0%] 0.22 0.23 223.35
Derm 2 0.40 [8.2%] 0.12 0.13 127.24
Penstroke 0.32 [16.2%] 0.07 0.08 94.59
Yeast 0.85 [30.3%] 0.02 0.04 16.73
Auto-drive 0.62 [21.5%] 0.53 0.61 15.37
Reuters 19.35 [24.3%] 252 2.86 NA

TABLE II: Sampling Time Comparision

especially in the early and middle stages (before 250 iterations)
of active learning. The performance advantage of MC-CH
is due its two major contributors: (i) effectiveness of many-
class sampling (MC-S) and (ii) the convex hull based unified
function to best balance exploitation and exploration of the
sampling space. The effects of these two contributors will be
further investigated in the following subsection.

Besides the converging rate, we also report the sampling
time of each active learning model in Table II. Compared
with BvSB and Entr, the additional computation of MC-
CH comes from the convex approximation error é(x) in (8).
This computation can be further reduced as we use a lookup
table to store and reuse é(x) as long as the predicted class
and its support vectors are not changed for sample x in the
candidate pool. Table II confirms the low percentage of data
samples whose approximation errors need to be recomputed on
average in each sampling iteration. Overall, all three models,
including MC-CH, BvSB, and Entr, perform efficiently by
using less than one sec for five out of six testing datasets.
The relatively slow performance on Reuters is due to the large
number of classes and the long news reports to be processed.
With further increase of number of classes and candidate pool
sizes, the sampling procedure can be expedited by testing
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multiple samples simultaneously in parallel. While the number
of classes plays an important role in the sampling time of
each model, the sampling efficiency of McPAL decreases
much more significantly due to the high cost of expectation
computation. As a result, the sampling time of Reuters using
MCcPAL is not reported due to the extremely slow process.
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Fig. 2: Effectiveness of MC-CH

D. Effectiveness of Convex Hull-based Unified Function

We investigate the effectiveness of MC-CH by further
comparing it with MC-NN and MC-S in Figure 2a, where
Derm 1 is used for illustration. For MC-NN, we use co-
sine similarity with a threshold of 0.2 to determine nearest
neighbors. This threshold is set due to the sparsity of the
narration documents and to achieve a good balance between
skipping and model accuracy. A smaller similarity leads to
more skipping and a lower model accuracy. The skipping rate
also increases along with the active learning process. When
the model approaches convergence, most data samples are
skipped, which will eventually terminate active learning. As
can be seen, MC-NN achieves automatic early termination
after around 300 iterations. However, the low model accuracy
of MC-NN confirms that it skips some very useful data
samples. In contrast, MC-CH effectively addresses this issue
by using a penalty term. It converges to the highest model
accuracy but more efficiently than MC-S. Fig. 2b shows the
early termination result by tracking the convex approximation
error changes over active learning. To see a clear trend, we
adopt Locally Weighted Scatter-plot Smoothing (LOESS) with
fraction as 0.15 (i.e., 15% the data is used when estimating
each y-value) to generate a smoothed curve. It can be seen
that there is a significant drop of the smoothed error at around
200-th iteration and then the error becomes relatively stable.
If we wait for another 50 iterations to make sure the error has
been stabilized, we can stop at the 250-th iteration. Fig. 2a
shows that the model is very close to its highest accuracy at
this point. In fact, the remaining 250 samples, if being labeled,
can only improve the model accuracy by 1%.

(b) Early Termination

VI. CONCLUSIONS

In this paper, we present a novel active learning framework
for the knowledge-rich domains to tackle the many-class prob-
lem which appears during data labeling. To update multiple
classes’ decision boundaries effectively and efficiently, this
framework leverages an MC-S model to select data sam-
ples. MC-S is augmented with convex hull-based sampling

(MC-CH) to achieve faster convergence of active learning.
Automatic early termination of active learning is achieved
by monitoring the change of convex approximation error,
which avoids additional labeled data for validation. Extensive
experiments conducted over multiple real-world many-class
datasets clearly justify the effectiveness of the proposed active
learning framework.
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