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Abstract—The high cost for labeling data instances is a key
bottleneck for training effective supervised learning models.
This is especially the case in domains such as medicine and
bioinformatics, where expert knowledge is required for under-
standing and extracting the underlying semantics of data. Active
learning provides a means to reduce human labeling efforts by
identifying the most informative data instances. In this paper,
we propose a cost-effective active learning framework to further
lessen human efforts, especially in knowledge-rich domains where
a large number of classes may be subject to scrutiny during
decision making. In particular, this framework employs a novel
many-class sampling model, MC-S, for data sample selection.
MC-S is further augmented with convex hull-based sampling to
achieve faster convergence of active learning. Evaluation studies
conducted over multiple real-world datasets with many classes
demonstrate that the proposed framework significantly reduces
the overall labeling efforts through fast convergence and early
stop of active learning.

Index Terms—active learning; data sampling; knowledge-rich
domains

I. INTRODUCTION

Obtaining labeled data in knowledge-rich domains (e.g.,

bioinformatics and medicine) is usually challenging and ex-

pensive. For example, labeling a data instance in the medical

domains is equivalent to making a diagnosis based on a

patient’s medical condition on file. Such annotation process

heavily relies on physicians’ domain knowledge that is ob-

tained through years of medical training. The difficulty of

collecting training data in knowledge-rich domains stimulates

the high drive for an efficient computational framework to

reduce the overall data labeling costs.

Active learning (AL) provides an effective means to reduce

human labeling efforts by selecting the most informative data

instances. It has been successfully applied in various appli-

cations [1]–[3]. One fundamental question in active learning

is how to choose the most informative data instances from a

candidate pool. Ideally, these data instances should contribute

most to the increase of model accuracy, and practically a

classic active learner selects the instances which are the

most confusing to the classifier. A Support Vector Machines

(SVMs) classifier has been widely used in active learning as it

provides a convenient way to choose confusing data instances

from the unlabeled pool [4]–[6]. For a typical binary-class

problem, the selected data instances are those closest to the

current decision boundary. This simple strategy, as well as its

variations, achieves high accuracy efficiently [4].

In knowledge-rich domains, such as dermatology and radi-

ology, extracting semantics from data instances requires much

expert knowledge. Due to the complexity of the body of

knowledge, decision making in these domains may involve a

large number of classes (the many-class problem). For this

reason, directly applying active learning in knowledge-rich

domains introduces additional challenges: (1) From the ma-

chine perspective: The classic active learning is not specially

designed to select data samples that efficiently update as many

decision boundaries. Due to the interplay of a large number of

classes, the decision boundaries can be very complicated. This

undoubtedly makes data sample selection more challenging, in

spite of some existing approaches that can deal with multiple

classes [7]. As a consequence, the classic active learning suf-

fers from slow convergence. (2) From the expert perspective:

Labeling a single data instance may become nontrivial, as a

large number of classes are candidates, where each requires

serious inspection of domain-specific details. This affects the

performance of domain experts, because high mental workload

causes fatigue [8].

To address the aforementioned challenges, the framework

proposed in this paper benefits the application fields and

contributes to the literature as follows:

• We develop a Many-Class Sampling (MC-S) model that

prefers a data sample that is both confusing in terms of

the predicted class label and uncertain over the remaining

classes. By achieving a good balance between confusion
and uncertainty, MC-S selects the data samples that are

most effective to improve the decision boundaries of a large

number of classes.

• We further define a unified objective function that allows

choosing data samples with the potential to significantly

change the current model. Data sampling is achieved by

solving a convex optimization problem, which can be done

efficiently. Meanwhile, by monitoring the model change,

active learning can terminate early without being tested on a

hold-out dataset, which further reduces the labeling efforts.

We conducted evaluation experiments over multiple real-

world datasets from diverse domains with many classes. The

experimental results demonstrate the effectiveness and effi-

ciency of the proposed many-class active learning framework.
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II. RELATED WORK

We group the recent studies on active learning to reduce

human data labeling efforts into two categories, and in each

category we compare the existing studies with our proposed

approach to highlight the key differences.

A. Candidate Data Instance Sampling

To address the multi-class problem, Culotta and McCal-

lum extended the uncertainty sampling by first identifying

the dominant class of each data instance and then selecting

among all instances the one whose dominant class has the

smallest probability [9]. However, this approach may be stuck

with selecting instances whose class probabilities are evenly

distributed. As an improvement, a marginal sampling strategy

was developed to choose the data instance with minimal

difference between its most and second most probable classes,

a.k.a., Best-versus-Second Best (BvSB) model [7]. However,

BvSB only considers the two most probable classes (the

local pairwise class distribution), which ignores the probability

distribution of other classes. This makes it less effective

when a large number of classes are involved. Entropy-based

sampling is shown to be effective to quantify uncertainty

for multi-class active learning in multiple studies [10], [11].

However, this sampling approach can be unstable when no

precise entropy information can be provided due to lack of

instances in each class at the beginning of active learning. This

could be even worse in the case where there are a large number

of classes. Probabilistic models provide an alternative way of

considering all potential classes. Kottke et al. proposed a multi-

class probabilistic active learning model (McPAL), which

computes the expectation of the classification error within

a neighbourhood of a candidate as a sampling score [12].

A closed-form solution is developed for efficient expectation

computation. However, our empirical study shows that the

computational cost still increases significantly with the number

of classes, making it infeasible to handle many-class problems

in practice.

The proposed MC-S sampling aims to address the above

issues by choosing data samples that are effective to improve

the decision boundaries of a large number of classes. A convex

hull-based objective function is also developed to guide the

sampling process so that the entire sample space can be

efficiently explored to ensure fast convergence.

B. Termination Criterion

A common way to determine a termination criterion of

active learning is to estimate model confidence on a holdout

validation dataset [13], [14]. This approach suffers from late

termination and hence requires more labeling efforts [15]. In

addition, extra human efforts are needed to label the validation

set [16], making it less attractive for knowledge-rich domains.

As a substitute, sample diversity-based approaches do not

depend on a labeled validation set [17], [18]. However, they

instead require solving a convex optimization problem on the

entire unlabeled data pool to maximize sample diversity, which

is inefficient in case of a large-scale pool. Termination can

also be indicated by some model properties [4], [6]. However,

these approaches tend to stop late as they rely on high-level

statistical summary of the model rather than on the localized

learning behaviors that can be obtained during active learning.

In this paper, we propose automatic termination criteria

based on data sample skipping and convex approximation

error of selected samples using a small subset of labeled data,

respectively. They both achieve early termination in multiple

evaluation studies.

III. KNOWLEDGE-RICH DATASETS

We provide a detailed description of two datasets collected

from a knowledge-rich domain. These are two transcribed

speech corpora that are collections of dermatology diagnostic

narration documents. Derm 1 is collected by instructing 16

participating physicians to describe each image content toward

a diagnosis. The 50 dermatology images (50 diagnoses) form

a total of 50 classes. Derm 2 is collected with 29 physicians

and 30 images (classes). For each class, there are 29 data

instances, each from one physician. The narration documents

are of drastically different lengths due to the narration styles

used by different physicians. A large portion of each narration

document is formed by specialized medical terms whose

meanings can only be interpreted by experts.

The dermatology corpora are an ideal testbed for our active

learning framework for these reasons: (1) Dermatology is a

medical specialty that highly depends on specialized skills

obtained through years of training. Recruiting the appropriate

experts to label dermatology data is both challenging and

expensive. Reducing document labeling costs in this domain

showcases a tight connection of the proposed framework to

the real-world clinical settings. (2) Both datasets contain a

relatively large number of potential classes (diagnoses) to

choose from for labeling. This highlights the major advantages

of our learning framework against its counterparts. (3) Suc-

cessful application to such highly specialized and challenging

datasets helps demonstrate the applicability of our model to

other datasets and domains where similar challenges arise.

IV. THE ACTIVE LEARNING FRAMEWORK

In this section, we first describe a basic model for multi-

class SVM active learning. We proceed to describe the pro-

posed many-class sampling (MC-S) model and highlight its

key difference and advantage. We then present a key exten-

sion of MC-S, which leverages a convex hull-based unified

objective function for data sampling (MC-CH).

A. Multi-Class SVM Active Learning

An SVM active leaner uses the distance to the separating

hyperplane as a way to choose the most informative data

sample to label. However, this criterion is not directly appli-

cable to multi-class problems given the interplay of multiple

hyperplanes. A principled approach is to compute the posterior

probabilities of all the classes and use them to guide data

sample selection. While most probabilistic models provide a

natural way to generate the posterior probabilities, we choose
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an SVM classifier since some important properties of the

support vectors (i.e., sparsity and closeness to the decision

boundary) can further benefit the active learning process. In

particular, Platt scaling [19] and pairwise coupling [20] are

used to convert the decision function of an SVM to posterior

probabilities of classes.

B. Many-Class Sampling (MC-S)
Consider a pool of M unlabeled data samples: X ∈ R

M×N ,

where N denotes the number of features. The probabilistic

output of an SVM classifier can be denoted by a matrix

C ∈ R
M×K , where K is the number of classes and Ci,j =

p(Cj |xi) and
∑K

j=1 Ci,j = 1, ∀i ∈ [1,M ]. The predicted label

of xi is given by

ŷi = argmax
j

p(Cj |xi) = argmax
j

Ci,j (1)

We refer to a prediction as a non-confusing one if Ci,ŷi
�

maxj �=ŷi
Ci,j , which implies that xi is located on the far

positive side of the class ŷi and far negative side of other

classes. Since a non-confusing sample is far away from the

decision surface of the SVM, adding it into the training set

will not typically improve the current classifier. Based on this,

Joshi et. al [7] developed a sampling mechanism, referred to

as Best-versus-Second Best (BvSB), which chooses the most

confusing data sample using the following rule:

argmin
i

(Ci,ŷi −max
j �=ŷi

Ci,j) (2)

A sample is selected when the posterior probability of its

predicted class has the smallest difference from that of its most

competitive class. In essence, BvSB chooses the data sample

that is most confusing for label assignment. For K = 2, BvSB

reduces to the binary SVM active learner [7]. Generalized

to the multi-class case, BvSB ensures the decision boundary

of the two most probable classes to be effectively updated

by sampling the most confusing data sample. However, its

impact on other classes is not guaranteed and can be minor.

Consequently, this requires more data instances to update the

model for all classes, which is less effective, especially in case

of a large number of classes.
1) Sampling Rule of MC-S: The proposed MC-S model

addresses this issue by considering both local pairwise class

distribution and the global class distribution of all classes.

More specifically, we can use

p(Ri) =1− Ci,ŷi
−max

j �=ŷi

Ci,j (3)

Ri ={k ∈ 1, ..,K|k �= ŷi, k �= argmax
j �=ŷi

Ci,j} (4)

to denote the chance of updating all the remaining classes.

Note that max p(Ri) = (K−2)/K is obtained when H(C̃i) is

maximized where H(C̃i) is the entropy of random variable C̃i

denoting the predicted posterior probabilities of xi. Therefore,

MC-S uses the following rule for data sampling:

argmin
i

FMC−S = (Ci,ŷi −max
j �=ŷi

Ci,j) + λ

K∑
j=1

Ci,j logCi,j

(5)

where the second term is the negative entropy (−H(C̃i))
as we try to minimize the entire objective function. The

sampling rule in Eq. (5) aims to choose a data sample that

is both confusing in the predicted label and uncertain over

the remaining classes. The first term ensures that the decision

boundary around the predicted class will be significantly

updated while the second term allows a decent chance for

other classes’ decision boundaries to be updated, making it

more effective in a many-class situation.
2) Dynamic Update of λ: In the initial phase of active

learning, since the model is not well trained yet, the entropy

term may be estimated very inaccurately. As active learning

continues and the model accuracy keeps improving, the en-

tropy term should play a more important role as it helps choose

data samples that are uncertain over a large number of classes

(hence improve their decision boundaries if being labeled). We

propose to dynamically adapt λ according to the progression

of active learning. The rationale is that the model accuracy is

expected to be higher when more data instances are labeled.

More specifically, let λ0 denote the initial value of λ (which

is set to 0.7 in our experiments to give more weight to the

first term in Eq. (5) in the initial phase of active learning) and

n denote the iteration number of active learning. The update

rule is given by

λ = λ0 +
⌊ n

K

⌋
× r (6)

where r is the increasing rate, which is set to 0.05 in our

experiments but other values in a similar range work equally

well. In essence, this update rule increases the weight of the

entropy term by 0.1 after every 2K samples are labeled.

C. Convex Hull-based Unified Sampling

The MC-S model relies on the current decision boundaries

for sampling, making it sensitive to the initialization of the

active learner. It also tends to choose data samples that are

close to the current decision boundaries and hence is less

effective to explore the entire data sample space. These may

limit the convergence speed of MC-S.

These issues can be addressed if we avoid labeling the

data samples that are less effective to update the current

decision boundaries. We refer to the data samples selected

by the active learner that do not bring significant changes to

the current decision boundaries as non-sensitive data samples.

These samples can be identified by checking whether their

contribution to the decision boundaries can be approximated

by existing support vectors. The reason of using support

vectors to approximate the new data sample is two-fold: (1)

they are close to the decision boundaries and comparing with

them allows us to assess how much the data sample may

change the decision boundaries, and (2) they are sparse, which

guarantees good efficiency.

A straightforward way to implement the idea above is to

check whether we can find a support vector from the predicted

most probable class that is close enough to a selected data

sample. If so, we skip this sample from labeling it. We

refer this strategy as Nearest Neighbor-based Sample Skipping
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(MC-NN). However, there are two limitations with such an

approach: (1) Its effectiveness for identifying non-sensitive

data samples may be limited when the support vectors are very

sparse. (2) Some useful data samples may be wrongly skipped

due to the inaccurate prediction of their labels. Since these data

samples are permanently skipped and never got labeled, MC-

NN may lead to a much lower model accuracy at the end of

the active learning process, which is not desired.

We present a convex hull-based unified sampling function

(MC-CH), which addresses the above issues while ensuring a

fast convergence of active learning. The MC-CH is motivated

by the following theorem.

Theorem 4.1: Adding a data sample that falls into the convex

hull of the support vectors from the same class does not change

the decision boundary of an SVM.

The theorem can be proved by verifying the optimal sepa-

rating hyperplane of the SVM and the KKT condition re-

main unchanged after adding a data sample described above

(detailed proof is skipped due to the lack of space). Instead

of using individual support vectors, MC-CH leverages all the

support vectors in the predicted class to increase the chance

of skipping non-sensitive data samples. Different from MC-

NN that focuses on a local neighborhood, MC-CH considers

the overall geometric structure of the decision boundaries. It

uses the convex hull of the support vectors to approximate the

decision boundary of the predicted class.
1) Avoiding Wrong Skips: MC-CH addresses the wrong

skipping issue of MC-NN by penalizing the non-sensitive

data samples instead of skipping them. The penalty may only

slightly postpone the labeling of useful data samples when

the model becomes more accurate. Therefore, the model will

still benefit from labeling those data samples, which ensures

convergence to a high accuracy (see Fig. 2 for the result).

The key idea of penalty-based sampling is to add a penalty

term to the many class sampling rule in Eq. (5), where the

penalty term is proportional to the distance of a data sample

to the support vectors from the same predicted class. Given a

candidate data sample x′ and its predicted label, its distance to

the convex hull of all the support vectors in the same predicted

class can be measured through the residual error by using the

convex combination of these support vectors to approximate

x′. More formally, let S = (s1, ..., sk) denote the support

vectors of interest and θ = (θ1, ..., θk)
� denote the combi-

nation coefficients. The approximation error function of x′ is

given by e(x′;θ) = ||S�θ−x′||2. To determine the minimum

approximation error, denoted by ê(x′) = minθ e(x
′;θ), we

solve the following quadratic (and convex) problem:

θ̂ = argmin
θ

e(x′;θ)

subject to θi ≥ 0, (i = 1, ..., k)

k∑
i=1

θi = 1 (7)

A small approximation error ê(x′) indicates that x′ stays close

to the convex hull of its predicted class. This implies that x′

will not significantly change the current decision boundary

and hence should be penalized to reduce its chance of being

sampled. Conversely, a large error means that x′ is far from

all the support vectors in the predicted class. In this case, x′ is

expected to bring a significant enough change to the decision

boundary to achieve fast convergence, which should give it

a better chance to be sampled. Since MC-S samples data by

minimizing FMC−S , we propose to use −ê(x) as the penalty

term, which leads to the unified sampling rule:

x′ = argmin
x

FMC−CH(x)

= argmin
x

FMC−S(x)− γê(x) (8)

where x denotes each data sample in the current unlabeled

pool. The first term in Eq. (8) tends to choose data samples

that are effective to refine multiple decision boundaries of the

current model while the second term sets the further preference

to the samples with a potential to dramatically change the

model. In our experiments, we use the same dynamic update

rule of λ to update γ.

D. Automatic Termination Detection

Both MC-NN and MC-CH allow automatic termination of

active learning without relying on a hold-out labeled dataset,

making them more attractive for knowledge-rich domains.

Specifically, MC-NN skips all the non-sensitive data samples.

Active learning is terminated when all the unlabeled samples

have been visited by MC-NN. Since a large number of data

samples are skipped without being labeled, early termination

can usually be achieved (see Fig. 2 for the result).

Instead of skipping data samples, MC-CH computes the

approximation error of data samples using support vectors of

the predicted class. At the convergence of active learning, the

decision boundaries become stable. This implies that the new

data samples stay close to the convex hulls of their respective

classes and hence can be well approximated by the convex

combination of their support vectors. Therefore, we observe

a significant drop of the approximation error, which serves

as an important indicator to terminate the active learning

process as early as possible. Our experimental results confirm

this (see Fig 2) and provide empirical evidence that MC-CH

automatically detects the stopping condition of active learning

without relying on a labeled holdout dataset.

V. EXPERIMENTS

We have conducted extensive experiments to evaluate the

proposed many-class active learning framework. The evalua-

tion covers the following major aspects: many-class sampling

performance and effectiveness of convex hull-based unified

sampling function.

A. Datasets and Settings

Besides the two dermatology corpora as described in Sec-

tion III, the experiments also include four additional datasets

with a decent number of classes. These datasets are collected

from diverse domains and evaluation over them help demon-

strate the general applicability of the proposed active learning

framework. Table I summarizes the major characteristics of all

datasets. Below is a brief description of additional datasets:
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Dataset #Inst #Attr #Classes Class Distr. Domain

Derm 1 800 1391 50 Even Medical
Derm 2 868 1554 30 Even Medical
Penstroke 1144 500 26 Even Image
Yeast 1484 8 10 Skewed Biology
Auto-drive 58509 48 11 Even Auto
Reuters 10788 5227 75 Skewed News

TABLE I: Description of Datasets

• Penstroke is comprised of images of hand-written English

characters by people with distinct writing styles.

• Yeast is a biological dataset that consists of localization

sites of proteins in bacteria.

• Auto-drive aims to predict abnormal conditions of auto-

mobiles without implementing additional sensors.

• Reuters is from the text domain that consists of a large

collection of Reuters news reports.

To best reflect the high labeling cost for knowledge-rich

domains, we use very limited labeled samples to initialize

the active learning process. For relatively small datasets with

evenly distributed classes, including the two dermatology and

Penstroke datasets, one data sample per class is used. For

Auto-drive, we use 20 labeled samples per class. For the two

datasets with unevenly distributed classes, including Yeast and

Reuters, we select 1% and 2% data samples from each class,

respectively, according to the sizes of the datasets. All the

labeled samples are randomly selected. The experiments are

conducted three times with the averaged performance reported.

B. Active Learning Models for Comparison

We compare the proposed MC-CH active learning method

with three competitive active learning models that can be

applied to multi-class problems.

• Best-vs-Second-Best (BvSB) sampling method selects a

data instance that minimizes the posterior difference be-

tween its most and second most probable classes [7].

• Multi-class Probabilistic Active Learning (McPAL) de-

termines the sampling score of a data instance using a

density weighted performance gain [12].

• Entropy-based sampling method (Entr) uses the Shannon

entropy of the predicted class distribution of each candidate

as the sampling score [21].

For McPAL, we use Radial Basis Function kernel (RBF)

to compute the neighbor frequency vector. The length scale

(δ) of the kernel function and the number of hypothetically

considered labels (m) are set to 0.7 and 2, respectively, as

suggested by the original paper. In contrast to other models, the

sampling behavior of McPAL is independent from the choice

of the classifier. Therefore, we use SVM rather than a Parzen

window classifier or probabilistic KNN in the original paper to

achieve a fair comparison with other models. Finally, random

sampling (Random) is used as the comparison baseline.

C. Sampling Performance Comparison

Fig. 1 shows the comparison result over six datasets. An

effective active learning algorithm is characterized by its fast

converging rate, i.e., using less labeled samples to achieve a

high model accuracy. MC-CH outperforms all its competitors
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Fig. 1: Sampling Performance Comparison

Dataset MC-CH [ê(x) computed] BvSB Entr MCPAL

Derm 1 0.55 [18.0%] 0.22 0.23 223.35
Derm 2 0.40 [8.2%] 0.12 0.13 127.24
Penstroke 0.32 [16.2%] 0.07 0.08 94.59
Yeast 0.85 [30.3%] 0.02 0.04 16.73
Auto-drive 0.62 [21.5%] 0.53 0.61 15.37
Reuters 19.35 [24.3%] 2.52 2.86 NA

TABLE II: Sampling Time Comparision

especially in the early and middle stages (before 250 iterations)

of active learning. The performance advantage of MC-CH

is due its two major contributors: (i) effectiveness of many-

class sampling (MC-S) and (ii) the convex hull based unified

function to best balance exploitation and exploration of the

sampling space. The effects of these two contributors will be

further investigated in the following subsection.

Besides the converging rate, we also report the sampling

time of each active learning model in Table II. Compared

with BvSB and Entr, the additional computation of MC-

CH comes from the convex approximation error ê(x) in (8).

This computation can be further reduced as we use a lookup

table to store and reuse ê(x) as long as the predicted class

and its support vectors are not changed for sample x in the

candidate pool. Table II confirms the low percentage of data

samples whose approximation errors need to be recomputed on

average in each sampling iteration. Overall, all three models,

including MC-CH, BvSB, and Entr, perform efficiently by

using less than one sec for five out of six testing datasets.

The relatively slow performance on Reuters is due to the large

number of classes and the long news reports to be processed.

With further increase of number of classes and candidate pool

sizes, the sampling procedure can be expedited by testing
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multiple samples simultaneously in parallel. While the number

of classes plays an important role in the sampling time of

each model, the sampling efficiency of McPAL decreases

much more significantly due to the high cost of expectation

computation. As a result, the sampling time of Reuters using

McPAL is not reported due to the extremely slow process.
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Fig. 2: Effectiveness of MC-CH

D. Effectiveness of Convex Hull-based Unified Function

We investigate the effectiveness of MC-CH by further

comparing it with MC-NN and MC-S in Figure 2a, where

Derm 1 is used for illustration. For MC-NN, we use co-

sine similarity with a threshold of 0.2 to determine nearest

neighbors. This threshold is set due to the sparsity of the

narration documents and to achieve a good balance between

skipping and model accuracy. A smaller similarity leads to

more skipping and a lower model accuracy. The skipping rate

also increases along with the active learning process. When

the model approaches convergence, most data samples are

skipped, which will eventually terminate active learning. As

can be seen, MC-NN achieves automatic early termination

after around 300 iterations. However, the low model accuracy

of MC-NN confirms that it skips some very useful data

samples. In contrast, MC-CH effectively addresses this issue

by using a penalty term. It converges to the highest model

accuracy but more efficiently than MC-S. Fig. 2b shows the

early termination result by tracking the convex approximation

error changes over active learning. To see a clear trend, we

adopt Locally Weighted Scatter-plot Smoothing (LOESS) with

fraction as 0.15 (i.e., 15% the data is used when estimating

each y-value) to generate a smoothed curve. It can be seen

that there is a significant drop of the smoothed error at around

200-th iteration and then the error becomes relatively stable.

If we wait for another 50 iterations to make sure the error has

been stabilized, we can stop at the 250-th iteration. Fig. 2a

shows that the model is very close to its highest accuracy at

this point. In fact, the remaining 250 samples, if being labeled,

can only improve the model accuracy by 1%.

VI. CONCLUSIONS

In this paper, we present a novel active learning framework

for the knowledge-rich domains to tackle the many-class prob-

lem which appears during data labeling. To update multiple

classes’ decision boundaries effectively and efficiently, this

framework leverages an MC-S model to select data sam-

ples. MC-S is augmented with convex hull-based sampling

(MC-CH) to achieve faster convergence of active learning.

Automatic early termination of active learning is achieved

by monitoring the change of convex approximation error,

which avoids additional labeled data for validation. Extensive

experiments conducted over multiple real-world many-class

datasets clearly justify the effectiveness of the proposed active

learning framework.
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