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Abstract— With Von-Neumann computing struggling to match the
energy-efficiency of biological systems, there is pressing need to
explore alternative computing models. Recent experimental studies
have revealed that Resistive Random Access Memory (RRAM) is
promising alternative for DRAM. Resistive crossbar arrays possess
many promising features that can not only enable high-density and
low-power storage but also non Von-Neumann compute models.
Most recent works focus on dot product operation with RRAM
crossbar arrays, and therefore are not flexible to implement various
logical functions. We propose a low-power dynamic computing in
memory system which can implement various functions in Sum of
Product (SOP) form in RRAM crossbar array architecture. We
evaluate the proposed technique by performing simulation over wide
range of MCNC benchmarks. Simulation results show 1.42X and
20X latency improvement as well as 2.6X and 12.6X power saving
compared to static [9] and MAGIC [10] computing in memory
methods.

Keywords—Resistive RAM, Sense Margin, computing in memory,
Process Variation, Crossbar Array.

I. INTRODUCTION

Von-Neumann computing separates memory and processing
element resulting in performance and energy bottlenecks due to
frequent data transfers. High density crossbar array which
employs two terminal Resistive RAM (RRAM) the crosspoint
of vertical and horizontal metal wires are proposed [4].
However, these architectures suffer from sneak-path problem
which results in poor sense margin, higher power consumption,
and limited array size. Crossbar array with a selector diode
connected in series to RRAM device has been proposed [1-3]
to solve the sneak path issue. Various computing in memory
schemes have been proposed to implement dot products in
RRAM crossbar array. Digital to analog converter (DAC) and
analog to digital converter (ADC) are required as peripheral
circuitry to implement dot product in RRAM crossbar array.
These architectures are able to implement matrix multiplication
[7] and various computing paradigms such as neuromorphic
computing [5-6] and approximate computing [8]. Even though
these techniques improve performance and power efficiency
they face challenges such as limited application domain and
need of power intensive analog circuits such as ADC and DAC.
A computing in memory paradigm is proposed [9] to implement
random functions in RRAM crossbar array. This technique
offers full programmability across storage and computation.
Even though it provides the flexibility of partitioning the
hardware resources between computation and storage to
achieve optimal performance, the implementation details of
arbitrary functions are not discussed. This technique also
suffers from poor sense margin (that can limit the array size) as
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Fig. 1 Crossbar array with metal oxide RRAM and selector diode at each
crosspoint; and, (b) schematic of crossbar array with selector diode.
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Fig. 2 (a) I-V curve RRAM model used in this study; (b) I-R characteristic of
the RRAM model; (c) I-V curve of selector diode used in this study; and, (d)
the I-V characteristic of bitcell composed of RRAM and selector diode.

well as increased power consumption, making it impractical for
computing in memory applications. Memristor Aided LoGIC
(MAGIC) has been proposed [10] where memristors act as an
input with previously stored data, and an additional memristor
serves as an output to implement logic gates. In this method, the
logical operation is associated with write operation leading to
higher power and latency overhead. Since the inputs are
programmed into memristors the gate must be reprogrammed
for new input data incurring substantial power overhead.

In this paper, we propose a Dynamic Computing in Memory
(DCIM) paradigm using RRAM crossbar array which benefits
from nonlinear characteristic of selector diode to improve sense
margin in order to implement higher fan-in gates. In addition,
this technique reduces the power consumption associated with
logical operation significantly by eliminating the static current
compared to [9]. It also eliminates the need to write into the
bitcell to perform logical operations compared to [10].

In summary we make following contributions in this paper:

e  We study computing in memory systems proposed in [9-



10] thoroughly and explain their bottlenecks.

We develop a dynamic computing in memory technique to
overcome sense margin limitation to implement higher fan-
in AND/OR gates using RRAM crossbar array while
reducing power consumption.

We perform process, voltage and temperature variation
analysis to determine optimum reference voltage to
maximize read yield.

We present comparative analysis of proposed technique
with respect to other techniques for MCNC benchmarks in
terms of power and latency.

The paper is organized as follows: In Section II, we describe the
basics of crossbar array architecture as well as the state-of-art
in-memory computing architectures using RRAM crossbar
array. The proposed dynamic computing in memory technique
is introduced in Section III. In Section IV, we investigate the
effect of process and temperature variation on robustness of the
proposed DCIM. In Section V, we discuss carry select adder
implementation using proposed DCIM. In Section VI, DCIM is
evaluated and compared to state-of-art CIM methods in terms
of power and latency. The conclusions are drawn in Section VII.

II. BACKGROUND

In this section we explain the basics of crossbar array
architecture and read and write operations. We also discuss the
state-of-art computing in memory systems using RRAM
crossbar and describe its challenges.

A. Basics of RRAM Crossbar Array

A crossbar memory array consists of wordlines (WL) and
bitlines (BL) where memory cell resides at their cross point as
shown in Fig. 1. In this paper, we use a bipolar RRAM model
[11] in which RESET/SET is performed at different voltage
polarities. The I-R and I-V characteristic of the RRAM is shown
in Fig. 2(a-b). The memory cell switches from High Resistance
State (HRS) to Low Resistance State (LRS) if a positive voltage
greater than threshold voltage is applied across the bitcell.
Similarly, the bitcell switches from low to high resistance state
if negative voltage is applied. Crossbar memory architecture
achieves minimal cell size however, the sneak leakage current
can reduce sense margin significantly. In order to increase sense
margin and eliminate sneak leakage, we employ a memory
bitcell which is composed of a RRAM device connected to a
symmetric selector diode in series (Fig. 1(a-b)). The I-V

Table-1 List of design parameters

Parameters Values

RRAM high resistance state (Ry) at 1.2V 18KQ
RRAM low resistance state (Ry) at 1.2V 440 Q
RRAM read Latency 0.5ns
RRAM write Latency 22ns
Nonlinear factor of selector (a)[1] 18.4

On-state current of selector (Ion)[1] 100uA

Selector Conductance Factor (y)[1] 2%10712

bitcell high resistance state (Ry) at 1.2V 175KQ
RRAM low resistance state (Ry) at 1.2V 945Q
Bitcell write latency at 2.5V 25nS
Bitline Capacitance 30fF
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characteristic of the selector diode is modeled by the following
function as discussed in [1]:

Isg, = v.sinh(a.V)

where y is a conductance parameter, and a represents the
nonlinearity of selector diode. This model fits reasonably with
the experimental I-V characteristic for selector devices based
on MIM diode and punch through diode [12-13]. The design
parameters of RRAM and selector diode are reported in Table
I. The I-V curve of selector diode is illustrated in Fig. 2(c). Fig.
2(d) depicts the I-V curve of the bitcell composed of selector
diode and RRAM device. It can be observed that the difference
between low and high resistance increases by adding a selector
diode which in turn improves the sense margin.

Read Operation: For reading the bitcell, the commonly used
ground/ground (GND-GND) scheme is employed. To access
the bitcells in the array, the selected WL is connected to Vreap
and the selected BLs are connected to sense-amplifier (SA)
while all unselected BLs and WLs are biased at GND. Although
this read scheme improves the sense margin, it also increases
the power consumption. Other proposed read schemes include
FL-FL (floating-floating) and GND-FL [1]. The -current
through selected bitcell which is generated by applied voltage
to the selected WL, is converted to Vo by a sense resistance
(Rsense). Read operation is performed by comparing output
voltage (Vou) with a reference voltage (Vrer) using a SA as
shown in Fig. 3. Maximum sense margin for both reading ‘0’
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Fig. 3 RRAM crossbar array (a) GND-GND read scheme; and, (b) Vpp/2 write
technique. Sneak paths are shown for read and write operations.

Equivalent
Circuit if
A=B=Vy, SE,

il 7z V,
BL, F=AB | | Vouto outd REF.OR
@ , & E )
R 1TRy R, Ry[ Ry VREF _AND 0ut0 ' ’
0oe
BL _ outl
1 F=AZ Vout1 @ I
ooe
N 4 @ . X
. H VREEAND outl
. . ( :
WL owr, © . SE .

AND_Array
Fig. 4 Static computing in memory architecture in RRAM crossbar array.



(SMO0) and reading ‘1’ (SM1) is achieved by setting the
Rsense = +/Rorr/Ron- The state of the unselected bitcells
affects the sense margin (as shown in Fig. 3(a)). The worst-case
sneak path also results in the worst-case SM which occurs when
the unselected bitcells are in LRS since the sneak current is at
maximum in this case.

Write Operation: We employ the Vpp/2 writing scheme where
the selected WL is connected to Vpp and selected BL is
connected to GND/Vpp (depending on input data) while other
unselected BLs and WLs are biased at Vpp/2 (Fig. 3(b)). The
write operation is performed in RESET and SET phases.
Initially, the desired data is applied to the selected BLs. In the
RESET phase the selected WL is connected to ground, hence
the logical ‘0’ is written to bitcell (programed to HRS). In the
SET phase the selected WL is connected to Vpp and the logical
‘1’ is written into bitcell (programed to LRS).

B. Static Computing in Memory (SCIM) Method

A configurable computing in memory system based on RRAM
crossbar architecture which provides full programmability
across computation and storage has been proposed in [9].
However, the detailed circuit implementation is not discussed.
We extend the idea borrowed from this paper, to implement
arbitrary functions in terms of sum of product within RRAM
crossbar array for comparative analysis. In this method, the
crossbar array is implemented using RRAM without selector
diodes. A 2-input AND gate implementation using crossbar
array is shown in Fig. 4. Each input and its complement are
applied to a WL. In order to realize logical A.B, the cells
connected to A and B are programmed to LRS and the cells
connected to A and B are programmed to HRS while all other
bitcells are programed to HRS (e.g., the bitcells connected to
input Z and Z as illustrated in Fig. 4). The array inputs
connected to WLs are applied to different gates implemented
on different BLs. All the gates are evaluated concurrently by
applying the data input to the array.

AND operation is performed by applying input vector and
sensing the BL voltage. For A=B=1, the voltage appearing on
the BL, is approximately Vpp (see the equivalent circuit in the
inset of Fig. 4). For A=1 and B=0 (or A=0 and B=1), the BL,
voltage is approximately Vpp/2. Finally, the voltage generated
by applying the input vector is compared against a reference
voltage (Vanp rer) using a decoupled SA to determine the
output of the AND operation.

As fan-in of the AND gate increases, the difference between
voltage representing logical ‘1’ and ‘0’ reduces. The worst-case
occurs when only one input is ‘0’ and all remaining inputs are
‘1’. The difference between bitline voltage when all AND gate
inputs are ‘1” (Vanpi) and Vrer anp is defined as sense ‘1’
margin (SM1). Sense ‘0’ margin (SMO) for the AND operation
is defined as the difference between bitline voltage when only
one input is ‘0’ (Vanpo) and Vanp rer. Poor sense margin can
result in wrong interpretation of the logical AND output. The
impact of array size (the number of WLs) on Vanpi and Vanno
is shown in Fig. 5(a). This plot represents the Vanpo and Vanbi
in an array of 2N WLs where all WLs are utilized to implement
N-input AND gate. It can be observed that Vanpi remains
constant with increasing AND gate fan-in. However, Vanpo
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Fig. 6 MAGIC NOR gate implementation.

rises with increased number of inputs which in turn degrades
the SM. Note that, it is not possible to implement AND gate
with more than 8 inputs, since SM reduces below the sense
amplifier offset voltage which can result in wrong output.

GND

° ®
° °

Any logical function can be implemented in Sum Of Product
(SOP) form. Therefore, along with implementing AND
function in RRAM crossbar array, we need to implement OR
function as well. The OR gate implementation is similar to
AND gate, except that the bitline voltage is compared against a
different reference voltage (Vrer or). In order to implement the
A+B (A OR B), RRAMs connected to A and B are programed
to LRS, RRAMs connected to 4 and B are programed to HRS,
and RRAMs connected to other unused WLs are programed to
HRS. By applying A=B=0, the BL is pulled down to ‘0’. If one
of the inputs is ‘1°, a voltage near Vpp/2 appears on the bitline.
The worst-case SM1 for OR array occurs when only one input
value is ‘1’ and remaining input values are ‘0’. The BL voltage
in this case is defined as Vori. Similarly, Vorois defined as BL
voltage when all inputs are ‘0’. As shown in Fig. 5(b), Vori
reduces as the array size increases, which limits the SM.

C. Memristor Aided LoGIC (MAGIC) [10]

In this CIM architecture, memristors act as an input with
previously stored data, and an additional memristor serves as an
output to implement logic gates. This technique consists of two
sequential stages. As shown in Fig. 6, a 2-input NOR gate
composed of two RRAM s (in; and in,) is connected to an output
RRAM (out). In the initial stage, the output RRAM is
programed to low resistance state and the input values are
written to memristors in; and in,. In the second stage, voltage
V) is applied to memristors in; and in,, and the out memristor
is connected to GND to evaluate the NOR operation. The
applied voltage results in a current that flows through RRAMs
in; and in, and appears at RRAM out. If both input memristors
are logical ‘0’ (high resistance), the voltage appearing across
the output RRAM is less than the switching threshold of the
output RRAM thus it does not change and remains at logical
‘1’. For all other input combinations, the voltage across output
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Fig. 7(a) XOR implementation using proposed DCIM architecture in RRAM crossbar array; and, (b) timing diagram of logical XOR operation.

RRAM is greater than the threshold voltage. Hence, the output
memristor switches to high resistance state (logical ‘0’).
Finally, the state of output resistance is sensed using sense
amplifier to determine the result of logical NOR operation.
Since logical operation is associated with write operation in this
method, the latency and power overhead are substantial. The
proposed dynamic CIM eliminates the need of a write operation
to improve latency and power overhead.

III. PROPOSED DYNAMIC COMPUTING IN MEMORY

In this section, we describe the operation of DCIM and study
the impact of fan-in on sense margin and power. 65nm
predictive technology [14] is used to perform simulation.

A. Basic Operation

DCIM aims to overcome sense margin limitation for higher fan-
in AND/OR gates using RRAM crossbars. DCIM decreases
power consumption due to two reasons: 1) sneak path leakage
reduces significantly by employing a selector diode; 2)
dynamic-sensing eliminates the static power consumption for
performing logical operations. In this technique, each memory
cell is composed of a RRAM device connected in series to a
selector diode. Computing in memory is accomplished by
implementing the functions in SOP form. Thus, both AND and
OR operations are required to implement the logical functions.
We dedicate separate arrays to perform each function and call
them AND-array and OR-array.

In the proposed architecture, the wordlines serve as the inputs
and the bitlines are the output of AND functions. Initially both
AND and OR arrays are programmed to implement the desired
function. The programing is similar to static technique. For
instance, in order to implement AB, the bitcells connected to A
and B are programed to LRS while the bitcells connected to A
and B are programed to HRS (Fig. 7(a)). All bitcells connected
to other array inputs/WLs which are not part of AND gate
inputs are programed to HRS (e.g., the bitcells connected to
input Z and Z). To perform AND operation, the BL is initially
precharged to Vpp. Once the inputs are applied, the BL either
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remains precharged or discharges based on the input vector. In
the previous example, if Vpp (logical ‘1°) is applied to inputs A
and B, the BL remains precharged since these inputs are
connected to bitcell in LRS. However, the leakage of HRS
bitcells connected to GND discharges the BL negligibly. Any
other input combination discharges the BL significantly since
GND is connected to a bitcell in LRS. Finally, the BL voltage
is compared against the Vrer anp to determine the result of
AND operation. The result of the AND function and its
complement are provided as input to the OR array to obtain
SOP output. Programing of OR array is similar to AND array.
However, in OR array BLs are predischarged to ‘0’. The
predischarge of OR array BLs is performed during the AND
array evaluation phase, therefore the latency of predischarge
phase is hidden. Finally, the voltage generated on the OR array
BL is compared against Vrer or to achieve the result of OR
operation.

The effect of array size (number of WLs) on the SM is
investigated to determine the best array size (Fig. 5). Since two
WLs and two bitcells are required for implementing each input
of AND gate, the number of WLs is twice the number of AND
gate inputs. As depicted in Fig. 5(a-b) as array size increases
SM for AND/OR operations degrades. It can be observed that
proposed DCIM improves SM significantly compared to SCIM,
thus larger array size (higher fan-in gates) can be realized.

Fig. 7 shows the implementation of XOR function in DCIM.
The BLo and BL; are programmed to implement AB and AB
functions respectively. Note that the bitcells connected to WLs
which are not contributing in XOR implementation (called the
unused bitcells) are programmed to HRS. Initially, the PRE
signal is activated to precharge AND array BLs to Vpp. Next,
inputs (A and B) are applied by asserting ENanp. As shown in
Fig. 7(b), when A, B=1 both BL, and BL, fall to 0.65V. Since
this voltage is less than Vgrer anp=0.74V, outputs of sense
amplifiers which determine the results of AB and AB functions
are pulled down to ‘0’ at the edge of SEanp. Since inputs of OR
array (Fo=AB and F\=AB) are ‘0’, the OR array BL (BLor)
remains discharged with voltage of approximately ‘0’ (i.e. A
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XOR B=0). If A=0 and B=1, BL, discharges to 0.65V while
BL, remains precharged which results in Fo=AB =0 and
F=AB=1. Since F, is ‘1’ and is connected to a bitcell in LRS,
it charges the BLor to 0.52V while ENog is asserted. Finally,
the voltage of BLor is compared against Vrer or=0.38V at the
edge of SEor which produces 1’ at the output of SA. Note that
OR array sense enable (SE,p) is an active low signal. Since the
voltage generated on bitline of OR array is less than 0.52V, a
PMOS based SA with active low sense enable is employed
(Section IV. B).

The PRE, EN and SE signals are generated in the timer (located
at the middle of subarray). The duty cycle of EN depends on
BL capacitance and the bitcell resistance. In addition, SM
depends on the EN pulse width. The EN pulse with is chosen in
such a way that Vog rises to 90% of its steady state voltage. By
applying EN, Vogp also rises due to leakage of unused bitcells.
Therefore, the EN pulse with must be chosen in such a way to
maximize Vor; and minimize the increase of Voro. The same
argument holds true for Vanpi and Vanpo. Moreover, increasing
the EN pulse width results in higher power consumption since
both Voro and Vor; will increase. Thus, there is a tradeoff
between power and sense margin. We have swept the EN width
from to 0.1nS to 0.5nS in order to optimize both SM and power.
The EN pulse width of 0.25ns achieves sufficient sense margin
while preserving power consumption. The PRE pulse width
depends on the BL capacitance and the width of precharge
transistor. Based on simulation result, a PRE pulse width of
0.25n8 is sufficient to precharge/predischarge the BL before
logical AND/OR operation. The CIM operation starts at the
edge CIMgwm which is provided as input to the timer (inputs are
provided to AND array simultaneously). The timer receives
CIMEgy and produces PRE, EN and SE signals (clock frequency
is 2GHz). The power and area overheard of timer is negligible.

183

B. Impact of Gate Fan-in on Sense Margin

In the previous section, we investigated the effect of array size

on the SM. The purpose of this study is to determine the array
size that achieves maximum sense margin while preserving the
area efficiency. In other words, it represents the sense margin
of AND/OR operation in an array of 2N WLs where all WLs
are utilized to implement N inputs AND gate. In this section we
study the sense margin with respect to AND gate fan-in. Let us
assume that a 4-input AND gate is implemented in an array of
64 WLs. Since 8 WLs are required to implement 4-input AND
gate, 8 bitcells are programmed to implement the AND gate
while bitcells connected to the rest of WLs are programmed to
HRS. The loading effect of unused array inputs connected
bitcells in HRS reduces sense margin. Unused array input and
its complements are connected to two bitcells in HRS. In case
of static CIM, applying inputs to the unused WLs degrade the
sense margin. This can be understood by comparing Fig. 5 with
Fig. 8(a). For instance, 2-input OR gate SM is significantly
higher when the array consists of 4 WLs (see Fig. 5(b)) versus
16 WLs (see Fig. 8(a)).

The impact of unused WLs on sense margin is more severe in
DCIM. Suppose input Z value (as depicted in Fig. 7) which does
not belong to 2-input AND gate implemented on BLg is ‘0.
Since BLy is precharged to Vpp initially, the voltage across
selector diode is VDD, and it is ON initially. As BL voltage
discharges through bitcell connected to Z the voltage across
selector diode reduces, and it becomes strongly ON to weakly
ON. The selector diode is OFF/weakly OFF in the bitcell which
is connected to Z. Therefore, input Z=0 discharges the BL,
while input Z =1 cannot compensate the effect of Z by
charging the BL (since bitcell connected to Z is OFF). This
result in lower Vanpi, leading to SM degradation. As gate fan-
in decreases the number of unused bitcells increases. Thus,
Vanpi reduction increases as fan-in decrease since the leakage
through unused bitcells increases. As shown in Fig. 8(b), 2-
input AND gate achieves worst-case Vanpi (higher number of
unused bitcells result in higher leakage and lower Vanpi).

As mentioned earlier, Vanno is the voltage appears on the BL
when only one input is ‘0’. For 32-input AND gate, Vanpo is
the BL voltage where 31 inputs connected to bitcells in LRS is
pulling up the BL weakly (since selector diode is OFF) while
only one input is pulling it down strongly. Thus, as the number
of input increases (e.g., from 2 to 32), the number of bitcells in
LRS which weakly pulls the BL up increases (e.g. 1 versus 31).
Therefore, as depicted in Fig. 8(b), 32-inputs AND gate results
in the worst-case Vanpo (higher Vanpo) while 2-inputs AND
gate result in the best Vanpo. The same argument holds true for
Vori and Voro. Vori and Voge in an array of 64 WLs is also

TABLE II: Parameters used for process variation study.

Device Parameter Mean Std. Dev.
PMOS Viu 423mV AVT/M(”
NMOS Vi 365mV Ay, [NWL®
RRAM Inial Gap Ry =0.2nm 7%

R, =1.7nm
RRAM Oxide Thickness 12nm 5%

) Ay, is Pelgroom coefficient which is ~4.5mV/um for 65nm technology



shown in Fig. 8(b). 32-input OR gate results in worst-case Vori
since more bitcells in LRS pulls the BL down.

C. Impact of Gate Fan-in on Power

The power consumption of proposed DCIM for AND and OR
operations are shown in Fig. 9(a). In case of AND operation we
assume the BL is precharged to Vpp and the power consumption
is summation of the power drawn from supply after applying
inputs, the power consumed by the sense amplifier and the
power required to precharge the BL back to Vpp. For the OR
operation the power consumption is the power drawn from the
supply to charge the bitline, and the power consumed by the
sense amplifier. It can be noted that as the number of input
increases, the power consumption of AND1 operation reduces.
As shown in Fig. 8(b), Vanp: increases with the number of
inputs. Hence, less power is consumed to precharge the bitline
back to Vpp. ANDO operation results in higher power
consumption since the bitline discharges to a lower voltage
when the result of AND operation is ‘0’. Therefore, more power
is consumed to precharge the BL back to Vpp. Fig. 9(b) depicts
the power consumption of static CIM. It can be noted that static
CIM power consumption is significantly higher (almost 3X on
average) due to static current which flows through the bitcells
during logical AND/OR evaluation.

IV. PROCESS AND TEMPERATURE VARIATION ANALYSIS

A. Impact of Process and Temperature Variation on Sense
Margin

The impact of process and temperature variation on Vanpi and
Vanpo are investigated to determine the best Vrgr anp to
achieve robustness. Process variation analysis is carried out
using detailed Monte Carlo simulation in 65nm technology
[14]. For RRAM we have assumed oxide thickness and initial
filament gap variations. The variations in CMOS circuitry is
lumped in threshold voltage fluctuation. The mean and standard
deviation of these parameters are provided in Table II. As
mentioned earlier, 2-input AND gate results in the worst-case
Vanbi, and 32-input AND gate results in the worst-case V anno.
Furthermore, higher temperature results in higher bitcell
resistance, leading to higher Vanpo which in turn degrades the
SMO. Whereas, lower temperature leads to lower bitcell
resistance and lower Vanp1 degrading SM1. In order to obtain
the worst-case Vanpo under process and temperature variation,
we run 1000 points Monte-Carlo simulation at 90°C. Similarly,
1000 points Monte-Carlo simulation is performed at -10°C to
achieve the worst-case Vanpi. The simulation result is shown in
Fig. 10 (a). Since standard deviation of Vanpi (0y,,,,) 18
greater than Vanpo, @ voltage slightly less than (uy,, . +
2. 1)/2 is chosen as Vger anp to maximize the AND
operation read yield. We have performed the same analysis to
obtain the Vggr or. The worst-case Vori occurs at higher
temperature (90°C), since higher resistance increase the RC
delay, thereby the BL is charged to a lower voltage reducing
Vori. Similarly, the worst Voro occurs at lower temperature.
Monte-Carlo simulation is carried out at different temperatures
to determine the optimum Vwrer or. The results are shown in
Fig. 10(b). Since the gy, is greater than oy, we pick a
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Fig. 11(a) Sense amplifier circuit; and, (b) SA offset voltage
distribution for 1000 points Monte-Carlo simulations.

voltage greater than (iy, ., + Hy g, )/2 8 VREr_or t0 maximize
the OR operation read yield.

B. Sense Amplifier OFFSET Voltage Analysis

The sense-amplifier offset voltage (Vsa orrser) depends on the
sense time and transistor size since increasing the transistor size
decreases the transistor threshold voltage variation. We design
the sense amplifier to reduce the offset while meeting the area
and delay requirements. We considered sense time of 0.5nS. In
order to achieve Vsa_orrser, we fix reference voltage (Vrer_anp)
at 740 mV and sweep Vpaw (Fig. 11(a)). For each sweep 1000
points Monte-Carlo simulation is carried out and sense
amplifier failure distribution is shown in Fig. 11(b). This
distribution can be modeled by a Gaussian distribution with

Mvsa orrser = 8mV and OVsa oFFseT = 16mv.

C. Read Yield

The statistical distribution of sense margin and Vsa orrser
caused by process variation can be modeled by Gaussian
distribution. Since read access pass occurs when SM >
Vsa orrset, read access pass yield for a bitcell with state 0 or 1
(RAPY/ or RAPY) can be achieved by combining distribution
OfVSAios and SMo,l [15]2

HsMo, 1 ~HVsa orFser

2 2
[y — 0O
SMo,1~ “VsA_OFFSET

is

RAPY,, = )

mean sense margin and

Where MSMM(HVSAOFFSET)
aSMn,l(”VSADFFSET) is the standard deviation of sense margin.
RAPY for a bitcell is defined as the smaller of RAPY, and
RAPY . To obtain RAPY we assume that Vggr is produced by
a voltage regulator with negligible variation (SmV). Based on
the Monte-Carlo simulation, the RAPY of AND and OR
operations are found to be 4.20 and 4.90 respectively. The



g = So Cy Sis Ci6
= C
§% " muxaapbits) \ L.~ Myx 2-1(2bits)
T T T T
o - AND_Array | S|, So°| €Y €y S5t Sis] |Cis' |Cis®
a0 a0 b0 o al5s al5  b15 Bi5 / G;=ab P;=a;XOR b
i— 9t i~ i
8L, agby > o Sum=P;XOR
N | W B et
> 3 Cy'=a0b0+a0b0’+a0’b0
© ,%26 b Mﬁ x’é{ 1 ¢,2=a0b0
BL, a L
> Syl= p0 XOR 1= 2, XNOR b,
a, S4%= p0 XOR 0= a, XOR b,
By ale15‘1>
}?é ;té 315b15',\ *é
Ed - Edd
BL,, a5 bys
W 1 g ©

Fig. 12 Implementation of 16-bit carry select adder using DCIM scheme. For sake of brevity only low resistance connections are shown.

static CIM results in significantly lower yield. The RAPY of
AND and OR operations are found to be 1.7¢ and 1o
respectively.

V. IMPLEMENTATION OF CARRY SELECT ADDER USING DCIM

In order to perform addition, carry select adder is implemented.
Fig. 12 demonstrate the implementation of 16-bit carry select
adder using DCIM. For sake of brevity only low resistance
connections are shown. In the carry select addition approach
two sets of sum and outgoing carry are computed considering
incoming carry is either ‘0’ or ‘1’. Once the incoming carry is
known, we only need to select the correct set of outputs (out of
the two sets using multiplexer) without waiting for the carry to
propagate further. In Fig. 12, So° and C,° indicate the sum and
carry output when incoming carry is ‘0’. Similarly, So' and C;!
indicate the sum and carry output when incoming carry is ‘1°.
As demonstrated in Fig. 12, the carry selection takes place at
the adder interface. Based on the Cy value, So(C)) is selected
from the previously computed So° and So' (C,° and C;'). Next,
C, is propagated to the input select of next multiplexer to
determine the value of S; and C; and so forth. This technique is
of great interest since it enables implementing adder in two-
level format (in form of SOP) without need of carry
propagation. However, it requires multiplexers to perform
output selection, which can be done using CMOS MUX in the
peripheral. Pass gates are used to implement the MUXs in order
to minimize the CMOS area overhead. Larger adders can be
implemented by propagating output carry (Cie) to the input
carry of other arrays that implements another set of 16-bit
adder. Table III depicts latency and power of 16-bit adder
implemented in three CIM techniques. The SCIM latency and
power are obtained from simulation. Since SCIM cannot

Table III. Comparison of 16-bits adder implementation using different CIM

schemes
16-bits Latency #of RRAM | Power # Logical
Adder Operations
DCIM 2 cycles+carry 2*64%48 48mW 64 AND2
(This paper)| selection delay 32 OR3
=2nS 32 OR2
SCIM 2nS 64*48 64mW | Same as above
MAGIC 12N+1 177 579mW 193 NOR
(Cycles)=4246ns
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accommodate more than 8 inputs, we employ two CIM arrays
to implement 16-bit adder where the output carry of first CIM
array is provided as input to input carry of the second array.
Therefore, 16-bit addition latency is identical for both static and
dynamic CIM. The MAGIC latency and power are estimated
from Table VI in [10] by employing the RRAM model that we
used in this paper. Even though DCIM requires more number
of cells (since larger array result in more unused bitcells) to
implement 16-bit adder, it achieves 12X power saving in 16-bit
addition and achieves significantly lower latency compared to
MAGIC.

VI. EVALUATION AND COMPARISON OF DIFFERENT
COMPUTING IN MEMORY TECHNIQUES

In this section we compare the proposed DCIM with SCIM and
MAGIC in terms of power and latency.

A. Power

In order to perform comparison, two-level benchmarks of
MCNC benchmark suite [16] are used. A script is written in
order to extract number of AND/OR gates and their fan-in for
each SOP function. Unlike CMOS gates, where power is only
consumed during ‘0> = ‘1’ transition, the power is consumed
during both ‘0 > 1’ and ‘1’>’°0’ transitions in the CIM
techniques. Initially, we assume the probability of each input
being ‘1’ as 0.5. In order to obtain power dissipation, the
probability of logical AND/OR when output is ‘0’/°’1’ is
calculated at each stage. Thus, the power consumption of each
gate can be expressed as follows:

Pranpi (N)= 1/2N (2)
Proro (N)= Pro(in;) * Pro(in2)*.....*Pro(iny) 3)
Panp (N): PrANDl(N) *PANDl(N) + (l-Prl(N))*PANDo(N) (4)
Por (N)= Proro (N)*Poro(N) + Pri (N)*Pori(N) 5)

Where Poro(N) and Proro(N) are the power and probability of
N-input logical OR gate when the output is ‘0’. Fig. 13(a) shows
the power comparison of DCIM with respect to other
techniques. Dynamic CIM provides 12.6X and 2.6X power
saving compared to static CIM and MAGIC respectively.
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Fig. 13 (a) Power, and (b) latency comparison of various CIM schemes.

B. Latency

The latency of logical AND/OR operation for static and
dynamic CIM is 0.75nS. Since DCIM support up to 32 input
AND/OR gates, the gates with fan-in of more than 32 must be
partitioned into lower fain-in gates which is associated with
latency and power overhead. For example, a 64-input OR gate
is implemented using eight 8-input OR gates. As a result, all
outputs of 8-input OR gates must be ORed using another OR
array. Hence, increasing the latency by another 0.75nS. The
latency results for several benchmarks are shown in Fig. 13(b).
DCIM achieves 1.42X improvement in latency compared to
SCIM since it offers higher fan-in gate implementation. In the
SCIM method, the gates with more than 8 inputs must be
partitioned into lower fan-in gates. Since many functions in
two-level (SOP) form are implemented using high fan-in gates,
the SCIM latency is typically one or two sensing cycle longer
than DCIM.

In order to obtain the MAGIC power and latency, we
implemented each benchmark in two-level NOR-NOR format.
In addition, fain-in and number of NOR gates to implement
each function is obtained. In order to achieve consistent result,
the RRAM model [11] is used where latency of writing ‘0°/‘1°
into RRAM is 22nS (Table-1). MAGIC NOR operation
associated with two write operations is described in Section II.
C. Since MAGIC does not suffer from limited sense margin, it
can implement high fan-in NOR gates. We assume that the
array is large enough to accommodate all high fan-in NOR gates
required for implementing two-level benchmarks. Therefore,
22nS is needed to program inputs into RRAM array, 22ns to
perform first-level NOR operation by writing into output
RRAM, and 22nS to NOR the output of first-level NORs is
required to achieve the SOP output. Hence, the total latency of
MAGIC scheme is 66nS.

VII. CONCLUSIONS

In this paper we proposed dynamic computing in memory
paradigm to overcome sense margin limitation associated with
static CIM method in realizing higher fan-in AND/OR gates
using RRAM crossbar array. In addition, this technique
decreases power consumption significantly by eliminating the
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static current flow for performing logical operation compared
to static CIM and, eliminates the need of writing into the bitcell
to perform logical operations compared to MAGIC [10]. DCIM
improves read yield of logical operations ~4X compared to
SCIM. Simulation results show 1.42X and 20X latency
improvement as well as 2.6X and 12.6X power saving
compared to static [9] and MAGIC [10] computing in memory
methods over a wide range of MCNC benchmarks.
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