
Abstract— With Von-Neumann computing struggling to match the

energy-efficiency of biological systems, there is pressing need to

explore alternative computing models. Recent experimental studies

have revealed that Resistive Random Access Memory (RRAM) is

promising alternative for DRAM. Resistive crossbar arrays possess

many promising features that can not only enable high-density and

low-power storage but also non Von-Neumann compute models.

Most recent works focus on dot product operation with RRAM

crossbar arrays, and therefore are not flexible to implement various

logical functions. We propose a low-power dynamic computing in

memory system which can implement various functions in Sum of

Product (SOP) form in RRAM crossbar array architecture. We

evaluate the proposed technique by performing simulation over wide

range of MCNC benchmarks. Simulation results show 1.42X and

20X latency improvement as well as 2.6X and 12.6X power saving

compared to static [9] and MAGIC [10] computing in memory

methods.

Keywords—Resistive RAM, Sense Margin, computing in memory,

Process Variation, Crossbar Array.

I. INTRODUCTION

Von-Neumann computing separates memory and processing

element resulting in performance and energy bottlenecks due to

frequent data transfers. High density crossbar array which

employs two terminal Resistive RAM (RRAM) the crosspoint

of vertical and horizontal metal wires are proposed [4].

However, these architectures suffer from sneak-path problem

which results in poor sense margin, higher power consumption,

and limited array size. Crossbar array with a selector diode

connected in series to RRAM device has been proposed [1-3]

to solve the sneak path issue. Various computing in memory

schemes have been proposed to implement dot products in

RRAM crossbar array. Digital to analog converter (DAC) and

analog to digital converter (ADC) are required as peripheral

circuitry to implement dot product in RRAM crossbar array.

These architectures are able to implement matrix multiplication

[7] and various computing paradigms such as neuromorphic

computing [5-6] and approximate computing [8]. Even though

these techniques improve performance and power efficiency

they face challenges such as limited application domain and

need of power intensive analog circuits such as ADC and DAC.

A computing in memory paradigm is proposed [9] to implement

random functions in RRAM crossbar array. This technique

offers full programmability across storage and computation.

Even though it provides the flexibility of partitioning the

hardware resources between computation and storage to

achieve optimal performance, the implementation details of

arbitrary functions are not discussed. This technique also

suffers from poor sense margin (that can limit the array size) as

well as increased power consumption, making it impractical for

computing in memory applications. Memristor Aided LoGIC

(MAGIC) has been proposed [10] where memristors act as an

input with previously stored data, and an additional memristor

serves as an output to implement logic gates. In this method, the

logical operation is associated with write operation leading to

higher power and latency overhead. Since the inputs are

programmed into memristors the gate must be reprogrammed

for new input data incurring substantial power overhead.

In this paper, we propose a Dynamic Computing in Memory

(DCIM) paradigm using RRAM crossbar array which benefits

from nonlinear characteristic of selector diode to improve sense

margin in order to implement higher fan-in gates. In addition,

this technique reduces the power consumption associated with

logical operation significantly by eliminating the static current

compared to [9]. It also eliminates the need to write into the

bitcell to perform logical operations compared to [10].

In summary we make following contributions in this paper:

We study computing in memory systems proposed in [9-

Dynamic Computing in Memory (DCIM) in Resistive
Crossbar Arrays

Fig. 1 Crossbar array with metal oxide RRAM and selector diode at each

crosspoint; and, (b) schematic of crossbar array with selector diode.

(a) (b)

(c) (d)

Fig. 2 (a) I-V curve RRAM model used in this study; (b) I-R characteristic of

the RRAM model; (c) I-V curve of selector diode used in this study; and, (d)

the I-V characteristic of bitcell composed of RRAM and selector diode.

WL
BL BL RRAMSelector RL

WL0

`

`

`

`

`

`

`

`

WL1

BL0

BL1

1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

-2 0 2

Cu
rr

en
t(

A)

Voltage(V)

I-V Sweep

1

100

10,000

1,000,000

-2 -1 0 1 2

Re
sis

ita
nc

e(
O

hm
)

Voltage(V)

Resistance

Res-High Res_Low

Vread=1.2V

RH=175K
RL=945

Seyedhamidreza Motaman and Swaroop Ghosh

Computer Science and Engineering, Pennsylvania State University

sxm844@psu.edu, szg212@psu.edu

179

2018 IEEE 36th International Conference on Computer Design

2576-6996/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCD.2018.00036

10] thoroughly and explain their bottlenecks.

We develop a dynamic computing in memory technique to

overcome sense margin limitation to implement higher fan-

in AND/OR gates using RRAM crossbar array while

reducing power consumption.

We perform process, voltage and temperature variation

analysis to determine optimum reference voltage to

maximize read yield.

We present comparative analysis of proposed technique

with respect to other techniques for MCNC benchmarks in

terms of power and latency.

The paper is organized as follows: In Section II, we describe the

basics of crossbar array architecture as well as the state-of-art

in-memory computing architectures using RRAM crossbar

array. The proposed dynamic computing in memory technique

is introduced in Section III. In Section IV, we investigate the

effect of process and temperature variation on robustness of the

proposed DCIM. In Section V, we discuss carry select adder

implementation using proposed DCIM. In Section VI, DCIM is

evaluated and compared to state-of-art CIM methods in terms

of power and latency. The conclusions are drawn in Section VII.

II. BACKGROUND

In this section we explain the basics of crossbar array

architecture and read and write operations. We also discuss the

state-of-art computing in memory systems using RRAM

crossbar and describe its challenges.

A. Basics of RRAM Crossbar Array

A crossbar memory array consists of wordlines (WL) and

bitlines (BL) where memory cell resides at their cross point as

shown in Fig. 1. In this paper, we use a bipolar RRAM model

[11] in which RESET/SET is performed at different voltage

polarities. The I-R and I-V characteristic of the RRAM is shown

in Fig. 2(a-b). The memory cell switches from High Resistance

State (HRS) to Low Resistance State (LRS) if a positive voltage

greater than threshold voltage is applied across the bitcell.

Similarly, the bitcell switches from low to high resistance state

if negative voltage is applied. Crossbar memory architecture

achieves minimal cell size however, the sneak leakage current

can reduce sense margin significantly. In order to increase sense

margin and eliminate sneak leakage, we employ a memory

bitcell which is composed of a RRAM device connected to a

symmetric selector diode in series (Fig. 1(a-b)). The I-V

characteristic of the selector diode is modeled by the following

function as discussed in [1]:ܫௌா௅ = .ߛ sinh(ߙ. ܸ)
where ߛ is a conductance parameter, and ߙ represents the

nonlinearity of selector diode. This model fits reasonably with

the experimental I-V characteristic for selector devices based

on MIM diode and punch through diode [12-13]. The design

parameters of RRAM and selector diode are reported in Table

I. The I-V curve of selector diode is illustrated in Fig. 2(c). Fig.

2(d) depicts the I-V curve of the bitcell composed of selector

diode and RRAM device. It can be observed that the difference

between low and high resistance increases by adding a selector

diode which in turn improves the sense margin.

Read Operation: For reading the bitcell, the commonly used

ground/ground (GND-GND) scheme is employed. To access

the bitcells in the array, the selected WL is connected to VREAD

and the selected BLs are connected to sense-amplifier (SA)

while all unselected BLs and WLs are biased at GND. Although

this read scheme improves the sense margin, it also increases

the power consumption. Other proposed read schemes include

FL-FL (floating-floating) and GND-FL [1]. The current

through selected bitcell which is generated by applied voltage

to the selected WL, is converted to Vout by a sense resistance

(Rsense). Read operation is performed by comparing output

voltage (Vout) with a reference voltage (VREF) using a SA as

shown in Fig. 3. Maximum sense margin for both reading ‘0’

Table-1 List of design parameters

Parameters Values

RRAM high resistance state (RH) at 1.2V 18KΩ
RRAM low resistance state (RL) at 1.2V 440 Ω

RRAM read Latency 0.5ns

RRAM write Latency 22ns

Nonlinear factor of selector (α)[1] 18.4

On-state current of selector (ION)[1] 100uA

Selector Conductance Factor (ߛ)[1] 2*10-12

bitcell high resistance state (RH) at 1.2V 175KΩ
RRAM low resistance state (RL) at 1.2V 945Ω

Bitcell write latency at 2.5V 25nS

Bitline Capacitance 30fF

(a)

(b)

Fig. 3 RRAM crossbar array (a) GND-GND read scheme; and, (b) VDD/2 write

technique. Sneak paths are shown for read and write operations.

Fig. 4 Static computing in memory architecture in RRAM crossbar array.

Sneak Path

VREAD GND

BL0

RSense

RSense

`

`

OUT0

OUT1

VREF

VREF

GND

READ

BL1

Vout

`

`

`

`

`

`

`

`

`

`

`

`

`

`

Vout

Writing RH

0

0(GND)

VDD/2VDD/2
RESET

WL0 WL1

1(VDD)

BL0

BL1

`

`

`

`

`

`

`

`

Writing RL

VDD

0(GND)

VDD/2VDD/2
SET

WL0 WL1

1(VDD)

BL0

BL1
`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

௢ܸ௨௧଴̅ܣ
F=ܼ̅ܣ VREF_AND

VREF_AND SE

BL0

BL1

ܤ തܤ
RL RH

AND_Array

ܣ

`

`

`

`

`

`

`

`RHRL

`

`

`

`

`

`

௢ܸ௨௧ଵ

F=AB

Equivalent
Circuit if
A=B=VDD

௢ܸ௨௧଴Vin RH/N~RL/2

`

`

`

`

0ݐݑ݋
0ݐݑ݋

`

`

1ݐݑ݋
1ݐݑ݋

`

`RHRH

VREF_OR

`

`

`

`

`

`

`

`

VREF_OR
OR_ArraySEOR

`

`RH

`

`RH

ݖ

`

`RH
̅ݖ

WL0 WL1

`

`

`

`

180

(SM0) and reading ‘1’ (SM1) is achieved by setting the ܴௌ௘௡௦௘ = ඥܴைிி/ܴைே. The state of the unselected bitcells

affects the sense margin (as shown in Fig. 3(a)). The worst-case

sneak path also results in the worst-case SM which occurs when

the unselected bitcells are in LRS since the sneak current is at

maximum in this case.

Write Operation: We employ the VDD/2 writing scheme where

the selected WL is connected to VDD and selected BL is

connected to GND/VDD (depending on input data) while other

unselected BLs and WLs are biased at VDD/2 (Fig. 3(b)). The

write operation is performed in RESET and SET phases.

Initially, the desired data is applied to the selected BLs. In the

RESET phase the selected WL is connected to ground, hence

the logical ‘0’ is written to bitcell (programed to HRS). In the

SET phase the selected WL is connected to VDD and the logical

‘1’ is written into bitcell (programed to LRS).

B. Static Computing in Memory (SCIM) Method

A configurable computing in memory system based on RRAM

crossbar architecture which provides full programmability

across computation and storage has been proposed in [9].

However, the detailed circuit implementation is not discussed.

We extend the idea borrowed from this paper, to implement

arbitrary functions in terms of sum of product within RRAM

crossbar array for comparative analysis. In this method, the

crossbar array is implemented using RRAM without selector

diodes. A 2-input AND gate implementation using crossbar

array is shown in Fig. 4. Each input and its complement are

applied to a WL. In order to realize logical A.B, the cells

connected to A and B are programmed to LRS and the cells

connected to ̅ܣ and ത are programmed to HRS while all otherܤ

bitcells are programed to HRS (e.g., the bitcells connected to

input Z and ܼ̅ as illustrated in Fig. 4). The array inputs

connected to WLs are applied to different gates implemented

on different BLs. All the gates are evaluated concurrently by

applying the data input to the array.

AND operation is performed by applying input vector and

sensing the BL voltage. For A=B=1, the voltage appearing on

the BL0 is approximately VDD (see the equivalent circuit in the

inset of Fig. 4). For A=1 and B=0 (or A=0 and B=1), the BL0

voltage is approximately VDD/2. Finally, the voltage generated

by applying the input vector is compared against a reference

voltage (VAND_REF) using a decoupled SA to determine the

output of the AND operation.

As fan-in of the AND gate increases, the difference between

voltage representing logical ‘1’ and ‘0’ reduces. The worst-case

occurs when only one input is ‘0’ and all remaining inputs are

‘1’. The difference between bitline voltage when all AND gate

inputs are ‘1’ (VAND1) and VREF_AND is defined as sense ‘1’
margin (SM1). Sense ‘0’ margin (SM0) for the AND operation

is defined as the difference between bitline voltage when only

one input is ‘0’ (VAND0) and VAND_REF. Poor sense margin can

result in wrong interpretation of the logical AND output. The

impact of array size (the number of WLs) on VAND1 and VAND0

is shown in Fig. 5(a). This plot represents the VAND0 and VAND1

in an array of 2N WLs where all WLs are utilized to implement

N-input AND gate. It can be observed that VAND1 remains

constant with increasing AND gate fan-in. However, VAND0

rises with increased number of inputs which in turn degrades

the SM. Note that, it is not possible to implement AND gate

with more than 8 inputs, since SM reduces below the sense

amplifier offset voltage which can result in wrong output.

Any logical function can be implemented in Sum Of Product

(SOP) form. Therefore, along with implementing AND

function in RRAM crossbar array, we need to implement OR

function as well. The OR gate implementation is similar to

AND gate, except that the bitline voltage is compared against a

different reference voltage (VREF_OR). In order to implement the

A+B (A OR B), RRAMs connected to A and B are programed

to LRS, RRAMs connected to ܣ̅ and ܤത are programed to HRS,

and RRAMs connected to other unused WLs are programed to

HRS. By applying A=B=0, the BL is pulled down to ‘0’. If one

of the inputs is ‘1’, a voltage near VDD/2 appears on the bitline.

The worst-case SM1 for OR array occurs when only one input

value is ‘1’ and remaining input values are ‘0’. The BL voltage
in this case is defined as VOR1. Similarly, VOR0 is defined as BL

voltage when all inputs are ‘0’. As shown in Fig. 5(b), VOR1

reduces as the array size increases, which limits the SM.

C. Memristor Aided LoGIC (MAGIC) [10]

In this CIM architecture, memristors act as an input with

previously stored data, and an additional memristor serves as an

output to implement logic gates. This technique consists of two

sequential stages. As shown in Fig. 6, a 2-input NOR gate

composed of two RRAMs (in1 and in2) is connected to an output

RRAM (out). In the initial stage, the output RRAM is

programed to low resistance state and the input values are

written to memristors in1 and in2. In the second stage, voltage

V0 is applied to memristors in1 and in2, and the out memristor

is connected to GND to evaluate the NOR operation. The

applied voltage results in a current that flows through RRAMs

in1 and in2 and appears at RRAM out. If both input memristors

are logical ‘0’ (high resistance), the voltage appearing across

the output RRAM is less than the switching threshold of the

output RRAM thus it does not change and remains at logical

‘1’. For all other input combinations, the voltage across output

(a) (b)

Fig. 5 (a) VAND1 and VAND0 versus AND array size; and, (b) VOR1 and VOR0 versus

OR array size in an array of 2N WLs where all WLs are utilized to implement

N-input gate.

Fig. 6 MAGIC NOR gate implementation.

VAND1 increases due to discharge of BL through bitcells in HRS connected to ‘0’1131mV
1030mV

VOR0 increases since BL is charged by bitcells in HRS connected to ‘1’

181

RRAM is greater than the threshold voltage. Hence, the output

memristor switches to high resistance state (logical ‘0’).
Finally, the state of output resistance is sensed using sense

amplifier to determine the result of logical NOR operation.

Since logical operation is associated with write operation in this

method, the latency and power overhead are substantial. The

proposed dynamic CIM eliminates the need of a write operation

to improve latency and power overhead.

III. PROPOSED DYNAMIC COMPUTING IN MEMORY

In this section, we describe the operation of DCIM and study

the impact of fan-in on sense margin and power. 65nm

predictive technology [14] is used to perform simulation.

A. Basic Operation

DCIM aims to overcome sense margin limitation for higher fan-

in AND/OR gates using RRAM crossbars. DCIM decreases

power consumption due to two reasons: 1) sneak path leakage

reduces significantly by employing a selector diode; 2)

dynamic-sensing eliminates the static power consumption for

performing logical operations. In this technique, each memory

cell is composed of a RRAM device connected in series to a

selector diode. Computing in memory is accomplished by

implementing the functions in SOP form. Thus, both AND and

OR operations are required to implement the logical functions.

We dedicate separate arrays to perform each function and call

them AND-array and OR-array.

In the proposed architecture, the wordlines serve as the inputs

and the bitlines are the output of AND functions. Initially both

AND and OR arrays are programmed to implement the desired

function. The programing is similar to static technique. For

instance, in order to implement ܤܣത , the bitcells connected to A

and ܤത are programed to LRS while the bitcells connected to ̅ܣ
and ܤ are programed to HRS (Fig. 7(a)). All bitcells connected

to other array inputs/WLs which are not part of AND gate

inputs are programed to HRS (e.g., the bitcells connected to

input Z and ܼ̅). To perform AND operation, the BL is initially

precharged to VDD. Once the inputs are applied, the BL either

remains precharged or discharges based on the input vector. In

the previous example, if VDD (logical ‘1’) is applied to inputs A

and തܤ , the BL remains precharged since these inputs are

connected to bitcell in LRS. However, the leakage of HRS

bitcells connected to GND discharges the BL negligibly. Any

other input combination discharges the BL significantly since

GND is connected to a bitcell in LRS. Finally, the BL voltage

is compared against the VREF_AND to determine the result of

AND operation. The result of the AND function and its

complement are provided as input to the OR array to obtain

SOP output. Programing of OR array is similar to AND array.

However, in OR array BLs are predischarged to ‘0’. The
predischarge of OR array BLs is performed during the AND

array evaluation phase, therefore the latency of predischarge

phase is hidden. Finally, the voltage generated on the OR array

BL is compared against VREF_OR to achieve the result of OR

operation.

The effect of array size (number of WLs) on the SM is

investigated to determine the best array size (Fig. 5). Since two

WLs and two bitcells are required for implementing each input

of AND gate, the number of WLs is twice the number of AND

gate inputs. As depicted in Fig. 5(a-b) as array size increases

SM for AND/OR operations degrades. It can be observed that

proposed DCIM improves SM significantly compared to SCIM,

thus larger array size (higher fan-in gates) can be realized.

Fig. 7 shows the implementation of XOR function in DCIM.

The BL0 and BL1 are programmed to implement ܤܣത and ̅ܤܣ
functions respectively. Note that the bitcells connected to WLs

which are not contributing in XOR implementation (called the

unused bitcells) are programmed to HRS. Initially, the PRE

signal is activated to precharge AND array BLs to VDD. Next,

inputs (A and B) are applied by asserting ENAND. As shown in

Fig. 7(b), when A, B=1 both BL0 and BL1 fall to 0.65V. Since

this voltage is less than VREF_AND=0.74V, outputs of sense

amplifiers which determine the results of തܤܣ and ̅ܤܣ functions

are pulled down to ‘0’ at the edge of SEAND. Since inputs of OR

array (F0=ܤܣത and F1=̅ܤܣ) are ‘0’, the OR array BL (BLOR)

remains discharged with voltage of approximately ‘0’ (i.e. A

(a) (b)

Fig. 7(a) XOR implementation using proposed DCIM architecture in RRAM crossbar array; and, (b) timing diagram of logical XOR operation.

VDD

F0= ࡮࡭ഥ`

`

ܣ ܣ̅

F1=࡭ഥ࡮`

SEANDPRE

BL0

BL1

ܤ തܤ
A XOR B

RL RH

ைோܧܴܲ

OR_Array
AND_Array

ܼܼ̅ V REF_OR V REF_OR

VREF_AND

VREF_AND

ENAND ܤ ைோܧܵ

ENOR

ܣ ܼ

RH

RHRH

BLOR

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`
c
v

`

`

`

`

`
c
v

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`

`
c
v

`
c
v

`

`

Unused Bitcells

`
c
v

CIMENCLK PRECIMENCLK ENANDSEANDCLK ENOR
D QCIMEN SEAND

CLK D Q SEOR

Timer

Another Function

BL1 & BL0 Discharge at ENAND=1 BL1 remains High,BL0 Discharges

AഥB & ABഥ obtained when SE = 1 BL1=1AഥB=1

BLOR start charging When ENOR=1AഥB & ABഥ=0 BLOR~0
A XORB=0 obtained when SEOR=0 AXORB=1

Precharge at PRE=0A=1 &B=1

182

XOR B=0). If A=0 and B=1, BL0 discharges to 0.65V while

BL1 remains precharged which results in F0= ܤܣത = 0 and

F1=̅1=ܤܣ. Since F1 is ‘1’ and is connected to a bitcell in LRS,

it charges the BLOR to 0.52V while ENOR is asserted. Finally,

the voltage of BLOR is compared against VREF_OR=0.38V at the

edge of SEOR which produces ‘1’ at the output of SA. Note that
OR array sense enable (ைோതതതതതതതܧܵ) is an active low signal. Since the

voltage generated on bitline of OR array is less than 0.52V, a

PMOS based SA with active low sense enable is employed

(Section IV. B).

The PRE, EN and SE signals are generated in the timer (located

at the middle of subarray). The duty cycle of EN depends on

BL capacitance and the bitcell resistance. In addition, SM

depends on the EN pulse width. The EN pulse with is chosen in

such a way that VOR1 rises to 90% of its steady state voltage. By

applying EN, VOR0 also rises due to leakage of unused bitcells.

Therefore, the EN pulse with must be chosen in such a way to

maximize VOR1 and minimize the increase of VOR0. The same

argument holds true for VAND1 and VAND0. Moreover, increasing

the EN pulse width results in higher power consumption since

both VOR0 and VOR1 will increase. Thus, there is a tradeoff

between power and sense margin. We have swept the EN width

from to 0.1nS to 0.5nS in order to optimize both SM and power.

The EN pulse width of 0.25ns achieves sufficient sense margin

while preserving power consumption. The PRE pulse width

depends on the BL capacitance and the width of precharge

transistor. Based on simulation result, a PRE pulse width of

0.25nS is sufficient to precharge/predischarge the BL before

logical AND/OR operation. The CIM operation starts at the

edge CIMEM which is provided as input to the timer (inputs are

provided to AND array simultaneously). The timer receives

CIMEN and produces PRE, EN and SE signals (clock frequency

is 2GHz). The power and area overheard of timer is negligible.

B. Impact of Gate Fan-in on Sense Margin

In the previous section, we investigated the effect of array size

on the SM. The purpose of this study is to determine the array

size that achieves maximum sense margin while preserving the

area efficiency. In other words, it represents the sense margin

of AND/OR operation in an array of 2N WLs where all WLs

are utilized to implement N inputs AND gate. In this section we

study the sense margin with respect to AND gate fan-in. Let us

assume that a 4-input AND gate is implemented in an array of

64 WLs. Since 8 WLs are required to implement 4-input AND

gate, 8 bitcells are programmed to implement the AND gate

while bitcells connected to the rest of WLs are programmed to

HRS. The loading effect of unused array inputs connected

bitcells in HRS reduces sense margin. Unused array input and

its complements are connected to two bitcells in HRS. In case

of static CIM, applying inputs to the unused WLs degrade the

sense margin. This can be understood by comparing Fig. 5 with

Fig. 8(a). For instance, 2-input OR gate SM is significantly

higher when the array consists of 4 WLs (see Fig. 5(b)) versus

16 WLs (see Fig. 8(a)).

The impact of unused WLs on sense margin is more severe in

DCIM. Suppose input Z value (as depicted in Fig. 7) which does

not belong to 2-input AND gate implemented on BL0 is ‘0’.
Since BL0 is precharged to VDD initially, the voltage across

selector diode is VDD, and it is ON initially. As BL voltage

discharges through bitcell connected to Z the voltage across

selector diode reduces, and it becomes strongly ON to weakly

ON. The selector diode is OFF/weakly OFF in the bitcell which

is connected to ܼ̅. Therefore, input Z=0 discharges the BL,

while input ܼ̅ = 1 cannot compensate the effect of Z by

charging the BL (since bitcell connected to ܼ̅ is OFF). This

result in lower VAND1, leading to SM degradation. As gate fan-

in decreases the number of unused bitcells increases. Thus,

VAND1 reduction increases as fan-in decrease since the leakage

through unused bitcells increases. As shown in Fig. 8(b), 2-

input AND gate achieves worst-case VAND1 (higher number of

unused bitcells result in higher leakage and lower VAND1).

As mentioned earlier, VAND0 is the voltage appears on the BL

when only one input is ‘0’. For 32-input AND gate, VAND0 is

the BL voltage where 31 inputs connected to bitcells in LRS is

pulling up the BL weakly (since selector diode is OFF) while

only one input is pulling it down strongly. Thus, as the number

of input increases (e.g., from 2 to 32), the number of bitcells in

LRS which weakly pulls the BL up increases (e.g. 1 versus 31).

Therefore, as depicted in Fig. 8(b), 32-inputs AND gate results

in the worst-case VAND0 (higher VAND0) while 2-inputs AND

gate result in the best VAND0. The same argument holds true for

VOR1 and VOR0 . VOR1 and VOR0 in an array of 64 WLs is also

(a) (b)

Fig. 8 (a) VAND,1,VAND,0 , VOR1 and VOR0 versus gate fan-in for, (a) conventional

CIM in array of 16 WLs, (b) DCIM in array of 64 WLs.

(a) (b)

Fig. 9 Power consumption versus number of inputs; (a) Dynamic CIM and, (b)

static CIM.

VREF_AND
SMAND=35mV

SMOR=30mVVREF_OR VREF_OR=0.38

VREF_AND=0.74
Worst VAND1 more unused bitcells higher leakage

Worst VAAND0more bitcells in LRS that charging BLSM1=120mV SM0=80mV
Worst VOOR1 more bitcells in LRS pulling down BLSM0=130mV SM1=120mV

C
CStatic

TABLE II: Parameters used for process variation study.

Device Parameter Mean Std. Dev.

PMOS VTH 423mV (1)ܮݓ√/௏೅ܣ

NMOS VTH 365mV (1)ܮݓ√/௏೅ܣ

RRAM Inial Gap RL =0.2nm

Rh =1.7nm

7%

RRAM Oxide Thickness 12nm 5%

(1) ௏೅ܣ Pelgroom coefficient which is ~4.5mV/μm for 65nm technology ݏ݅

183

shown in Fig. 8(b). 32-input OR gate results in worst-case VOR1

since more bitcells in LRS pulls the BL down.

C. Impact of Gate Fan-in on Power

The power consumption of proposed DCIM for AND and OR

operations are shown in Fig. 9(a). In case of AND operation we

assume the BL is precharged to VDD and the power consumption

is summation of the power drawn from supply after applying

inputs, the power consumed by the sense amplifier and the

power required to precharge the BL back to VDD. For the OR

operation the power consumption is the power drawn from the

supply to charge the bitline, and the power consumed by the

sense amplifier. It can be noted that as the number of input

increases, the power consumption of AND1 operation reduces.

As shown in Fig. 8(b), VAND1 increases with the number of

inputs. Hence, less power is consumed to precharge the bitline

back to VDD. AND0 operation results in higher power

consumption since the bitline discharges to a lower voltage

when the result of AND operation is ‘0’. Therefore, more power

is consumed to precharge the BL back to VDD. Fig. 9(b) depicts

the power consumption of static CIM. It can be noted that static

CIM power consumption is significantly higher (almost 3X on

average) due to static current which flows through the bitcells

during logical AND/OR evaluation.

IV. PROCESS AND TEMPERATURE VARIATION ANALYSIS

A. Impact of Process and Temperature Variation on Sense

Margin

The impact of process and temperature variation on VAND1 and

VAND0 are investigated to determine the best VREF_AND to

achieve robustness. Process variation analysis is carried out

using detailed Monte Carlo simulation in 65nm technology

[14]. For RRAM we have assumed oxide thickness and initial

filament gap variations. The variations in CMOS circuitry is

lumped in threshold voltage fluctuation. The mean and standard

deviation of these parameters are provided in Table II. As

mentioned earlier, 2-input AND gate results in the worst-case

VAND1, and 32-input AND gate results in the worst-case VAND0.

Furthermore, higher temperature results in higher bitcell

resistance, leading to higher VAND0 which in turn degrades the

SM0. Whereas, lower temperature leads to lower bitcell

resistance and lower VAND1 degrading SM1. In order to obtain

the worst-case VAND0 under process and temperature variation,

we run 1000 points Monte-Carlo simulation at 90oC. Similarly,

1000 points Monte-Carlo simulation is performed at -10oC to

achieve the worst-case VAND1. The simulation result is shown in

Fig. 10 (a). Since standard deviation of VAND1 (௏ಲಿವభߪ) is

greater than VAND0, a voltage slightly less than ௏ಲಿವబߤ) ௏ಲಿವభ)/2ߤ+ is chosen as VREF_AND to maximize the AND

operation read yield. We have performed the same analysis to

obtain the VREF_OR. The worst-case VOR1 occurs at higher

temperature (90oC), since higher resistance increase the RC

delay, thereby the BL is charged to a lower voltage reducing

VOR1. Similarly, the worst VOR0 occurs at lower temperature.

Monte-Carlo simulation is carried out at different temperatures

to determine the optimum VREF_OR. The results are shown in

Fig. 10(b). Since the ߪ௏ೀೃబ is greater than ௏ೀೃభߪ we pick a

voltage greater than ௏ೀೃబߤ) + ௏ೀೃభ)/2 as VREF_ORߤ to maximize

the OR operation read yield.

B. Sense Amplifier OFFSET Voltage Analysis

The sense-amplifier offset voltage (VSA_OFFSET) depends on the

sense time and transistor size since increasing the transistor size

decreases the transistor threshold voltage variation. We design

the sense amplifier to reduce the offset while meeting the area

and delay requirements. We considered sense time of 0.5nS. In

order to achieve VSA_OFFSET, we fix reference voltage (VREF_AND)

at 740 mV and sweep VData (Fig. 11(a)). For each sweep 1000

points Monte-Carlo simulation is carried out and sense

amplifier failure distribution is shown in Fig. 11(b). This

distribution can be modeled by a Gaussian distribution with ߤ௏ೄಲ_ೀಷಷೄಶ೅ = 8ܸ݉ and ߪ௏ೄಲ_ೀಷಷೄಶ೅ = 16ܸ݉.

C. Read Yield

The statistical distribution of sense margin and VSA_OFFSET

caused by process variation can be modeled by Gaussian

distribution. Since read access pass occurs when SM >

VSA_OFFSET, read access pass yield for a bitcell with state 0 or 1

(RAPY0 or RAPY1) can be achieved by combining distribution

of VSA_OS and SM0,1 [15]:

ܲܣܴ ଴ܻ,ଵ = ఓೄಾబ,భିఓೇೄಲ_ೀಷಷೄಶ೅ටఙೄಾబ,భమ ିఙೇೄಲ_ೀಷಷೄಶ೅మ (1)

Where ߤௌெబ,భ(ߤ௏ೄಲೀಷಷೄಶ೅) is mean sense margin and ߪௌெబ,భ(ߪ௏ೄಲೀಷಷೄಶ೅) is the standard deviation of sense margin.

RAPY for a bitcell is defined as the smaller of RAPY0 and

RAPY1. To obtain RAPY we assume that VREF is produced by

a voltage regulator with negligible variation (5mV). Based on

the Monte-Carlo simulation, the RAPY of AND and OR

operations are found to be 4.2ߪ and 4.9ߪ respectively. The

(a) (b)

Fig. 10 (a) VAND1 and VAND0 distribution for 1000 Monte-Carlo points

@ -10oC and 90oC; and, (b) VOR0 and VOR1 distribution.

 (a) (b)

Fig. 11(a) Sense amplifier circuit; and, (b) SA offset voltage

distribution for 1000 points Monte-Carlo simulations.

௏ಲಿವబߤ = ௏ಲಿವబߪ0.66 = 2ܸ݉

௏ಲಿವభߤ = ௏ಲಿವభߪ0.84 = 9ܸ݉

V REF_AN
D=740

mV ௏ೀೃభߤ = ௏ೀೃభߪ486ܸ݉ = 2ܸ݉
௏ೀೃబߤ = ௏ೀೃబߪ278ܸ݉ = 8ܸ݉

V REF_OR
=388m

V

VDD

● ●

SE

T1 T2
VRef

Out

SE SE

VData

184

static CIM results in significantly lower yield. The RAPY of

AND and OR operations are found to be 1.7ߪ and 1ߪ
respectively.

V. IMPLEMENTATION OF CARRY SELECT ADDER USING DCIM

In order to perform addition, carry select adder is implemented.

Fig. 12 demonstrate the implementation of 16-bit carry select

adder using DCIM. For sake of brevity only low resistance

connections are shown. In the carry select addition approach

two sets of sum and outgoing carry are computed considering

incoming carry is either ‘0’ or ‘1’. Once the incoming carry is

known, we only need to select the correct set of outputs (out of

the two sets using multiplexer) without waiting for the carry to

propagate further. In Fig. 12, S0
0 and C1

0 indicate the sum and

carry output when incoming carry is ‘0’. Similarly, S0
1 and C1

1

indicate the sum and carry output when incoming carry is ‘1’.
As demonstrated in Fig. 12, the carry selection takes place at

the adder interface. Based on the C0 value, S0(C1) is selected

from the previously computed S0
0 and S0

1 (C1
0 and C1

1). Next,

C1 is propagated to the input select of next multiplexer to

determine the value of S1 and C2 and so forth. This technique is

of great interest since it enables implementing adder in two-

level format (in form of SOP) without need of carry

propagation. However, it requires multiplexers to perform

output selection, which can be done using CMOS MUX in the

peripheral. Pass gates are used to implement the MUXs in order

to minimize the CMOS area overhead. Larger adders can be

implemented by propagating output carry (C16) to the input

carry of other arrays that implements another set of 16-bit

adder. Table III depicts latency and power of 16-bit adder

implemented in three CIM techniques. The SCIM latency and

power are obtained from simulation. Since SCIM cannot

accommodate more than 8 inputs, we employ two CIM arrays

to implement 16-bit adder where the output carry of first CIM

array is provided as input to input carry of the second array.

Therefore, 16-bit addition latency is identical for both static and

dynamic CIM. The MAGIC latency and power are estimated

from Table VI in [10] by employing the RRAM model that we

used in this paper. Even though DCIM requires more number

of cells (since larger array result in more unused bitcells) to

implement 16-bit adder, it achieves 12X power saving in 16-bit

addition and achieves significantly lower latency compared to

MAGIC.

VI. EVALUATION AND COMPARISON OF DIFFERENT

COMPUTING IN MEMORY TECHNIQUES

In this section we compare the proposed DCIM with SCIM and

MAGIC in terms of power and latency.

A. Power

In order to perform comparison, two-level benchmarks of

MCNC benchmark suite [16] are used. A script is written in

order to extract number of AND/OR gates and their fan-in for

each SOP function. Unlike CMOS gates, where power is only

consumed during ‘0’ ‘1’ transition, the power is consumed

during both ‘0’ ‘1’ and ‘1’ ’0’ transitions in the CIM

techniques. Initially, we assume the probability of each input

being ‘1’ as 0.5. In order to obtain power dissipation, the

probability of logical AND/OR when output is ‘0’/’1’ is
calculated at each stage. Thus, the power consumption of each

gate can be expressed as follows:

PrAND1 (N)= 1/2N (2)

PrOR0 (N)= Pr0(in1) * Pr0(in2)*…..*Pr0(inN) (3)

PAND (N)= PrAND1(N) *PAND1(N) + (1-Pr1(N))*PAND0(N) (4)

POR (N)= PrOR0 (N)*POR0(N) + Pr1 (N)*POR1(N) (5)

Where POR0(N) and PrOR0(N) are the power and probability of

N-input logical OR gate when the output is ‘0’. Fig. 13(a) shows

the power comparison of DCIM with respect to other

techniques. Dynamic CIM provides 12.6X and 2.6X power

saving compared to static CIM and MAGIC respectively.

Table III. Comparison of 16-bits adder implementation using different CIM

schemes

16-bits

Adder

Latency # of RRAM Power # Logical

Operations

DCIM

(This paper)

2 cycles+carry

selection delay

=2nS

2*64*48 48mW 64 AND2

32 OR3

32 OR2

SCIM 2nS 64*48 64mW Same as above

MAGIC 12N+1

(Cycles)=4246ns

177 579mW 193 NOR

Fig. 12 Implementation of 16-bit carry select adder using DCIM scheme. For sake of brevity only low resistance connections are shown.

BL0
BL1

AND_Array

`

`

`

`

RL`

`

`

`

ܽ0 ܾ0ܽ0 ܾ0 a0b0a0b0’
BL2

`

`

`

`

a0’ b0
BL3

BL45

`

`

`

`

S01 C11

OR_Array

ܽ15 ܾ15ܽ15 ܾ15

a15b15a15b15’a15’ b15`

`

`

`

BL47

`

`

`

`

`

`

`

`

`

`

`

`

S00 C10

`

`

S151 C151

`

`

`

`

`

`

S150 C150
MUX 2-1(2bits)

S0 C1
MUX 2-1(2bits)

S15 C16C16C0

Adder
Interface

Gi=aibi Pi=ai XOR bi Sumi=Pi XOR Ci Ci+1=Gi+PiCiC11=a0b0+a0b0’+a0’b0C10=a0b0S01= p0 XOR 1= a0 XNOR b0S00= p0 XOR 0= a0 XOR b0

`

`

`

`

`

`

`

`

185

B. Latency

The latency of logical AND/OR operation for static and

dynamic CIM is 0.75nS. Since DCIM support up to 32 input

AND/OR gates, the gates with fan-in of more than 32 must be

partitioned into lower fain-in gates which is associated with

latency and power overhead. For example, a 64-input OR gate

is implemented using eight 8-input OR gates. As a result, all

outputs of 8-input OR gates must be ORed using another OR

array. Hence, increasing the latency by another 0.75nS. The

latency results for several benchmarks are shown in Fig. 13(b).

DCIM achieves 1.42X improvement in latency compared to

SCIM since it offers higher fan-in gate implementation. In the

SCIM method, the gates with more than 8 inputs must be

partitioned into lower fan-in gates. Since many functions in

two-level (SOP) form are implemented using high fan-in gates,

the SCIM latency is typically one or two sensing cycle longer

than DCIM.

In order to obtain the MAGIC power and latency, we

implemented each benchmark in two-level NOR-NOR format.

In addition, fain-in and number of NOR gates to implement

each function is obtained. In order to achieve consistent result,

the RRAM model [11] is used where latency of writing ‘0’/‘1’
into RRAM is 22nS (Table-1). MAGIC NOR operation

associated with two write operations is described in Section II.

C. Since MAGIC does not suffer from limited sense margin, it

can implement high fan-in NOR gates. We assume that the

array is large enough to accommodate all high fan-in NOR gates

required for implementing two-level benchmarks. Therefore,

22nS is needed to program inputs into RRAM array, 22ns to

perform first-level NOR operation by writing into output

RRAM, and 22nS to NOR the output of first-level NORs is

required to achieve the SOP output. Hence, the total latency of

MAGIC scheme is 66nS.

VII. CONCLUSIONS

In this paper we proposed dynamic computing in memory

paradigm to overcome sense margin limitation associated with

static CIM method in realizing higher fan-in AND/OR gates

using RRAM crossbar array. In addition, this technique

decreases power consumption significantly by eliminating the

static current flow for performing logical operation compared

to static CIM and, eliminates the need of writing into the bitcell

to perform logical operations compared to MAGIC [10]. DCIM

improves read yield of logical operations ~4X compared to

SCIM. Simulation results show 1.42X and 20X latency

improvement as well as 2.6X and 12.6X power saving

compared to static [9] and MAGIC [10] computing in memory

methods over a wide range of MCNC benchmarks.

Acknowledgements: This paper is based on work supported by

Semiconductor Research Corp. (#2018-TS-2847), NSF CNS-

1722557, CNS-1814710, CCF-1718474, DGE-1723687, DGE-

1821766 and DARPA Young Faculty Award [#D15AP00089].

REFERENCES

[1] Zhou, Jiantao, et al. "Crossbar RRAM arrays: Selector device

requirements during read operation." IEEE Transactions on

Electron Devices 61.5 (2014): 1369-1376.

[2] Huang, Jiun-Jia, et al. "One selector-one resistor (1S1R) crossbar

array for high-density flexible memory applications." Electron

Devices Meeting (IEDM), 2011 IEEE International. IEEE, 2011.

[3] Deng, Yexin, et al. "RRAM crossbar array with cell selection

device: A device and circuit interaction study." IEEE

Transactions on Electron Devices 60.2 (2013): 719-726.

[4] Liang, Jiale, and H-S. Philip Wong. "Cross-point memory array

without cell selectors—Device characteristics and data storage

pattern dependencies." IEEE Transactions on Electron Devices

57.10 (2010): 2531-2538.

[5] G. W. Burr, et al. "Experimental demonstration and tolerancing

of a large-scale neural network (165 000 synapses) using phase-

change memory as the synaptic weight element." TED, 2015.

[6] S. Yu, et al. "A neuromorphic visual system using RRAM

synaptic devices with Sub-pJ energy and tolerance to variability:

Experimental characterization and large-scale modeling." IEDM,

2012.

[7] Ni, Leibin, et al. "An energy-efficient matrix multiplication

accelerator by distributed in-memory computing on binary

RRAM crossbar." Design Automation Conference (ASP-DAC),

2016 21st Asia and South Pacific. IEEE, 2016.

[8] B. Li, Y. Shan, et al. Memristor-based approximated

computation. In ISLPED, pages 242{247, Sept 2013.

[9] Zha, Yue, and Jing Li. "Reconfigurable in-memory computing

with resistive memory crossbar." Proceedings of the 35th

International Conference on Computer-Aided Design. ACM,

2016.

[10] Talati, Nishil, et al. "Logic design within memristive memories

using memristor-aided loGIC (MAGIC)." IEEE Transactions on

Nanotechnology 15.4 (2016): 635-650.

[11] Jiang, Z., Wong, H. P. (2014). Stanford University Resistive-

Switching Random Access Memory (RRAM) Verilog-A Model.

nanoHUB. doi:10.4231/D37H1DN48

[12] Govoreanu, Bogdan, et al. "High-performance metal-insulator-

metal tunnel diode selectors." IEEE Electron Device Letters 35.1

(2014): 63-65.

[13] Srinivasan, V. S. S., et al. "Punchthrough-diode-based bipolar

RRAM selector by Si epitaxy." IEEE Electron Device Letters

33.10 (2012): 1396-1398.

[14] Predictive technology model, ASU, http://www.asu.edu/~ptm.

[15] Nho, Hyunwoo, et al. "Numerical estimation of yield in sub-100-

nm SRAM design using Monte Carlo simulation." TCAS II, 2008.

[16] Yang, Saeyang. Logic synthesis and optimization benchmarks

user guide: version 3.0. Microelectronics Center of North

Carolina (MCNC), 1991.

(a)

(b)

Fig. 13 (a) Power, and (b) latency comparison of various CIM schemes.

01
23
45
6

5xp1 apex1 apex3 bw clip duke2 misex2 misex3
Normali

zed Pow
er

Dyn Static MAGIC

8.7

01
23
4

5xp1 apex1 apex3 bw clip duke2 misex2 misex3

Latency
(nS)

Dyn Static MAGIC

66 66 66 66 66 66 66 66

186

