
Abstract— With Von-Neumann computing struggling to match the 

energy-efficiency of biological systems, there is pressing need to 

explore alternative computing models. Recent experimental studies 

have revealed that Resistive Random Access Memory (RRAM) is 

promising alternative for DRAM. Resistive crossbar arrays possess 

many promising features that can not only enable high-density and 

low-power storage but also non Von-Neumann compute models.

Most recent works focus on dot product operation with RRAM 

crossbar arrays, and therefore are not flexible to implement various 

logical functions. We propose a low-power dynamic computing in 

memory system which can implement various functions in Sum of 

Product (SOP) form in RRAM crossbar array architecture. We

evaluate the proposed technique by performing simulation over wide 

range of MCNC benchmarks. Simulation results show 1.42X and

20X latency improvement as well as 2.6X and 12.6X power saving

compared to static [9] and MAGIC [10] computing in memory

methods.

Keywords—Resistive RAM, Sense Margin, computing in memory, 

Process Variation, Crossbar Array.

I. INTRODUCTION

Von-Neumann computing separates memory and processing 

element resulting in performance and energy bottlenecks due to 

frequent data transfers. High density crossbar array which 

employs two terminal Resistive RAM (RRAM) the crosspoint

of vertical and horizontal metal wires are proposed [4]. 

However, these architectures suffer from sneak-path problem 

which results in poor sense margin, higher power consumption, 

and limited array size. Crossbar array with a selector diode 

connected in series to RRAM device has been proposed [1-3]

to solve the sneak path issue. Various computing in memory 

schemes have been proposed to implement dot products in

RRAM crossbar array.  Digital to analog converter (DAC) and 

analog to digital converter (ADC) are required as peripheral 

circuitry to implement dot product in RRAM crossbar array. 

These architectures are able to implement matrix multiplication 

[7] and various computing paradigms such as neuromorphic 

computing [5-6] and approximate computing [8]. Even though 

these techniques improve performance and power efficiency 

they face challenges such as limited application domain and 

need of power intensive analog circuits such as ADC and DAC. 

A computing in memory paradigm is proposed [9] to implement 

random functions in RRAM crossbar array. This technique 

offers full programmability across storage and computation. 

Even though it provides the flexibility of partitioning the 

hardware resources between computation and storage to 

achieve optimal performance, the implementation details of 

arbitrary functions are not discussed. This technique also 

suffers from poor sense margin (that can limit the array size) as 

well as increased power consumption, making it impractical for 

computing in memory applications. Memristor Aided LoGIC 

(MAGIC) has been proposed [10] where memristors act as an 

input with previously stored data, and an additional memristor 

serves as an output to implement logic gates. In this method, the 

logical operation is associated with write operation leading to 

higher power and latency overhead. Since the inputs are 

programmed into memristors the gate must be reprogrammed 

for new input data incurring substantial power overhead. 

In this paper, we propose a Dynamic Computing in Memory 

(DCIM) paradigm using RRAM crossbar array which benefits 

from nonlinear characteristic of selector diode to improve sense 

margin in order to implement higher fan-in gates. In addition, 

this technique reduces the power consumption associated with 

logical operation significantly by eliminating the static current 

compared to [9]. It also eliminates the need to write into the 

bitcell to perform logical operations compared to [10].

In summary we make following contributions in this paper:

We study computing in memory systems proposed in [9-

Dynamic Computing in Memory (DCIM) in Resistive 
Crossbar Arrays

Fig. 1 Crossbar array with metal oxide RRAM and selector diode at each 

crosspoint; and, (b) schematic of crossbar array with selector diode.

(a) (b)

(c) (d)

Fig. 2 (a) I-V curve RRAM model used in this study; (b) I-R characteristic of 

the RRAM model; (c) I-V curve of selector diode used in this study; and, (d) 

the I-V characteristic of bitcell composed of RRAM and selector diode. 

WL
BL BL RRAMSelector RL

WL0

`

`

`

`

`

`

`

`

WL1

BL0

BL1

1.00E-07
1.00E-06
1.00E-05
1.00E-04
1.00E-03
1.00E-02
1.00E-01
1.00E+00

-2 0 2

Cu
rr

en
t(

A)

Voltage(V)

I-V Sweep

1

100

10,000

1,000,000

-2 -1 0 1 2

Re
sis

ita
nc

e(
O

hm
)

Voltage(V)

Resistance

Res-High Res_Low

Vread=1.2V

RH=175K
RL=945

Seyedhamidreza Motaman and Swaroop Ghosh 

Computer Science and Engineering, Pennsylvania State University

sxm844@psu.edu, szg212@psu.edu

179

2018 IEEE 36th International Conference on Computer Design

2576-6996/18/$31.00 ©2018 IEEE
DOI 10.1109/ICCD.2018.00036



10] thoroughly and explain their bottlenecks.

We develop a dynamic computing in memory technique to 

overcome sense margin limitation to implement higher fan-

in AND/OR gates using RRAM crossbar array while 

reducing power consumption.

We perform process, voltage and temperature variation 

analysis to determine optimum reference voltage to 

maximize read yield.  

We present comparative analysis of proposed technique 

with respect to other techniques for MCNC benchmarks in 

terms of power and latency.   

The paper is organized as follows: In Section II, we describe the

basics of crossbar array architecture as well as the state-of-art 

in-memory computing architectures using RRAM crossbar 

array. The proposed dynamic computing in memory technique 

is introduced in Section III. In Section IV, we investigate the 

effect of process and temperature variation on robustness of the 

proposed DCIM. In Section V, we discuss carry select adder 

implementation using proposed DCIM. In Section VI, DCIM is 

evaluated and compared to state-of-art CIM methods in terms 

of power and latency. The conclusions are drawn in Section VII.  

II. BACKGROUND

In this section we explain the basics of crossbar array 

architecture and read and write operations. We also discuss the 

state-of-art computing in memory systems using RRAM 

crossbar and describe its challenges.

A. Basics of RRAM Crossbar Array

A crossbar memory array consists of wordlines (WL) and 

bitlines (BL) where memory cell resides at their cross point as 

shown in Fig. 1. In this paper, we use a bipolar RRAM model 

[11] in which RESET/SET is performed at different voltage 

polarities. The I-R and I-V characteristic of the RRAM is shown 

in Fig. 2(a-b).  The memory cell switches from High Resistance 

State (HRS) to Low Resistance State (LRS) if a positive voltage 

greater than threshold voltage is applied across the bitcell. 

Similarly, the bitcell switches from low to high resistance state

if negative voltage is applied. Crossbar memory architecture 

achieves minimal cell size however, the sneak leakage current 

can reduce sense margin significantly. In order to increase sense 

margin and eliminate sneak leakage, we employ a memory 

bitcell which is composed of a RRAM device connected to a 

symmetric selector diode in series (Fig. 1(a-b)). The I-V

characteristic of the selector diode is modeled by the following 

function as discussed in [1]:ܫௌா௅ = .ߛ sinh(ߙ. ܸ)
where ߛ is a conductance parameter, and ߙ represents the 

nonlinearity of selector diode. This model fits reasonably with 

the experimental I-V characteristic for selector devices based

on MIM diode and punch through diode [12-13]. The design 

parameters of RRAM and selector diode are reported in Table

I. The I-V curve of selector diode is illustrated in Fig. 2(c). Fig. 

2(d) depicts the I-V curve of the bitcell composed of selector 

diode and RRAM device. It can be observed that the difference 

between low and high resistance increases by adding a selector 

diode which in turn improves the sense margin.

Read Operation: For reading the bitcell, the commonly used 

ground/ground (GND-GND) scheme is employed. To access 

the bitcells in the array, the selected WL is connected to VREAD

and the selected BLs are connected to sense-amplifier (SA)

while all unselected BLs and WLs are biased at GND. Although 

this read scheme improves the sense margin, it also increases 

the power consumption.  Other proposed read schemes include 

FL-FL (floating-floating) and GND-FL [1]. The current 

through selected bitcell which is generated by applied voltage 

to the selected WL, is converted to Vout by a sense resistance 

(Rsense). Read operation is performed by comparing output 

voltage (Vout) with a reference voltage (VREF) using a SA as 

shown in Fig. 3. Maximum sense margin for both reading ‘0’ 

Table-1 List of design parameters

Parameters Values

RRAM high resistance state (RH) at 1.2V 18KΩ
RRAM low resistance state (RL) at 1.2V 440 Ω

RRAM read Latency 0.5ns

RRAM write Latency 22ns

Nonlinear factor of selector (α)[1] 18.4

On-state current of selector (ION)[1] 100uA

Selector Conductance Factor (ߛ)[1] 2*10-12

bitcell high resistance state (RH) at 1.2V 175KΩ
RRAM low resistance state (RL) at 1.2V 945Ω

Bitcell write latency at 2.5V 25nS

Bitline Capacitance 30fF

(a) 

(b)

Fig. 3 RRAM crossbar array (a) GND-GND read scheme; and, (b)  VDD/2 write 

technique. Sneak paths are shown for read and write operations.

Fig. 4 Static computing in memory architecture in RRAM crossbar array.
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(SM0) and reading ‘1’ (SM1) is achieved by setting the ܴௌ௘௡௦௘ = ඥܴைிி/ܴைே. The state of the unselected bitcells 

affects the sense margin (as shown in Fig. 3(a)). The worst-case

sneak path also results in the worst-case SM which occurs when 

the unselected bitcells are in LRS since the sneak current is at 

maximum in this case.

Write Operation: We employ the VDD/2 writing scheme where 

the selected WL is connected to VDD and selected BL is 

connected to GND/VDD (depending on input data) while other 

unselected BLs and WLs are biased at VDD/2 (Fig. 3(b)). The

write operation is performed in RESET and SET phases.

Initially, the desired data is applied to the selected BLs. In the 

RESET phase the selected WL is connected to ground, hence 

the logical ‘0’ is written to bitcell (programed to HRS). In the 

SET phase the selected WL is connected to VDD and the logical 

‘1’ is written into bitcell (programed to LRS). 

B. Static Computing in Memory (SCIM) Method

A configurable computing in memory system based on RRAM

crossbar architecture which provides full programmability

across computation and storage has been proposed in [9].

However, the detailed circuit implementation is not discussed. 

We extend the idea borrowed from this paper, to implement 

arbitrary functions in terms of sum of product within RRAM 

crossbar array for comparative analysis. In this method, the

crossbar array is implemented using RRAM without selector 

diodes.  A 2-input AND gate implementation using crossbar 

array is shown in Fig. 4. Each input and its complement are 

applied to a WL. In order to realize logical A.B, the cells 

connected to A and B are programmed to LRS and the cells 

connected to ̅ܣ and  ത are programmed to HRS while all otherܤ

bitcells are programed to HRS (e.g., the bitcells connected to 

input Z and ܼ̅ as illustrated in Fig. 4). The array inputs 

connected to WLs are applied to different gates implemented 

on different BLs. All the gates are evaluated concurrently by 

applying the data input to the array. 

AND operation is performed by applying input vector and 

sensing the BL voltage.  For A=B=1, the voltage appearing on

the BL0 is approximately VDD (see the equivalent circuit in the 

inset of Fig. 4). For A=1 and B=0 (or A=0 and B=1), the BL0

voltage is approximately VDD/2. Finally, the voltage generated 

by applying the input vector is compared against a reference 

voltage (VAND_REF) using a decoupled SA to determine the 

output of the AND operation. 

As fan-in of the AND gate increases, the difference between 

voltage representing logical ‘1’ and ‘0’ reduces. The worst-case 

occurs when only one input is ‘0’ and all remaining inputs are 

‘1’. The difference between bitline voltage when all AND gate

inputs are ‘1’ (VAND1) and VREF_AND is defined as sense ‘1’ 
margin (SM1).  Sense ‘0’ margin (SM0) for the AND operation 

is defined as the difference between bitline voltage when only 

one input is ‘0’ (VAND0) and VAND_REF. Poor sense margin can 

result in wrong interpretation of the logical AND output. The

impact of array size (the number of WLs) on VAND1 and VAND0

is shown in Fig. 5(a). This plot represents the VAND0 and VAND1

in an array of 2N WLs where all WLs are utilized to implement 

N-input AND gate. It can be observed that VAND1 remains

constant with increasing AND gate fan-in. However, VAND0

rises with increased number of inputs which in turn degrades 

the SM. Note that, it is not possible to implement AND gate

with more than 8 inputs, since SM reduces below the sense 

amplifier offset voltage which can result in wrong output.

Any logical function can be implemented in Sum Of Product 

(SOP) form. Therefore, along with implementing AND 

function in RRAM crossbar array, we need to implement OR 

function as well. The OR gate implementation is similar to 

AND gate, except that the bitline voltage is compared against a

different reference voltage (VREF_OR). In order to implement the 

A+B (A OR B), RRAMs connected to A and B are programed 

to LRS, RRAMs connected to ܣ̅ and ܤത are programed to HRS,

and RRAMs connected to other unused WLs are programed to 

HRS. By applying A=B=0, the BL is pulled down to ‘0’. If one 

of the inputs is ‘1’, a voltage near VDD/2 appears on the bitline. 

The worst-case SM1 for OR array occurs when only one input

value is ‘1’ and remaining input values are ‘0’. The BL voltage 
in this case is defined as VOR1. Similarly, VOR0 is defined as BL 

voltage when all inputs are ‘0’. As shown in Fig. 5(b), VOR1 

reduces as the array size increases, which limits the SM.

C. Memristor Aided LoGIC (MAGIC) [10]

In this CIM architecture, memristors act as an input with 

previously stored data, and an additional memristor serves as an 

output to implement logic gates. This technique consists of two 

sequential stages. As shown in Fig. 6, a 2-input NOR gate 

composed of two RRAMs (in1 and in2) is connected to an output 

RRAM (out). In the initial stage, the output RRAM is 

programed to low resistance state and the input values are 

written to memristors in1 and in2. In the second stage, voltage 

V0 is applied to memristors in1 and in2, and the out memristor 

is connected to GND to evaluate the NOR operation. The

applied voltage results in a current that flows through RRAMs

in1 and in2 and appears at RRAM out. If both input memristors

are logical ‘0’ (high resistance), the voltage appearing across 

the output RRAM is less than the switching threshold of the 

output RRAM thus it does not change and remains at logical 

‘1’. For all other input combinations, the voltage across output 

(a)                 (b)

Fig. 5 (a) VAND1 and VAND0 versus AND array size; and, (b) VOR1 and VOR0 versus 

OR array size in an array of 2N WLs where all WLs are utilized to implement 

N-input gate.

Fig. 6 MAGIC NOR gate implementation.

VAND1 increases due to discharge of BL through bitcells in HRS connected to ‘0’1131mV
1030mV

VOR0 increases since BL is charged by bitcells in HRS connected to ‘1’
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RRAM is greater than the threshold voltage. Hence, the output 

memristor switches to high resistance state (logical ‘0’).
Finally, the state of output resistance is sensed using sense 

amplifier to determine the result of logical NOR operation.

Since logical operation is associated with write operation in this 

method, the latency and power overhead are substantial. The 

proposed dynamic CIM eliminates the need of a write operation 

to improve latency and power overhead. 

III. PROPOSED DYNAMIC COMPUTING IN MEMORY

In this section, we describe the operation of DCIM and study 

the impact of fan-in on sense margin and power. 65nm

predictive technology [14] is used to perform simulation.

A. Basic Operation

DCIM aims to overcome sense margin limitation for higher fan-

in AND/OR gates using RRAM crossbars. DCIM decreases 

power consumption due to two reasons: 1) sneak path leakage 

reduces significantly by employing a selector diode; 2) 

dynamic-sensing eliminates the static power consumption for 

performing logical operations. In this technique, each memory 

cell is composed of a RRAM device connected in series to a 

selector diode. Computing in memory is accomplished by 

implementing the functions in SOP form. Thus, both AND and 

OR operations are required to implement the logical functions. 

We dedicate separate arrays to perform each function and call 

them AND-array and OR-array. 

In the proposed architecture, the wordlines serve as the inputs 

and the bitlines are the output of AND functions. Initially both 

AND and OR arrays are programmed to implement the desired 

function. The programing is similar to static technique. For 

instance, in order to implement ܤܣത , the bitcells connected to A

and ܤത are programed to LRS while the bitcells connected to ̅ܣ
and ܤ are programed to HRS (Fig. 7(a)). All bitcells connected 

to other array inputs/WLs which are not part of AND gate 

inputs are programed to HRS (e.g., the bitcells connected to 

input Z and ܼ̅). To perform AND operation, the BL is initially 

precharged to VDD. Once the inputs are applied, the BL either

remains precharged or discharges based on the input vector. In 

the previous example, if VDD (logical ‘1’) is applied to inputs A

and തܤ , the BL remains precharged since these inputs are 

connected to bitcell in LRS. However, the leakage of HRS

bitcells connected to GND discharges the BL negligibly. Any 

other input combination discharges the BL significantly since 

GND is connected to a bitcell in LRS. Finally, the BL voltage 

is compared against the VREF_AND to determine the result of 

AND operation. The result of the AND function and its 

complement are provided as input to the OR array to obtain 

SOP output. Programing of OR array is similar to AND array. 

However, in OR array BLs are predischarged to ‘0’. The 
predischarge of OR array BLs is performed during the AND

array evaluation phase, therefore the latency of predischarge

phase is hidden. Finally, the voltage generated on the OR array 

BL is compared against VREF_OR to achieve the result of OR 

operation. 

The effect of array size (number of WLs) on the SM is

investigated to determine the best array size (Fig. 5). Since two 

WLs and two bitcells are required for implementing each input 

of AND gate, the number of WLs is twice the number of AND 

gate inputs. As depicted in Fig. 5(a-b) as array size increases 

SM for AND/OR operations degrades. It can be observed that 

proposed DCIM improves SM significantly compared to SCIM,

thus larger array size (higher fan-in gates) can be realized.  

Fig. 7 shows the implementation of XOR function in DCIM.

The BL0 and BL1 are programmed to implement ܤܣത and ̅ܤܣ
functions respectively. Note that the bitcells connected to WLs 

which are not contributing in XOR implementation (called the

unused bitcells) are programmed to HRS. Initially, the PRE 

signal is activated to precharge AND array BLs to VDD. Next, 

inputs (A and B) are applied by asserting ENAND. As shown in 

Fig. 7(b), when A, B=1 both BL0 and BL1 fall to 0.65V. Since 

this voltage is less than VREF_AND=0.74V, outputs of sense 

amplifiers which determine the results of തܤܣ and ̅ܤܣ functions

are pulled down to ‘0’ at the edge of SEAND. Since inputs of OR 

array (F0=ܤܣത and F1=̅ܤܣ) are ‘0’, the OR array BL (BLOR)

remains discharged with voltage of approximately ‘0’ (i.e. A 

(a) (b)

Fig. 7(a) XOR implementation using proposed DCIM architecture in RRAM crossbar array; and, (b) timing diagram of logical XOR operation.
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XOR B=0). If A=0 and B=1, BL0 discharges to 0.65V while 

BL1 remains precharged which results in F0= ܤܣത = 0 and 

F1=̅1=ܤܣ. Since F1 is ‘1’ and is connected to a bitcell in LRS,

it charges the BLOR to 0.52V while ENOR is asserted. Finally,

the voltage of BLOR is compared against VREF_OR=0.38V at the 

edge of SEOR which produces ‘1’ at the output of SA. Note that 
OR array sense enable (ைோതതതതതതതܧܵ) is an active low signal. Since the 

voltage generated on bitline of OR array is less than 0.52V, a

PMOS based SA with active low sense enable is employed 

(Section IV. B).

The PRE, EN and SE signals are generated in the timer (located 

at the middle of subarray). The duty cycle of EN depends on

BL capacitance and the bitcell resistance. In addition, SM

depends on the EN pulse width. The EN pulse with is chosen in 

such a way that VOR1 rises to 90% of its steady state voltage. By

applying EN, VOR0 also rises due to leakage of unused bitcells.

Therefore, the EN pulse with must be chosen in such a way to 

maximize VOR1 and minimize the increase of VOR0. The same 

argument holds true for VAND1 and VAND0. Moreover, increasing 

the EN pulse width results in higher power consumption since 

both VOR0 and VOR1 will increase. Thus, there is a tradeoff

between power and sense margin. We have swept the EN width 

from to 0.1nS to 0.5nS in order to optimize both SM and power. 

The EN pulse width of 0.25ns achieves sufficient sense margin

while preserving power consumption. The PRE pulse width 

depends on the BL capacitance and the width of precharge 

transistor. Based on simulation result, a PRE pulse width of 

0.25nS is sufficient to precharge/predischarge the BL before 

logical AND/OR operation. The CIM operation starts at the 

edge CIMEM which is provided as input to the timer (inputs are 

provided to AND array simultaneously). The timer receives 

CIMEN and produces PRE, EN and SE signals (clock frequency 

is 2GHz). The power and area overheard of timer is negligible.

B. Impact of Gate Fan-in on Sense Margin

In the previous section, we investigated the effect of array size 

on the SM.  The purpose of this study is to determine the array 

size that achieves maximum sense margin while preserving the 

area efficiency. In other words, it represents the sense margin 

of AND/OR operation in an array of 2N WLs where all WLs 

are utilized to implement N inputs AND gate. In this section we

study the sense margin with respect to AND gate fan-in. Let us 

assume that a 4-input AND gate is implemented in an array of 

64 WLs. Since 8 WLs are required to implement 4-input AND 

gate, 8 bitcells are programmed to implement the AND gate 

while bitcells connected to the rest of WLs are programmed to 

HRS. The loading effect of unused array inputs connected 

bitcells in HRS reduces sense margin. Unused array input and 

its complements are connected to two bitcells in HRS. In case 

of static CIM, applying inputs to the unused WLs degrade the 

sense margin. This can be understood by comparing Fig. 5 with 

Fig. 8(a). For instance, 2-input OR gate SM is significantly 

higher when the array consists of 4 WLs (see Fig. 5(b)) versus 

16 WLs (see Fig. 8(a)). 

The impact of unused WLs on sense margin is more severe in 

DCIM. Suppose input Z value (as depicted in Fig. 7) which does 

not belong to 2-input AND gate implemented on BL0 is ‘0’.
Since BL0 is precharged to VDD initially, the voltage across

selector diode is VDD, and it is ON initially. As BL voltage 

discharges through bitcell connected to Z the voltage across 

selector diode reduces, and it becomes strongly ON to weakly 

ON. The selector diode is OFF/weakly OFF in the bitcell which 

is connected to ܼ̅. Therefore, input Z=0 discharges the BL,

while input ܼ̅ = 1 cannot compensate the effect of Z by 

charging the BL (since bitcell connected to ܼ̅ is OFF). This

result in lower VAND1, leading to SM degradation. As gate fan-

in decreases the number of unused bitcells increases. Thus, 

VAND1 reduction increases as fan-in decrease since the leakage

through unused bitcells increases. As shown in Fig. 8(b), 2-

input AND gate achieves worst-case VAND1 (higher number of 

unused bitcells result in higher leakage and lower VAND1).

As mentioned earlier, VAND0 is the voltage appears on the BL 

when only one input is ‘0’. For 32-input AND gate, VAND0 is

the BL voltage where 31 inputs connected to bitcells in LRS is

pulling up the BL weakly (since selector diode is OFF) while 

only one input is pulling it down strongly. Thus, as the number 

of input increases (e.g., from 2 to 32), the number of bitcells in

LRS which weakly pulls the BL up increases (e.g. 1 versus 31).

Therefore, as depicted in Fig. 8(b), 32-inputs AND gate results 

in the worst-case VAND0 (higher VAND0) while 2-inputs AND 

gate result in the best VAND0. The same argument holds true for 

VOR1 and VOR0 . VOR1 and VOR0 in an array of 64 WLs is also 

(a)              (b)

Fig. 8 (a) VAND,1,VAND,0 , VOR1 and VOR0 versus gate fan-in for, (a) conventional 

CIM in array of 16 WLs, (b) DCIM in array of 64 WLs.

(a) (b)

Fig. 9 Power consumption versus number of inputs; (a) Dynamic CIM and, (b) 

static CIM.

VREF_AND
SMAND=35mV

SMOR=30mVVREF_OR VREF_OR=0.38

VREF_AND=0.74
Worst VAND1 more unused bitcells higher leakage

Worst VAAND0more bitcells in LRS that charging  BLSM1=120mV SM0=80mV
Worst VOOR1 more bitcells in LRS pulling  down BLSM0=130mV SM1=120mV

C
CStatic

TABLE II: Parameters used for process variation study.

Device Parameter Mean Std. Dev.

PMOS VTH 423mV (1)ܮݓ√/௏೅ܣ

NMOS VTH 365mV (1)ܮݓ√/௏೅ܣ

RRAM Inial Gap RL =0.2nm

Rh =1.7nm

7%

RRAM Oxide Thickness 12nm 5%

(1) ௏೅ܣ Pelgroom coefficient which is ~4.5mV/μm for 65nm technology ݏ݅ 
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shown in Fig. 8(b). 32-input OR gate results in worst-case VOR1 

since more bitcells in LRS pulls the BL down.

C. Impact of Gate Fan-in on Power

The power consumption of proposed DCIM for AND and OR 

operations are shown in Fig. 9(a). In case of AND operation we 

assume the BL is precharged to VDD and the power consumption

is summation of the power drawn from supply after applying 

inputs, the power consumed by the sense amplifier and the 

power required to precharge the BL back to VDD. For the OR 

operation the power consumption is the power drawn from the 

supply to charge the bitline, and the power consumed by the 

sense amplifier. It can be noted that as the number of input 

increases, the power consumption of AND1 operation reduces. 

As shown in Fig. 8(b), VAND1 increases with the number of 

inputs. Hence, less power is consumed to precharge the bitline 

back to VDD. AND0 operation results in higher power

consumption since the bitline discharges to a lower voltage 

when the result of AND operation is ‘0’. Therefore, more power 

is consumed to precharge the BL back to VDD. Fig. 9(b) depicts 

the power consumption of static CIM. It can be noted that static

CIM power consumption is significantly higher (almost 3X on 

average) due to static current which flows through the bitcells 

during logical AND/OR evaluation.

IV. PROCESS AND TEMPERATURE VARIATION ANALYSIS

A. Impact of Process and Temperature Variation on Sense 

Margin

The impact of process and temperature variation on VAND1 and 

VAND0 are investigated to determine the best VREF_AND to

achieve robustness. Process variation analysis is carried out

using detailed Monte Carlo simulation in 65nm technology

[14]. For RRAM we have assumed oxide thickness and initial 

filament gap variations. The variations in CMOS circuitry is 

lumped in threshold voltage fluctuation. The mean and standard 

deviation of these parameters are provided in Table II. As 

mentioned earlier, 2-input AND gate results in the worst-case

VAND1, and 32-input AND gate results in the worst-case VAND0.

Furthermore, higher temperature results in higher bitcell 

resistance, leading to higher VAND0 which in turn degrades the 

SM0. Whereas, lower temperature leads to lower bitcell

resistance and lower VAND1 degrading SM1. In order to obtain 

the worst-case VAND0 under process and temperature variation,

we run 1000 points Monte-Carlo simulation at 90oC. Similarly,

1000 points Monte-Carlo simulation is performed at -10oC to

achieve the worst-case VAND1. The simulation result is shown in 

Fig. 10 (a). Since standard deviation of VAND1 (௏ಲಿವభߪ) is 

greater than VAND0, a voltage slightly less than ௏ಲಿವబߤ) ௏ಲಿವభ)/2ߤ+ is chosen as VREF_AND to maximize the AND 

operation read yield. We have performed the same analysis to 

obtain the VREF_OR. The worst-case VOR1 occurs at higher 

temperature (90oC), since higher resistance increase the RC 

delay, thereby the BL is charged to a lower voltage reducing 

VOR1. Similarly, the worst VOR0 occurs at lower temperature.

Monte-Carlo simulation is carried out at different temperatures

to determine the optimum VREF_OR. The results are shown in 

Fig. 10(b). Since the ߪ௏ೀೃబ is greater than ௏ೀೃభߪ we pick a

voltage greater than ௏ೀೃబߤ) + ௏ೀೃభ)/2 as VREF_ORߤ to maximize 

the OR operation read yield.

B. Sense Amplifier OFFSET Voltage Analysis

The sense-amplifier offset voltage (VSA_OFFSET) depends on the

sense time and transistor size since increasing the transistor size 

decreases the transistor threshold voltage variation. We design 

the sense amplifier to reduce the offset while meeting the area 

and delay requirements. We considered sense time of 0.5nS. In 

order to achieve VSA_OFFSET, we fix reference voltage (VREF_AND)

at 740 mV and sweep VData (Fig. 11(a)). For each sweep 1000 

points Monte-Carlo simulation is carried out and sense 

amplifier failure distribution is shown in Fig. 11(b). This 

distribution can be modeled by a Gaussian distribution with ߤ௏ೄಲ_ೀಷಷೄಶ೅ = 8ܸ݉ and ߪ௏ೄಲ_ೀಷಷೄಶ೅ = 16ܸ݉.

C. Read Yield

The statistical distribution of sense margin and VSA_OFFSET

caused by process variation can be modeled by Gaussian 

distribution. Since read access pass occurs when SM >

VSA_OFFSET, read access pass yield for a bitcell with state 0 or 1 

(RAPY0 or RAPY1) can be achieved by combining distribution 

of VSA_OS and SM0,1 [15]:

ܲܣܴ                             ଴ܻ,ଵ = ఓೄಾబ,భିఓೇೄಲ_ೀಷಷೄಶ೅ටఙೄಾబ,భమ ିఙೇೄಲ_ೀಷಷೄಶ೅మ                            (1)     

Where ߤௌெబ,భ(ߤ௏ೄಲೀಷಷೄಶ೅ ) is mean sense margin and  ߪௌெబ,భ(ߪ௏ೄಲೀಷಷೄಶ೅ ) is the standard deviation of sense margin. 

RAPY for a bitcell is defined as the smaller of RAPY0 and

RAPY1. To obtain RAPY we assume that VREF is produced by 

a voltage regulator with negligible variation (5mV). Based on 

the Monte-Carlo simulation, the RAPY of AND and OR 

operations are found to be 4.2ߪ and 4.9ߪ respectively. The 

(a)                (b)

Fig. 10 (a) VAND1 and VAND0 distribution for 1000 Monte-Carlo points 

@ -10oC and 90oC; and, (b) VOR0  and VOR1 distribution. 

                (a)       (b)

Fig. 11(a) Sense amplifier circuit; and, (b) SA offset voltage 

distribution for 1000 points Monte-Carlo simulations. 

௏ಲಿವబߤ = ௏ಲಿವబߪ0.66 = 2ܸ݉

௏ಲಿವభߤ = ௏ಲಿವభߪ0.84 = 9ܸ݉

V REF_AN
D=740

mV ௏ೀೃభߤ = ௏ೀೃభߪ486ܸ݉ = 2ܸ݉
௏ೀೃబߤ = ௏ೀೃబߪ278ܸ݉ = 8ܸ݉

V REF_OR
=388m

V

VDD

● ●

SE

T1 T2
VRef

Out

SE SE
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static CIM results in significantly lower yield. The RAPY of 

AND and OR operations are found to be 1.7ߪ and 1ߪ
respectively.                       

V. IMPLEMENTATION OF CARRY SELECT ADDER USING DCIM

In order to perform addition, carry select adder is implemented. 

Fig. 12 demonstrate the implementation of 16-bit carry select 

adder using DCIM. For sake of brevity only low resistance 

connections are shown. In the carry select addition approach 

two sets of sum and outgoing carry are computed considering 

incoming carry is either ‘0’ or ‘1’. Once the incoming carry is 

known, we only need to select the correct set of outputs (out of 

the two sets using multiplexer) without waiting for the carry to 

propagate further. In Fig. 12, S0
0 and C1

0 indicate the sum and 

carry output when incoming carry is ‘0’. Similarly, S0
1 and C1

1

indicate the sum and carry output when incoming carry is ‘1’.
As demonstrated in Fig. 12, the carry selection takes place at

the adder interface. Based on the C0 value, S0(C1) is selected 

from the previously computed S0
0 and S0

1 (C1
0 and C1

1). Next, 

C1 is propagated to the input select of next multiplexer to

determine the value of S1 and C2 and so forth. This technique is 

of great interest since it enables implementing adder in two-

level format (in form of SOP) without need of carry 

propagation. However, it requires multiplexers to perform 

output selection, which can be done using CMOS MUX in the 

peripheral. Pass gates are used to implement the MUXs in order 

to minimize the CMOS area overhead. Larger adders can be 

implemented by propagating output carry (C16) to the input 

carry of other arrays that implements another set of 16-bit

adder. Table III depicts latency and power of 16-bit adder 

implemented in three CIM techniques. The SCIM latency and 

power are obtained from simulation. Since SCIM cannot 

accommodate more than 8 inputs, we employ two CIM arrays 

to implement 16-bit adder where the output carry of first CIM

array is provided as input to input carry of the second array. 

Therefore, 16-bit addition latency is identical for both static and 

dynamic CIM. The MAGIC latency and power are estimated

from Table VI in [10] by employing the RRAM model that we 

used in this paper. Even though DCIM requires more number 

of cells (since larger array result in more unused bitcells) to 

implement 16-bit adder, it achieves 12X power saving in 16-bit

addition and achieves significantly lower latency compared to 

MAGIC.  

VI. EVALUATION AND COMPARISON OF DIFFERENT 

COMPUTING IN MEMORY TECHNIQUES

In this section we compare the proposed DCIM with SCIM and

MAGIC in terms of power and latency. 

A. Power

In order to perform comparison, two-level benchmarks of

MCNC benchmark suite [16] are used. A script is written in 

order to extract number of AND/OR gates and their fan-in for

each SOP function. Unlike CMOS gates, where power is only 

consumed during ‘0’ ‘1’ transition, the power is consumed 

during both ‘0’ ‘1’ and ‘1’ ’0’ transitions in the CIM 

techniques. Initially, we assume the probability of each input 

being ‘1’ as 0.5. In order to obtain power dissipation, the

probability of logical AND/OR when output is ‘0’/’1’ is 
calculated at each stage. Thus, the power consumption of each 

gate can be expressed as follows:

PrAND1 (N)= 1/2N                                                                            (2)

PrOR0 (N)= Pr0(in1) * Pr0(in2)*…..*Pr0(inN)                           (3)

PAND (N)= PrAND1(N) *PAND1(N) + (1-Pr1(N))*PAND0(N)        (4)

POR (N)= PrOR0 (N)*POR0(N) + Pr1 (N)*POR1(N)                     (5)

Where POR0(N) and PrOR0(N) are the power and probability of

N-input logical OR gate when the output is ‘0’. Fig. 13(a) shows 

the power comparison of DCIM with respect to other 

techniques. Dynamic CIM provides 12.6X and 2.6X power 

saving compared to static CIM and MAGIC respectively.

Table III. Comparison of 16-bits adder implementation using different CIM 

schemes

16-bits 

Adder

Latency # of RRAM Power # Logical 

Operations

DCIM

(This paper)

2 cycles+carry 

selection delay 

=2nS

2*64*48 48mW 64 AND2

32 OR3

32 OR2

SCIM 2nS 64*48 64mW Same as above

MAGIC 12N+1 

(Cycles)=4246ns

177 579mW 193 NOR

Fig. 12 Implementation of 16-bit carry select adder using DCIM scheme. For sake of brevity only low resistance connections are shown.
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B. Latency

The latency of logical AND/OR operation for static and 

dynamic CIM is 0.75nS. Since DCIM support up to 32 input

AND/OR gates, the gates with fan-in of more than 32 must be 

partitioned into lower fain-in gates which is associated with 

latency and power overhead. For example, a 64-input OR gate 

is implemented using eight 8-input OR gates. As a result, all 

outputs of 8-input OR gates must be ORed using another OR

array. Hence, increasing the latency by another 0.75nS. The

latency results for several benchmarks are shown in Fig. 13(b).

DCIM achieves 1.42X improvement in latency compared to

SCIM since it offers higher fan-in gate implementation. In the 

SCIM method, the gates with more than 8 inputs must be 

partitioned into lower fan-in gates. Since many functions in

two-level (SOP) form are implemented using high fan-in gates,

the SCIM latency is typically one or two sensing cycle longer 

than DCIM.

In order to obtain the MAGIC power and latency, we

implemented each benchmark in two-level NOR-NOR format.

In addition, fain-in and number of NOR gates to implement 

each function is obtained. In order to achieve consistent result,

the RRAM model [11] is used where latency of writing ‘0’/‘1’
into RRAM is 22nS (Table-1). MAGIC NOR operation

associated with two write operations is described in Section II. 

C. Since MAGIC does not suffer from limited sense margin, it 

can implement high fan-in NOR gates. We assume that the

array is large enough to accommodate all high fan-in NOR gates

required for implementing two-level benchmarks. Therefore, 

22nS is needed to program inputs into RRAM array, 22ns to

perform first-level NOR operation by writing into output 

RRAM, and 22nS to NOR the output of first-level NORs is

required to achieve the SOP output. Hence, the total latency of 

MAGIC scheme is 66nS.

VII. CONCLUSIONS

In this paper we proposed dynamic computing in memory 

paradigm to overcome sense margin limitation associated with 

static CIM method in realizing higher fan-in AND/OR gates 

using RRAM crossbar array. In addition, this technique 

decreases power consumption significantly by eliminating the 

static current flow for performing logical operation compared 

to static CIM and, eliminates the need of writing into the bitcell 

to perform logical operations compared to MAGIC [10]. DCIM 

improves read yield of logical operations ~4X compared to 

SCIM. Simulation results show 1.42X and 20X latency 

improvement as well as 2.6X and 12.6X power saving

compared to static [9] and MAGIC [10] computing in memory 

methods over a wide range of MCNC benchmarks.
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Fig. 13 (a) Power, and (b) latency comparison of various CIM schemes.
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