
entropy

Article

Bayesian Recurrent Neural Network Models for
Forecasting and Quantifying Uncertainty in
Spatial-Temporal Data

Patrick L. McDermott 1,* and Christopher K. Wikle 2

1 Jupiter Intelligence, Boulder, CO 80302, USA
2 Department of Statistics, University of Missouri, Columbia, MO 65211, USA; wiklec@missouri.edu

* Correspondence: plmyt7@gmail.com

Received: 29 December 2018; Accepted: 12 February 2019; Published: 15 February 2019
����������
�������

Abstract: Recurrent neural networks (RNNs) are nonlinear dynamical models commonly used in the

machine learning and dynamical systems literature to represent complex dynamical or sequential

relationships between variables. Recently, as deep learning models have become more common,

RNNs have been used to forecast increasingly complicated systems. Dynamical spatio-temporal

processes represent a class of complex systems that can potentially benefit from these types of models.

Although the RNN literature is expansive and highly developed, uncertainty quantification is often

ignored. Even when considered, the uncertainty is generally quantified without the use of a rigorous

framework, such as a fully Bayesian setting. Here we attempt to quantify uncertainty in a more

formal framework while maintaining the forecast accuracy that makes these models appealing,

by presenting a Bayesian RNN model for nonlinear spatio-temporal forecasting. Additionally,

we make simple modifications to the basic RNN to help accommodate the unique nature of nonlinear

spatio-temporal data. The proposed model is applied to a Lorenz simulation and two real-world

nonlinear spatio-temporal forecasting applications.

Keywords: recurrent neural network; Bayesian machine learning; nonlinear dynamical models;

long-lead forecasting; spatial-temporal

1. Introduction

Nonlinear and quasilinear spatio-temporal data can be found throughout the engineering,

biological, geophysical and social sciences. Some examples of such processes include animal

or robotic interactions, local economic forecasting, river flow forecasting, visual motion capture,

and radar precipitation reflectivity nowcasting, to name a few. The nonlinearity in these systems

makes forecasting and quantifying uncertainty difficult from both a modeling and computational

perspective. While statistical forecasting of univariate nonlinear time-series processes is relatively

well-developed [1,2], nonlinear multivariate systems have seen much less progress in statistics.

Dynamical spatial-temporal models (DSTMs) are multivariate systems that have the added challenge

of characterizing interactions between different scales of variability while simultaneously facing the

curse-of-dimensionality that is exacerbated for nonlinear parametric spatio-temporal models, e.g., [3].

Some more recent nonlinear DSTMs in the statistical literature include threshold or regime

switching models, e.g., [4,5], agent (individual)-based models, e.g., [6], general quadratic nonlinear

(GQN) models [7], analog models [8], and mechanistic nonlinear models [9]. While such models have

shown success for particular systems, more flexible models are often needed for highly nonlinear

systems with complex latent relationships. Furthermore, with only a few exceptions, it can be quite

difficult to explicitly specify the nonlinearities in these systems. One exception includes using

Entropy 2019, 21, 184; doi:10.3390/e21020184 www.mdpi.com/journal/entropy

Entropy 2019, 21, 184 2 of 25

physically motivated models such as stochastic partial differential equations, e.g., [7,9,10], although

this requires some a priori knowledge of the dynamics in the system. Due to the many challenges

associated with modeling nonlinear spatio-temporal processes, much of the statistical development of

these models has lagged behind other disciplines such as applied mathematics, dynamical systems,

and machine learning.

One of the many appealing aspects of machine learning methods is their ability to extract salient

features and relationships from complex high-dimensional data, particularly for forecasting and

classification. Spatio-temporal processes are a strong candidate for machine learning methods due to

the complex interactions and high-dimensionality that are ubiquitous in these processes. While there

have been past attempts to apply machine learning methods, such as feed-forward neural networks,

e.g., [11] and deep learning models, e.g., [12] to nonlinear spatial-temporal processes, the explicit

accounting for dynamics in these processes has been less of a focus. Moreover, although feed-forward

neural networks provide a convenient framework for modeling multivariate processes, they are not

designed to explicitly capture time-sequential dynamical interactions between variables. As noted in

the dynamical systems literature, explicitly modeling the dynamics is often paramount to successfully

forecasting such systems. Recurrent neural networks (RNNs) represent a machine learning model

with the potential to effectively model the nonlinear dynamics in multivariate sequential systems such

as spatio-temporal processes.

First popularized in the 1980s, RNNs fell out of favor, in part, because of the so-called

“vanishing gradient” problem that makes these models extremely difficult to estimate with

back-propagation. More recently, as deep learning models have gained in popularity, solutions

such as “long-short-term-memory” (LSTM) networks [13,14] have helped mitigate this vanishing

gradient problem. As RNNs have become more manageable from an estimation perspective, they have

increasingly been used to model complicated sequential forecasting problems such as visual object

tracking [15], speech recognition [16], and text generation [17], just to name a few. Simultaneously,

RNNs have also seen a rise in usage in the dynamic systems literature due to their ability to

replicate complex attractor dynamics that are often present in chaotic systems [18]. Thus, RNNs

provide a black-box method that can capture dynamical relationships for problems where it is either

difficult to specify these relationships a priori or little information is available on the specific form

of these relationships. Importantly, RNNs fill this void by providing a mechanism for capturing

complex sequential relationships between variables, thus providing a modeling tool for a broad set of

dynamical problems.

As RNNs have become more prevalent, a variant of the original RNN model, referred to as

an echo-state network (ESN) [19] has become a staple in the dynamical systems literature for solving

nonlinear forecasting problems. ESNs are extremely appealing because they retain much of the forecast

accuracy of an RNN at a fraction of the computational cost. In essence, ESNs simulate randomly the

parameters that make up the hidden states of a RNN (see below), thus reducing the problem to a

traditional regression type problem. Although the methodology described here is more closely related

to the RNN framework than the ESN, we do borrow and discuss ideas from the ESN literature to

motivate choices pertaining to the proposed model. For a spatial-temporal example of an ESN model

see [20]. Conversely, LSTMs represent a variant of the RNN that use a gated structure to control how

fast or slow certain structures are remembered. While the presented methodology does not consider

LSTMs, due to the similar issues of dependent parameters in both the LSTM and traditional RNN

framework, many of the ideas presented here could be extended into the LSTM framework.

Despite the broad size and overall scope of the RNN literature, these models are almost

always presented without considering uncertainty. The few attempts at quantifying uncertainty are

generally presented in an ad hoc fashion, without a formal probability based framework. For example,

recent work such as [21] use less rigorous methods such as dropout (see Section 2.3) to quantify

uncertainty. Conversely, as previously discussed, the statistical literature on modeling of nonlinear

dynamical spatio-temporal systems does consider uncertainty quantification but is not well-developed,

Entropy 2019, 21, 184 3 of 25

especially compared to its linear counterpart. We address both of these issues by proposing a Bayesian

spatial-temporal RNN model in which the forecasting strength of a traditional RNN is preserved,

while also producing comprehensive uncertainty measures. In particular, we introduce a RNN

model within a fully Bayesian framework that accounts for uncertainty in both parameters and

data in a rigorous fashion. Furthermore, the data generating process and associated error process

(e.g., measurement error) are rarely accounted for in the RNN literature. Accounting for these errors is

often critical in the spatio-temporal literature, see [10]. The proposed Bayesian framework allows one

to take advantage of the forecasting ability of the RNN model while also rigorously accounting for

both the data generating process and other error processes associated with the data.

The application of MCMC methods to neural networks dates back to the seminal work of [22].

Since the work of [22] there have been limited attempts to use Bayesian MCMC methods with other

neural network type models (e.g., RNNs, LSTMs). While others have used Bayesian modeling within

the RNN framework, e.g., [23–25], to our knowledge this is the first fully Bayesian RNN trained with

traditional Markov Chain Monte Carlo (MCMC) methods. The additional transition parameters in

an RNN (see Section 2.1) introduce an extra layer of dependence, and thus sampling difficulties, that

require advanced sampling techniques beyond what is presented in previous works such as [22].

Additionally, the gradient based nature of many previous Bayesian sampling methods for traditional

neural networks, e.g., [22], require additional modifications to deal with the “vanishing gradient”

problem discussed above. To assist with this problem we introduce additional expansion parameters

within a traditional MCMC framework to help break some of this dependence between parameters.

By using MCMC methods, the proposed model and algorithm can more accurately measure

uncertainty compared to traditional optimization methods or variational Bayesian methods. Although

Bayesian methods such as stochastic gradient MCMC (SG-MCMC) have recently shown promise as an

estimation tool for high-dimensional RNNs, i.e., [25], these stochastic gradient algorithms typically

require the partitioning of the data to create so-called mini-batches. Spatio-temporal models often

involve explicit dependencies between data points in space and/or time along with hierarchical

relationships. Therefore, it may be difficult or impossible to partition the data in this way (especially

when considering spatial dependence), which may make such stochastic algorithms prohibitive for

spatial-temporal problems that are considered within a rigorous statistical framework.

We introduce multiple extensions to the traditional RNN model at both the data and latent stage

of the model, with the dual aim of facilitating estimation and improving the forecasting ability of the

model. The proposed extensions incorporate mechanisms from both the ESN and dynamical systems

literature. Furthermore, we regularize the parameters in the model by proposing priors that help

mitigate over-parameterization, inspired by traditional ESN models. Similar to traditional RNNs,

fitting an RNN within a fully Bayesian framework presents a multitude of computational issues.

To assist with computation, we propose using dimension reduction to deal with high-dimensional

spatial-temporal processes. In addition, within a MCMC paradigm, we borrow the idea of including

expansion parameters in the model from the data augmentation literature, e.g., [26–28], to assist with

sampling the highly dependent parameters that make up an RNN.

Section 2 describes the proposed Bayesian spatio-temporal RNN model, along with various

modeling details. Next, Section 3 goes through the specifics of the MCMC algorithm developed to

implement the model. In the beginning of Section 4 the choices made for the setup of the model

are described in detail. Section 4 continues with a simulated multiscale Lorenz dynamical system

example, followed by a long-lead sea surface temperature (SST) forecasting problem and a United

States (U.S.) state-level unemployment rate application. Finally, we end with a concluding discussion

on the approach, along with possible future extensions in Section 5.

Entropy 2019, 21, 184 4 of 25

2. Spatio-Temporal Recurrent Neural Network

2.1. Traditional Recurrent Neural Network

Suppose we are interested in the ny-dimensional spatial-temporal response vector Yt at time t with

corresponding input vector xt of dimension nx, with one being the first element of xt corresponding

to an intercept term (or bias term). Then, the traditional RNN model for multivariate data, e.g., [29],

is defined as follows for t = 1, . . . , T:

data stage: Yt = g(Vht), (1)

hidden stage: ht = gh(Wht−1 + Uxt), (2)

where ht is a nh-dimensional vector of hidden state variables, W is a square nh × nh weight matrix,

U is a nh × nx weight matrix, and V is a ny × nh weight matrix. The function g(·) is an activation

function that creates a mapping between the response and the hidden states, and gh(·) denotes the

activation function for the hidden layer. For a continuous response vector, g(·) is simply the identity

function, although this setup can also handle categorical data by allowing g(·) to be the softmax

function. Nonlinearity is induced in the RNN model through the form of gh(·), which is typically

defined to be the hyperbolic tangent function (as is assumed throughout this article).

The square weight matrix W in (2) can be thought of analogously to a transition matrix in a

typical vector autoregressive (VAR) model. That is, W models the latent dynamic connections between

the various hidden states. Thus, underlying nonlinear interactions between variables or locations

can effectively be modeled within this framework through W. Having a mechanism to capture these

interactions is often vital when modeling nonlinear spatio-temporal processes, e.g., [3]. Critically,

the hidden states extract and supply salient hidden dynamic features from the data. Ideally, the hidden

states will represent a general set of dynamical patterns from the input data, thus allowing the V

parameters to appropriately weight these patterns. While the RNN defined in (1) and (2) has shown

success at forecasting a variety of different systems, the model lacks any explicit error terms, and thus,

does not contain a mechanism to formally account for uncertainty in the data, model, or parameters.

2.2. Bayesian Spatio-Temporal Recurrent Neural Network

In this section we introduce the Bayesian spatio-temporal RNN, referred to hereafter as the

BAST-RNN model. Borrowing the notation introduced in the previous section, the BAST-RNN model

is defined as follows:

data stage: Yt = µ + V1ht + V2h2
t + εt, εt ∼ Gau(0, R), (3)

hidden stage: ht = gh(
δ

|λw|
Wht−1 + Ux̃t), (4)

where µ is a ny-dimensional spatial intercept vector, V1 and V2 are each ny × nh output weight matrices,

and the initial hidden state is set such that h0 ≡ 0. Here, we assume that R ≡ σ2
ε I, but note that when

necessary, additional temporal or spatial structure can be modeled through the covariance matrix R

(such an additional structure is not needed for the applications presented here). The hidden state

parameter, λw, represents the largest eigenvalue of the matrix W and δ is a scaling parameter with

a Unif(0, 1) prior. By dividing W by |λw| and restricting δ, we ensure the spectral radius of W is at

most one. When the spectral radius of W exceeds one, the model may exhibit unstable behavior [19],

and restricting the spectral radius in this fashion is common in the ESN literature, since W is not

estimated in the ESN model. We should note that this scaling does not guarantee stationarity. We find

that including δ in the model provides extra flexibility while providing stability for the hidden states.

It is important to note that given the parameters δ, W,U, the initial condition h0, and input vectors, x̃t

(see below), the hidden states are known and thus, do not need to be directly estimated. A so-called

“leaking-rate” parameter is often included in the ESN framework when defining (4). Similar to [20],

Entropy 2019, 21, 184 5 of 25

we did not find this additional parameter useful for spatio-temporal forecasting, and therefore omitted

it from the BAST-RNN model specification.

Along with scaling W, we also extend the traditional RNN model by allowing for additional

nonlinearity in (3) through h2
t ≡ (h2

t,1, . . . , h2
t,nh

)′. By including a nonlinear mapping between the

response and ht, the proposed model can capture more nonlinear behavior and accommodate more

extreme responses, see [20]. This nonlinear transformation of the hidden states provides additional

useful covariates (and thus patterns) for predicting the process of interest. It may also be useful to

include higher order interactions between the ht’s, although such interactions are not helpful for

the applications described below. The major difference between the BAST-RNN and an ESN model

(for example, the similar ESN model presented in [20]) concerns the estimation of the hidden states

that make up the BAST-RNN. Using both input and output information, within a Bayesian framework,

to estimate these parameters, the BAST-RNN requires far fewer hidden states (i.e., nh) than a typical

ESN model.

We borrow the idea of embedding the input from the dynamical systems literature as introduced

by [30], to define the input vector in (4) as:

x̃t
′ = {x′t, x′t−τ̃ , . . . , x′t−mτ̃}

′, (5)

where τ̃ is usually referred to as the “embedding lag” and m the “embedding length”, thus leading to

a (m + 1)nx + 1 dimensional input vector (assuming the first element of x̃t
′ corresponds to an intercept

term). By embedding the process of interest, the proposed model utilizes all of the recent trajectory of

the system, opposed to a single instance in time. Other statistical nonlinear spatio-temporal forecasting

methods, e.g., [8,20], have shown that embedding the process of interest can lead to more accurate

forecasts and quantifiably better uncertainty measures.

2.3. BAST-RNN Prior Distributions

The presented BAST-RNN model is comprised of multiple high-dimensional parameter weight

matrices, resulting in an over-parameterized model. This problem is not unique to the BAST-RNN,

and is often a criticism of RNNs and feed-forward neural networks in general. Due to the

prevalence of this over-parameterization problem, many solutions have been proposed in the machine

learning literature. All of the applications presented below contain training datasets that would be

considered small in terms of number of samples compared to traditional machine learning problems.

Issues concerning over-fitting can be exacerbated when dealing with training sets that contain a small

number of samples. It is not uncommon to have such examples in the spatio-temporal literature. Thus,

properly addressing issues related to over-fitting is vital to the success of the proposed methodology.

More recently, a method known as dropout [31,32] has shown promise as a tool to deal with

over-parameterized weight matrices, thereby helping to prevent over-fitting. In essence, dropout

creates a type of “hard” regularization by removing entire hidden units (and therefore weight parameters)

during training. Similarly, ESN models deal with over-parameterized weight matrices by randomly

setting a large percentage of parameters in the weight matrices to zero and then drawing the remaining

parameters from a bounded or constrained distribution, see [20]. These are just two of the many

proposed solutions for regularizing the over-parameterized weight matrices that make up neural

network models. For statistical models, addressing this problem is similarly vital to help prevent

over-fitting. Therefore, we propose regularization priors for the BAST-RNN model (see below) that

borrow ideas from both the dropout and ESN method of regularization in a rigorous fashion.

Allowing for many possible sparse networks is a strength of both the dropout and ESN regularization

methods. As discussed throughout the Bayesian machine learning literature, e.g., [25,33], the natural

modeling averaging implicit in the fully Bayesian paradigm acts in a similar way to produce a model

averaging effect across many potential networks. Generally in a Bayesian framework, model averaging

is induced by using one of the many available priors in the Bayesian variable selection literature,

Entropy 2019, 21, 184 6 of 25

see [34] for an overview. For example, stochastic search variable selection (SSVS) priors [35] represent

an effective tool for shrinking parameter values infinitesimally close to zero. In general, SSVS priors

consist of a mixture of two distributions, in which one of the distributions shrinks the parameter value

near (or to) zero, while the other distribution in the mixture is more vague and allows the parameter to

be non-zero.

Although the traditional SSVS prior uses Gaussian distributions, i.e., [36] for the weight matrices

W and U, we replace these Gaussian distributions with a truncated normal to create a “hard” constraint

(see (6) and (7) below). As has been previously noted in the Bayesian neural network literature, i.e., [37],

the parameters at the top level of the model (i.e., V1ht and V2h2
t for the BAST-RNN model in (3))

are not identifiable. By using truncated normal distributions, we are in some sense constraining

the contribution of each weight matrix W and U towards the ht’s. While helping to partly alleviate

this identifiability problem, we also find that using truncated normals helps improve mixing when

performing MCMC estimation. Finally, as discussed in [37], this non-identifiability is not an issue

when parameters are given proper priors and interest is only in prediction, as is the case here.

Using the SSVS framework described above, each element of the weight matrix W = {wi,`},

for i = 1, . . . , nh and ` = 1, . . . , nh, is given the following prior distribution:

wi,` = γw
i,`TN[−aw ,aw](0, σ2

w,0) + (1 − γw
i,`)TN[−aw ,aw](0, σ2

w,1), (6)

where σ2
w,0 � σ2

w,1 and the notation TN[−aw ,aw] denotes a truncated normal distribution, truncated

between −aw and aw. Moreover, γw
i,` represents an indicator variable with prior, γw

i,` ∼ Bernoulli(πw),

such that πw can be thought of as the prior probability of including wi,` in the model. An analogous

prior is used for each element of U = {ui,r} for r = 1, . . . , (m + 1)nx + 1, such that:

ui,r = γu
i,rTN[−au ,au](0, σ2

u,0) + (1 − γu
i,r)TN[−au ,au](0, σ2

u,1), (7)

where γu
i,r ∼ Bernoulli(πu) and σ2

u,0 � σ2
u,1. As described in Section 4.2, both hyper-parameters πw

and πu are set to small values in order to regularize many of the parameters in the model (since σ2
w,1

and σ2
u,1 are set to very small values, as detailed in Appendix A). The priors defined in (6) and (7) mimic

aspects of the regularization produced from using dropout or the ESN model by similarly removing or

(nearly) zeroing out many of the model parameters, but in a more formal framework. While developing

the proposed model we also considered other popular Bayesian variable selection priors such as the

Lasso prior [38] and the horseshoe prior [39]. We found the proposed SSVS priors provided the most

flexibility with our approach and provided a similar mechanism as the dropout method in helping

to prevent over-fitting. Note, there are many other variations of the original SSVS prior, such as the

spike-and-slab LASSO [40], that could also be utilized within the presented methodology.

Next, the parameters matrices V1 and V2 are given traditional SSVS priors with Gaussian

distributions (see Appendix A for the full details). Although a L2 (ridge) penalty is typically used for

estimating the V matrices in the ESN model, we found this penalty to be less flexible. To finish the

specification of the model, the spatial intercept is given the Gaussian prior, µ ∼ Gau(0, σ2
µI), and the

variance parameter σ2
ε is given the inverse-gamma prior, σ2

ε ∼ IG(αε, βε). See Appendix A for the

specific values of the presented hyper-parameters and Section 4.2 for a further discussion on certain

hyper-parameter choices.

2.4. Dimension Reduction

With the rise of machine learning and high-dimensional methods has come the increase in size of

spatio-temporal data sets. In most cases, this increase in size can be attributed to the number of spatial

locations (or grid-points) in a given data set, rather than the number of time points. When ny or nx

(or both) is large, the BAST-RNN model can quickly become computationally prohibitive. For example,

with more locations, each step of the MCMC algorithm (in particular, Metropolis-Hastings steps) will

become more computationally costly. Secondly, with more locations it may be necessary to increase

Entropy 2019, 21, 184 7 of 25

the value of nh, thus increasing the size of all the weight parameter matrices in the model. A common

solution to this problem in the spatio-temporal dynamical modeling literature is to use some form of

dimension reduction, i.e., [10]. This is primarily because there is a great deal of dependence in the

spatial dimension and the underlying dynamics live on a much lower dimensional manifold than the

dimension of the spatial data. It is common then that a first encoding step is conducted to project the

spatio-temporal data into lower dimensional space, and then the complex dynamics are modeled from

this lower dimensional space.

There is a great deal of flexibility when selecting a dimension reduction method for high-dimensional

spatio-temporal processes. Depending on the application, any number of methods can be selected

from linear methods such as wavelets, splines, or principal components, or nonlinear methods such as

Laplacian eigenmaps [41], restricted Boltzmann machines [42], or diffusion maps [43], just to name

a few. To describe how dimension reduction can be used with the BAST-RNN model, suppose we

let Zt be a nz-dimensional observed response vector at time t. Then, for linear dimension reduction,

Zt can be decomposed such that Zt ≈ ΦYt, where Φ is a nz × nb basis function matrix and Yt

is a nb-dimensional vector of basis coefficients. Importantly, we assume that nb � nz, thus, Yt

provides a lower-dimensional set of variables (expansion coefficients) with which our model can be

built. For example, the proposed BAST-RNN model can be re-formulated using the basis coefficients

as follows:

data model: Zt = ΦYt + νt νt ∼ Gau(0, Σν), (8)

process model: Yt = µ + V1ht + V2h2
t + εt εt ∼ Gau(0, R, (9)

where the error term νt helps account for the truncation error caused by using a reduced dimension.

For some applications it may be more important than others to include the error term (i.e., νt) in

(8). Although the forecasting applications examined below do not include this truncation error term,

the proposed framework allows for the potential to account for such uncertainty.

3. Computation: Parameter Expansion MCMC

Similar to non-Bayesian RNN estimation, the nonlinearity and dependence structures in the

BAST-RNN model present unique estimation and computational challenges. Both the W and U weight

matrices in the BAST-RNN model are particularly difficult to estimate due to the fact that both are

within the nonlinear activation function, along with the many dependencies that exist between these

two matrices. This dependence occurs since, given the embedded input (x̃t above) and δ, the hidden

states in (4) are completely determined by W and U. Thus, as W and U change, so do the values of the

hidden states. Importantly, since W weights the hidden states, the parameter values of W are highly

dependent on the specific values of the hidden states and by proxy, the values of U.

Parameter expansion data augmentation (PXDA), e.g., [26–28], is a method developed for missing

data problems in which mixing for MCMC algorithms is difficult due to dependencies between

parameters. While the parameter expansion in the PXDA algorithm is generally applied to missing

data, we borrow the parameter expansion idea and apply it to the sampling of the W matrix (we did

not find it necessary to use this same technique on the U matrix), since W directly weights the hidden

states. In essence, parameter expansion MCMC (PX-MCMC) introduces extra parameters (referred to

as the expansion parameters) into the model to create extra randomness. For example, suppose for a

given iteration of the MCMC algorithm we sampled W and then U. Instead of moving from W to U

(i.e., W → U), the expanded parameter is used to create an intermediate step such that W → W∗ → U.

That is, W∗ is a randomly transformed version of W, thus helping to break some of the dependence

between weight matrices W and U [28] (refers to this randomness as a “shake-up” of the parameters).

Without this extra randomness, samples for the weight matrices W and U quickly become degenerate.

By introducing this intermediate step, the mixing in the MCMC algorithm greatly improves for

both the W and U matrix. The amount of randomness used to transform W into W∗ can be thought

Entropy 2019, 21, 184 8 of 25

of similarly to the learning rate parameter used in traditional stochastic gradient descent (SGD) or

SG-MCMC algorithms for machine-learning problems. Typically, a learning rate parameter is used in

SGD algorithms to determine how fast or slow the weights in a given model are learned. For example,

in SG-MCMC, at each iteration when the model parameters are updated, a standard multivariate

Gaussian distribution multiplied by a learning rate parameter is added to the updated parameter

values, i.e., [25]. Analogous to the learning rate for SGD, the extra randomness induced by W∗ allows

the algorithm to better search the entire parameter space, thus improving the mixing of the algorithm.

To more rigorously describe the PX-MCMC algorithm, we need to define additional notation.

Suppose we introduce the expansion parameter matrix α, where α = {αi,`} for i = 1, . . . , nh and

` = 1, . . . , nh, and α ⊂ A, where A ∈ R
n2

h . Next, we define the transformation tα : W −→ W,

where we require tα to be a one-to-one differentiable function and denote the Jacobian for this

transformation as Jα(W). Let ΓV1
, ΓV2

, ΓU , and ΓW denote all of the indicator variables for the SSVS

priors corresponding to the respective weight matrices in (3) and (4). We define Θ to be all of

the parameters in the model not associated with W; that is, Θ ≡ {µ, V1, V2, ΓV1
, ΓV2

, U, ΓU , δ, σ2
ε }.

Furthermore, let Y1:T ≡ {Y1, . . . , YT} and x̃1:T ≡ {x̃1, . . . , x̃T}. Finally, we define the likelihood of the

model (before the introduction of the expansion parameter matrix α) using the following slight abuse

of notation
T

∏
t=1

[Yt | Θ, W, ΓW , x̃t] = [Y1:T | Θ, W, ΓW , x̃1:T], where [·] denotes a distribution.

Now, we outline the PX-MCMC for the BAST-RNN model; note, we leave the detailed description

of the presented algorithm for Appendix B. Using the notation defined above, one can show

(see Appendix B) the following relationship for the joint posterior of W and ΓW :

[W, ΓW | Θ, Y1:T , x̃1:T] =
∫

A
[tα(W), ΓW | Θ, Y1:T , x̃1:T] |Jα(W)| [α] dα. (10)

To sample from the integral in (10), we assume W′, ΓW ∼ [tα(W), ΓW | Θ, Y1:T , x̃1:T]. We will take

W = t−1
α (W′), thus allowing for the joint sampling of W and ΓW , leading to Step 1 in Algorithm 1.

Next, the draw from [α] is denoted as α0, thus Step 2 in Algorithm 1.

Algorithm 1 PX-MCMC algorithm.

1. Sample W, ΓW from: [W, ΓW | Θ, Y1:T , x̃1:T] ∝

[Y1:T | Θ, W, ΓW , x̃1:T] [W | ΓW] [ΓW].

2. Generate α0,i,` ∼ Gau(0, σ2
α) for i = 1, . . . , nh and ` = 1, . . . , nh.

3. Transform W̃ = t−1
α0

(W).

4. Sample α from: [α | tα(W̃), ΓW , Θ, Y1:T , x̃1:T] ∝

[Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T] [tα(W̃) | ΓW , α] [α] |Jα(W̃)|.

5. Sample Θ from: [Θ | tα(W̃), ΓW , α, Y1:T , x̃1:T] ∝ [Y1:T | tα(W̃), Θ, x̃1:T] [Θ].

We assume α ∼ Gau(0, σ2
α I) for the BAST-RNN model implementation, where the prior variance

σ2
α can be thought of as analogous to the learning rate parameter used in many machine learning

estimation algorithms. There is a great deal of flexibility with regards to the particular distribution

used for [α], i.e., [28], and its choice should depend on the particular model and application.

Letting W̃ ≡ t−1
α0

(W), we can sample α and Θ using the following full-conditional distributions

(see Appendix B for further details):

[α | tα(W̃), ΓW , Θ, Y1:T , , x̃1:T] ∝

[Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T][tα(W̃) | ΓW , α] [α] |Jα(W̃)|, (11)

[Θ | tα(W̃), ΓW , α, Y1:T , x̃1:T] ∝ [Y1:T | tα(W̃), Θ, x̃1:T] [Θ]. (12)

Entropy 2019, 21, 184 9 of 25

Taking the previous three equations together, we can form the PX-MCMC algorithm given in

Algorithm 1. For the sake of brevity, we leave the specific full-conditional distributions for all the

model parameters for Appendix C.

4. Applications

We begin by discussing the specifics of model implementation, including comparison metrics

and methods, the MCMC setup, and specific hyper-parameter choices. We then present the analysis

of a simulated multiscale Lorenz data set from the Lorenz dynamical system. In addition, the setup

and results of a Pacific SST long-lead forecasting problem are given, followed by an application to

state-level unemployment data in the U.S.

4.1. Validation Measures and Alternative Models

Since the stated goal of developing the BAST-RNN model is to produce accurate forecasts with

realistic uncertainty bounds, we evaluate the model in terms of both mean squared prediction error

(MSPE) and continuous ranked probability score (CRPS). Both measures are only calculated for

out-of-sample values, since the focus of the model is on forecasting. For our purposes, the MSPE is

defined as the average squared difference between the out-of-sample forecasts and true out-of-sample

values across all time periods and spatial locations. Moreover, for a predictive CDF F and true

out-of-sample realization h, CRPS is defined as e.g., [44]:

CRPS(F, h) =
∫

R

(F(r)− 1{r ≥ h})2dr. (13)

The usefulness of CRPS lies in its ability to both quantify the accuracy and distribution of a

forecast, thus producing a principled (proper scoring rule) measure of how well a model quantifies

uncertainty, i.e., [45]. In all the applications presented below, after the model is trained on in-sample

data, out-of-sample forecasts are generated successively at the given lead time. We define lead time

as the temporal difference between the input and the response. These successive forecasts are made

by repeatedly plugging in the inputs for a given lead time to get out-of-sample forecasts, using the

posterior samples from the BAST-RNN.

For the sake of comparison, we also evaluated the ensemble quadratic ESN (E-QESN) model

from [20] for all of the applications below. The E-QESN model presents a strong comparison model

since it can also quantify uncertainty and shares much of the same flexibility as the BAST-RNN model.

Few other methods share the E-QESN’s ability to produce forecasts with uncertainty quantification

at such a low computational and implementation cost. Unlike the BAST-RNN, the E-QESN is not

presented within a Bayesian framework and thus produces less theoretical sound uncertainty estimates.

We also compared to a model referred to as the linear DSTM, e.g., [10] (Chapter 7), defined here as:

Yt,i =
ny

∑
j=1

aijYt−1,j + ζ
(l)
t,i , (14)

for each location Yt,i, where {ai,j} are weight parameters and ζ
(l)
t,i is a spatially referenced noise term,

such that ζ
(l)
t ∼ Gau(0, Σζl

). Finally, we compared to the GQN model discussed above [7]. For the

results presented below, the GQN model is defined as:

Yt,i =
ny

∑
j=1

aijYt−1,j +
ny

∑
k=1

ny

∑
`=1

bi,k,`Yt−1,kYt−1,` + ζ
(q)
t,i , (15)

where ζ
(q)
t ∼ Gau(0, Σζq

). Both Σζl
and Σζq

are estimated empirically using the residuals from the

training period. Although both the GQN and linear DSTM can be formulated as Bayesian models,

Entropy 2019, 21, 184 10 of 25

such formulations are not pursued here. Instead, forecast distributions are calculated through a

Monte Carlo approach for both models. While this is not an exhaustive list of comparison methods,

these methods represent much of the state-of-the art in statistical spatial-temporal modeling and

nonlinear spatial-temporal forecasting. Note, although not pursued here, there are many other

spatio-temporal nonlinear models from the applied mathematical literature that could also be applied

to the applications presented here, such as the stochastic mode reduction models of [46] and the

empirical model reduction methods from [47].

4.2. BAST-RNN Implementation Details

Note, the implementation settings discussed here are used for all of the presented applications,

with slight deviations for specific applications as discussed below. The BAST-RNN model is

implemented using the PX-MCMC algorithm (Algorithm 1), sampling 100,000 iterations with the first

25,000 iterations treated as burn-in, while thinning the samples such that every fifth post burn-in

sample was retained. We monitored convergence by examining the trace plots for the parameters in

the model along with the posterior forecasts (a sample of such trace plots can be found in Appendix D).

The number of hidden units (nh) is set to 20. We found this number of hidden units balanced

computational cost and forecast accuracy in that larger numbers of hidden units produced similar

results in terms of forecast accuracy, but substantially slowed the algorithm. Although not pursued

here, the number of hidden units could be varied by using advanced computational methods such

as reversible jump MCMC [48]. Selection of the parameters for the embedded input, defined in (5),

is conducted by using cross-validation, over an application specific grid with the E-QESN model,

see ([20], for a detailed description of this procedure). As suggested by [49], both the input and

response are scaled by their respective means and standard deviations.

While we leave the specific hyper-parameter values used in the prior distributions to Appendix A,

we will briefly discuss these choices. Specifically for the parameter weight matrices that make up the

hidden units (i.e., W and U), the hyper-parameters πw and πu (as defined in Section 2.3) are set to small

values to encourage sparseness and prevent overfitting. In particular, these hyper-parameters are set

such that πw > πu, since the matrix U is weighting the data; we found this specification helped prevent

overfitting to the in-sample data. Moreover, aw and au are both set to small values so that aw = au,

as to follow the common practice in machine learning of bounding parameter values to prevent

particular hidden states (and by proxy particular in-sample patterns) from dominating, and thus, avoid

overfitting. As discussed in [49], when parameter values are unbounded in the RNN framework the

hidden states become extremely nonlinear to the point that the results can become unstable.

4.3. Simulation: Multiscale Lorenz-96 Model

Many RNN methods in the literature use the classic three-variable Lorenz model from [50] to

evaluate forecasting ability, e.g., [51,52]. Due to the chaotic and nonlinear behavior of the Lorenz

model, this system produces data resembling a realistic nonlinear forecasting problem, but it has

an unrealistically low state dimension (three) and is not spatially referenced. Here, evaluation of

the BAST-RNN model is applied to a less cited, but more spatially interesting Lorenz model [53],

often referred to as the Lorenz-96 model, which explicitly includes spatial locations and structure.

In particular, we consider a more complicated extension of the Lorenz-96 model, the multiscale Lorenz-96

model, that contains interacting large-scale and small-scale processes, where the large-scale locations

are directly influenced by neighboring small-scale locations and vice-versa, e.g., [54–56].

While multiple parameterizations exist for the multiscale Lorenz-96 model, we use the following

parameterization from [55] (note, the superscript L is used throughout to signify variables from the

Lorenz-96 model):

Entropy 2019, 21, 184 11 of 25

dxL
kL

dt
= xL

kL−1(xL
kL+1 − xL

kL−2)− xL
kL
+ F̃ +

hx

JL
∑
jL

yL
jL ,kL

+ η
(1)
kL

,

dyL
jL ,kL

dt
=

1

εL
[yL

jL+1,kL
(yL

jL−1,kL
− yL

jL+2,kL
)− yL

jL ,kL
+ hyxL

kL
], (16)

for jL = 1, . . . , JL and kL = 1, . . . , KL (for notational convenience the subscript t has been suppressed

from (16)). The state variable xL
kL

denotes the process at a large-scale process location, with each

large-scale location having JL corresponding small-scale locations denoted by the process yL
jL ,kL

. Each of

the large-scale locations can be thought of as equally spaced spatial variables on a one-dimensional

circular spatial domain such that xL
KL+1 = xL

1 (i.e., periodic boundary conditions). A given set of

small-scale locations corresponding to a particular large-scale location is defined with a similar spatial

domain and boundary condition.

The parameter F̃ in (16) denotes a forcing parameter, while εL controls the time-scale separation

between the large and small-scale processes, η
(1)
kL

is an additive independent Gaussian noise term

such that η
(1)
kL

iid
∼ Gau(0, σ2

η1
), with σ2

η1
= 1, and hx, hy control how much the large and small-scale

locations influence each other, respectively. For the analysis using the BAST-RNN model, we simulate

from the full model but treat the small-scale locations as unobserved and evaluate the BAST-RNN

only on the large-scale locations, thus creating a difficult but realistic nonlinear spatio-temporal

forecasting problem. After burn-in, 400 time periods are retained from the the multiscale Lorenz-96

model, with the last 75 time periods treated as out-of-sample. The data are simulated with a time

step of ∆ = 0.05 using an Euler solver. We use the same parameter values as [55] to simulate the data:

KL = 18, JL = 20, F̃ = 10, εL = 0.5, hx = −1, and hy = 1. In order to create a more statistically-oriented

forecasting problem, Gaussian white noise error is added to each large-scale realization, so that

zL
kL

= xL
kL
+ η

(2)
kL

, where η
(2)
kL

iid
∼ Gau(0, σ2

η2
), with σ2

η2
= (2.5)2. In addition, the forecasting problem is

made slightly more nonlinear by setting the lead time to three periods (i.e., the input and response

are separated by three periods). Along with using the implementation settings detailed in Section 4.2,

the embedded input parameters τ̃ = 2 and m = 4 are used.

Posterior mean forecasts and prediction intervals (P.I.s) for the BAST-RNN model with the

multiscale Lorenz-96 data are shown for six locations in Figure 1. Note that because a low

signal-to-noise ratio was used to simulate the data, the true signal is substantially corrupted by

the additive noise (as shown by the blue dotted line used to represent the true signal of the process in

Figure 1). Despite the high level of noise, the model recovers much of the signal for the six locations

shown in Figure 1. Moreover, it appears that many of the true values of the process are captured by

the 95% P.I.s. Across all 18 large-scale locations in the simulated data, 91.9% of the true values are

contained within the 95% P.I.s, while only 72.8% of the true values are contained within the intervals

produced by the E-QESN model.

A more detailed comparison of the BAST-RNN model and the three models described in Section 4.1

can be found in Table 1. In particular, Table 1 shows the BAST-RNN outperforming the other three

competing models by producing lower values for the MSPE. It is not entirely surprising that the

BAST-RNN and E-QESN model outperformed the other two less flexible models considering the level

of nonlinearity in the simulated data. The different methods of estimating the hidden state parameters

may account for the BAST-RNN outperforming the E-QESN in terms of MSPE. In addition, compared

to the E-QESN model, Table 1 also shows the BAST-RNN model produces superior uncertainty

measures based on a lower CRPS. Overall, these results simultaneously demonstrate the ability of the

BAST-RNN model to accurately forecast the trajectory of the states in a nonlinear process, while also

giving robust measures of uncertainty.

Entropy 2019, 21, 184 12 of 25

Figure 1. Posterior out-of-sample summaries for six of the 18 large-scale locations from the simulated

multiscale Lorenz-96 data over 75 periods. The black line in each plot represents the true simulated

value (data), while the red line denotes the forecasted posterior mean from the BAST-RNN model.

The blue dashed line denotes the true signal of the process, defined to be the value of the large-scale

locations in Equation (16) before the additive error, Gau(0, σ2
η1
), is applied. The shaded grey area in

each plot signifies the 95% posterior prediction intervals. The dotted green line denotes a persistence

forecast (i.e., Ŷi,t+τ = Yi,t).

Table 1. Comparison of the four forecasting methods for the simulated multiscale Lorenz-96 data in

terms of mean squared prediction error (MSPE) and continuous ranked probability score (CRPS), with

a lead time of three periods. Both metrics are calculated over all out-sample periods and locations.

Model MSPE CRPS

BAST-RNN 13.08 154.37
E-QESN 13.91 168.61

GQN 14.85 172.50
Lin. DSTM 15.11 166.60

4.4. Application: Long-Lead Tropical Pacific SST Forecasting

Tropical Pacific SST is one of the largest sources of variability affecting global climate, e.g., see the

overview in [57]. Changes in SST at various time-scales contribute to extreme weather events across

the globe, from hurricanes to severe droughts, as well as related impacts (e.g., waterfowl migration).

Therefore, accurate long-lead SST forecasts are vital for many resource managers. Of particular interest

when considering SST is the anomalous warming (El Niño) and cooling (La Niña) of the Pacific ocean,

referred to collectively as the El Niño Southern Oscillation (ENSO) phenomena.

The focus of our analysis is on the ENSO phenomena that occurred during 2015 and 2016.

Besides being one of the most extreme ENSO events on record, many forecasting methods that

were effective for past ENSO cycles failed to accurately forecast the 2015–2016 cycle, i.e., [57,58].

As described in [59], there are currently a suite of both deterministic and statistical methods for

forecasting SST, with the statistical models often performing as well or better than the deterministic

Entropy 2019, 21, 184 13 of 25

models. A summary of the deterministic models used to forecast SST can be found in works such as [60]

and [61]. Some nonlinear statistical models that have shown success for the ENSO forecasting problem

include a general quadratic nonlinear (GQN) model, i.e., [7], a switching Markov model [4], and classic

neural network models, i.e., [62]; for a more expansive list of nonlinear SST models see [20]. It is

important to note that to our knowledge, this is the first RNN method applied to the ENSO forecasting

problem with a formal mechanism for quantifying uncertainty. Furthermore, the BAST-RNN model

is used to produce out-of-sample forecasts and P.I.s with a lead time of six months for the 2015–2016

ENSO cycle. Due to the lead time and intensity of the 2015–2016 ENSO cycle, this presents a difficult

nonlinear forecasting problem.

The SST forecasting application uses monthly data over a spatial domain covering 29◦ S–29◦ N

latitude and 124◦ E–70◦ W longitude, with a resolution of 2◦ × 2◦, leading to 2229 oceanic spatial

locations. The data set is available from the publicly available extended reconstruction sea

surface temperature (ERSST) data (http://iridl.ldeo.columbia.edu/SOURCES/.NOAA/) provided by

National Ocean and Atmospheric Administration (NOAA) and covers a period from 1970 through 2016.

As is common in the climatology literature, the SST data are converted into anomalies by subtracting

the monthly climatological means calculated (in this case) over the period 1981–2010, for each spatial

location. Furthermore, when constructing ENSO forecasting methods, it is common to evaluate the

performance of a given method using the univariate summary measure for ENSO referred to as the

Niño 3.4 index. Much of the variability in the ENSO phenomena is contained in the Niño 3.4 region

(i.e., 5◦ S–5◦ N, 120◦–70◦ W), so for our purposes, the Niño 3.4 index is simply the average SST anomaly

over all locations in this region for a given month (see Figure 3).

Training of the model is implemented using Algorithm 1 and the setup from Section 4.2 with

data from January 1970–August 2014, while out-of-sample forecasts were made every two months

for a period from February 2015–December 2016 (i.e., the 2015–2016 ENSO cycle) with a lead time of

six months. Using the description in Section 2.4, dimension reduction is conducted using empirical

orthogonal functions (EOFs), also referred to as spatial-temporal principal components, see Chapter 5

of [10], on both the input and response. The first 10 EOFs, which account for over 80% of the variability

in the data, are retained for both the input and response. This same number of EOFs has been used

in multiple previous SST studies, i.e., [4,63]. Note, the first two EOFs account for almost 57% of the

variation in the data. Due to this, some of the variables associated with these EOFs were given higher

values for πu (see Appendix A for the specific values and a more detailed discussion of these choices).

Once again, the embedded input parameters are selected using the E-QESN model such that τ̃ = 6

and m = 4.

Comparison of the forecasting ability of the BAST-RNN model and the E-QESN model for the

entire spatial domain can be seen in Figure 2 for October 2015. Occurring directly before the peak

of the 2015–2016 ENSO cycle (see Figure 3), October 2015 represents an important month from the

most recent ENSO cycle. Overall, both methods capture much of the warm intensity trend, with the

BAST-RNN model forecasting a slightly higher intensity (especially for the Niño 3.4 region) compared

to the E-QESN method. Although both methods appear to produce P.I.s with similar upper bounds,

the P.I’s for the BAST-RNN are narrower, suggesting the model is more confident in its prediction of a

warm period. Importantly, the highest intensity true values from the Niño 3.4 region for October 2015

are contained within the 95% P.I.s for the BAST-RNN model.

Furthermore, the BAST-RNN model is evaluated in terms of the previously described Niño 3.4

index in Figure 3. Much of the overall temporal nonlinear trend of the 2015–2016 ENSO cycle is

captured by the BAST-RNN model, as shown in Figure 3, with nearly all of the true values contained

within the 95% P.I.s. We should note, like the vast majority of ENSO forecasting models, the forecast

mean from the BAST-RNN model also underestimates the peak of the ENSO cycle. Considering the

2015–2016 ENSO cycle was one of the most extreme ENSO cycles of recent record, i.e., [58], it is not

entirely surprising that most models underestimated the peak of the cycle. However, it is important to

Entropy 2019, 21, 184 14 of 25

reiterate that the out-of-sample forecast P.I.s for the BAST-RNN model still suggested the possibility of

a large warming event during the true peak, unlike many other ENSO forecast models.

150 200 250

-2
0

-1
0

0
1

0
2

0

(a) SST Observations: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(a) SST Observations: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(b) BAST-RNN Forecast Mean: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(b) E-QESN Forecast Mean: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)
-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(c) BAST-RNN Forecast 2.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(c) E-QESN Forecast 2.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(d) BAST-RNN Forecast 97.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

150 200 250

-2
0

-1
0

0
1

0
2

0

(d) E-QESN Forecast 97.5%-tile: Oct. 2015

Longitude (deg)

L
a

tt
it
u

d
e

 (
d

e
g

)

-3

-2

-1

0

1

2

3

-3 -2 -1 0 1 2 3

Figure 2. Spatial posterior summaries of sea surface temperature (SST) anomalies for all 2229 oceanic

spatial locations in the SST long-lead forecasting application for October 2015. The left column shows

results from the BAST-RNN model, while the right column contains results from the competing E-QESN

model for the same period. (a) The true SST for October 2015. (b) Posterior mean out-of-sample forecasts

for the BAST-RNN model and mean out-of-sample forecasts over all ensembles for the E-QESN model.

(c) Lower 2.5% point wise P.I.s for the respective forecasting method. (d) Upper 97.5% point wise P.I.s

for the respective forecasting method. All plots are in units of degree Celsius.

Entropy 2019, 21, 184 15 of 25

Figure 3. Summary of the posterior results with the BAST-RNN model for the Niño 3.4 index. For a

given month, the Niño 3.4 index is defined as the average SST over all locations in the Niño 3.4 region

(5◦ S–5◦ N, 120◦–70◦ W). The solid black lines denotes the true Niño 3.4 index for a given month during

the 2015–2016 cycle. Posterior mean out-of-sample forecasts from the BAST-RNN model are denoted by

the light blue line. The grey shaded area represents the 95% P.I.s from the BAST-RNN for the Niño 3.4

index. All values are given in units of degree Celsius.

Once again we evaluate the performance of the BAST-RNN against the three comparison models

described above. Throughout the 2015–2016 ENSO cycle, Table 2 shows the BAST-RNN as a more

accurate long-lead forecasting model than the other three models. The BAST-RNN model greatly

outperforms the other models over the Niño 3.4 region, illustrating the model’s ability to forecast

nonlinear dynamics. Moreover, Table 2 also shows the BAST-RNN model has the lowest CRPS

over all 2229 locations in the application, thus providing useful uncertainty information across the

entire spatial domain. By producing sensible uncertainty metrics for events six months into the

future, the BAST-RNN model gives resource managers advanced information on which informed

decisions can be made. Considering the widespread impact SST has on the global climate, such reliable

information is invaluable from both a scientific and economical perspective.

Table 2. Summary metrics for each of the four methods evaluated for the long-lead SST forecasting

application. Overall, MSPE denotes the MSPE calculated over all out-of-sample periods and all oceanic

locations. The column labeled CRPS denotes the CRPS calculated over all locations and out-of-sample

time periods. The columns Niño 3.4 MSPE and Niño 3.4 CRPS denote the MSPE and CRPS, respectively,

over all locations in the Niño 3.4 region and all out-of-sample periods.

Model Overall MSPE Niño 3.4 MSPE CRPS Niño 3.4 CRPS

BAST-RNN 0.253 0.223 3.437 0.318
E-QESN 0.272 0.319 3.455 0.408

GQN 0.309 0.619 3.924 0.538
Lin. DSTM 0.328 0.785 3.752 0.699

4.5. Application: U.S. State-Level Unemployment Rate

Finally, the BAST-RNN model was applied to forecasting state unemployment rates in the

Midwest of the U.S. Previous research by [64,65] have shown neural network models to be successful

for forecasting national unemployment. A lesser studied, but equally important, component of

unemployment forecasting is the spatio-temporal problem of forecasting state-level rates. Moreover,

Entropy 2019, 21, 184 16 of 25

while linear models have shown success at forecasting unemployment rates at short lead times,

nonlinear models generally produce more accurate results at longer lead times, i.e., [64,66].

The BAST-RNN can account for the nonlinearity present for a longer lead forecast, while also

incorporating the dependence between unemployment rates in near-by states.

Compared to the previous two applications (Lorenz system and SST), the U.S. unemployment rate

is a much slower moving process (i.e., compare Figures 3 and 4 where each displays approximately one

(quasi) cycle of the processes of interest, and note that Figure 4 covers a temporal span twice as long as

Figure 3). For example, there have been many fewer U.S. unemployment cycles over the past 40 years

compared to ENSO cycles. Due to this difference in the rate of the dynamical process, smaller values

for the hyper-parameters aw and au are used for the unemployment application (see Appendix A for

the specific values and a more detailed discussion). By using smaller values for aw and au the model

has more memory of recent past values, i.e., [19], which is necessary for slower moving processes.

Similar to the two previous applications, the embedding parameters were selected with the E-QESN

model, with the model selecting τ̃ = 0 and m = 0 (i.e., x̃t
′ = xt in (5)).

Figure 4. Posterior out-of-sample summaries and comparison methods for six of the 12 states in the

U.S. state-level unemployment application. The observed unemployment rate is represented by the

black line. The red line denotes the posterior mean from the BAST-RNN model, while the dotted blue,

green, and orange line represent the ensemble quadratic ESN (E-QESN), general quadratic nonlinear

(GQN), and Linear Dynamical spatial-temporal model (DSTM), respectively. The shaded grey area in

each plot signifies the 95% posterior prediction intervals associated with the BAST-RNN model.

Seasonally adjusted monthly unemployment data were obtained from the publicly available

Federal Reserve Bank of St. Louis (http://research.stlouisfed.org/fred2), for a period starting in

January 1976 for the 12 states that make up the U.S. Census Bureau’s Midwest Region [67]. The period

from December 2008 through June 2014 was designated as the out-of-sample period to evaluate the

performance of the model. This period represents the most recent unemployment cycle caused by the

Great Recession that started in 2008 and provides a nonlinear time series to assess the model. Using

a lead time of six months, each model was trained on data from January 1976 through May 2008.

The results in Table 3 show the BAST-RNN model to be a more accurate forecast model with higher

quality uncertainty measures than the three competing models. From Figure 4 it is clear that all four

Entropy 2019, 21, 184 17 of 25

models struggle with identifying the start of the unemployment cycle in 2009, with the BAST-RNN

model generally recovering to accurately predict the states with peaks later in the cycle. Across the

six states displayed in Figure 4 (selected to represent a range of different unemployment cycles in the

region), the BAST-RNN model appears to be the most accurate in terms of forecasting the decrease in

the unemployment rate during the recovery that followed the 2008 recession.

Table 3. Comparison for the four forecasting methods for the U.S. state-level unemployment data

in terms of mean squared prediction error (MSPE) and continuous ranked probability score (CRPS),

with a lead time of six months. Both metrics are calculated over all out-of-sample periods and states.

Model MSPE CRPS

BAST-RNN 0.612 27.11
E-QESN 0.965 36.66

GQN 0.964 37.32
Lin. DSTM 0.865 33.60

5. Discussion and Conclusions

The results of all three applications presented above demonstrate the potential of using machine

learning methods within a Bayesian modeling framework for forecasting nonlinear spatio-temporal

processes. While many methods struggled with forecasting the 2015–2016 ENSO cycle, the BAST-RNN

model forecasted much of the overall cycle correctly, especially when accounting for forecast

uncertainty. Additionally, the BAST-RNN model was able to forecast the correct nonlinear trajectory

for the multiscale Lorenz data despite a considerable amount of noise. With regards to both forecast

accuracy and quantification of uncertainty, the BAST-RNN model was superior to the three competing

models, over a reasonably long out-of-sample temporal span across three different applications.

Placing popular machine learning methods, such as RNNs, within a more rigorous statistical

framework allows for more thorough uncertainty quantification, while also providing a useful

framework for building more complicated models. That is, the proposed BAST-RNN model provides a

first step towards more hierarchical machine learning methods that account for sources of variation at

multiple levels. High-dimensional real-world processes often contain multiple layers of interconnected

uncertainties and these uncertainties can more easily be untangled and formally modeled within the

proposed modeling framework. Conversely, even the most precise uncertainty quantification methods

are of diminishing value if they are not flexible enough to accurately forecast the process of interest.

Thus, by combining the forecasting ability of the RNN model with the rigor of Bayesian modeling,

the proposed methodology provides a powerful tool for modelers.

The proposed model can be used for a broad range of forecasting problems (as seen by the

variety of applications analyzed here) both in its current form and with relatively minor modifications.

For example, the model can easily be extended to account for different types of response data such

as binary or count data. Moreover, the BAST-RNN is flexible enough to deal with varying degrees

of nonlinearity, whereas past statistical nonlinear forecasting models may fail with higher levels

of nonlinearity. The applications shown above provide evidence of this flexibility with the model

producing accurate results for both quasilinear processes (SST and unemployment) and a highly

nonlinear process (Lorenz process).

Other extensions of the model include letting the parameters associated with the embedded

input and the number of hidden units vary, which could more accurately account for the uncertainty

associated with these choices. Putting the model within a fully Bayesian hierarchical framework is

another possible extension. Moreover, when adding additional hidden layers to the model it may

be necessary to incorporate more computational efficient methods to improve scalability, possibly

borrowing ideas from the ESN literature. It is also likely that other forms of dimension reduction may

be useful when considering the BAST-RNN model for other applications. In particular, incorporating

the nonlinearity or dynamics of the process explicitly in the selected dimension reduction method

Entropy 2019, 21, 184 18 of 25

could be important for some applications. For large data sets, where dimension reduction is not

appropriate, it may be necessary to combine the presented computational framework with other

computational methods such as Langevin dynamics, i.e., [68].

Author Contributions: Computational code was written by P.L.M.. Moreover, P.L.M. and C.K.W. both contributed
to the model design and manuscript preparation.

Funding: This work was partially supported by the U.S. National Science Foundation (NSF) and the U.S. Census
Bureau under NSF grant SES-1132031, funded through the NSF-Census Research Network (NCRN) program.
In addition, partial support was provided by NSF grant DMS-1811745.

Conflicts of Interest: The authors declare no conflicts of interest.

Appendix A. Specification of Priors

Below is a list of prior distributions for all of the parameters in the BAST-RNN model, along with

specific values for each of the hyper-parameters used in the model.

Each element in the weight matrix W is given the following prior distribution:

wi,` = γw
i,`TN[−aw ,aw](0, σ2

w,0) + (1 − γw
i,`)TN[−aw ,aw](0, σ2

w,1), for γw
i,` ∼ Bernoulli(πw),

where σ2
w,0 = (1, 000)2, σ2

w,1 = 0.001, aw = 0.20, and πw = 0.20.

Each element in the weight matrix U is given the following prior distribution:
ui,r = γu

i,rTN[−au ,au](0, σ2
u,0) + (1 − γu

i,r)TN[−au ,au](0, σ2
u,1), for γu

i,r ∼ Bernoulli(πu),

where σ2
u,0 = (1, 000)2, σ2

u,1 = 0.0005, au = 0.20, and πu = 0.025.

Each element in the weight matrix V1 is given the following prior distribution:

v1,k,i = γv
1,k,iGau(0, σ2

v1,0) + (1 − γv
1,k,i)Gau(0, σ2

v1,1), for γ1,k,i ∼ Bernoulli(πv1),

where σ2
v1,0 = 10, σ2

v1,1 = 0.01, and πv1 = 0.50.

Each element in the weight matrix V2 is given the following prior distribution:

v2,k,i = γv
2,k,iGau(0, σ2

v2,0) + (1 − γv
2,k,i)Gau(0, σ2

v2,1), for γ2,k,i ∼ Bernoulli(πv2),

where σ2
v2,0 = 0.5, σ2

v2,1 = 0.05, and πv2 = 0.25.

Finally, α ∼ Gau(0, σ2
α I), where σ2

α = (.10)2, µ ∼ Gau(0, σ2
µI), where σ2

µ = 100, δ ∼ Unif(0, 1),

σ2
ε ∼ IG(αε, βε), where αε = 1 and βε = 1.

For the SST application, πu was set to 0.05 for all of the U parameters associated with the first

EOF as well as U parameters associated with non-lagged inputs corresponding to the second EOF.

Overall, the first two EOFs account for almost 57% of the variation in the SST data with the first EOF

accounting for 46% of the overall variation by itself, thus suggesting higher prior probabilities for these

inputs to be included in the model.

As discussed in the main text, the U.S. state-level unemployment application involved a much

slower moving process than the SST and Lorenz system examples. In particular, this can be seen

by comparing Figures 3 and 4, where Figure 3 displays an approximately completed ENSO cycle,

and Figure 4 shows part of an unemployment cycle, while Figure 4 covers a temporal span twice as

long as Figure 3. To account for this difference, the hyper-parameters aw and au were adjusted for the

unemployment application such that, au = 0.05 and aw = 0.05.

To justify these prior choices we simulated from (4) with different values of aw and au, while

setting the input to zero for every period after the first period. As shown in Figure A1, this procedure

allowed us to examine the memory of the hidden units for different values of aw and au. The results

in Figure A1 show that for smaller values of aw and au, the hidden units have more memory (i.e.,

Entropy 2019, 21, 184 20 of 25

1. Sample W and ΓW as follows:

[W, ΓW | Θ, Y1:T , x̃1:T] =
[Θ, W, ΓW | Y1:T , x̃1:T]

[Θ | Y1:T , x̃1:T]
(A1)

=

∫
A[Θ, W, ΓW , α | Y1:T , x̃1:T]dα

[Θ | Y1:T , x̃1:T]
(A2)

=

∫
A[Θ, W, ΓW | Y1:T , x̃1:T , α][α | Y1:T , x̃1:T]dα

[Θ | Y1:T , x̃1:T ,]
(A3)

=

∫
A[Θ, W, ΓW | Y1:T , x̃1:T][α]dα

[Θ | Y1:T , x̃1:T ,]
(A4)

=

∫
A[Θ, tα(W), ΓW | Y1:T , x̃1:T] |Jα(W)| [α] dα

[Θ | Y1:T , x̃1:T]
(A5)

=
∫

A
[tα(W), ΓW | Θ, Y1:T , x̃1:T] |Jα(W)| [α] dα, (A6)

As stated in the main text, to sample from this integral, we assume W′, ΓW ∼ [tα(W), ΓW |

Θ, Y1:T , x̃1:T]. We will take W = t−1
α (W′), thus allowing for the joint sampling of W and ΓW . This result

leads to step 1 of Algorithm 1 and defining α0 as the simulated value from [α] leads to step 2. Note

the procedure described here closely follows the procedure outlined directly below Equation (1.4.3)

in [27]. The assumption stated above that α is only dependent on Θ, W, ΓW , x̃1:T and Y1:T through the

transformation tα is utilized when going from (A3) to (A4).

2. Sample Θ and α, as follows:

[Θ, α | W, ΓW , Y1:T , x̃1:T] =
[Θ, α, W, ΓW , Y1:T , x̃1:T]

[W, ΓW , Y1:T , x̃1:T]
(A7)

=
[Θ, α, t−1

α0
(W), ΓW , Y1:T , x̃1:T] | J̃α0(W)|

[t−1
α0

(W), ΓW , Y1:T , x̃1:T] | J̃α0(W)|
(A8)

=
[Θ, α, t−1

α0
(W), ΓW , Y1:T , x̃1:T]

[t−1
α0

(W), ΓW , Y1:T , x̃1:T]
(A9)

∝ [Θ, α, W̃, ΓW , Y1:T , x̃1:T] (A10)

= [Θ, α, tα(W̃), ΓW , Y1:T , x̃1:T] |Jα(W̃)| (A11)

∝ [Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T] [Θ]

× [tα(W̃) | ΓW , α] [α] |Jα(W̃)| (A12)

Above in (A10), W̃ is defined as W̃ ≡ t−1
α0

(W). Going from (A11) to (A12), we assume α is

conditionally independent of ΓW , tα(W̃) and α are independent of x̃1:T , and Θ is conditionally

independent of α, tα(W̃), ΓW , and x̃1:T . Finally, the full-conditional distributions for Θ and α are

as follows:

[α | tα(W̃), ΓW , Θ, Y1:T , , x̃1:T] ∝ [Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T]

× [tα(W̃) | ΓW , α] [α] |Jα(W̃)| (A13)

[Θ | tα(W̃), ΓW , α, Y1:T , x̃1:T] ∝ [Y1:T | tα(W̃), ΓW , Θ, α, x̃1:T] [Θ] (A14)

∝ [Y1:T | tα(W̃), Θ, x̃1:T] [Θ] (A15)

Entropy 2019, 21, 184 21 of 25

These two full conditionals lead directly to steps 4 and 5 of Algorithm 1, respectively, where α is

sampled using Metropolis-Hasting steps and Θ is sampled using Gibbs and Metropolis-Hasting steps

(see Appendix C).

Appendix C. Full-Conditionals for the BAST-RNN Model

The full-conditional distributions for all of the parameters in the BAST-RNN model are detailed

in this Appendix. To ease the notation we define:

Θ̃ ≡ {µ, V1, V2, ΓV1
, ΓV2

, W, ΓW , α, α0, U, ΓU , δ, σ2
ε },

and borrowing the notational convention from [69], let Θ̃−wi,`
= Θ̃ ∩ {wi,`}

c, such that the notation “c”

denotes the compliment. Thus, Θ̃−wi,`
denotes the collection of all of the parameters in Θ̃ except for

wi,`. A similar notation can be used for all of the other parameters in the model.

We will use the notation Φ(·) to denote the cumulative distribution function for the Gaussian

distribution. Next, let Υk be a (2nh + 1)× (2nh + 1) diagonal matrix with the first diagonal element

corresponding to σ2
µ, the next nh diagonal entries corresponding to γv

1,k,iσ
2
v1,0 + (1 − γv

1,k,i)σ
2
v1,1

(for i = 1, . . . , nh), and the last nh diagonal entries corresponding to γv
2,k,iσ

2
v2,0 + (1 − γv

2,k,i)σ
2
v2,1

(for i = 1, . . . , nh). Probability distribution functions for the Gaussian priors associated with v1,k,i

and v2,k,i are denoted by φv1(·) and φv2(·) (as defined in Appendix A), respectively.

Finally, the vector h̃t is defined as h̃t ≡ (1, h′
t, h2′

t)
′, such that h̃1:T is a (2nh + 1) × T matrix.

Throughout, we will let gt ≡ µ + V1ht + V2h2
t to reduce the amount of notation. The BAST-RNN

model is defined by the following full-conditional distributions:

• [wi,`, γw
i,` | Y1:T , x̃1:T , Θ̃−{wi,` ,γw

i,`}
] ∝

T

∏
t=1

exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)

×

(γw
i,`exp

(−w2
i,`

2σ2
w,0

)

Φ(aw
σw,0

)−Φ(−aw
σw,0

)
+

(1−γw
i,`)exp

(−w2
i,`

2σ2
w,1

)

Φ(aw
σw,1

)−Φ(−aw
σw,1

)

)
×

(
π

γw
i,`

w + (1 − πw)
1−γw

i,`

)
,

for i = 1, . . . , nh and ` = 1, . . . , nh.

• [αi,` | Y1:T , x̃1:T , Θ̃−αi,`
] ∝

T

∏
t=1

exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)

×

(γw
i,`exp

(−{tαi,`
(w̃i,`)}

2

2σ2
w,0

)

Φ(aw
σw,0

)−Φ(−aw
σw,0

)
+

(1−γw
i,`)exp

(−{tαi,`
(w̃i,`)}

2

2σ2
w,1

)

Φ(aw
σw,1

)−Φ(−aw
σw,1

)

)
× exp

(
−α2

i,`

2σ2
α

)
×

(
2awexp(−w̃i,`+αi,`)

(1+exp(−w̃i,`+αi,`))2

)
,

for i = 1, . . . , nh and ` = 1, . . . , nh.

• [ui,r, γu
i,r | Y1:T , x̃1:T , Θ̃−{ui,r ,γu

i,r}
] ∝

T

∏
t=1

exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)

×

(γu
i,rexp

(−u2
i,r

2σ2
u,0

)

Φ(au
σu,0

)−Φ(−au
σu,0

)
+

(1−γu
i,r)exp

(−u2
i,r

2σ2
u,1

)

Φ(au
σu,1

)−Φ(−au
σu,1

)

)
×

(
π

γu
i,r

u + (1 − πu)
1−γu

i,r

)
,

for i = 1, . . . , nh and ` = 1, . . . , nh.

• [δ | Y1:T , x̃1:T , Θ̃−δ] ∝
T

∏
t=1

exp

(
−(Yt−gt)

′(Yt−gt)

2σ2
ε

)
× I[0,1](δ)

• [µ1,k, V1,k, V2,k | Y1:T , x̃1:T , Θ̃−{µ1,k ,V1,k ,V2,k}
] ∝

Gau

((
1

σ2ε
h̃1:Th̃′

1:T + Υ−1
k

)−1 1
σ2ε

h̃1:TY1:T,k,
(

1
σ2ε

h̃1:Th̃′
1:T + Υ−1

k

)−1
)

,

for k = 1, . . . , nh.

• [γv
1,k,i | Y1:T , x̃1:T , Θ̃−{γv

1,k,i}
] ∝ Bernoulli

(
φv1 (v1,k,i |γ

v
1,k,i=1)

φv1 (v1,k,i |γ
v
1,k,i=1)+φv1 (v1,k,i |γ

v
1,k,i=0)

)
,

Entropy 2019, 21, 184 23 of 25

References

1. Fan, J.; Yao, Q. Nonlinear Time Series; Springer: Berlin, Germany, 2005.

2. Billings, S.A. Nonlinear System Identification: NARMAX Methods in the Time, Frequency, and Spatio-Temporal

Domains; John Wiley & Sons: Hoboken, NJ, USA, 2013.

3. Wikle, C. Modern perspectives on statistics for spatio-temporal data. Wiley Interdiscip. Rev. Comput. Stat.

2015, 7, 86–98. [CrossRef]

4. Berliner, L.M.; Wikle, C.K.; Cressie, N. Long-lead prediction of Pacific SSTs via Bayesian dynamic modeling.

J. Clim. 2000, 13, 3953–3968. [CrossRef]

5. Wu, G.; Holan, S.H.; Wikle, C.K. Hierarchical Bayesian spatio-temporal Conway–Maxwell Poisson models

with dynamic dispersion. J. Agric. Biol. Environ. Stat. 2013, 18, 335–356. [CrossRef]

6. Hooten, M.B.; Wikle, C.K. Statistical agent-based models for discrete spatio-temporal systems. J. Am.

Stat. Assoc. 2010, 105, 236–248. [CrossRef]

7. Wikle, C.K.; Hooten, M.B. A general science-based framework for dynamical spatio-temporal models. Test

2010, 19, 417–451. [CrossRef]

8. McDermott, P.L.; Wikle, C.K. A model-based approach for analog spatio-temporal dynamic forecasting.

Environmetrics 2016, 27, 70–82. [CrossRef]

9. Richardson, R.A. Sparsity in nonlinear dynamic spatiotemporal models using implied advection.

Environmetrics 2017, 28, e2456. [CrossRef]

10. Cressie, N.; Wikle, C. Statistics for Spatio-Temporal Data; John Wiley & Sons: New York, NY, USA, 2011.

11. Tang, B.; Hsieh, W.W.; Monahan, A.H.; Tangang, F.T. Skill comparisons between neural networks and

canonical correlation analysis in predicting the equatorial Pacific sea surface temperatures. J. Clim. 2000,

13, 287–293. [CrossRef]

12. Dixon, M.F.; Polson, N.G.; Sokolov, V.O. Deep Learning for Spatio-Temporal Modeling: Dynamic Traffic

Flows and High Frequency Trading. arXiv 2017, arXiv:1705.09851.

13. Hochreiter, S.; Schmidhuber, J. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [CrossRef]

14. Graves, A.; Liwicki, M.; Fernández, S.; Bertolami, R.; Bunke, H.; Schmidhuber, J. A novel connectionist

system for unconstrained handwriting recognition. IEEE Trans. Pattern Anal. Mach. Intell. 2009, 31, 855–868.

[CrossRef] [PubMed]

15. Ning, G.; Zhang, Z.; Huang, C.; He, Z.; Ren, X.; Wang, H. Spatially supervised recurrent convolutional

neural networks for visual object tracking. arXiv 2016, arXiv:1607.05781.

16. Yildiz, I.B.; von Kriegstein, K.; Kiebel, S.J. From birdsong to human speech recognition: Bayesian inference

on a hierarchy of nonlinear dynamical systems. PLoS Comput. Biol. 2013, 9, e1003219. [CrossRef] [PubMed]

17. Graves, A. Generating sequences with recurrent neural networks. arXiv 2013, arXiv:1308.0850.

18. Jaeger, H. The “Echo State” Approach to Analysing and Training Recurrent Neural Networks-with an Erratum Note;

German National Research Center for Information Technology GMD Technical Report: Bonn, Germany,

2001; Volume 148.

19. Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training.

Comput. Sci. Rev. 2009, 3, 127–149. [CrossRef]

20. McDermott, P.L.; Wikle, C.K. An Ensemble Quadratic Echo State Network for Nonlinear Spatio-Temporal

Forecasting. STAT 2017, 6, 315–330. [CrossRef]

21. van der Westhuizen, J.; Lasenby, J. Bayesian LSTMs in medicine. arXiv 2017, arXiv:1706.01242.

22. Neal, R.M. Bayesian Learning for Neural Networks. Ph.D. Thesis, University of Toronto, Toronto, ON,

Canada, 1994.

23. Chatzis, S.P. Sparse Bayesian Recurrent Neural Networks. In Machine Learning and Knowledge Discovery in

Databases; Springer: Berlin, Germany, 2015; pp. 359–372.

24. Chien, J.T.; Ku, Y.C. Bayesian recurrent neural network for language modeling. IEEE Trans. Neural Netw.

Learn. Syst. 2016, 27, 361–374. [CrossRef] [PubMed]

25. Gan, Z.; Li, C.; Chen, C.; Pu, Y.; Su, Q.; Carin, L. Scalable Bayesian Learning of Recurrent Neural Networks

for Language Modeling. arXiv 2016, arXiv:1611.08034.

26. Liu, J.S.; Wu, Y.N. Parameter expansion for data augmentation. J. Am. Stat. Assoc. 1999, 94, 1264–1274.

[CrossRef]

Entropy 2019, 21, 184 24 of 25

27. Hobert, J.P.; Marchev, D. A theoretical comparison of the data augmentation, marginal augmentation and

PX-DA algorithms. Ann. Stat. 2008, 36, 532–554. [CrossRef]

28. Hobert, J.P. The data augmentation algorithm: Theory and methodology. Handbook of Markov Chain Monte

Carlo; Chapman & Hall/CRC: London, UK, 2011; pp. 253–293.

29. Chung, J.; Gulcehre, C.; Cho, K.; Bengio, Y. Gated feedback recurrent neural networks. In Proceedings of the

International Conference on Machine Learning, Lille, France, 6–11 Junly 2015; pp. 2067–2075.

30. Takens, F. Detecting strange attractors in turbulence. Lect. Notes Math. 1981, 898, 366–381.

31. Srivastava, N.; Hinton, G.E.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to

prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958.

32. Polson, N.; Sokolov, V. Deep Learning: A Bayesian Perspective. Bayesian Anal. 2017, 12, 1275–1304.

[CrossRef]

33. MacKay, D.J. A practical Bayesian framework for backpropagation networks. Neural Comput. 1992, 4, 448–472.

[CrossRef]

34. O’Hara, R.B.; Sillanpää, M.J. A review of Bayesian variable selection methods: What, how and which.

Bayesian Anal. 2009, 4, 85–117. [CrossRef]

35. George, E.I.; McCulloch, R.E. Variable selection via Gibbs sampling. J. Am. Stat. Assoc. 1993, 88, 881–889.

[CrossRef]

36. George, E.I.; McCulloch, R.E. Approaches for Bayesian variable selection. Stat. Sin. 1997, 7, 339–373.

37. Ghosh, M.; Maiti, T.; Kim, D.; Chakraborty, S.; Tewari, A. Hierarchical Bayesian neural networks: An

application to a prostate cancer study. J. Am. Stat. Assoc. 2004, 99, 601–608. [CrossRef]

38. Park, T.; Casella, G. The bayesian lasso. J. Am. Stat. Assoc. 2008, 103, 681–686. [CrossRef]

39. Carvalho, C.M.; Polson, N.G.; Scott, J.G. The horseshoe estimator for sparse signals. Biometrika 2010,

97, 465–480. [CrossRef]

40. Ročková, V.; George, E.I. The spike-and-slab lasso. J. Am. Stat. Assoc. 2018, 113, 431–444. [CrossRef]

41. Belkin, M.; Niyogi, P. Laplacian Eigenmaps and Spectral Techniques for Embedding and Clustering.

In Proceedings of the 14th International Conference on Neural Information Processing Systems: Natural and

Synthetic (NIPS’01), Vancouver, BC, Canada, 3–8 December 2001; pp. 585–591.

42. Nair, V.; Hinton, G.E. Rectified linear units improve restricted boltzmann machines. In Proceedings of the

27th International Conference on Machine Learning (ICML-10), Haifa, Israel, 21–24 June 2010; pp. 807–814.

43. Coifman, R.; Lafon, S. Diffusion maps. Appl. Comput. Harmon. Anal. 2006, 21, 5–30. [CrossRef]

44. Matheson, J.E.; Winkler, R.L. Scoring rules for continuous probability distributions. Manag. Sci. 1976,

10, 1087–1096. [CrossRef]

45. Gneiting, T.; Katzfuss, M. Probabilistic forecasting. Annu. Rev. Stat. Appl. 2014, 1, 125–151. [CrossRef]

46. Majda, A.J.; Timofeyev, I.; Vanden-Eijnden, E. Systematic strategies for stochastic mode reduction in climate.

J. Atmos. Sci. 2003, 60, 1705–1722. [CrossRef]

47. Kravtsov, S.; Kondrashov, D.; Ghil, M. Multilevel regression modeling of nonlinear processes: Derivation

and applications to climatic variability. J. Clim. 2005, 18, 4404–4424. [CrossRef]

48. Green, P.J. Reversible jump Markov chain Monte Carlo computation and Bayesian model determination.

Biometrika 1995, 82, 711–732. [CrossRef]

49. Lukoševičius, M. A practical guide to applying echo state networks. In Neural Networks: Tricks of the Trade;

Springer: Berlin, Germany, 2012; pp. 659–686.

50. Lorenz, E.N. Deterministic nonperiodic flow. J. Atmos. Sci. 1963, 20, 130–141. [CrossRef]

51. Ma, Q.L.; Zheng, Q.L.; Peng, H.; Zhong, T.W.; Xu, L.Q. Chaotic time series prediction based on evolving

recurrent neural networks. In Proceedings of the 2007 International Conference on Machine Learning and

Cybernetics, Hong Kong, China, 19–22 August 2007; Volume 6, pp. 3496–3500.

52. Chandra, R.; Zhang, M. Cooperative coevolution of Elman recurrent neural networks for chaotic time series

prediction. Neurocomputing 2012, 86, 116–123. [CrossRef]

53. Lorenz, E.N. Predictability: A problem partly solved. In Proceedings of the Seminar on Predictability,

Reading, UK, 4–8 September 1995; Volume 1.

54. Wilks, D.S. Effects of stochastic parametrizations in the Lorenz’96 system. Quart. J. R. Meteorol. Soc. 2005,

131, 389–407. [CrossRef]

55. Chorin, A.J.; Lu, F. Discrete approach to stochastic parametrization and dimension reduction in nonlinear

dynamics. Proc. Natl. Acad. Sci. USA 2015, 112, 9804–9809. [CrossRef]

Entropy 2019, 21, 184 25 of 25

56. Grooms, I.; Lee, Y. A framework for variational data assimilation with superparameterization. Nonlinear

Processes Geophys. 2015, 22, 601–611. [CrossRef]

57. Hu, S.; Fedorov, A.V. The extreme El Niño of 2015–2016: The role of westerly and easterly wind bursts,

and preconditioning by the failed 2014 event. Clim. Dyn. 2017, 1–19. [CrossRef]

58. L’Heureux, M.L.; Takahashi, K.; Watkins, A.B.; Barnston, A.G.; Becker, E.J.; Di Liberto, T.E.; Gamble, F.;

Gottschalck, J.; Halpert, M.S.; Huang, B.; et al. Observing and predicting the 2015-16 El Niño. Bull. Am.

Meteorol. Soc. 2017, 98, 1363–1382. [CrossRef]

59. Barnston, A.G.; Tippett, M.K.; L’Heureux, M.L.; Li, S.; DeWitt, D.G. Skill of real-time seasonal ENSO model

predictions during 2002–2011: Is our capability increasing? Bull. Am. Meteorol. Soc. 2012, 93, 631–651.

[CrossRef]

60. Barnston, A.G.; He, Y.; Glantz, M.H. Predictive skill of statistical and dynamical climate models in SST

forecasts during the 1997–1998 El Niño episode and the 1998 La Niña onset. Bull. Am. Meteorol. Soc. 1999,

80, 217–243. [CrossRef]

61. Jan van Oldenborgh, G.; Balmaseda, M.A.; Ferranti, L.; Stockdale, T.N.; Anderson, D.L. Did the ECMWF

seasonal forecast model outperform statistical ENSO forecast models over the last 15 years? J. Clim. 2005,

18, 3240–3249. [CrossRef]

62. Tangang, F.T.; Tang, B.; Monahan, A.H.; Hsieh, W.W. Forecasting ENSO events: A neural network–extended

EOF approach. J. Clim. 1998, 11, 29–41. [CrossRef]

63. Gladish, D.W.; Wikle, C.K. Physically motivated scale interaction parameterization in reduced rank quadratic

nonlinear dynamic spatio-temporal models. Environmetrics 2014, 25, 230–244. [CrossRef]

64. Liang, F. Bayesian neural networks for nonlinear time series forecasting. Stat. Comput. 2005, 15, 13–29.

[CrossRef]

65. Sharma, S.; Singh, S. Unemployment rates forecasting using supervised neural networks. In Proceedings of

the 2016 6th International Conference Cloud System and Big Data Engineering (Confluence), Noida, India,

14–15 January 2016; pp. 28–33.

66. Teräsvirta, T.; Van Dijk, D.; Medeiros, M.C. Linear models, smooth transition autoregressions, and neural

networks for forecasting macroeconomic time series: A re-examination. Int. J. Forecast. 2005, 21, 755–774.

[CrossRef]

67. Jones, N.A.; Smith, A.S. The Two or More Races Population, 2000; US Department of Commerce, Economics

and Statistics Administration, US Census Bureau: Washington, DC, USA, 2001; Volume 8.

68. Welling, M.; Teh, Y.W. Bayesian learning via stochastic gradient Langevin dynamics. In Proceedings of the

28th International Conference on Machine Learning (ICML-11), Bellevue, WA, USA, 28 June–2 July 2011;

pp. 681–688.

69. Bradley, J.R.; Wikle, C.K.; Holan, S.H. Bayesian spatial change of support for count-valued survey data with

application to the american community survey. J. Am. Stat. Assoc. 2016, 111, 472–487. [CrossRef]

c© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access

article distributed under the terms and conditions of the Creative Commons Attribution

(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

	Introduction
	Spatio-Temporal Recurrent Neural Network
	Traditional Recurrent Neural Network
	Bayesian Spatio-Temporal Recurrent Neural Network
	BAST-RNN Prior Distributions
	Dimension Reduction

	Computation: Parameter Expansion MCMC
	Applications
	Validation Measures and Alternative Models
	BAST-RNN Implementation Details
	Simulation: Multiscale Lorenz-96 Model
	Application: Long-Lead Tropical Pacific SST Forecasting
	Application: U.S. State-Level Unemployment Rate

	Discussion and Conclusions
	Specification of Priors
	Details of Algorithm 1
	Full-Conditionals for the BAST-RNN Model
	Trace Plots for the BAST-RNN Model
	References

