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ABSTRACT
The problem of anomaly detection among multiple processes
is considered within the framework of sequential design of
experiments. The objective is an active inference strategy
consisting of a selection rule governing which process to
probe at each time, a stopping rule on when to terminate the
detection, and a decision rule on the final detection outcome.
The performance measure is the Bayes risk that takes into
account not only sample complexity and detection errors,
but also costs associated with switching across processes.
While the problem is a partially observable Markov deci-
sion process to which optimal solutions are generally in-
tractable, a low-complexity deterministic policy is shown to
be asymptotically optimal and offer significant performance
improvement over existing methods in the finite regime.

Index Terms— Sequential design of experiment, Active
hypothesis testing, Anomaly detection.

1. INTRODUCTION

We consider the problem of detecting an anomalous
process among M processes. Following the terminology in
target detection, we refer to the processes as cells and the
anomalous process as the target. At each time, one cell can
be probed and a noisy observation is obtained from the cell.
The objective is an active inference strategy consisting of a
selection rule governing which cell to probe at each time,
a stopping rule on when to terminate the detection, and a
decision rule on the final detection outcome. The perfor-
mance measure is the Bayes risk that takes into account of
not only detection errors and detection delay (i.e., sample
complexity), but also costs associated with switching across
cells.

The problem is an instance of active hypothesis testing
pioneered by Chernoff [1] under the term of sequential
design of experiments, where the objective is on asymp-
totic optimality in the regime of vanishing detection errors.
Chernoff’s original formulation, however, does not consider
switching cost. The test developed by Chernoff (referred
to as Chernoff test) is a randomized test that generates
random actions based on adaptively designed distributions.
The advantage of the randomized test is its amenability to
asymptotic analysis. Specifically, after an initial phase with

a bounded duration, the action distribution chosen by the
Chernoff test no longer changes over time. The actions,
consequently the test statistic of log likelihood ratio, thus
become i.i.d. over time, allowing easy asymptotic analysis
of the stopping time on the test statistic. However, choosing
action independently of past actions is fundamentally incom-
patible with the objective of reducing the switching cost,
especially when the switching cost is comparable or even
higher than the observation cost. Furthermore, the Chernoff
test is given only inexplicitly, as the solution to a maxmin
problem, which can be computationally expensive to solve.

In this paper, we propose a low-complexity deterministic
test for the above active hypothesis testing problem with
switching cost. Referred to as the Deterministic Bounded
Switching (DBS) policy, the proposed policy explicitly spec-
ifies the probing action at each time with little computa-
tion. Specifically, the policy is based on a key criterion
that integrates all parameters affecting the Bayes risk: the
number M of cells, the switching cost s, the observation
cost c, and the rates at which the target cell and normal
cells can be identified as given by the Kullback-Liebler
(KL) divergences between the corresponding observation
distributions. This criterion partitions the problem space into
two cells. In one cell, the DBS policy probes the cell most
likely to be the target. In the other, DBS probes cells that
are likely to be normal and eliminates them one at a time to
reduce the number of switchings. The DBS policy is simple,
intuitively appealing, yet enjoys asymptotic optimality and
strong performance in the finite regime as demonstrated in
the simulation examples. Compared to the Chernoff test,
establishing the asymptotic optimality of DBS is much more
involved, due to the strong temporal and spatial (i.e., across
cells) dependencies in the actions and test statistics.

Incorporating switching cost into Bayes risk is motivated
by a number of applications. For example, in many robotics
applications, relocating the robot (or other autonomous deci-
sion makers such as UAVs) incurs considerable cost in terms
of energy or delay. Another example is medical diagnostics,
where frequent and fast switching across drugs and medical
procedures carries high risk and side effects.

Related Work:
Chernoff’s work have been extented in various direc-

tions. Bessler [2] considered the M -ary hypothesis in 1960.
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Naghshvar and Javidi studied Active Sequential Hypothesis
Testing (ASHT) under different scenarios from a Bayesian
cost minimization perspective in [3] and [4]. Nitinawarat
and Veeravalli [5] proposed a universal sequential scheme
for optimal search and stop using only the knowledge of the
absence distribution. In [6] and [7], more general models
which considered Markovian observations and non-uniform
costs on actions were proposed. Recently, Cohen and Zhao
studied ASHT for anomaly detection in [8]–[11]. In con-
trast to the random policies advocated in other works, they
introduced a simple deterministic model and showed that it
is asymptotically optimal.

There are few studies on ASHT considering the switch-
ing cost. Vaidhiyan developed a modified Chernoff test
(referred to as Sluggish policy) in [12] and introduced a
switching parameter η which determines the switching prob-
ability, their policy can be seen as an ε-greedy strategy. They
claimed that the Sluggish policy approachs the asymptotic
performance of Chernoff test as η → 0. But the policy will
result in a higher observation cost in the finite regime as
demonstrated in the simulations.

2. PROBLEM FORMULATION

Consider the problem of detecting a target among M
cells. Let Hm denote the hypothesis that the target is in
cell m. At each time, only one cell can be probed. When
cell m is probed at time n, an observation ym(n) is drawn
independently from a known distribution. If hypothesis Hm

is false, ym(n) follows distribution f(y); if hypothesis Hm

is true, ym(n) follows distribution g(y). Let Pm be the prob-
ability measure under hypothesis Hm and Em the operator
of expectation concerning the measure Pm.

Let Γ = (ϕ, τ, δ) denote an active inference policy,
where ϕ = {ϕ(n)}n≥1 is the sequence of selection rules,
τ is the stopping rule, and δ is the decision rule at the
time of stopping. Let Pe(Γ) =

∑M
m=1 πmαm(Γ) be the

probability of error under policy Γ, where πm is the prior
probability that Hm is true and αm(Γ) = Pm(δ ̸= m|Γ)
is the probability of declaring δ ̸= m when Hm is true.
Let E(τ |Γ) =

∑M
m=1 πmEm(τ |Γ) be the expected detection

delay under Γ. Let τs be the total number of switchings at
the time of stopping and E(τs|Γ) =

∑M
m=1 πmEm(τs|Γ) be

its expected value.
Let c denote the observation cost and s be the switching

cost. We consider the case where the switching cost is of
no greater order than the observation cost in the asymptotic
regime of c → 0, i.e., lim supc→0

s
c is bounded.

The Bayes risk of Γ under hypothesis Hm is given by

Rm(Γ) , αm(Γ) + cEm(τ |Γ) + sEm(τs|Γ). (1)

The Bayes risk is

R(Γ) =

M∑
m=1

πmRm(Γ) = Pe(Γ) + cE(τ |Γ) + sE(τs|Γ).

(2)

The objective is a policy that minimizes the Bayes risk.

3. THE DBS POLICY

In this section, we present the proposed DBS policy. The
test statistic is the log-likelihood ratio (LLR) of each cell m
denoted as

lm(n) , log
g(ym(n))

f(ym(n))
. (3)

The sum LLR of cell m at time n is given by

Sm(n) ,
n∑

t=1

lm(t)1m(t), (4)

where 1m(n) is the indicator function on whether cell m is
probed at time n. 1m(n) = 1 if cell m is probed at time n,
and 1m(n) = 0 otherwise.

The key feature of the proposed DBS policy is to parti-
tion the problem space into two regions by comparing the
order of D(f ||g)/(M−1) and D(g||f)+△, where D(·||·) is
the KL divergence between two distributions, and the offset
△ is given by

△ , s(M − 2)D(g||f)D(f ||g)
−c(M − 1) log c

. (5)

We thus have the following two cases given below,

Case I: D(g||f) +△ ≥ D(f ||g)
M−1 ,

Case II: D(g||f) +△ < D(f ||g)
M−1 ,

which are dealt with by DBS with drastically different
selection rules. We specify below the DBS policy in each
of the two cases separately.

In Case I, DBS probes the cell most likely to be the
target. The selection rule, stopping rule, and decision rule
are as follows.

ϕ(n) = m1(n), (6)

τ = min
{
n : Sm1(n)(n) > − log c

}
, (7)

δ = m1(τ), (8)

where m1(n) = argmaxm Sm(n) is the index of the cell
with the largest observation sum LLRs (cells with the same
sum LLRs can be ordered arbitrarily) among all the cells.

In Case II, DBS probes the cells that are likely to be
normal and eliminates them one by one. Specifically, let
B(n) denote the set of cells that can be reliably determined
as normal at time n, i.e.,

B(n) = {m : Sm(n) < log c} (9)

The selection, stopping, and decision rules of DBS in Case
II are given by

ϕ(n) = m̃−1(n), , (10)

τ = min {n : |B(n)| = M − 1} , (11)
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Fig. 1. Illustration of the DBS Policy (M = 5).

δ = M\B(τ), (12)

where m̃−1(n) = argminm/∈B(n) Sm(n) is the index of the
cell with the smallest observation sum LLRs among all the
cells that can not be reliably determined as normal at time
n, and M = {1, 2, ...,M} is the set of all cells.

We illustrate the DBS policy in Fig. 1, juxtaposing
these two cases. Consider hypothesis Hm is true. Under
Hm, Sm(n) is a random walk with positive expected in-
crement Em(lm(n)) = D(g||f) > 0, while Sj(n), for
j ̸= m is a random walk with negative expected increment
Em(lj(n)) = −D(f ||g) < 0.

In Case I, DBS probes the cell with the largest sum LLR.
The asymptotic detection time approaches − log c/D(g||f)
since the target can be probed with higher probability than
other cells at each time. The test is finalized once sufficient
information is gathered from the target, when the largest
sum LLR exceeds the threshold of − log c. The number of
switching is limited because the targeted cell will quickly
become the m̃1(n) cell, and the probability of switching will
become smaller and smaller with the increase of n.

In Case II, the observation process will be divided into
M − 1 stages. The DBS policy eliminates normal cells
one by one and get the target finally. At each stage, the
cell m̃−1(n) is probed. The asymptotic observation time
approaches −(M−1) log c/D(f ||g) since one of the M−1
normal cells is probed at each given time with high proba-
bility. The test is finalized once |B(n)| = M − 1.

There will be more switching times in Case II since it
has M − 2 more stages than Case I. Considering the impact
of switching on the strategy, we introduced an offset △. It is
worthy noting that the value of △ changes as c changes, and
it approaches zero when c → 0, which means △ does not
affect the asymptotic property of the policy. But the selected
case is affected by △ in the finite regime, we will analyze
it in the formulation.

4. ASYMPTOTIC ANALYSIS

The following theorem shows that the DBS policy is
asymptotically optimal regarding minimizing the Bayes risk
as c approaches zero.
Theorem 1. (Asymptotic Optimality of the DBS Policy):
Let R∗ and R(Γ) denote the Bayes risks in the DBS policy
and any other policy Γ respectively. Under the assumption
that s = O(c), we have 1

R∗ ∼ −c log c

I∗(M)
∼ inf

Γ
R(Γ) as c → 0, (13)

where

I∗(M) ,
{

D(g||f), if Case I,
D(f ||g)/(M − 1), if Case II.

(14)

Proof: For a detailed proof see [13]. We provide here a
sketch of the proof due to the space limit. Firstly, we show
that −c log c

I∗(M) is an asymptotic lower bound on the Bayes
risk. Secondly, we prove that the Bayes risk R∗ under
the DBS policy approaches the asymptotic lower bound as
c → 0. Compared to the proof of the DGF policy [10],
the challenges in our policy is to prove that the number
of switching is smaller relative to other policy and the
asymptotic expected detection time approaches − log c

I∗(M) as
c → 0.

There are only one stage in in Case I, but in Case II,
we can split the testing into multiple stage, each stage is
defined according to the time when a certain cell is declared
and placed into set B. By analyzing the three last passage
times at every stage k, denote as τk1 ,τk2 ,τk3 , we can get the
final conclusion.

5. NUMERICAL RESULTS

To validate the effectiveness of the proposed algorithm,
We present numerical examples to illustrate the performance
of the DBS policy compared with the Chernoff test [1], DGF
policy [10] and Sluggish policy [12].

Let R(Γ) be the Bayes risks under the policy Γ, and
RLB = −c log c

I∗(M) be the asymptotic lower bound on the Bayes
risk as c → 0. Define L(Γ) , (R(Γ) − RLB)/RLB as the
relative loss regarding Bayes risk under policy Γ compared
to the asymptotic lower bound, which serve as performance
measures of the tests in the finite regime.

We set a single target located in one of M cells with the
following parameters: When cell m is probed at time n, an
observation ym(n) is independently drawn from a Poisson
distribution f ∼ Pois(λf ) or g ∼ Pois(λg), depending on
whether the cell is the target or normal. We consider the case
where M = 5. The switching cost is set to s = 10c. For the
Sluggish policy [12], low switching probability will result in
the waste of observations, so we set switching probability
to p = 0.1. Firstly, we set λf = 10, λg = 1 and obtain
D(g||f) ≈ 6.7, D(f ||g)/(M − 1) ≈ 3.5, the DBS policy is

1. The notion f ∼ g as c → 0 refers to limc→0 f/g = 1.
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Fig. 2. The number of observations.
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Fig. 3. The proportion of switching times relative to the
number of observations.

in Case I for all values of c. All algorithms perform similarly
in this case because they all observe the m1(n) cell, so we
omit the diagrams of results here.

Then we set λf = 2, λg = 0.001 and obtain D(g||f) ≈
1.99, D(f ||g)/(M − 1) ≈ 3.3. The performance of all
algorithms is presented in Fig.2-Fig.4, which are the average
of 100 trials. It is showed that the Sluggish policy has the
highest number of observations and the DGF policy is the
lowest in Fig.2. In Fig.3, the proportion of switching times
relative to the number of observations of all algorithms
are displayed as a function of − log c. We can find that
the switching ratio of the DBS policy is less than DGF
policy and Chernoff test. The dashed rectangular area of
Fig.2 and Fig.3 shows that the observation times and the
switching ratio of the DBS policy change suddenly when
− log c = 150. The reason is that D(g||f) + △ ≥ D(f ||g)

M−1

and D(g||f) < D(f ||g)
M−1 when − log c is less than 150. Our

algorithm is in Case I, the DBS policy chooses to observe
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Fig. 4. Relative loss in terms of Bayes risk.

the cell with the largest sum LLRs. Although the policy will
result in more observations, which can reduce the number
of switching. However, the DBS policy changes to Case
II and chooses to observe the M − 1 normal cells when
− log c > 150, which will increase the number of switching
and reduce observations, so the switching ratio rise suddenly.
After this point, the switching ratio of DBS policy will
continuously decrease and approach 0 as c → 0.

The DGF policy does not consider the impact of switch-
ing, it always probes the cell with the second sum LLRs.
The DGF policy can reduce the number of observations
effectively, but the observed sum LLRs of cell m2(n) at
time n will become smaller with a greater probability after
current observation, and the probed cell will always change,
which cause a large switching cost. For the Sluggish policy,
the switching ratio will always be close to p = 0.1 and
it result in a higher number of observations. In Fig.4, the
Bayesian relative risk L(Γ) of all algorithms are displayed.
It can be seen that the DBS policy significantly outperforms
the other algorithms in the finite regime for all values of c.

6. CONCLUSION

The problem of anomaly detection with switching cost
is studied. We propose a deterministic policy and proved
that our policy is asymptotically optimal. Future directions
include extensions to cases with multiple targets and simul-
taneous probing of multiple cells.
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