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Active Anomaly Detection in
Heterogeneous Processes

Boshuang Huang , Kobi Cohen , and Qing Zhao , Fellow, IEEE

Abstract— An active inference problem of detecting anomalies
among heterogeneous processes is considered. At each time,
a subset of processes can be probed. The objective is to design a
sequential probing strategy that dynamically determines which
processes to observe at each time and when to terminate the
search so that the expected detection time is minimized under
a constraint on the probability of misclassifying any process.
This problem falls into the general setting of sequential design
of experiments pioneered by Chernoff in 1959, in which a
randomized strategy, referred to as the Chernoff test, was
proposed and shown to be asymptotically optimal as the error
probability approaches zero. For the problem considered in this
paper, a low-complexity deterministic test is shown to enjoy the
same asymptotic optimality while offering significantly better
performance in the finite regime and faster convergence to the
optimal rate function, especially when the number of processes
is large. Furthermore, the proposed test offers considerable
reduction in computation complexity.

Index Terms— Active hypothesis testing, sequential design
of experiments, anomaly detection, dynamic search, target
whereabout.

I. INTRODUCTION

WE CONSIDER the problem of detecting an anomalous
process among M heterogeneous processes. Borrowing

terminologies from target search, we refer to these processes
as cells and the anomalous process as the target which can
locate in any of the M cells. At each time, K (1 ≤ K < M)
cells can be probed simultaneously to search for the target.
Each search of cell i generates a noisy observation drawn i.i.d.
over time from two different distributions fi and gi , depending
on whether the target is absent or present. The objective
is to design a sequential search strategy that dynamically
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determines which cells to probe at each time and when to
terminate the search so that the expected detection time is
minimized under a constraint on the probability of declaring
a wrong location of the target.

The above problem is prototypical of searching for rare
events in a large number of data streams or a large system.
The rare events could be opportunities (e.g., financial trading
opportunities or transmission opportunities in dynamic spec-
trum access [1]), unusual activities in surveillance feedings,
frauds in financial transactions, attacks and intrusions in com-
munication and computer networks, anomalies in infrastruc-
tures (such as bridges, buildings, and the power grid) that may
indicate catastrophes. Depending on the application, a cell may
refer to an autonomous data stream with a continuous data
flow or a system component that only generates data when
probed.

A. Main Results

The anomaly detection problem considered in this paper
is a special case of active hypothesis testing originated from
Chernoff’s seminal work on sequential design of experiments
in 1959 [2]. Compared with the classic passive sequential
hypothesis testing pioneered by Wald [3], where the obser-
vation model under each hypothesis is predetermined, active
hypothesis testing has a control aspect that allows the decision
maker to choose the experiment to be conducted at each
time. Different experiments generate observations from dif-
ferent distributions under each hypothesis. Intuitively, as more
observations are gathered, the decision maker becomes more
certain about the true hypothesis, which in turn leads to better
choices of experiments.

In [2], Chernoff proposed a randomized strategy, referred
to as the Chernoff test, and established its asymptotic (as the
error probability diminishes) optimality.1 This randomized test
chooses, at each time, a probability distribution that governs
the selection of the experiment to be carried out at this time.
This distribution is obtained by solving a minimax problem so
that the next observation generated under the random action
can best differentiate the current maximum likelihood estimate
of the true hypothesis (using all past observations) from its
closest alternative, where the closeness is measured by the
Kullback-Liebler (KL) divergence. Due to the complexity in
solving this minimax problem at each time, the Chernoff test

1The asymptotic optimality of the Chernoff test was shown under the
assumption that the hypotheses are distinguishable under every experiment.
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can be expensive to compute and cumbersome to implement,
especially when the number of hypotheses or the number of
experiments is large.

It is not difficult to see that the problem at hand is a
special case of the general active hypothesis testing prob-
lem. Specifically, the available experiments are in the form
of different subsets of K cells to probe, and the number
of experiments is

(M
K

)
. Under each hypothesis that cell m

(m = 1, . . . , M) is the target, the distribution of the next obser-
vation (a vector of dimension K ) depends on which K cells are
chosen. The Chernoff test thus directly applies. Unfortunately,
with the large number of hypotheses and the large number of
experiments, it can be computationally prohibitive to obtain
the Chernoff test.

In this paper, we show that the anomaly detection prob-
lem considered here exhibits sufficient structures to admit a
low-complexity deterministic policy with strong performance.
In particular, we develop a deterministic test that explicitly
specifies which K cells to search at each given time and
show that this test enjoys the same asymptotic optimality as
the Chernoff test.2 Furthermore, extensive simulation exam-
ples have demonstrated significant performance gain over the
Chernoff test in the finite regime and faster convergence
to the optimal rate function, especially when M is large.
In contrast to the Chernoff test, the proposed test requires little
offline or online computation. The test can also be extended
to cases with multiple targets as discussed in Section V.
Its asymptotic optimality is preserved for K = 1.

Often, when a solution is simpler, establishing its optimality
becomes harder. This is indeed the case here. In Chernoff test,
since the distribution of the random action depends only on
the current maximum likelihood estimate of the underlying
hypothesis which becomes time-invariant after an initial phase
with a bounded duration, the stochastic behaviors of the test
statistics, namely, the log-likelihood ratios (LLRs), are inde-
pendent over time. In contrast, the deterministic actions under
the proposed policy result in strong time and spacial (across
processes) dependencies in the dynamic evolutions of the
LLRs. Establishing the asymptotic optimality becomes much
more involved.

B. Related Work

Chernoff’s pioneering work on sequential design of exper-
iments focuses on binary composite hypothesis testing [2].
Variations and extensions have been studied in [4]–[9],
where the problem was referred to as controlled sensing for
hypothesis testing in [5]–[7] and active hypothesis testing
in [8] and [9]. As variants of the Chernoff test, the tests
developed in [4]–[9] are all randomized tests.

There is an extensive literature on dynamic search and target
whereabout problems under various scenarios. We discuss
here existing studies within the sequential inference setting,
which is the most relevant to this work. Two models on
prior information about the targets have been considered in
the literature: the exclusive model which assumes a fixed

2The asymptotic optimality of the proposed test holds for all but at most
three singular values of K (see Theorem 3).

number of targets and the independent model which assumes
each cell may contain a target with a given prior probability
independent of other cells. These two models were juxtaposed
in [10] and [11] under different objective functions. The
studies in [12]–[16] focus on the exclusive model. In particular,
homogeneous Poisson point processes with unknown rates
was investigated and an asymptotically optimal randomized
test was developed in [12]. In [13], the problem of tracking
a target that moves as a Markov Chain in a finite discrete
environment is studied and a search strategy that provides the
most confident estimate is developed. The studies in [17]–[20]
focus on the independent model. The problem of searching
among Gaussian signals with rare mean and variance values
was studied and an adaptive group sampling strategy was
developed in [17]. In [18], the problem of quickly detecting
anomalous components under the objective of minimizing
system-wide cost incurred by all anomalous components was
studied. In [19], an important case of multichannel sequential
change detection is studied and an asymptotic framework in
which the number of sensors tends to infinity was proposed.

Asymptotically optimal search policies over homogeneous
processes were established in [21] under a non-parametric
setting with finite discrete distributions and in [22] under
a parametric composite hypothesis setting with continuous
distributions. The objective of minimizing operational cost
as opposed to detection delay led to a different problem
from the one considered in this paper. Other related work on
quickest search over multiple processes under various models
and formulations includes [10], [14], [20], [23] and references
therein. Sequential spectrum sensing within both the passive
and active hypothesis testing frameworks has also received
extensive attention in the application domain of cognitive radio
networks (see, for example, [24]–[27] and references therein).
The readers are also referred to [28] for a comprehensive
survey on the problem of detecting outlying sequences.

A prior study by Cohen and Zhao considered the problem
for homogeneous processes (i.e., fi ≡ f and gi ≡ g) [15].
This work builds upon this prior work and addresses the
problem in heterogeneous systems where the absence distrib-
ution fi and the presence distribution gi are different across
processes. Allowing heterogeneity significantly complicates
the design of the test and the analysis of asymptotic optimality.
Since each process has different observation distributions,
the rate at which the state of a cell can be inferred is different
across processes. To achieve asymptotic optimality, the deci-
sion maker must carefully balance the search time among the
observed processes, which makes both the algorithm design
and the performance analysis much more involved under the
heterogeneous case. Specifically, in terms of algorithm design,
when dealing with homogeneous processes, the search strategy
is often static in nature [10], [12], [15], [21]. In contrast,
the asymptotically optimal search strategy developed here for
heterogeneous processes dynamically changes based on the
current belief about the location of the target. In terms of per-
formance analysis, when dealing with homogeneous processes,
the resulting rate function (which is inversely proportional to
the search time) always obeys a certain averaging over the
KL divergences between normal and abnormal distributions of
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all processes. This observation follows from the fact that the
decision maker completes gathering the required information
from all the processes at approximately the same time due
to the homogeneity. In contrast, when searching over hetero-
geneous processes, the overall rate function does not always
obey a simple averaging across the KL divergences of all
processes. In Section IV, we show that the search time can
be analyzed by considering two separate scenarios, referred
to as the balanced and the unbalanced cases. The balanced
case holds when a judicious allocation of probing resources
can ensure the information gathering from all the processes be
completed at approximately the same time, in which case the
rate function is a weighted average among the heterogeneous
processes. The unbalanced case occurs when there is a process
with a sufficiently small KL divergence that it dominates the
overall rate function of the search. This case is unique to
the heterogeneous processes considered here and needs to be
addressed with new analytical techniques.

Besides the active inference approach to anomaly detection
considered in this paper, there is a growing body of literature
on various approaches to the general problem of anomaly
detection. We refer the readers to [29] and [30] for compre-
hensive surveys on this topic.

II. PROBLEM FORMULATION

We consider the problem of detecting a single target located
in one of M cells. If the target is in cell m, we say that
hypothesis Hm is true. The a priori probability that Hm is
true is denoted by πm , where

∑M
m=1 πm = 1. To avoid

trivial solutions, it is assumed that 0 < πm < 1 for
all m.

When cell m is observed at time n, an observation ym(n)
is drawn, independent of previous observations. If cell m
contains a target, ym(n) follows distribution gm(y). Otherwise,
ym(n) follows distribution fm(y). Let Pm be the probability
measure under hypothesis Hm and Em the operator of expec-
tation with respect to the measure Pm .

An active search strategy � consists of a stopping rule τ
governing when to terminate the search, a decision rule δ for
determining the location of the target at the time of stopping,
and a sequence of selection rules {φ(n)}n≢1 governing which
K cells to probed at each time n. Let y(n) be the set of all
cell selections and observations up to time n. A deterministic
selection rule φ(n) at time n is a mapping from y(n − 1)
to {1, 2, . . . , M}K . A randomized selection rule φ(n) is a
mapping from y(n − 1) to probability mass functions over
{1, 2, . . . , M}K .

We adopt a Bayesian approach as in Chernoff’s original
study [2] by assigning a cost of c for each observation and
a loss of 1 for a wrong declaration. Note that c represents
the ratio of the sampling cost to the cost of wrong detections.
The Bayes risk under strategy � when hypothesis Hm is true
is given by:

Rm(�) � αm(�) + cEm(τ |�), (1)

where αm(�) = Pm(δ �= m|�) is the probability of declaring
δ �= m under Hm and Em(τ |�) is the detection delay under

Hm . The average Bayes risk is given by:

R(�) =
M∑

m=1

πm Rm(�) = Pe(�) + cE(τ |�), (2)

where Pe(�) and E(τ |�) are the error probability and detec-
tion delay averaged under the given prior {πm}. The objective
is to find a strategy � that minimizes the Bayes risk R(�):

inf
�

R(�). (3)

A strategy �∗ is asymptotically optimal if

lim
c→0

R(�∗)
inf� R(�)

= 1, (4)

which is denoted as

R(�∗) ∼ inf
�

R(�). (5)

III. THE DETERMINISTIC DGFI POLICY

In this section we propose a deterministic policy, referred
to as the DGFi policy, indicating the key quantities
{D(gi || fi ), D( fi ||gi)}M

i=1 that govern the selection rule of the
proposed policy.

A. DGFi Under Single-Cell Probing

We first consider the case of K = 1. Let 1m(n) be the
indicator function, where 1m(n) = 1 if cell m is observed
at time n, and 1m(n) = 0 otherwise. This indicator function
clearly depends on the selection rule, which we omit in the
notation for simplicity. Let

�m(n) � log
gm(ym(n))

fm(ym(n))
, (6)

and

Sm(n) �
n∑

t=1

�m(t)1m(t) (7)

be the LLR and the observed sum LLRs of cell m at time n,
respectively. Let D(g|| f ) denote the KL divergence between
two distributions g and f which is given by3

D(g|| f ) �
∫ ∞

−∞
log

g(x)

f (x)
g(x) dx . (8)

Illustrated in Fig. 1 are typical sample paths of the sum
LLRs of M = 4 cells, where, without loss of gener-
ality, we assume that cell 1 is the target. Note that the
sum LLR of cell 1 is a random walk with a positive
expected increment D(g1|| f1), whereas the sum LLR of cell m
(m = 2, 3, 4) is a random walk with a negative expected incre-
ment −D( fm ||gm). Thus, when the gap between the largest
sum LLR and the second largest sum LLR is sufficiently
large, we can declare with a sufficient accuracy that the cell
with the largest sum LLR is the target. This is the intuition
behind the stopping rule and the decision rule under DGFi.

3We assume that gi is absolutely continuous with respect to fi (i =
1, . . . , M) and vise versa, which ensures that all KL divergences are
finite.
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Fig. 1. Typical sample paths of sum LLRs.

Specifically, we define m(i)(n) as the index of the cell with
the i th largest observed sum LLRs at time n. Let

	S(n) � Sm(1)(n)(n) − Sm(2)(n)(n) (9)

denote the difference between the largest and the second
largest observed sum LLRs at time n. The stopping rule and
the decision rule under the DGFi policy are given by:

τ = inf {n : 	S(n) ≢ − log c}, (10)

and

δ = m(1)(τ ). (11)

We now specify the selection rule of the DGFi policy. The
intuition behind the selection rule is to select a cell from
which the observation can increase 	S(n) at the fastest rate.
The selection rule is thus given by comparing the rate at
which Sm(1)(n)(n) increases with the rate at which Sm(2)(n)(n)
decreases. If Sm(1)(n)(n) is expected to increase faster than
Sm(2)(n)(n) decreases, cell m(1)(n) is chosen. Otherwise, cell
m(2)(n) is chosen. This leads to the following selection rule:

φ(n) =
{

m(1)(n), if D(gm(1)(n)|| fm(1)(n)) ≢ F̄m(1)(n)

m(2)(n), otherwise,
(12)

where

F̄m � 1
∑

j �=m
1

D( f j ||g j )

. (13)

The selection rule in (12) can be intuitively understood by
noticing that D(gm(1)(n)|| fm(1)(n)) is the asymptotic increasing
rate of Sm(1) (n) when cell m(1) is probed at each time. This
is due to the fact that m(1)(n) is the true target after an
initial phase (defined by the last passage time that m(1)(n)
is an empty cell) which can be shown to have a bounded
expected duration. Similarly, even though much more involved
to prove, F̄m(1)(n) is the asymptotic rate at which Sm(2)(n)(n)

decreases when cell m(2)(n) is probed at each time. To see
the expression of F̄m for any m as given in (13), consider
the following analogy. Consider M − 1 cars being driven by

a single driver from 0 to −∞. Car j ( j = 1, . . . , M , j �= m)
has a constant speed of D( f j ||g j ). At each time, the car
closest to the origin is chosen by the driver and driven by
one unit of time. We are interested in the average moving
speed of the position of the closest car to the origin. It is not
difficult to see that it is given by F̄m in (13). This analogy,
concerned with deterministic processes, only serves as an
intuitive explanation for the expression of F̄m . As detailed
in Sec. IV, proving F̄m(1)(n) to be the asymptotic decreasing
rate of Sm(2)(n)(n) requires analyzing the trajectories of the M
sum LLRs {Sm(n)}M

m=1, which are stochastic processes with
complex dependencies both in time and across processes.

B. DGFi Under Multiple Simultaneous Observations

Now we consider the case of K > 1. The stopping rule
and the decision rule remains the same as given in (10), (11),
whereas the selection rule requires a significant modification.
The main reason is that when K cells can be observed
simultaneously, the asymptotic increasing rate of Sm(1)(n)(n)
and the asymptotic decreasing rate of Sm(2)(n)(n) are much
more involved to analyze.

The selection rule φ(n), at each time n, chooses either the K
cells with the top K largest sum LLRs or those with the second
to the (K + 1)th largest sums LLRs as in (14), as shown at
the bottom of this page, where

Fm(κ) � min{κ F̄m, min
j �=m

D( f j ||g j )}. (15)

Note that (15) reduces to (13) at K = 1 (i.e., Fm(1) = F̄m ),
in which case the minimum is always attained at the first
term. Similar to the case with K = 1, the intuition behind the
selection rule is to select K cells from which the observations
increase 	S(n) at the fastest rate. Specifically, Fm(1)(n)(K ) is
the asymptotic decreasing rate of Sm(2)(n)(n) when K cells
with the second largest to the (K + 1)th largest sum LLRs
are probed each time. When the cell with the top K largest
sum LLRs are probed each time, the asymptotic increas-
ing rate of 	S(n) is D(gm(1)(n)|| fm(1)(n)) + Fm(1)(n)(K − 1),
where D(gm(1)(n)|| fm(1)(n)) is the asymptotic increasing rate of
Sm(1)(n)(n) and Fm(1)(n)(K − 1) is the asymptotic decreasing
rate of Sm(2)(n)(n) with K − 1 drivers. It is easy to see
that when K = 1, the policy reduces to the one described
in section III-A.

The behavior of Fm(κ) as a function of κ (extending κ to all
positive real values) is crucial in understanding and analyzing
the asymptotic optimality of DGFi for K > 1. It is easy to
see that the first term in the right hand of (15) is a linearly
increasing function of κ and the second term is a constant.
This readily leads to the piecewise linear property of Fm(κ)
as illustrated in Fig. 2. Let K̃m denote the switching point

φ(n) =
{(

m(1)(n), m(2)(n), . . . , m(K )(n)
)

if D(gm(1)(n)|| fm(1)(n)) + Fm(1)(n)(K − 1) ≢ Fm(1)(n)(K )
(
m(2)(n), m(3)(n), . . . , m(K+1)(n)

)
otherwise

(14)



2288 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 4, APRIL 2019

Fig. 2. The piecewise linear property of Fm (κ).

between the increasing and constant regions, we have

K̃m = min j �=m D( f j ||g j )

F̄m
=

∑

j �=m

min j �=m D( f j ||g j )

D( f j ||g j )
. (16)

The constant value of Fm(κ) for κ ≢ K̃m can be
explained with the same car analogy. This constant value
min j �=m D( f j ||g j ) is the speed of the slowest car among the
M − 1 cars (excluding the mth car). When the speed of the
slowest car is sufficiently small, this car always lags behind
even with a dedicated driver. This car becomes the bottleneck
that caps the value of Fm(κ) even when the number κ of
drivers increases (note that each car can at most have one
driver assigned). We refer to this case as the unbalanced case,
which presents the most challenge in proving the asymptotic
optimality of DGFi. The linearly increasing region of κ < K̃m

is referred to as the balanced case, where Fm(κ) is a weighted
average among the M − 1 cars.

IV. PERFORMANCE ANALYSIS

In this section, we establish the asymptotic optimality of the
DGFi policy. While the intuitive exposition of DGFi given in
Sec. III may make its asymptotic optimality seem expected,
constructing a proof is much more involved. In particular,
bounding the detection time of DGFi requires analyzing the
trajectories of the M stochastic processes {Sm(n)}M

m=1 which
exhibit complex dependencies both over time and across
processes as induced by the deterministic selection rule.

The asymptotic optimality of DGFi is established by com-
paring its Bayes risk (given in Theorem 1) with a lower
bound on achievable Bayes risk (given in Theorem 2). We first
analyze the rate function of DGFi. Define

Im(� DGFi) � max{D(gm || fm) + Fm(K − 1), Fm(K )}, (17)

which is the increasing rate of 	S(n) under hypothesis Hm

when DGFi is employed. For a given a priori distribution
{πm}M

m=1, define

I (� DGFi) � 1
∑M

m=1
πm

Im (� DGFi)

. (18)

As shown in Theorem 1 below, I (� DGFi) is the rate function
of the Bayes risk of the DGFi policy.

Theorem 1: The Bayes risk R(� DGFi) of the DGFi policy
is given by

R(� DGFi) ∼ −c log c

I (� DGFi)
. (19)

Proof: Here we provide a sketch of the proof. The
detailed proof can be found in Appendix A. First, we show
that when 	S(τ ) is large, the probability of error is small,
i.e. Pe = O(c). As a result, by the definition of the Bayes
risk, it suffices to show that the detection time is upper
bounded by − log c/I (� DGFi). By the definition of I (� DGFi)
in (18), it suffices to show that the detection time is upper
bounded by − log c/Im (� DGFi) under hypothesis Hm . Since
the decision maker might not complete to gather the required
information from all the cells at the same time, we carry out
the analysis by treating the balanced and the unbalanced cases
separately.

Next we estabilsh a lower bound on the Bayes risk
achievable by any policy. Define

I ∗
m � max

u∈[0,1] u D(gm || fm) + Fm(K − u). (20)

I ∗ � 1
∑M

m=1
πm
I ∗
m

. (21)

Using the same car analogy, we can interpret I ∗
m as the

maximum increasing rate of 	S(n) under hypothesis Hm with
an optimal allocation of u∗ ∈ [0, 1] driver to the target car.
Comparing with the rate of DGFi under Hm in (17), we see
that the deterministic nature of DGFi forces the allocation of
drivers to the target to be either 0 or 1. As shown in Theorem 2
below, I ∗ is an upper bound on the rate function for any policy.

Theorem 2: Let R(�) be the Bayes risk under an arbitrary
policy �. We have

inf
�

R(�) ∼ −c log c

I ∗ (22)

Proof: The outline of the proof is as follows. We first
prove that if the Bayes risk is sufficiently small under strategy
�, i.e., R(�) = O(−c log c), the difference between the
largest sum LLRs and the second largest sum LLRs must
be sufficiently large when the test terminates, i.e. 	S(τ ) =
�(− log c). Otherwise, it is not possible to achieve a risk
O(−c log c) due to a large error probability. We then show
that in order to make 	S(n) sufficiently large, the sample
size must be large enough, i.e., E[τ |�] ≢ − log c

I ∗ . Since
each sample costs c, the total risk will be lower bounded
by −c log c

I ∗ as desired. The detailed proof can be found in
Appendix B.

Establishing the asymptotic optimality of DGFi rests on
comparing its rate function I (� DGFi) with the optimal rate
function I ∗. The key thus lies in analyzing the optimizer u∗

m
in the right hand of (20) and showing whether and when it
assumes integer values of 0 and 1 as used in DGFi. This is
established in Lemma 1 that leads to the following necessary
and sufficient condition for the asymptotic optimality of DGFi.

Theorem 3: A necessary and sufficient condition for the
asymptotic optimality of the DGFi policy is that, for each
m = 1, . . . , M , at least one of the following three statements
is true
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(a) D(gm || fm) ≢ F̄m .
(b) K ≤ K̃m .
(c) K ≢ K̃m + 1.

Proof: We first establish the following lemma on the
maximizer u∗

m that attains I ∗
m given in (20). The proof of this

lemma is in Appendix C.
Lemma 1: Define

u∗
m � arg max

u∈[0,1] u D(gm || fm) + Fm(K − u). (23)

Then,

u∗
m =

{
1, if D(gm || fm) ≢ F̄m

min{max{K − K̃m, 0}, 1}, if D(gm || fm) < F̄m .

(24)

From (24) in Lemma 1, u∗
m takes the integer value of 0 or 1

if and only if at least one of the Statements (a), (b), (c) is true.
Theorem 3 thus follows.

Corollary 1: The DGFi policy is asymptotically optimal
except for at most three values of K ∈ {2, 3, . . . , M} for
every given problem instance specified by {M, {D(gi || fi ),
D( fi ||gi)}M

i=1}.
Proof: From Theorem 3, it is easy to see that for each m,

there is only one possible K = �K̃m�, which is the least integer
greater than or equal to K̃m , that makes Im (� DGFi) < I ∗

m .
Let j 
 = arg min j D( f j ||g j). Since there is only one possible
K = �K̃ j 
 � that makes I j 
(� DGFi) < I ∗

j 
 , it remains to show

that there are only two possible values of K = �K̃m� that
makes Im (� DGFi) < I ∗

m when m �= j 
. Let

V �
M∑

j=1

D( f j 
 ||g j 
)

D( f j ||g j )
.

Since 0 ≤ D( f j 
 ||g j 
 )
D( fm||gm) ≤ 1, we have

K̃m =
∑

j �=m

min j �=m D( f j ||g j )

D( f j ||g j )
= V − D( f j 
 ||g j 
)

D( fm ||gm)

∈ [V − 1, V ]
for all m �= j 
. This implies that �K̃m� (m �= j 
) can only
take two possible integers as desired.

The above corollary also indicates that for K = 1, the DGFi
policy is always asymptotically optimal. This can be easily
seen since Statement (b) always holds for K = 1. To find those
pathological values of K for which DGFi is not asymptotically
optimal, we can compute �K̃m� defined in (16) for each m =
1, 2, . . . , M . Since for each m, �K̃m� only requires O(M)
number of multiplication and summation, the computational
complexity of finding those pathological values is O(M2).

V. EXTENSION TO DETECTING MULTIPLE TARGETS

In this section we extend the DGFi policy to the case with
L > 1 targets. The number of hypotheses in this case is

(M
L

)
.

We consider first K = 1. The stopping rule and decision rule

of DGFi for L > 1 are given below, similar in principle to
those for L = 1 as described in Section III:

τ = inf {n : 	SL(n) ≢ − log c}, (25)

δ = {m(1)(τ ), m(2)(τ ), . . . , m(L)(τ )}, (26)

where

	SL(n) � Sm(L)(n)(n) − Sm(L+1)(n)(n) (27)

denotes the difference between the Lth and the (L+1)th largest
observed sum LLRs at time n.

For the selection rule, define, for a given set D ⊂
{1, 2, . . . , M} with |D| = L,

F̄D � 1
∑

j /∈D 1
D( f j ||g j )

. (28)

Similar to F̄m defined in (13), FD can be viewed as the
asymptotic increasing rate of 	SL(n) when the L targets are
given by set D and we probe the cell with the (L +1)th largest
sum LLR. We also define

ḠD � 1
∑

j∈D 1
D(g j || f j )

, (29)

which can be viewed as the asymptotic increasing rate for
	SL(n) when we probe the cell with the Lth largest sum LLR.

The selection rule follows the same design principle of
maximizing the asymptotic increasing rate of 	SL(n), and is
given by

φ(n) =
{

m(L)(n), if ḠD(n) ≢ F̄D(n)

m(L+1)(n), otherwise,
(30)

where

D(n) = {m(1)(n), m(2)(n), . . . , m(L)(n)}. (31)

It is not difficult to see that when L = 1, the policy reduces
to the one described in Section III.

Next, we establish the asymptotic optimality of the DGFi
policy for L > 1 and K = 1. Let D denote a subset of L cells
and πD the prior probability of hypothesis HD (i.e, the target
cells are given by D). Define

ID � max{F̄D, ḠD},
I ∗

L � 1
∑

D
πD
ID

, (32)

where I ∗
L is again the optimal rate function of the Bayes risk

as shown in the theorem below, and reduces to the one defined
in (20) when L = 1.

Theorem 4: Let RL(�DGFi) and RL(�) be the Bayes risks
under the DGFi policy and an arbitrary policy �, respectively.
For K = 1, we have,

RL(�DGFi) ∼ −c log c

I ∗
L

∼ inf
�

R(�). (33)

Proof: See Appendix D.
For K > 1, the stopping rule and the decision rule remain

the same. For the selection rule, define

FD(κ) � min{κ F̄D, min
j /∈D

D( f j ||g j )}. (34)
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Similar to Fm(κ) defined in (15), FD(κ) can be viewed as
the asymptotic increasing rate of 	SL(n) when the L targets
are given by set D and we probe those κ cells with the (L+1)th

to the (L + κ)th largest sum LLR. Similarly,

GD(κ) � min{κ ḠD, min
j∈D

D(g j || f j )}, (35)

which can be viewed as the asymptotic increasing rate of
	SL(n) when we probe the cells with the (L − κ + 1)th to
the Lth largest sum LLR.

Let

k∗
D � arg max

k=0,1,...,K
FD(K − k) + GD(k), (36)

which can be interpreted as the optimal number of target
cells that should be probed at each time for maximizing the
asymptotic increasing rate of 	SL(n). The selection rule of
DGFi is thus given by

φ(n) = {m(L−k∗
D(n)+1)(n), . . . , m(L−k∗

D(n)+K )(n)}, (37)

where

D(n) = {m(1)(n), m(2)(n), . . . , m(L)(n)}. (38)

The asymptotic optimality of DGFi for L > 1 and K > 1
remains open. Following the same insight in the single-
target case, however, we have strong belief of the following
conjecture.

Conjecture 1: The DGFi policy preserves its asymptotic
optimality if

u∗
D � arg max

u∈[0,K ] FD(K − u) + GD(u) (39)

is an integer for all D, where we allow the domain of FD(·)
and GD(·) to be real numbers.

VI. COMPARISON WITH THE CHERNOFF TEST

In this section, we compare the performance of the proposed
DGFi policy and the Chernoff test in terms of both computa-
tional complexity and sample complexity.

A. The Chernoff Test

The Chernoff test has a randomized selection rule.
Specifically, let q be a probability mass function over a set
of ω available experiments {ui }ωi=1 that the decision maker
can choose from. Note that in our case, ω = (M

K

)
. For each

hypothesis m = 1, 2, . . . , M , the optimal action distribution is
given by

q∗
m = arg max

q
min
j �=m

∑

ui

qui D(pui
m ||pui

j ), (40)

where pui
j is the observation distribution under hypothesis

j when action ui is taken, and qui is the i th element of
q (i.e., the probability of choosing experiment ui under q).
The rationale behind (40) is a zero-sum game formulation of
the problem, and the optimal mixed strategy q∗

m leads to a
random observation that best differentiates Hm from its closest
alternative.

Fig. 3. Performance comparison (K = 1, λ
(m)
g = 9 + m, λ

(m)
f = 0.0188,

c = 10−3).

The action at time n under the Chernoff test is drawn from
a distribution q∗

î(n)
, where î(n) is the ML estimate of the true

hypothesis at time n based on past actions and observations.
The stopping rule and the decision rule are the same as
in (10), (11).

The rate function of the Chernoff test �C under hypothesis
Hm is given by

Im(�C) = min
j �=m

∑

ui

q∗ui
m D(pui

m ||pui
j ), (41)

which is the increasing rate of 	S(n) under hypothesis Hm

when the Chernoff test is employed. The rate function of the
Chernoff test under a given prior {πm}M

m=1 can be similary
obtained as in (18).

We point out that in [2], while proving Im(� C) equals
the optimal rate I ∗

m , Chernoff did not provide an explicit
expression for I ∗

m or Im(� C). Both were given, as in (41),
inexplicitly in terms of the optimizer q∗

m of the maximin
problem in (40). Even for the problem studied here, a special
case of that considered by Chernoff,4 solving for q∗

m numeri-
cally is computationally expensive (see a detailed analysis on
computational complexity in the next subsection). The explicit

4Note that the asymptotic optimality of the Chernoff test requires the
assumption of positive KL diverence between every pair of hypotheses under
every experiment. This does not hold for the problem at hand. However, it can
be shown that the Chernoff test preserves its asymptotic optimality in this case.
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Fig. 4. Performance comparison (K = 2, λ
(m)
g = 9 + m, λ

(m)
f = 0.0188,

c = 10−3).

characterization of I ∗
m in (20), which equals to Im(� DGFi)

in (17) under the necessary and sufficient condition given in
Theorem 3, is a contribution of this work.

B. Comparison in Computational Complexity

While both the Chernoff test and the DGFi policy are
asymptotically optimal, i.e., I (� DGFi) = I (� C) = I ∗, they
differ drastically in computational complexity. Specifically,
the Chernoff test can be expensive to compute especially
when the number of hypotheses or the number of experiments
is large. Consider the case of a single target (L = 1).
Computing the selection rule of the Chernoff test given in (40)
requires solving M minimax problems, each corresponding to
a particular value of the ML estimate î(n) ∈ {1, . . . , M}. One
efficient way of solving minimax problems is through linear
programming, which takes polynomial time with respect to
the number of variables and constraints. For this problem,
the number of variables is

(M
K

)
, which can be exponential

in M in the worst case. Calculating the rate function given
in (41) requires the optimal selection distribution q∗

m for all m,
thus bears similar computational complexity. For multi-target
detection, the number of hypotheses is

(M
L

)
, further increasing

the complexity.
The only computation involved in the selection rule of

DGFi is (15), which requires M summations each with M −1
elements. As a result, the computational time is O(M2), which

Fig. 5. Performance comparison (L = 2, K = 1, λ
(m)
g = 9 + m, λ

(m)
f =

0.0188, c = 10−3).

is independent of K . Similarly, the computational complexity
for calculating the rate function I (� DGFi) is O(M2) as well.

C. Comparison in Sample Complexity

In this subsection, we compare the performance of DGFi
with that of the Chernoff test in the finite regime (i.e., when
the sample cost c is bounded away from 0).

Consider a uniform prior and exponentially distributed

observations: fm ∼ exp(λ
(m)
f ) and gm ∼ exp(λ

(m)
g ). The KL

divergences can be easily computed as follows.

D(gm || fm) = log(λ(m)
g ) − log(λ

(m)
f ) + λ

(m)
f

λ
(m)
g

− 1,

D( fm ||gm) = log(λ
(m)
f ) − log(λ(m)

g ) + λ
(m)
g

λ
(m)
f

− 1.

Shown in Fig. 3 is the performance comparison between
DGFi policy and Chernoff test for L = 1 and K = 1.
The figure clearly demonstrates the significant reduction in
detection delay and Bayes risk offered by the DGFi policy
as compared with the Chernoff test. The performance gain
increases drastically as M increases. The probability of errors
for Chernoff test and DGFi policy are about the same order
as shown. A similar comparison is observed in Fig. 4 with
L = 1, K = 2. The performance comparison for a case with
multiple targets is shown in Fig. 5 with L = 2, K = 1.
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Next, we provide an intuition argument for the superior
finite-time performance of DGFi. Consider a short horizon
scenario where the sampling cost c is sufficiently high such
that D( f ||g) > − log c. This implies that each empty cell can
be distinguished from the target with, on the average, a single
probing to achieve the required accuracy as determined by c.
We can cast this as the coupon collection problem, where each
empty cell is a coupon and the goal is to collect all M − 1
coupons. Consider a special case where K = 1 and all fi

and gi are identical, i.e., fi ≡ f and gi ≡ g. Assume that
D( f ||g) > (M − 1)D(g|| f ). In this case, the DGFi policy
chooses, at each time, the cell with the second largest sum LLR
whereas the Chernoff test randomly and uniformly chooses a
cell from all but the one with the largest sum LLR at each
time (this can be shown by solving (40)). Since Chernoff test
chooses empty cells with equal probability, based on results
in coupon collectors problem, the expected probing time will
be roughly M log M . The DGFi policy, on the other hand,
is deterministic and guaranteed to collect a new coupon at
each time. The expected probing time is thus M .

VII. CONCLUSION

The problem of detecting anomalies among a large number
of heterogeneous processes was considered. A low-complexity
deterministic test was developed and shown to be asymptot-
ically optimal. Its finite-time performance and computational
complexity were shown to be superior to the classic Chernoff
test for active hypothesis testing, especially when the problem
size is large.

APPENDIX A
PROOF OF THEOREM 1

For the ease of presentation, we first provide the proof for
the case of K = 1.

Throughout this section, we use the following notations. Let

N j (n) �
n∑

t=1

1 j (t) (42)

be the number of times that cell j has been observed up to
time n. Let

	Sm, j (n) � Sm(n) − Sj (n) (43)

be the difference between the observed sum of LLRs of cells
m and j . We also define

	Sm(n) � min
j �=m

	Sm, j (n) . (44)

As a result, we have:

	S(n) = Sm(1)(n)(n) − Sm(2)(n)(n) = max
m

	Sm(n) . (45)

Without loss of generality we prove the theorem under
hypothesis Hm . We define

�̃k(i) =
{

�k(i) − D(gk || fk), if k = m,

�k(i) + D( fk ||gk), if k �= m,
(46)

which is a zero-mean random variable under hypothesis Hm .
We first bound the error probability of DGFi as given below.

Lemma 2: If DGFi policy is used, then the error probability
is upper bounded by:

Pe ≤ (M − 1)c. (47)

Proof: Let αm, j = Pm(δ = j) for all j �= m. Thus,
αm = ∑

j �=m αm, j . By the definition of the stopping rule under
DGFi (see (10)), accepting H j is done when 	Sj (n) ≢ − log c
which implies 	Sj,m ≢ − log c. Hence, for all j �= m we
have:

αm, j = Pm (δ = j)

≤ Pm
(
	Sj,m(τ ) ≢ − log c

)

≤ cP j
(
	Sj,m(τ ) ≢ − log c

) ≤ c, (48)

where changing the measure in the second inequality follows
by the fact that 	Sj,m(τ ) ≢ − log c. As a result,

αm =
∑

j �=m

αm, j ≤ (M − 1)c

and (47) thus follows.
Next we show that the expected detection time of DGFi

is bounded by − log c/Im (� DGFi) under hypothesis Hm .
To show this, we partition the detection process into three
stages, all defined by certain last passage times. The first stage
is defined by the last passage time, denoted by τ1, that the
maximum likelihood estimate is not the true hypothesis Hm .
The second stage defined by a last passage time τ2, indicates
that the true hypothesis Hm can be distinguished from at least
one false hypothesis with sufficiently high accuracy. The third
stage defined by last passage time τ3, indicates that Hm can
be distinguished from all the other M − 1 hypotheses with
sufficient accuracy. The formal definitions of τ1, τ2, τ3 are give
below:

τ1 � min{t : ∀ j �= m,∀n ≢ t, Sm(n) ≢ Sj (n)}
τ2 � min{t : ∃ j �= m,∀n ≢ t, Sm(n) − Sj (n) ≢ − log c}
τ3 � min{t : ∀ j �= m,∀n ≢ t, Sm(n) − Sj (n) ≢ − log c}.

(49)

Here, we assume that the selection rule of DGFi policy is
implemented indefinitely, which means we probe the cells
according to the selection rule of DGFi as given in (14)
indefinitely, while the stopping rule is disregarded. Note that
τ1, τ2, τ3 are not stopping times since they depend on the
future.

Since τ ≤ τ3 based on the stopping rule of DGFi, it suffices
to show τ3 is bounded by − log c/Im (� DGFi) under hypothe-
sis Hm . Let n2 = τ2 − τ1 and n3 = τ3 − τ2. In Lemma 4
and Lemma 7, we show that τ1 and n3 are sufficiently
small with high probability. In Lemma 5 we show that the
probability that n2 is greater than n decays exponentially
with n when n is greater than − log c/Im (� DGFi). Since
n3 = τ1 + n2 + n3, the expected detection time of DGFi
is bounded by − log c/Im (� DGFi) under hypothesis Hm as
desired.

Lemma 3: There exist constants C > 0 and γ > 0 such
that for any fixed 0 < q < 1, under any arbitrary policy,



HUANG et al.: ACTIVE ANOMALY DETECTION IN HETEROGENEOUS PROCESSES 2293

the following statements hold:

Pm
(
Sj (n) ≢ Sm(n), N j (n) ≢ qn

) ≤ Ce−γ n, (50)

and

Pm
(
Sj (n) ≢ Sm(n), Nm (n) ≢ qn

) ≤ Ce−γ n, (51)

for m = 1, 2, . . . , M and j �= m.
Proof: We start with proving (50). Note that N j (n), Nm (n)

can take integer values N j (n) = �qn�, �qn� + 1, ...n, and
Nm (n) = 0, ..., n. Using the i.i.d. property of the observations
across time yield:

Pm
(
Sj (n) ≢ Sm(n), N j (n) ≢ qn

)

≤
n∑

r=�qn�

n∑

k=0

Pm

(
r∑

i=1

� j (i) +
k∑

i=1

−�m(i) ≢ 0

)

≤
n∑

r=�qn�

n∑

k=0

[
Em

(
es� j (1)

)]r [
Em

(
es(−�m(1))

)]k
(52)

where we have used the following generic Chernoff bound for
a random variable X :

P(X ≢ a) ≤ E[eλX ]
eλa

, (53)

where it is assume that the moment generating function E[eλX ]
exists locally in an interval around λ = 0. Since the moment
generating function is equal to one at s = 0 and Em(� j (1)) =
−D( f j ||g j ) < 0, Em(−�m(1)) = −D(gm || fm) < 0 are
strictly negative, differentiating the MGFs of � j (1), �m(1) with
respect to s yields strictly negative derivatives at s = 0. As a
result, there exist s > 0 and γ1 > 0 such that Em

(
es� j (1)

)
,

Em
(
es(−�m(1))

)
are strictly less than e−γ1 < 1. Hence, there

exist C > 0 and γ = γ1q > 0 such that

Pm
(
Sj (n) − Sm(n) ≢ 0, N j (n) ≢ qn

)

≤
n∑

r=�qn�
e−γ1r

n∑

k=0

e−γ1k ≤ Ce−γ n. (54)

Note that (51) can be proved with minor modifications.
Lemma 4: If the selection rule of DGFi is implemented

indefinitely, there exist C > 0 and γ > 0 such that

Pm (τ1 > n) ≤ Ce−γ n, (55)

for m = 1, 2, . . . , M .
Proof: We focus on proving for M > 2. Proving for

M = 2 is straightforward. Note that the event τ1 > n implies
that there exists a time instant t with t ≢ n such that
Sj (t) > Sm(t) for some j �= m. Hence,

Pm (τ1 > n) ≤ Pm

(
max
j �=m

sup
t≢n

(
Sj (t) − Sm(t)

) ≢ 0

)

≤
∑

j �=m

∞∑

t=n

Pm
(
Sj (t) ≢ Sm(t)

)
. (56)

Following (56), it suffices to show that there exist C > 0 and
γ > 0 such that Pm

(
Sj (n) ≢ Sm(n)

) ≤ Ce−γ n .

We next establish the required exponential decay. Let

km = max j �=m D( f j ||g j )

min j �=m D( f j ||g j )
,

jm = arg min
j �=m

D( f j ||g j ),

ρm = 1

8(km + 1)(M − 2)
. (57)

Note that 0 < ρm ≤ 1/16. Thus, we can write

Pm
(
Sj (n) ≢ Sm(n)

)

≤ Pm
(
Sj (n) ≢ Sm(n), N j (n) < ρmn, Nm (n) < ρmn

)

+ Pm
(
Sj (n) ≢ Sm(n), N j (n) ≢ ρmn

)

+ Pm
(
Sj (n) ≢ Sm(n), Nm (n) ≢ ρmn

)
. (58)

The second and the third terms on the RHS of (58) decay
exponentially with n by Lemma 3. Thus, it remains to show
that the first term decays exponentially with n as well. Note
that the event (N j (n) < ρmn, Nm (n) < ρmn) implies that at
least ñ = n − N j (n) − Nm (n) ≢ n (1 − 2ρm) times cells j, m
are not probed. We define Ñr (n) as the number of times in
which cell r �= j, m has been probed and cells j, m have not
been probed by time n. There exists a cell r �= j, m such that
Ñr (n) ≢ ñ

M−2 = n(1−2ρm)
M−2 . Hence, we can upper bound (58)

as follows:

Pm
(
Sj (n) ≢ Sm(n)

)

≤
∑

r �= j,m

Pm

(
Ñr (n) >

n(1 − 2ρm)

M − 2
,

N j (n) < ρmn, Nm (n) < ρmn

)
+ 2De−γ1n, (59)

where the second and third terms on the RHS of (58) are
upper bounded by De−γ1n (there exist such D > 0, γ1 > 0
by Lemma 3), and the first term on the RHS of (58) is upper
bounded by the first term (i.e., the summation term) on the
RHS of (59). Next, we show that each term in the summation
decays exponentially with n to get the desired result.

Let t̃ r
1 , t̃ r

2 , . . . , t̃ r
Ñr (n)

be the indices for the time instants in
which cell r �= j, m has been probed and cells j, m have not
been probed by time n. Let

ζ � 1 − 2ρm

2(M − 2)
. (60)

Note that the event Sj (t̃ r
ζn) ≤ Sr (t̃ r

ζn) or Sm(t̃ r
ζn) ≤ Sr (t̃ r

ζn)

must occur (otherwise, cell j or m will be probed). Hence,5

Pm

(
Ñr (n) >

n(1 − 2ρm)

M − 2
,

N j (n) < ρmn, Nm (n) < ρmn
)

=
n−ζn∑

q=0

ρmn∑

n
=0

Pm

⎛

⎝
n
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠

+
n−ζn∑

q=0

ρm n∑

n
=0

Pm

⎛

⎝
n
∑

i=1

�m(i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠. (61)

5For the ease of presentation, throughout the proof we assume that ζn, ρm n
are integers. This assumption does not affect the exponential decay but only
the exact value of C > 0 in (55) (since αn − 1 ≤ �αn� ≤ �αn� ≤ αn + 1
holds for all α ≢ 0 for all n = 0, 1, . . .).
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For upper bounding the first term on the RHS of (61) we write
the sum LLRs as follows:
ζn+q∑

i=1

�r (i) +
n
∑

i=1

−� j (i)

=
ζn+q∑

i=1

�̃r (i) +
n
∑

i=1

�̃ j (i)

−D( fr ||gr) (ζn + q) + D( fn
 ||gn
)n


≤
ζn+q∑

i=1

�̃r (i) +
n
∑

i=1

−�̃ j (i) − D( f jm ||g jm)
(
ζn + q − kmn
),

(62)

and by the definitions of ζ, km , ρm in (57) and (60), we have

ζn + q − kmn
 ≢ ζn + q − kmn
 − (km + 1)
(
ρmn − n
)

= n (ζ − (km + 1)ρm) + q + n
 ≢ 1

4(M − 2)
n + q + n


≢ 1

4(M − 2)
(n + q + n
),

for all n
 ≤ ρmn. Therefore,

ζn+q∑

i=1

�r (i) +
n
∑

i=1

−� j (i) ≢ 0 (63)

implies

ζn+q∑

i=1

�̃r (i) +
n
∑

i=1

−�̃ j (i) ≢ C1
(
n + q + n
), (64)

where

C1 = D( f jm ||g jm)

4(M − 2)
> 0. (65)

Then we have

Pm

⎛

⎝
n
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠

≤ Pm

⎛

⎝
ζn+q∑

i=1

�̃r (i) +
n
∑

i=1

−�̃ j (i) ≢ C1
(
n + q + n
)

⎞

⎠

≤
[
Em

(
es �̃r (1)

)]ζn+q [
Em

(
es(−�̃ j (1))

)]n


× e−sC1(n+q+n
)

=
[

Em

(
e

s
(
�̃r (1)−C1

))]ζn+q [
Em

(
e

s
(
−�̃ j (1)−C1

))]n


× e−sC1(n−ζn). (66)

for all s > 0.
Since Em(�̃r (1)−C1) = −C1 < 0 and Em(−�̃ j (1)−C1) =

−C1 < 0 are strictly negative, by applying a similar argument
as at the end of the proof of Lemma 3, there exist s > 0 and
γ2 > 0 such that Em

(
e(s �̃r (1)−C1)

)
, Em

(
es(−�̃ j (1)−C1)

)
and

e−sC1 are strictly less than e−γ2 < 1. Hence,

Pm

⎛

⎝
n
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠ ≤ e−γ2(n+q+n
), (67)

and
n−ζn∑

q=0

ρmn∑

n
=0

Pm

⎛

⎝
n
∑

i=1

� j (i) ≤
ζn+q∑

i=1

�r (i)

⎞

⎠

≤ e−γ2n
n−ζn∑

q=0

e−γ2q
ρmn∑

n
=0

e−γ2n
 ≤ C2e−γ2n, (68)

where C2 = (
1 − e−γ2

)−2.
A similar technique can be applied to upper bound the sec-

ond term on the RHS of (61).
Lemma 5: If the selection rule of DGFi is implemented

indefinitely, then for every fixed � > 0 there exist C > 0
and γ > 0 such that

Pm (n2 > n) ≤ Ce−γ n ∀n > −(1 + �) log c/Im(�DGFi),

(69)

for all m = 1, 2, . . . , M .
Proof: First, we consider the case where Im (� DGFi) >

D(gm || fm). Note that cell m is not observed for all n ≢ τ1 in
this case. Define N 


j (τ1+ t) = ∑τ1+t
i=τ1+1 1 j (i) and j∗(τ1 + t) =

arg max j N 

j (τ1 + t)D( f j ||g j ). Thus,

Pm(n2 > n)

≤ Pm

⎛

⎝sup
t≢n

τ1+t∑

i=τ1+1

� j∗(τ1+t)(i)1 j∗(τ1+t)(i) ≢ log c

⎞

⎠. (70)

Since t is the total number of observation from τ1 to τ1 + t ,
by the definition of j∗(t) we have

t =
∑

j �=m

N 

j (τ1 + t) =

∑

j �=m

N 

j (τ1 + t)D( f j ||g j )

D( f j ||g j )

≤
∑

j �=m

N 

j∗(τ1+t)(τ1 + t)D( f j∗(τ1+t)||g j∗(τ1+t))

D( f j ||g j )
. (71)

Let �1 = Im (� DGFi)�/(1 + �). Since Im (� DGFi) =∑
j �=m 1/D( f j ||g j ), we have

�1 = �

(1 + �)
∑

j �=m 1/D( f j ||g j )
. (72)

Then,
τ1+t∑

i=τ1+1

� j∗(τ1+t)(i)1 j∗(τ1+t)(i) − log c

=
τ1+t∑

i=τ1+1

�̃ j∗(τ1+t)(i)1 j∗(τ1+t)(i)

− N 

j∗(τ1+t)(τ1 + t)D( f j∗(τ1+t)||g j∗(τ1+t)) − log c

≤
τ1+t∑

i=τ1+1

�̃ j∗(τ1+t)(i)1 j∗(τ1+t)(i)

− t
∑

j �=m 1/D( f j ||g j )
− log c

≤
τ1+t∑

i=τ1+1

�̃ j∗(τ1+t)(i)1 j∗(τ1+t)(i) − t Im (� DGFi)

+ t Im(� DGFi)/(1 + �)

≤
τ1+t∑

i=τ1+1

�̃ j∗(τ1+t)(i)1 j∗(τ1+t)(i) − t�1 (73)
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for all t ≢ n > −(1 + �) log c/Im (� DGFi). By applying
the generic Chernoff bound given in (53), it can be shown
that there exists γ1 > 0 such that Pm(

∑τ1+t
τ1+1 −�̃ j∗(τ1+t)(i) ≢

t�1) < e−γ1 t for all t ≢ n > −(1 + �) log c/Im (� DGFi).
Hence, there exist C1 > 0 and γ1 > 0 such that Pm(n2 >
n) ≤ C1e−γ1n for all n > −(1 + �) log c/Im (� DGFi).
A similar argument applies for case where Im (� DGFi) ≤
D(gm || fm).

To show that n3 is sufficiently small, we define a random
variable �(t) as the dynamic range between sum LLRs of
empty cells:

�(t) � max
j �=m

Sj (t) − min
j �=m

Sj (t). (74)

Note that the dynamic range at time τ2 can be viewed as
a measure of the amount of information remains to gather
in order to distinguish Hm from any other false hypothesis.
Lemma 6 below shows that the dynamic range at time τ2 is
sufficiently small.

Lemma 6: If the selection rule of DGFi is implemented
indefinitely. Then, for every fixed �1 > 0, �2 > 0 there exist
C > 0 and γ > 0 such that

Pm (�(τ2) > �1n) ≤ Ce−γ n,

∀n > −(1 + �2) log c/Im(� DGFi) (75)

for all m = 1, 2, . . . , M .
Proof: Note that

Pm(�(τ2) > �1n) ≤ Pm(τ2 > n) + Pm (�(τ2) > �1n, τ2 ≤ n)

(76)

Since τ2 = τ1 + n2, applying Lemmas 4, 5 implies that
the first term on the RHS of (76) decreases exponentially
with n for all n > −(1 + �2) log c/Im (� DGFi) for every
fixed �2 > 0. It remains to show that the second term on
the RHS of (76) decreases exponentially with n. Let j̄ =
arg max j �=m Sj (τ2), j = arg min j �=m Sj (τ2). Let t0 be the
smallest integer such that Sj (t) ≤ S j̄ (t) for all t0 < t ≤ τ2.
As a result, �(τ2) > �1n implies

τ2∑

t=t0

� j̄ (t)1 j̄ (t) −
τ2∑

t=t0

� j (t)1 j (t) > �1n.

Note that the second term on the RHS of (76) can be
rewritten as:

Pm (�(τ2) > �1n, τ2 ≤ n)

= Pm (�(τ2) > �1n, τ2 ≤ n, t0 ≢ τ1)

+ Pm (�(τ2) > �1n, τ2 ≤ n, t0 < τ1) (77)

First, we upper bound the first term on the RHS of (77).
Note that for all τ1 ≤ t0 < t ≤ τ2, we have 1 j (t) = 0. Hence,

τ2∑

t=t0

� j̄ (t)1 j̄ (t) −
τ2∑

t=t0

� j (t)1 j (t) =
τ2∑

t=t0

� j̄ (t)1 j̄ (t)

=
τ2∑

t=t0

�̃ j̄ (t)1 j̄ (t) − D( f j̄ ||g j̄ ) ≤
τ2∑

t=t0

�̃ j̄ (t)1 j̄ (t) (78)

Then, applying the generic Chernoff bound given in (53)
completes the proof for this case.

Next, we upper bound the second term on the RHS of (77).
Let �3 � �1

4 max j D( fi ||gi )
> 0. Note that

Pm (�(τ2) > �1n, τ2 ≤ n, t0 < τ1)

≤ Pm (τ1 > �3 n)

+Pm (�(τ2) > �1n, τ2 ≤ n, t0 < τ1, τ1 ≤ �3n). (79)

The first term on the RHS of (79) decreases exponentially
with n by Lemma 4. Thus, it remains to show that the second
term on the RHS of (79) decreases exponentially with n.
Note that �(τ2) > �1n implies

∑τ1
t=t0 � j̄ 1 j̄ (t) + ∑τ2

t=τ1+1

� j̄ 1 j̄ (t) > �1n. Therefore, the second term on the RHS of (79)
can be rewritten as:

Pm (�(τ2) > �1n, τ2 ≤ n, t0 < τ1, τ1 ≤ �3 n)

≤ Pm

(
τ1∑

t=t0

� j̄ (t)1 j̄ (t) >
�1n

2
, τ2 ≤ n, t0 < τ1, τ1 ≤ �3 n

)

+ Pm

⎛

⎝
τ2∑

t=τ1+1

� j̄ (t)1 j̄ (t)>
�1n

2
, τ2 ≤ n, t0 < τ1, τ1 ≤�3n

⎞

⎠

(80)

The second term on the RHS of (80) decreases exponentially
with n using a similar argument as in (78). Next, it remains
to show that the first term on the RHS of (80) decreases
exponentially with n. Note that

τ1∑

t=t0

� j̄ (t)1 j̄ (t) −
τ1∑

t=t0

� j (t)1 j (t)

≤
τ1∑

t=t0

�̃ j̄ (t)1 j̄ (t) −
τ1∑

t=t0

�̃ j (t)1 j (t) + max
j

D( f j ||g j )τ1

≤
τ1∑

t=t0

[
�̃ j̄ (t)1 j̄ (t) − �̃ j (t)1 j (t)

]
+ �1

4
n (81)

for all τ1 ≤ �3 n.
As a result,

τ1∑

t=t0

� j̄ (t)1 j̄ (t) − � j (t)1 j (t) >
�1

2
n (82)

implies
τ1∑

t=t0

[
�̃ j̄ (t)1 j̄ (t) − �̃ j (t)1 j (t)

]
>

�1

4
n (83)

for all τ1 ≤ �3 n. Applying the generic Chernoff bound given
in (53), we arrive at the lemma.

Lemma 7: If the selection rule of DGFi is implemented
indefinitely, then for every fixed � > 0 there exist C > 0
and γ > 0 such that

Pm (n3 > n) ≤ Ce−γ n ∀n > −� log c/Im(� DGFi), (84)

for all m = 1, 2, . . . , M .
Proof: To prove the Lemma, we first define τ

j
3 � max{t :

∀n ≢ t, Sm(n)− Sj (n) ≢ − log c} and N j
3 as the total number

of observations that the decision maker collected from cell j
between τ2 and τ

j
3 . Since n3 ≤ ∑

j N j
3 and τ3 = max j τ

j
3 ,
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we only need to show that Pm(N j
3 > n) decays exponentially

with n. We can write Pm(N j
3 > n) as follows:

Pm(N j
3 > n) ≤ Pm

(
�(τ2) > n

min j D( f j ||g j)

2

)

+ Pm

(
N j

3 > n|�(τ2) ≤ n
min j D( f j ||g j )

2

)

(85)

Lemma 6 provides the desired decay for the first term on the
RHS. We next show the desired decay for the second term.
Let t1, t2, . . . denote the time indices when cell j is observed
between τ2 and τ

j
3 . We can write:

Pm

(
N j

3 > n|�(τ2) ≤ n
min j D( f j ||g j )

2

)

≤ Pm

(

inf
r>n

r∑

i=1

−� j (ti ) < n
min j D( f j ||g j )

2

)

≤ Pm

(
r∑

i=1

�̃ j (ti ) > r
min j D( f j ||g j )

2

)

. (86)

Using the i.i.d. property of �̃ j (ti ) yields:

Pm

(
n∑

i=1

�̃ j (ti ) > n
min j D( f j ||g j )

2

)

< C3e−γ n (87)

for some C3, γ3 which completes the proof.
The following Lemma provides an upper bound on the

detection time when DGFi policy is implemented.
Lemma 8: If DGFi policy is implemented, then the

expected detection time τ is upper bounded by:

Em(τ ) ≤ − (1 + o(1))
log(c)

Im(� DGFi)
, (88)

for m = 1, . . . , M .
Proof: Since the actual detection time under DGFi is

upper bounded by: τ ≤ τ3 = τ1 + n2 + n3, combining
Lemmas 4, 5 and 7 proves the statement.

Combining Lemma 2 and Lemma 8, Theorem 1 follows for
the case of K = 1.

The proof for K > 1 follows with similar structure except
for Lemma 6, which involves sum LLR analysis of the
heterogeneous empty cells with balanced case and unbalanced
case as described below. The detailed proof for K > 1 can be
found in [31].

For the balanced case, the key to bounding the detection
time in this case is to show that the dynamic range of the
M − 1 sum LLRs corresponding to the M − 1 empty cells
are sufficiently small such that the increasing rate of 	S(n)
is given by a certain averaging among the heterogeneous
processes.

For the unbalanced case, there is a process with a suf-
ficiently small information acquisition rate D( f j ||g j ) such
that it becomes the bottleneck of the detection process and
determines the asymptotic increasing rate of 	S(n). Directly
bounding the dynamic range of all sum LLR trajectories
is no longer tractable. Instead, the proof is built upon the
analysis of the trajectory of the sum LLR with the smallest

expected increment. In particular, we recognize that the key
in handling the imbalance in the information acquisition rates
among empty cells is to define a last passage time as the last
time at which the empty cell with the smallest D( f j ||g j ) is
not probed and then analyze, separately, the detection process
before and after this last passage time.

APPENDIX B
PROOF OF THEOREM 2

First we show that in order to achieve a small order of Bayes
Risk, 	Sm(τ ) defined in (44) need to be sufficient large.

Lemma 9: Assume that α j (�) = O(−c log c) for all
j = 1, . . . , M . Let 0 < � < 1. Then:

Pm (	Sm(τ ) < − (1 − �) log c | �) = O(−c� log c), (89)

for all m = 1, . . . , M .
Proof: Note that:

Pm (	Sm(τ ) < − (1 − �) log c|�)

= Pm (	Sm(τ ) < − (1 − �) log c , δ = m|�)

+ Pm (	Sm(τ ) < − (1 − �) log c , δ �= m|�)

≤ Pm (	Sm(τ ) < − (1 − �) log c , δ = m|�) + αm(�),

(90)

where αm(�) = O(−c log c) by assumption. In what follows,
we upper bound

Pm (	Sm(τ ) < − (1 − �) log c , δ = m|�).

Similar to [2, Lemma 4] we can show that for all j �= m
there exists G > 0 such that:

−Gc log c ≢ P j (δ �= j |�) ≢ P j (δ = m|�)

≢ P j
(
	Sm, j (τ ) ≤ −(1 − �) log c , δ = m|�)

≢ c1−�Pm
(
	Sm, j (τ ) < − (1 − �) log c , δ = m|�)

, (91)

where the last inequality holds by changing the measure as in
[2, Lemma 4]. Thus,

Pm
(
	Sm, j (τ ) < − (1 − �) log c , δ = m|�)

= O
(−c� log c

) ∀ j �= m. (92)

As a result,

Pm (	Sm(τ ) < − (1 − �) log c , δ = m|�)

≤
∑

j �=m

Pm
(
	Sm, j (τ ) < − (1 − �) log c , δ = m|�)

= O
(−c� log c

)
. (93)

Finally,

Pm (	Sm(τ ) < − (1 − �) log c|�) = O
(−c� log c

)
. (94)

Lemma 10: Assume that

D(gm || fm) ≢ 1
∑

j �=m
1

D( f j ||g j )

. (95)
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Then, the function:

d(t) � t

⎡

⎣D(gm || fm) +
n
t − 1

∑
j �=m

1
D( f j ||g j )

⎤

⎦ (96)

is monotonically increasing with t for 0 ≤ t ≤ n.
Proof: Differentiation d(t) with respect to t yields:

∂d(t)

∂ t
= D(gm || fm) − 1

∑
j �=m

1
D( f j ||g j )

≢ 0,

which completes the proof.
For the next lemma we define

j∗(t) � arg min
j �=m

N j (t)D( f j ||g j ), (97)

and

W∗
m(t) �

t∑

i=1

�̃m(i)1m(i) −
t∑

i=1

�̃ j∗(t)(i)1 j∗(t)(i), (98)

which is a sum of zero-mean random variable
Lemma 11: For every fixed � > 0 there exist C > 0 and

γ > 0 such that

Pm

(
max

1≤t≤n
W∗

m(t) ≢ n�|�
)

≤ Ce−γ n (99)

for all m = 1, . . . , M and for any policy �.
Proof: We upper bound (99) by summing over any

possible values that Nm (t), N j∗(t)(t) can take and using the
generic Chernoff bound given in (53):

Pm

(
max

1≤t≤n
W∗

m(t) ≢ n�|�
)

=
n∑

t=1

t∑

i=0

t∑

j=0

Pm

(
t∑

r=1

�̃m(r)1m(r)

+
t∑

r=1

−�̃ j∗(t)(r)1 j∗(t)(r) ≢ n�, Nm (t) = i, N j∗(t) = j |�
)

≤
n∑

t=1

t∑

i=0

t∑

j=0

[
Em

(
es(�̃m(1)−�/2)

)]i

×
[
Em

(
es(−�̃ j∗(t)(1)−�/2)

)] j × exp
{
−s

�

2
(2n − i − j)

}
,

(100)

for all s > 0.
Since Em(�̃m(1) − �/2) = −�/2 < 0 and Em(−�̃ j∗(t)(1) −

�/2) = −�/2 < 0 are strictly negative, using a similar
argument as at the end of the proof of Lemma 3, there
exist s > 0 and γ 
 > 0 such that Em

(
es(�̃m(1)−�/2)

)
,

Em

(
es(−�̃ j∗(t)(1)−�/2)

)
and e−s�/2 are strictly less than

e−γ 

< 1. Since 2n − i − j ≢ 0, there exist C > 0 and

γ > 0, such that summing over t, i, j yields (99).
Lemma 12: For any fixed � > 0,

Pm

(
max

1≤t≤n
	Sm(t) ≢ n

(
I ∗
m + �

) | �

)
→ 0 as n → ∞,

(101)

for all m = 1, . . . , M and for any policy �.

Proof: We next show exponential decay of (101) (which
is stronger than the polynomial decay shown under the
binary composite hypothesis testing case in [2, Lemma 5]).
Let

	S∗
m(t) � Sm(t) − Sj∗(t)(t).

Note that 	Sm(t) ≤ 	S∗
m(t) for all m and t . As a result,

Pm

(
max

1≤t≤n
	Sm(t) ≢ n

(
I ∗
m + �

) |�
)

≤ Pm

(
max

1≤t≤n
	S∗

m(t) ≢ n
(
I ∗
m + �

) |�
)

. (102)

We next prove the lemma for the case where I ∗
m = Fm(K )

and u∗
m = 0. Proving the lemma for the cases where u∗

m > 0
applies with minor modifications.

Note that:

	S∗
m(t) = W∗

m(t) + Nm (t)D(gm || fm)

+ N j∗(t)(t)D( f j∗(t)||g j∗(t))

≤ W∗
m(t) + Nm (t) · 1

∑
j �=m 1/D( f j ||g j )

+ N j∗(t)(t)D( f j∗(t)||g j∗(t)). (103)

Since that j∗(t) = arg min j �=m N j (t)D( f j ||g j) and K t −
Nm (t) is the total number of observations taken from M − 1
cells j �= m, we have:
∑

j �=m

N j∗(t)D( f j∗(t)||g j∗(t))

D( f j ||g j )
≤ K t − Nm (t) ≤ K n − Nm (t).

(104)

Hence,

	S∗
m(t) ≤ W∗

m(t) + K n
1

∑
j �=m 1/D( f j ||g j )

= W∗
m(t) + nI ∗

m . (105)

Therefore,

	S∗
m(t) ≢ n

(
I ∗
m + �

)

implies

W∗
m(t) ≢ n�.

By Lemma 11 we have:

Pm

(
max

1≤t≤n
	Sm(t) ≢ n

(
I ∗
m + �

)
)

≤ Pm

(
max

1≤t≤n
W∗

m(t) ≢ n�

)

≤ Ce−γ n → 0 as n → ∞. (106)

Finally, we show that the Bayes risk cannot be made smaller
than −c log(c)

I ∗
m

:
Lemma 13: Any policy � that satisfies R j (�) =

O(−c log c) for all j = 1, . . . , M must satisfy:

Rm(�) ≢ − (1 + o(1))
c log(c)

I ∗
m

. (107)

for all m = 1, . . . , M .
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Proof: For any � > 0 let nc = −(1− �)
log c

I ∗
m + �

. Note that

Pm (τ ≤ nc | �)

= Pm (τ ≤ nc , 	Sm(τ ) ≢ − (1 − �) log c | �)

+ Pm (τ ≤ nc , 	Sm(τ ) < − (1 − �) log c | �)

≤ Pm

(
max
t≤nc

	Sm(t) ≢ − (1 − �) log c | �

)

+ Pm (	Sm(τ ) < − (1 − �) log c | �). (108)

Both terms on the RHS approaches zero as c → 0 by
Lemmas 9, 12. Hence,

Em(τ |�) ≢
∞∑

n=nc+1

nPm (τ = n|�)

≢ ncPm (τ ≢ nc + 1|�) → nc as c → 0 (109)

Since � > 0 is arbitrarily small we have Em(τ |�) ≢
− (1 + o(1)) log(c)/I ∗

m . As a result, Rm(�) ≢ cEm(τ |�) ≢
− (1 + o(1)) c log(c)/I ∗

m .

APPENDIX C
PROOF OF LEMMA 1

Define

hm(u) = u D(gm || fm) + Fm(K − u). (110)

By taking the derivative of hm(u), we have

h

m(u) = D(gm || fm) − F 


m(K − u), (111)

where

F 

m(v) =

⎧
⎨

⎩

1∑
j �=m

1
D( f j ||g j )

, if v ≤ K̃m

0, if v > K̃m .
(112)

Since F 

m(v) is piecewise constant with a breakpoint K̃m ,

h

m(u) is piecewise constant with a breakpoint K − K̃m .

Therefore,

1) If D(gm || fm) ≢ F̄m , then h

m(u) > 0 and u∗

m = 1.
2) If K > K̃m +1, then h


m(u) = D( f j ||g j) > 0 is a positive
constant and u∗

m = 1
3) If D(gm || fm) < F̄m and K < K̃m then h


m(u) =
D(gm || fm) < F̄m < 0 is a negative constant and u∗

m = 0
4) If none of the above is true, then h


m(u) > 0 for u <
K − K̃m and h


m(u) > 0 for u < K − K̃m . Therefore,
u∗

m = K − K̃m .

APPENDIX D
PROOF OF THEOREM 4

We now focus on proving asymptotic optimality for L > 1,
and K = 1. For L > 1, we define τ1 as the smallest integer
such that Sm(n) > Sj (n) for all m ∈ D, j �= D and n ≢ τ1.
Note that when K = 1 and n ≢ τ1 the decision maker always
probe the consistent cell (target or not depending on the order
of Ḡ D and F̄D) for making the difference between the Lth

and (L + 1)th largest sum LLRs greater than the threshold
− log c. As a result, the decision maker can always balance
the detection time so that the difference between the largest

sum LLR and the sum LLRs of any other cell exceeds the
threshold − log c approximately at the same time as c → 0.
Thus, proving the asymptotic optimality of DGFi for L > 1
and K = 1 follows similar arguments as in the balanced case
in the proof of Theorem 1 given in Appendix B, and we focus
here only on the key modifications. Let

	SD(n) � min
m∈D, j /∈D

	Sm, j (n), (113)

where 	Sm, j (n) is defined in (43). Without loss of generality
we prove the theorem when set D contains all the targets.
We define

�̃k(i) =
{

�k(i) − D(gk || fk), if k ∈ D,

�k(i) + D( fk ||gk), if k /∈ D,
(114)

which is a zero-mean random variable.
We start by showing the upper bound on the Bayes risk

obtained by DGFi. Similar to Lemma 2, we can show that
the error probability under DGFi is O(c). Specifically, we can
show that the error probability is upper bounded by:

Pe ≤ (M − L)L · c. (115)

We can show this by letting αD = PD(δ �= D) and αD, j =
PD( j ∈ δ) for all j /∈ D, where the subscript D denotes
the measure when set D contains all the targets. Thus, αD ≤∑

j /∈D αD, j . By the stopping rule, accepting j ∈ δ implies
	Sj,m ≢ − log c for some m ∈ D. Hence, for all j /∈ D we
have:

αD, j = PD ( j ∈ D)

≤
∑

m∈D
PD

(
	Sj,m(τ ) ≢ − log c

)

≤
∑

m∈D
cPD∪ j\m

(
	Sj,m(τ ) ≢ − log c

) ≤ L · c, (116)

where we changed the measure in the second inequality. As a
result,

αD ≤
∑

j /∈D
αD, j ≤ (M − L)L · c,

which yields (115).
Here we consider the case where ID = ḠD , the case ID =

F̄D applies with minor modifications. For showing that τ1 is
sufficiently small we need to show first the following Lemmas:

Lemma 14: For all j /∈ D, ∀0 < q < 1, there exist C ,
γ > 0 such that

PD(N j (n) > qn) < Ce−γ n (117)

Proof: For each j , define t j (n) as the time when cell j
is observed for the nth time. By DGFi selection rule, if cell
j is observed at time t , then there exists m ∈ D such that
Sj (t) ≢ Sm(t). Hence,

PD(N j (n) > qn)

≤
n∑

t=1

PD(N j (t) > qn, ∃m ∈ D : Sj (t) > Sm(t))

× PD(t j (�qn�) = t). (118)
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It suffices to show that there exist constants C, γ such that

PD(N j (t) > qn, ∃m ∈ D : Sj (t) > Sm(t)) ≤ Ce−γ n (119)

for all t ≤ n.
First we have

PD(N j (t) > qn, ∃m ∈ D : Sj (t) > Sm(t))

≤
∑

m∈D
PD(N j (t) > qn, Sj (t) > Sm(t)). (120)

Fix m, then we have

PD(N j (t) > qn, Sj (t) > Sm(t))

≤
n∑

r=�qn�

n∑

k=0

PD

(
n∑

i=1

� j (i) +
k∑

k=1

−�m(i) ≢ 0

)

≤ Cme−γmn. (121)

The last inequality can be shown using the generic Chernoff
bound given in (53).

To show (119), we let C = ∑
m Cm , γ = minm γm , which

completes the proof.
Lemma 15: For all m ∈ D, and � > 0, there exist C, γ > 0

such that

PD
(

Nm (n) >
ḠD

D(gm || fm) − �
· n

)
≤ Ce−γ n (122)

Proof: For each m, define tm(n) as the time when cell m
is observed for the nth time. By DGFi selection rule, if cell
m is observed at time t , either there exists j /∈ D such that
Sj (n) > Sm(n) or Sm
 (n) > Sm(n) for all m
 ∈ D. Similar
to (118), it suffices to show that

PD
(

Nm (t) >
ḠD

D(gm || fm) − �
· n, ∃ j /∈ D : Sj (t) > Sm(t)

)

≤ Ce−γ n (123)

and

PD
(

Nm (t)>
ḠD

D(gm || fm) − �
· n,∀m
 ∈ D : Sm
 (t)> Sm (t)

)

≤ Ce−γ n (124)

for all t < n.
Since (123) can be shown similarly as in (119), it remains to

show (124). By the definition of ḠD , if Nm(t) > ḠD
D(gm|| fm)−� ·

n, there exists m
 ∈ D and �
 > 0 such that Nm
 (t) <
ḠD

D(g

m|| f 


m)+�
 · t . Hence,

PD
(

Nm (t) >
ḠD

D(gm || fm) − �
· n,∀m
 ∈ D :

Sm
(t) > Sm(t)

)

≤
∑

m
∈D

PD
(

Nm (t) >
ḠD

D(gm || fm) − �
· n, Sm
 (t) > Sm(t),

N 

m (t) <

ḠD
D(g


m || f 

m) + �
 · t

)
. (125)

Fix m
, and let s1 = ḠD
D(gm|| fm)−� , s2 = ḠD

D(gm
 || fm
 )+� . Then,
we have

PD
(

Nm(t) >
ḠD

D(gm || fm) − �
· n, Sm
 (t) > Sm(t),

N 

m(t) <

ḠD
D(gm
 || fm
) + �
 · t

)

≤
n∑

r=�s1n�

�s2t�∑

k=0

PD

(
r∑

i=1

−�m(i) +
k∑

i=1

�m
(i) ≢ 0

)

≤
n∑

r=�s1n�

�s2t�∑

k=0

PD

(
r∑

i=1

D(gm || fm) − � − �m(i)

+
k∑

i=1

�m
(i) − D(gm
 || fm
) − �
 ≢ 0

)

≤
n∑

r=�s1n�

�s2t�∑

k=0

[
ED

(
es (−�̃m(1)−�)

)]r [
ED

(
es(�m
(1)−�
)

)]k

≤ Cm
e−γm
n (126)

The last inequality can be shown using the generic Chernoff
bound given in (53). To show (125), we let C = ∑

m
 Cm
 , γ =
minm
 γm
 , which completes the proof.

Lemma 16: For all m ∈ D, ∀� > 0, there exist C, γ > 0
such that

PD
(

Nm (n) < (
ḠD

2D(gm || fm)
)n

)
≤ Ce−γ n . (127)

Proof: By choosing q j and �

m in Lemma 14 and

Lemma 15 such that
∑

j q j + ∑

m �


m = ¯̄GD
2D(gm|| fm) , we have

PD
(

Nm (n) < (
ḠD

2D(gm || fm)
)n

)

≤
∑

j /∈D
PD

(
N j (n) > q j n

)

+
∑

m
∈D
PD

(
N 


m (n) > (
ḠD

D(g

m || f 


m)
+ �


m)n

)
≤ Cm
e−γ n

(128)

as desired.
Next, similar to Lemma 4, we can show that the probability

that τ1 is greater than n decreases exponentially with n. This
result is used when evaluating the asymptotic expected search
time to show that it is not affected by τ1. We can show this
by noting that

PD (τ1 > n) ≤ PD
(

max
j /∈D,m∈D

sup
t≢n

(
Sj (t) − Sm(t)

) ≢ 0

)

≤
∑

j /∈D,m∈D

∞∑

t=n

PD
(
Sj (t) ≢ Sm(t)

)
. (129)



2300 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 65, NO. 4, APRIL 2019

Following (129), it suffices to show that PD
(
Sj (n) ≢ Sm(n)

)

decays exponentially with n. Note that

PD
(
Sj (n) ≢ Sm(n)

)

≤ PD
(

Sj (n) ≢ Sm(n), Nm (n) ≢ (
ḠD

2D(gm || fm)
)n

)

+ PD
(

Nm (n) < (
ḠD

2D(gm || fm)
)n

)
(130)

The first term decays exponentially with n by Lemma 3 (with
minor modifications). The second term decays exponentially
with n by Lemma 16.

Note that we obtained that the expectation of τ1 is bounded,
and we can use similar arguments as in the balanced case of
Theorem 1 in Appendix B to obtain the detection rate ID

for n ≢ τ1. Combining these results yields that the expected
detection time τ under the DGFi policy is upper bounded by:

ED(τ ) ≤ − (1 + o(1))
log(c)

ID
, (131)

for m = 1, . . . , M .
Finally, showing that the asymptotic Bayes risk is lower

bounded by −c log c/I ∗
L follows a similar outline as in

Appendix B. Specifically, similar to Lemma 9, if αD(�) =
O(−c log c) for all D, and we let 0 < � < 1, then:

PD (	Sm(τ ) < − (1 − �) log c | �) = O(−c� log c), (132)

for all D and m ∈ D.
Then, we define:

j∗(t) � arg min
j /∈D

N j (t)D( f j ||g j ), (133)

m∗(t) � arg min
m∈D

Nm∗(t)(t)D(gm || fm), (134)

and

W∗
D(t) �

t∑

i=1

�̃m∗(t)(i)1m∗(t)(i) −
t∑

i=1

�̃ j∗(t)(i)1 j∗(t)(i), (135)

where W∗
D(t) is a sum of zero-mean random variable. Using

these definitions, similar to Lemma 11, we can show that for
every fixed � > 0 there exist C > 0 and γ > 0 such that

PD
(

max
1≤t≤n

W∗
D(t) ≢ n�|�

)
≤ Ce−γ n (136)

for all D and for any policy �.
Next, similar to Lemma 12 we can show that for any fixed

� > 0,

PD
(

max
1≤t≤n

	SD(t) ≢ n (ID + �) | �

)
→ 0

as n → ∞, (137)

for all D and for any policy �.
Finally, similar to Lemma 13, we can show that any policy

� that satisfies RD(�) = O(−c log c) for all D must satisfy:

RD(�) ≢ − (1 + o(1))
c log(c)

ID
. (138)

for all D.
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