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ARTICLE INFO ABSTRACT

Keywords: The specificity and sensitivity of resting state functional MRI (rs-fMRI) measurements depend on preprocessing
Functional connectivity choices, such as the parcellation scheme used to define regions of interest (ROIs). In this study, we critically
fMRI

evaluate the effect of brain parcellations on machine learning models applied to rs-fMRI data. Our experiments
reveal an intriguing trend: On average, models with stochastic parcellations consistently perform as well as
models with widely used atlases at the same spatial scale. We thus propose an ensemble learning strategy to
combine the predictions from models trained on connectivity data extracted using different (e.g., stochastic)
parcellations. We further present an implementation of our ensemble learning strategy with a novel 3D Con-
volutional Neural Network (CNN) approach. The proposed CNN approach takes advantage of the full-resolution
3D spatial structure of rs-fMRI data and fits non-linear predictive models. Our ensemble CNN framework over-
comes the limitations of traditional machine learning models for connectomes that often rely on region-based
summary statistics and/or linear models. We showcase our approach on a classification (autism patients versus

Convolutional neural networks
Autism spectrum disorder
ABIDE

healthy controls) and a regression problem (prediction of subject's age), and report promising results.

1. Introduction

Functional connectivity, as often captured by correlations in resting
state functional MRI (rs-fMRI) data, has produced novel insights linking
differences in brain organization to individual or group-level character-
istics. Recently, machine learning models are being increasingly applied
to study and exploit individual variation in functional connectivity data
(Plitt et al., 2015; Mennes et al., 2011; Varoquaux et al., 2010). These
models often employ hand-engineered features, such as pairwise corre-
lations between regions of interest (ROIs) and network topological
measures of clustering, modularity, small-worldness, integration, or
segregation (Brown and Hamarneh, 2016; Kaiser, 2011; Alexander-Bloch
etal., 2013). The ROIs are usually computed based on a pre-defined atlas
or a parcellation scheme. The choice of the ROIs can have a significant
impact on downstream analyses (Smith et al., 2011; Yao et al., 2015; Dadi
et al., 2018).

Brain ROIs can be defined based on macro-anatomical features,
cytoarchitecture, functional activations, and/or connectivity patterns
(Fischl et al., 2002; Glasser et al., 2016; Eickhoff et al., 2015; Arslan et al.,

2018). A common approach is to derive the ROIs either based on input
from experts and/or using a data-driven strategy on a small number of
subjects. Expert-defined ROIs are challenging to standardize across
studies (Yushkevich et al., 2015) and often rely on arbitrary decisions.
Data-driven ROIs, on the other hand, can be biased by the selection of the
subjects, especially for regions that exhibit large variability across the
population. Popular data-driven techniques include clustering, dictio-
nary learning and Independent Component Analysis (ICA) (Varoquaux
etal. 2011; Thomas Yeo et al., 2011; Dadi et al., 2018). Such methods can
be sensitive to confounds such as motion, while initialization, optimi-
zation, and other algorithmic choices can also significantly influence the
results (Thirion et al., 2014). A parcellation scheme not only defines the
boundaries of ROIs, but also restricts the analysis to a certain spatial
scale. Abraham et al. (2017) showed that among various preprocessing
decisions, the choice of region definition has the greatest impact on
predictive accuracy with data-driven extraction based on dictionary
learning outperforming ICA/clustering and other reference atlases.
Given the arbitrary nature of a chosen parcellation scheme and its
impact on predictive models, we hypothesized that machine learning

* Corresponding author. School of Electrical and Computer Engineering, Cornell University, USA.

E-mail address: msabuncu@cornell.edu (M.R. Sabuncu).

https://doi.org/10.1016/j.neuroimage.2019.06.012

Received 20 March 2019; Received in revised form 30 May 2019; Accepted 4 June 2019

Available online 18 June 2019
1053-8119/© 2019 Published by Elsevier Inc.


mailto:msabuncu@cornell.edu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.neuroimage.2019.06.012&domain=pdf
www.sciencedirect.com/science/journal/10538119
http://www.elsevier.com/locate/neuroimage
https://doi.org/10.1016/j.neuroimage.2019.06.012
https://doi.org/10.1016/j.neuroimage.2019.06.012
https://doi.org/10.1016/j.neuroimage.2019.06.012

M. Khosla et al.

models can benefit markedly from an ensemble strategy that integrates
across different scales and ROI definitions. Fig. 1 shows a general sche-
matic of our proposed framework. In this work, we conducted a thorough
empirical evaluation of different choices for brain parcellations.

Another important factor in connectome-based machine learning
pertains to the choice of the classification algorithm. A large body of
related work in the literature has focused on simple linear predictive
models using vectorized connectivity data. A relatively recent trend is to
exploit neural networks for graph-structured data, such as Graph
Convolution Networks or BrainNet-CNN, to make individual-level pre-
dictions on connectomes. Ktena et al. (2018) applied spectral graph
convolutions in a distance-metric learning framework to train a k-nearest
neighbor classifier on connectivity data. In a similar vein, Kawahara et al.
(2016) proposed the BrainNetCNN architecture that extends convolu-
tional neural networks (CNNs) to handle graph-structured data. CNNs are
motivated via the translation-invariance property of image-based clas-
sification problems and can exploit voxel/pixel resolution data. On the
other hand, BrainNetCNN works directly with an adjacency matrix
derived from the connectome data, while disregarding spatial informa-
tion. The model parameter count would scale according to the number of
ROIs, making the utilization of voxel-level connectivity infeasible with
this approach. As we discuss below, we propose an alternative repre-
sentation of connectivity data, which allows us to leverage modern deep
learning architectures, like CNNs, to build a prediction model that ex-
ploits the full-resolution 3D spatial structure of rs-fMRI without having to
learn too many model parameters.

In this work, we consider two applications: discrimination of autism
patients and healthy controls; and regression of age. The first problem is a
particularly challenging one. Several previous studies have reported
altered functional connectivity patterns in Autism Spectrum Disorder
(ASD) patients (Cherkassky et al., 2006; Assaf et al., 2010; Monk et al.,
2009; Heinsfeld et al.). While studies using small samples have reported
classification accuracies over 75% (Yahata et al., 2016), application of
similar models on large heterogeneous datasets, such as ABIDE (Di
Martino et al., 2017), have shown more modest performance levels over a
wide range of connectome preprocessing schemes (accuracies that range
60-67%) (Abraham et al., 2017).

Our main contributions in this paper are:
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e An extensive evaluation of the influence of brain parcellations on
functional connectome-based machine learning models

e An ensemble learning strategy for combining predictions from mul-
tiple classifiers corresponding to different brain parcellations

e An easy-to-implement 3D CNN framework for connectome-based
classification

2. Materials and methods
2.1. Dataset

The Autism Brain Imaging Data Exchange (ABIDE) is a multi-site
consortium aggregating and openly sharing anatomical, functional MRI
and phenotypic datasets of individuals diagnosed with ASD, as well as
healthy controls (HC) (Di Martino et al., 2017). The first phase of ABIDE
(ABIDE-T) collected data from 1,112 individuals, comprising 539 in-
dividuals diagnosed with ASD and 573 typical controls across 17 sites.
The second phase (ABIDE-II) aggregated 1,114 additional datasets,
comprising 521 individuals with ASD and 593 healthy controls across 19
sites.

2.2. Preprocessing of fMRI data

The Preprocessed Connectomes Project (PCP) released preprocessed
versions of ABIDE-I using several pipelines (Craddock et al., 2013). We
used the data processed through the Configurable Pipeline for the
Analysis of Connectomes (CPAC). This pipeline performs motion
correction, global mean intensity normalization and standardization of
functional data to MNI space (3x3x3 mm resolution) before the extrac-
tion of ROI time series. Among the different strategies in the release, our
analysis used data de-noised by regression of nuisance signals including
motion parameters, CompCor WM + CSF components, and global signal,
followed by band-pass filtering (0.01-0.1 Hz). We note that we have
experimented with alternate preprocessing strategies that include/ex-
clude the global signal regression and CompCor steps. These results are
presented in the Supplementary Section 7.6.

We preprocessed the ABIDE-II dataset following the same sequence of
steps listed for ABIDE-I in CPAC (using the version v1.0.2a). Since
manual quality control (QC) was not yet available for ABIDE-II, we
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Fig. 1. A general illustration of the proposed approach.
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performed an automatic QC by selecting those subjects that retained at
least 100 frames or 4 min of fMRI scans after motion scrubbing (Power
et al.,, 2014). Motion scrubbing was performed based on Framewise
Displacement (FD), discarding one volume before and two volumes after
the frame with FD exceeding 0.5 mm (Muschelli et al., 2014).

2.3. Cohort selection

In our experiments, we used ABIDE-I subject data that passed manual
QC by all the functional raters. This yielded a final sample size of 774
ABIDE-I subjects, comprising 379 subjects with ASD and 395 typical
controls. As an independent test dataset, we employed ABIDE-II subjects
from sites that participated in ABIDE-I and used the same MRI sequence
parameters for data collection. After automatic QC, we ended up with a
final ABIDE-II sample size of 163 individuals with ASD and 230 healthy
controls. For age prediction, we only considered healthy controls.
Furthermore, subjects whose age were more than 3.5 standard deviations
away from the median were excluded from the task of age prediction.
Table 1 summarizes the dataset characteristics for the two prediction
tasks considered in this study.

2.4. Extracting ROI time series from atlases

In our experiments, we considered all atlases that were used for ROI
time series extraction in PCP. These include the following seven atlases:
Talaraich and Tournoux (TT, R = 97), Harvard-Oxford (HO, R=111),
Automated Anatomical Labelling (AAL, R =116), Eickhoff-Zilles (EZ,
R =116), Dosenbach 160 (DOS160, R=161), Craddock 200 (CC200,
R =200), and Craddock 400 (CC400, R = 392), where R is the number of
ROIs (Frazieret al., 2005; Goldstein et al., 2007; Makris et al., 2006;
Smyser et al., 2016; Desikan et al., 2006; Tzourio-Mazoyer et al., 2002;
Cameron et al., 2011; Lancaster et al., 2000; Eickhoff et al., 2005).

For our 3D CNN model, described below, the parcellated regions were
used as target ROIs to derive the input connectivity features at the voxel
level. For the non-CNN benchmark models, also described below, each
atlas was used to define a corresponding connectivity matrix which was
fed as input to each model after collapsing into a vector. We report results
for ensemble learning strategies as well, where we combined the pre-
dictions of models corresponding to individual atlases.

2.5. Creating stochastic parcellations

Stochastic parcellations were created by Poisson Disk Sampling using
the method described in (Schirmer, 2015). Given a number of ROIs, this
approach divides the gray matter voxels (as defined by a given mask) into
roughly equal-sized parcels while ensuring that the parcels do not cross
hemisphere boundaries. Stochasticity is introduced in the ROI center
locations, and all the remaining voxels are assigned to the closest region
center. These centers are kept a minimum distance apart based on the
desired number of regions in the parcellation. Further details about the
sampling approach are provided in Supplementary Section A.2. All par-
cellations were created in the MNI152 template at a 3 mm resolution,
same as the resolution of the preprocessed functional data. For creating
these parcellations, we relied on a whole brain gray matter mask
including sub-cortical structures. To create the mask, we took the union
of the gray matter tissue prior provided in the standard MNI152 template
and the cortical mantle mask used in (Thomas Yeo et al., 2011). Some

Table 1
Composition of cohorts.

Dataset Prediction Sample Size Median Age (Range) in yrs
ABIDE-I Age 387 13.8 (6.5-29.1)
ABIDE-I ASD/HC 379/395 13.9 (6.5-56.2)
ABIDE-II Age 213 10.6 (5.8-18.8)
ABIDE-II ASD/HC 163/230 11.0 (5.2-38.9)
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example stochastic parcellations are shown in Fig. 2 against atlases at
similar resolutions.

2.6. 3D convolutional neural network approach

Here, we present our novel strategy to adopt a 3D CNN architecture
for use with connectomic data.

Loosely reminiscent of the biological visual system, CNNs use
spatially localized filters to detect local image features. Unlike fully
connected layers where every unit is connected to all other units of the
previous layer, convolutional layers employ a structured arrangement
where each unit is connected to only a small subset of spatially connected
units in the input image channels. Further, the weights of these con-
nections are shared between the units of the convolutional layer so that
the same feature can be detected regardless of its spatial location.
Mathematically, a convolutional layer of the form Y=0,,(X) operates on
an M-dimensional input X(v)=(X;(v), ....,Xu(v)) by applying a set of
filters {W = {wp,},m=1, ...,M; n=1, ... ,N}. Here, v is used to index the
pixel or voxel (in case of 3D convolution). After applying an elementwise
non-linearity ¢ (such as a logistic function), this produces an N-dimen-
sional output Y(v)=(Y1(V), ....,Yn(Vv)). Each element Y,(v), known as a
feature map, is thus given as,

M

(D (X)),

m=1

Y,(v) @

where * denotes the standard spatial convolution operation. The con-
volutional layers in CNNs are often interspersed with pooling layers that
reduce the size of feature maps and offer translation invariance. Max-
pooling is the most popular pooling operation. It down-samples each
input feature map (commonly referred to as a channel) separately by
selecting the maximum feature response in pre-fixed local neighbor-
hoods. A max-pooling Y; = P(X;) operation on channel i is thus defined
as, Y;(v) = Max(X;(v): v in neighborhood of v). In 3D, for example, the
neighborhood can be a 3 x 3 x 3 cube around each voxel. The convolu-
tional and max-pooling layers form the backbone of a CNN. A CNN ar-
chitecture is constructed by combining multiple layers that successively
learn more complex features from the input images. For example, with L
layers the output can be mathematically expressed as (Oyq),...P
0,(1))(X). Since we are considering an image classification problem, we
add fully connected layers to the flattened output at the end of a CNN.

Research in visual recognition has shown that fully connected feed-
forward architectures dont scale well to full images. Instead, neural
network architectures with local connectivity, such as CNNs, are much
more suitable when dealing with high-dimensional images. The shared
weights of the CNN architecture facilitate learning with fewer parame-
ters. 3D Convolutional layers thus transform an input 4D (3D multi-
channel) volume to an output 4D volume. Each layer learns a set of
spatial filters that activate in response to distinct visual patterns. Repli-
cating or convolving each filter across the volume allows the corre-
sponding pattern to be detected irrespective of its spatial location.
Finally, the outputs from all filters are stacked along the 4th dimension to
create a 4D feature map. Multiple convolutional layers coupled with
pooling operations create global representations from local patterns.
Stacking fully connected layers at the end after convolutional and down-
sampling operations dramatically reduces the model parameter count for
classification.

In our proposed approach, the input to the CNN is formed by
concatenating voxel-level maps of “connectivity fingerprints”, which are
represented as a multi-channel 3D volume. Each channel is a connectivity
feature, such as the Pearson correlation between each voxel's time series
and the average signal within a target ROL In our implementation, we
use both atlas-based and stochastic brain parcellation schemes to define
target ROIs. The total number of input channels thus represents the
number of ROIs used for creating voxel-level fingerprints. For each
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Atlas

Fig. 2. ROI masks for example SPs and atlas at each of the four spatial scales considered in this study.

parcellation scheme (atlas-based or stochastic), we trained a separate
model.

In our experiments, we employed a simple CNN architecture, illus-
trated in Fig. 3. Our architecture has several convolutional layers,
interspersed with max-pooling based down-sampling layers, followed by
a couple of densely connected layers. The models were trained with a
mini-batch size of 64, until convergence of validation loss. For classifi-
cation, we used binary cross-entropy, whereas for regression we adopted
mean squared difference as the loss function. The neural network weights
were optimized via stochastic gradient descent (SGD) for classification
and Adam for regression. The learning rate and momentum for SGD were
set to 0.001 and 0.9 respectively. Learning rate of Adam was set to
0.0005. For age regression, we employ a stochastic weight averaging
strategy where we average the neural network weights over last 20
epochs. The same architecture and settings were used for all atlases and
stochastic parcellations. We note that each atlas is defined on a unique
gray matter mask. To ensure that all prediction models (benchmark and

128 32 32

(110-400)

Input
Connectivity
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(1)

Convolutional Layers
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proposed) relied on information from the same voxels, the atlas-specific
gray matter mask was applied to the voxel-level connectivity fingerprint
data before feeding into the proposed convolutional architecture. For
stochastic parcellations, the custom gray matter mask as described above
was used for masking the fingerprints. The code and stochastic parcel-
lations have been made available at: https://github.com/mk2299/
Ensemble3DCNN\_connectomes.

2.7. Benchmark methods
In our experiments, we implemented following benchmark methods.

2.7.1. Ridge regression

A linear regression model was trained with squared loss and a times
the squared norm of the weight vector (See Appendix). For classification,
the ground truth labels were encoded as + 1 for the two output cate-
gories. We tested 10 linearly spaced values for the hyper-parameter a in

32

B 2x2x2 Avg-Pooling
B 3x3x3 Conv+ELU (stride=1)

D 2x2x2 Max-Pooling
= Flatten + Dense + ELU
=» Dense + Sigmoid

Output
Label

Fully-Connected
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Fig. 3. Proposed CNN approach. All operations are in 3D volume. 2D correlation maps are shown for illustration only. For the age prediction task, an additional Max-
Pooling and Batch-Normalization (loffe and Szegedy, 2015) operation followed the first and second convolutional layer.
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the range [0.1,10] and report for the value with the highest cross-
validation accuracy.

2.7.2. Support vector machine

We implemented a standard SVM as a benchmark (See Appendix). We
found that a radial basis function (RBF) kernel performed better than a
linear model. Thus we report results for the RBF-kernel SVM. The two
hyper-parameters (RBF kernel width y and misclassification cost weight
C) were fine-tuned by maximizing cross-validation accuracy via a grid
search. For regression, we implemented the standard SVR scheme with
an e-insensitive loss function, optimizing for the e-tube and penalty
parameter of the error term via grid search.

2.7.3. Fully connected architecture

The fully-connected neural network (FCN) architecture takes as input
functional connectivity estimates between pairs of ROIs, which is vec-
torized and processed by a feed-forward network. We implemented
following architecture, which performed best on ABIDE-I cross-valida-
tion: 4 fully connected hidden layers, with 800, 500, 100 and 20 numbers
of features and each linear layer followed by an elementwise Exponential
Linear Unit (ELU) activation. Dropout regularization parameter was set
to 0.2 and applied to each layer during training. For classification, the
output node was a sigmoid, and cross-entropy loss was used. For age
prediction, the sigmoidal output was replaced with a linear activation
and mean squared difference was used as the loss function. The models
were trained with a mini-batch size of 64, until convergence of validation
loss.

SGD was used as the optimizer with learning rate and momentum set
to 0.01 and 0.9 respectively for classification. For age prediction, a
smaller learning rate of 0.001 was used.

2.7.4. BrainNet convolutional neural networks

BrainNet CNN, originally proposed in (Kawahara et al., 2016), utilizes
specialized kernels to handle connectomic data. Their work described
novel edge-to-edge, edge-to-node and node-to-graph convolutional
layers that can potentially capture topological relationships between
network edges. For BrainNet CNN, we implemented the following ar-
chitecture that worked best on ABIDE-I cross-validation: 1 edge-to-node
layer with 256 filters, followed by a node-to-graph layer with 128 output
nodes and finally a dense layer with single output. A leaky ReLU
non-linearity with alpha equal to 0.33 was applied to the output of each
layer except the last layer. The activation of the last layer was set to linear
and sigmoid for the regression and classification tasks, respectively.
Dropout regularization with rate 0.2 was used for the edge-to-node layer.
Similar to (Kawahara et al., 2016), Euclidean loss was minimized for age
regression, whereas cross-entropy loss was used to optimize the classi-
fication models. The models were trained for 1000 iterations using SGD
with momentum equal to 0.9. The learning rate was set to 0.0005 for age
prediction and 0.008 for ASD/Healthy classification. The training curves
were monitored for atlases to ensure convergence.

2.8. Ensemble learning

In our experiments, we explored two ensemble learning strategies.
The first one is what we call multi-atlas ensemble (or MA-Ensemble). MA-
Ensemble averages the predictions of the models of a specific method
(e.g., BrainNet CNN) computed using each one of the seven atlases. For
classification, the final prediction is computed as the majority vote of the
individual binary class predictions. For regression, the ensemble pre-
diction is simply the mean. The second ensemble strategy (SP-Ensemble)
averages across the models of a specific method computed using sto-
chastic parcellations. In our experiments, unless stated otherwise, we
used 30 stochastic parcellations at each of the following four spatial
scales: 110, 160, 200 and 400 ROIs. These scales were chosen in accor-
dance with existing atlases. Thus the SP-Ensemble's prediction was
computed based on fusing 120 (30 x 4 scales) models. We also imple-
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mented single-scale SP-Ensemble models, which averaged over the 30
parcellations at the same spatial scale.

2.9. Visualizing the CNN model

In order to understand the connectivity features captured by the CNN
model, we employed the saliency map approach of (Simonyan et al.,
2013). This visualization technique computes the gradient of the output
prediction with respect to the input image voxel values, i.e., the 3D
volume, using a single backward pass through the trained neural
network. We then computed voxel-level saliency as the maximum abso-
lute gradient value across all input channels corresponding to different
target ROIs. More formally, consider an input image I, representing the
connectivity fingerprints of V voxels with R ROI signals. The saliency
weights w éR"*R are computed by taking the absolute value of the
gradient of neural network output O with respect to the input image, i.e.,

w = %) In order to obtain the saliency at the voxel level S & RY, we take

the maximum across all the ROIs, i.e., S; = max;<j<gw;. Finally, to
visualize an ensemble model, we averaged the individual saliency maps
that made up the ensemble.

3. Results
3.1. Experiments

In our experiments, we considered two tasks: i) binary classification
of autism vs healthy, and ii) age prediction. For each task, we imple-
mented two evaluation schemes. First, we conducted 10-fold cross-
validation on the ABIDE-I dataset, so that we could present results that
were comparable to previously reported classification results such as
(Plitt et al., 2015; Abraham et al., 2017). Second, we trained each model
on the entire ABIDE-I dataset and computed test performance on the
independent ABIDE-II set. We report classification accuracy and the
receiver operating curves (ROC), along with corresponding area under
the curves (AUC) for each of these scenarios under various combinations
of parcellation schemes and prediction algorithms. For age prediction,
we report the root mean squared error (RMSE).

3.2. Evaluation of prediction performance

Table 2 shows the independent test performance for different models
on the classification problem. The proposed 3D CNN approach performs
at least as good as, and often better than, the benchmark methods,
including the fully-connected deep neural network (FCN) and Brain-
NetCNN. In particular, the 3D CNN approach performs favorably against
other algorithms for all but two parcellation schemes, including the en-
sembles. Similarly, the SP-Ensemble achieves the best ABIDE-I cross-

Table 2
Classification accuracy for ASD vs. Control: Independent test on ABIDE-II of
baseline models and proposed CNN approach. For each row, best results are
bolded. For each column, best results are italicized. Green indicates better
performance, whereas orange/red highlights worse performance.

ASD/HC Classification Accuracy (ABIDE-II)

Parcellation Ridge SVM FCN BrainNet  3D-CNN
HO 63.3 68.7 67.7 66.1 67.7
CC200 67.4 70.7 71.5 70.2

EZ 63.3 66.1 63.8 64.4 66.4
TT 66.1 67.4 65.9 67.4 70.0
CC400 69.4 68.2 69.9 71.5 70.5
AAL 63.3 65.9 65.4 64.6 69.5
DOS160 66.7 63.6 66.1 64.6 67.0
MA-Ensemble 69.7 70.0 69.9 70.7 71.7
SP-Ensemble 71.7 71.2 71.2 70.5 72.3
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validation for most algorithms, including the 3D CNN. The ABIDE-I cross-
validation results, reported in Table S2, are in general compatible with
the independent test results, where the 3D CNN and SP-Ensemble tech-
niques mostly outperform the competition. Fig. 4 shows the Receiver
Operating Characteristic (ROC) curves for SP-Ensemble models for the
different algorithms on the independent ABIDE-II test dataset. We
observe that the 3D-CNN SP-Ensemble achieves an AUC of ~ 77% and an
accuracy of ~ 72% on independent ABIDE-II data, slightly better than the
state-of-the-art cross-validation on ABIDE-I for ASD/HC classification
(Heinsfeld et al.), with FCN and Brain-Net CNN ensembles yielding a
similar performance. ROC Curves for individual atlases are shown in
Figure S4.

Table 3 lists independent test results for the age prediction task on
ABIDE-II, and Table S3 reports the 10-fold cross-validation error on
ABIDE-I. The 3D CNN approach consistently shows superior perfor-
mance, yielding the best results for all parcellation schemes. Similar to
the classification scenario, SP-Ensemble or MA-Ensemble also yield the
best cross-validation and independent test performance values for the
majority of the algorithms, including 3D CNN. Overall, the best accuracy
is achieved by SP-Ensemble 3D CNN, which yields a root mean squared
error of 3.28 years on ABIDE-I cross-validation and 2.15 years on the
independent ABIDE-II dataset. We also estimated mean absolute error
(MAE) of all models on ABIDE-II and observed a similar trend, as reported
in Table S6.

3.3. Comparison of stochastic parcellations and atlases

Here, our objective is to conduct a detailed investigation of how the
choice of ROIs affects prediction performance for different machine
learning (ML) algorithms. For each ML algorithm and each parcellation
we have a model trained on the ABIDE-I data, which we then used on the
independent ABIDE-II data to quantify prediction accuracy. Fig. 5 shows
the distribution of accuracy values (estimated with a kernel density
model) obtained using stochastic parcellations, while also illustrating the
results for each of the atlases and the scale-specific SP-ensembles. The
scale-specific SP-Ensemble strategy, as the name implies, averaged the
models corresponding to the 30 stochastic parcellations in each scale. We
observe that the atlas-based models performed no better than typical
stochastic parcellation models, independent of scale and algorithm. This
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Table 3
Root mean squared error (RMSE in years) for age prediction: Independent test
on ABIDE-II for benchmark models and proposed CNN approach. For each row,
best results are bolded. For each column, best results are italicized.

Age RMSE (ABIDE-II)

Parcellation Ridge SVM FCN BrainNet  3D-CNN
HO 3.05 2.86 2.79 2.82 2.48
CC200 2.74 2.71 247 2.62 2.31
EZ 2.98 2.72 2.71 2.96 2.23
T 3.10 2.83 2.87 3.02 2.24
CC400 2.76 2.83 2.41 2.55 2.27
AAL 2.84 2.74 2.69 2.75 2.33
DOS160 3.48 3.34 3.22 3.32 2.31
MA-Ensemble 2.72 2.81 2.47 2.55
SP-Ensemble 2.68 2.69 2.38 2.55

result offers an intriguing possibility: perhaps we do not need anatomi-
cally or functionally derived brain parcellations to train machine learning
models since stochastic parcellations perform equally well or no worse in
practice.

Our proposed SP-Ensemble CNN strategy yielded accuracy results
that were about as good as the best scale-specific SP-Ensemble model.
Finally, the ensemble models were almost always better than the atlas-
based models and they compared favorably against the individual sto-
chastic parcellation models. The same observations can be made for
ABIDE-I cross-validation (see Supplementary Figure S1).

In above analysis, one potential confound was the different gray
matter masks of atlases and stochastic parcellations (SPs). In order to
account for this confound, we conducted following analysis. For each of
the atlases, we generated 100 SPs using the same gray matter mask as the
atlas. We excluded DOS160 because it does not rely on a well-defined
gray matter mask and places discontiguous 4.5 mm spherical regions
over fixed coordinates in the brain (sampling only 5% of brain voxels).
We then trained on each of these SPs using the same hyper-parameters
that were found to be optimal for the corresponding atlas. Here, we
show the results for ridge regression (the model that was fastest to train),
but we obtained similar results for all other algorithms as well. As can be
seen from Fig. 6, for most atlases and corresponding gray matter masks,
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’Single Atlas'. Results are computed by training models on entire ABIDE-1 cohort and testing on the independent ABIDE-2 cohort.

the model trained on the atlas ROIs performed no better than an average
SP model. Furthermore, and importantly, the SP-Ensemble (computed by
averaging across SPs on the atlas-specific mask) yielded better perfor-
mance than the atlas models for all atlases.

3.4. Visualization

An important goal of machine-learning tools in neuroimaging is to
generate novel insights linking imaging biomarkers with disease or
phenotypic traits. Visualization techniques for CNNs can help reveal
important features used by the model for discriminating between output
classes. Fig. 7 shows the saliency maps computed for the SP-Ensemble
CNN ASD classification and age prediction models. As can be seen
from these maps, the precuneus, often considered a core node of the
default mode network (Utevsky et al., 2014), seems to play a significant
role for both prediction problems. However, there are also salient regions
that are unique to each problem. For example, the anterior cingulate/-
ventromedial prefrontal cotex, a region that has been linked to autism
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(Watanabe et al., 2012), was distinctly highlighted for the ASD classifi-
cation problem. The left parietal cortex was also emphasized for ASD
prediction, which is consistent with the laterilized activation observed in
this region in Autism patients (Koshino et al., 2005). On the other hand,
for age prediction, the left dorsolateral prefrontal cortex (dIPFC) is a
uniquely salient region. The dIPFC is associated with executive functions,
such as working memory and abstract reasoning. For working memory,
dIPFC's function seems to be age-associated and more lateralized in
younger adults (Reuter-Lorenz et al., 2000).

4. Discussion

In this study, we presented a detailed empirical analysis of how the
choice of ROIs can impact the performance of machine learning models
trained on functional connectomes. We considered several machine
learning algorithms, together with a range of spatial scales and parcel-
lation schemes, including the popular atlas-based techniques and a sto-
chastic approach. Our analysis suggests that using a single atlas for
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(b) Age prediction

Fig. 7. Mean saliency maps of trained 3D-CNN models for SP-Ensemble.

summarizing the connectome data is often sub-optimal for training ma-
chine learning models, and significantly more accurate predictions can
be achieved with an ensemble approach that averages across models
trained with different parcellation schemes. Furthermore, we demon-
strated that averaging across stochastic parcellations can achieve very
high accuracy values, often surpassing atlas-based models. Our findings
resonate with several other studies that compare stochastic parcellations
and atlases, although in different contexts. Craddock et al. (2012)
compared spatially constrained functional parcellations obtained from
spectral clustering with anatomically constrained parcellations produced
from random clustering. Random parcellations performed as well as
functional parcellations and better than anatomical atlases on metrics of
cluster homogeneity and representation accuracy. Based on this, the
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study reflected that sufficiently small ROIs perform well for functional
network analysis regardless of their spatial position. Fornito et al. (2010)
generated stochastic parcellations by randomly sub-dividing the AAL
atlas and showed that functional organizational properties are indepen-
dent of the parcellation template at the same network resolution,
although significant variability is observed across scales. Studies on
diffusion-MRI based anatomical networks have similarly shown that to-
pological attributes and network organizational parameters are consis-
tent across different parcellation schemes, including random
parcellations (Zalesky et al., 2010; Schirmer, 2015).

Another main contribution of this study is a novel approach to employ
a 3D CNN architecture on functional connectivity data. Convolutional
neural networks achieve state-of-the-art performance on many image-
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based prediction tasks, as they take advantage of the full spatial resolu-
tion of the data and the translation invariance property of the problem.
Our proposed approach treats voxel-level connectivity fingerprints as
input channels to a conventional 3D CNN framework. Spatial convolu-
tions can capture local structural or topographic patterns in the data,
such as connectivity gradients. Successively stacking convolutional
layers in our architecture would hierarchically yield higher-order fea-
tures that can capture information relevant for classification. Studies
have shown that individual-level network topography serves as a
fingerprint of human behavior (Kong et al., 2018). Our multi-channel
input image comprising connectivity fingerprints, coupled with CNNs,
provides a natural framework to capture individual-level differences in
topography as they relate to behavior or disease. This strategy contrasts
with current practice where the input to machine learning models are
pairwise ROI functional correlations. This makes the model more sus-
ceptible to uncertainty caused by parcellation choice. This can be seen in
our experiments where there is relatively larger variance in prediction
performance across atlases for the fully-connected neural network. Thus,
CNNs with connectivity map inputs can offer a more robust alternative to
classification approaches that only rely on ROI-level connectivity infor-
mation, such as the BrainNet-CNN. Our results demonstrate that when
tailored for connectomes, CNNs offer a promising opportunity to probe
brain networks in disease.

Machine learning practitioners have to make a number of pre-
processing choices in extracting connectomic features to analyze. While
there is no one-size-fits-all solution across different tasks, in the context
of machine learning models of functional connectivity, we present some
interesting empirical observations below.

4.1. Ensemble learning

The motivation behind using multiple stochastic parcellations for
prediction is grounded in the concept of ensemble learning. The core idea
is to integrate out a latent variable (i.e., parcels or ROI definitions) from
the learning problem (Da Mota et al., 2013). This approach also makes
the predictions more robust to the precise parcellation scheme. As shown
above, the performance of atlas-based models can vary significantly
(~5-10% for parcellations at the same scale). In such a scenario,
ensemble learning over multiple stochastic parcellations can be a robust
strategy that yields reliable predictions.

4.2. Network granularity

We explored the impact of network granularity on prediction per-
formance of machine learning algorithms for connectomes. Our analysis
suggests that better prediction performance can be expected with par-
cellations at higher granularity up to ~ 400 ROIs. To further investigate
this trend on ROI-level models, we trained the fully-connected network
(FCN), that is generally the best performing baseline algorithm, on both
the prediction tasks for the 1024 node parcellation proposed in (Zalesky
et al., 2010). As can be seen from Table 4, an atlas with 1024 regions is
comparable to the CC200 atlas for ASD/HC classification in ABIDE-IL.
However, the performance actually degrades significantly (in compari-
son to CC200 or CC400) for the age prediction task.

Our evaluations contradict with a previously reported result that a
coarser network scale (~ 100-150 ROIs) is more suitable for autism
classification (Abraham et al., 2017). In their paper, these conclusions

Table 4
Classification/regression performance of FCN with a high-resolution parcellation
(~ 1024 ROIs) (Zalesky et al., 2010).

FCN Results using Zalesky's 1024 node parcellation

ABIDE-I (10-fold) ABIDE-II
DX (% accuracy) 72.0 72.0
Age (RMSE) 3.54 2.89
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were drawn by comparing the performances achieved with a few atlases.
However, inferring trends from a small number of atlases can be
misleading, since factors like the boundary definitions of structures
(cortical/subcortical) or the particular gray matter mask used, will effect
results. Stochastic parcellations can control for these confounds and de-
pict unbiased trends across network scales.

4.3. Number of gray matter voxels

Our empirical study suggests that there is no direct correlation be-
tween the number of voxels in the gray matter mask and a model's pre-
diction performance. However, we do observe that the choice of gray
matter mask can impact results. For example, the DOS160 atlas with as
few as ~ 3,039 voxels shows performance no worse than other atlases at
the same resolution (HO, EZ, TT and AAL) with ~ 20x more voxels.

4.4. Visualization

Saliency maps provide a valuable visualization strategy to probe deep
neural network models. We visualized the saliency maps from 3D CNN
models trained on ROIs extracted using both atlases and stochastic par-
cellations. As shown in Fig. 7 and Supplementary Figures S2 and S3, these
maps are remarkably consistent.

These maps reveal that the precuneus, which is a hub of the default
mode network and associated with ASD and age, plays an important role
for both prediction problems. There were also uniquely highlighted re-
gions, such as the anterior cingulate/ventromedial prefrontal cortex for
ASD classification and the left dorsolateral prefrontal cortex (dIPFC) for
age prediction. Several studies have suggested the potential of DMN
connectivity as a neurophenotype of autism. Chen at el. (Chen et al.,
2015) trained a random forest classifier that distinguished ASD subjects
from healthy controls with high accuracy, and showed that default mode
and somatosensory regions contribute significantly to diagnostic accu-
racy. Similarly, Abraham et al. (2017) revealed discriminative connec-
tions in the DMN for ASD/HC classification within a larger
heterogeneous cohort of the ABIDE dataset. Furthermore, it has been
shown that the connectivity of posterior cingulate cortex (PCC) and ab-
errations in the medial prefrontal cortex node of the DMN can predict
social deficits in children with ASD (Menon, 2013). Our results corrob-
orate the findings of these studies, and suggest a crucial involvement of
DMN in autism.

4.5. Influence of motion

Several studies have shown differences in head motion parameters
during fMRI between healthy controls and diseased populations, or be-
tween subjects from different age groups (Satterthwaite et al., 2012; Fair
et al., 2013). This, in turn, can manifest as artifacts in the derived
resting-state connectivity (Van Dijk et al., 2012). Although our inde-
pendent test data was motion scrubbed, we performed additional ana-
lyses to rule out the confounding effect of motion in classifier decisions.
We selected a cohort of 151 ASD subjects with motion-matched healthy
controls from our independent dataset and analyzed the correlation of 4
motion parameters with classifier predictions. These include the
root-mean-square framewise displacement, mean relative displacement,
maximum absolute displacement and the number of micro-movements
greater than 0.5mm. These summary statistics were chosen in accor-
dance with previous reports of motion artifacts in rs-fMRI (Power et al.,
2014). As shown in Fig. 8, no significant correlations were observed
between motion variables and the predictions of SP-Ensemble (model
average over all atlases). In this motion-matched cohort, classification
accuracy of 71.8% was obtained using 3D-CNN.

For our regression task, there was no significant correlation between a
subject's age and any of these motion parameters in our cohorts.
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Correlation of Motion Parameters with Disease Probability: 3D-CNN SP-Ensemble
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4.6. Recommendations

Based on our experiments, we make two claims in this study: (a) 3D-
CNN performs favorably compared to alternative baseline algorithms,
and (b) Ensemble models that average across parcellation schemes
consistently perform better than individual atlas-based models and are
thus a safer choice for supervised machine learning on connectomes. This
is because individual atlases can show significant variability in classifi-
cation/regression performance and finding the optimal atlas for a pre-
diction task among the wide range of available atlases might not be
feasible. Fig. 9 shows the probability density estimates for the difference
in performance between (a) 3D-CNN versus baseline algorithms as
evaluated with the SP-Ensemble strategy, and (b) SP-Ensemble versus
single atlas implemented with the 3D-CNN model. These estimates are
presented for both our prediction tasks. For this experiment, we estimate
the evaluation metrics (AUC-ROC for ASD/HC classification and RMSE
for age regression) on 10,000 bootstrapped samples from ABIDE-IIL. These
results demonstrate that the SP-Ensemble approach consistently achieves
an accuracy as good as the best performing single-atlas model. Further,
the 3D-CNN model consistently outperforms the baseline algorithms for
the age prediction task, with more prominent improvements for indi-
vidual atlas models. This can be seen from Tables 2 and 3. We note that
when using the ensemble strategy, the differences between models are
marginal and might be irrelevant in some practical applications. For
instance, the SP-Ensemble performance on ASD/HC classification task is
comparable among 3D-CNN, FCN or BrainNet-CNN, with slight im-
provements over linear models. Thus, if time and/or computational re-
sources impose constraints, it might be more suitable to prefer simpler
models like FCN or SVM over 3D-CNN for example, especially with the
ensemble approach.

4.7. Limitations and future work

Throughout our analysis, Pearson's correlation was chosen to measure
functional connectivity strength between different brain regions. Several
other correlation metrics, including tangent-based and partial correlation
have been shown to yield superior classification performance in prior
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studies (Dadi et al., 2018; Abraham et al., 2017). While we do not expect
this to affect the general conclusions and findings of our study, the choice
of the correlation metric still remains an arbitrary decision in any ma-
chine learning pipeline for connectomes.

Due to the heavy computational burden required for training multiple
deep learning models, we only considered one particular scheme for
creating stochastic parcellations, i.e., Poisson Disk Sampling. Alternative
strategies for creating random parcellations have also been proposed, for
instance, through stochastic sub-division of anatomically derived ROIs
into smaller parcels (Hagmann et al., 2008). It is also possible to
randomize several other more popular schemes for parcellating the brain,
such as, using Ward's clustering on functional data from sub-samples of
the population (Da Mota et al., 2013) or creating Geometric parcellations
with different initializations (Arslan et al., 2018).

While the proposed CNN approach achieves promising accuracy on
autism detection and age prediction, there is room for further improve-
ment. We have not yet conducted a comprehensive optimization of the
convolutional architecture. Furthermore, there are likely more optimal
choices than target ROI-based correlations that are used as input to the
model. An interesting alternative would be select random gray matter
vertices for connectivity profiling, as proposed in (Thomas Yeo et al.,
2011). We envision an end-to-end learning strategy that can enable the
optimization of these connectomic features.

Saliency maps provide an appealing visualization technique by
mapping the neural network activations back to input voxel space.
Several modifications to gradient-based back-propagation have been
reported in literature that can potentially highlight more informative
features learnt by the model (Zintgraf et al., 2017; Selvaraju et al., 2016).
Further, the use of saliency maps need not be restricted to depicting
group-averaged discriminative features. Unsupervised learning on sa-
liency maps can provide novel insights into clinical subtypes of disease. It
is also important to note that machine learning techniques do not un-
equivocally provide evidence for the salient features being directly
associated with the disease or other target variables. However, when
combined with detailed future investigations, they can spur clinical
discoveries.
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Fig. 9. Kernel density estimates of the probability distributions for the performance difference between models, computed based on 10000 bootstrap samples from
ABIDE-IL Values to the left of the black vertical line indicate bootstrap samples where the proposed approach (3D CNN or SP-Ensemble) under-performed compared to

the competing method.

4.8. Conclusion

The results presented in our paper showcase the utility of ensemble
learning for connectomes. Functional network based prediction models
are impacted by several a priori choices, the most pivotal of which is the
ROI definition. We demonstrate that ensembles of stochastic parcella-
tions yield predictions that are significantly more robust and accurate
compared to single atlas-based approaches. Further, our experiments
highlight the potential of convolutional neural network models for
connectome-based classification.
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