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In the spirit of effective field theory, the standard-model extension (SME) provides a comprehensive
framework to systematically probe the possibility of Lorentz/CPT violation. In the pure gravity sector,
operators with mass dimension larger than 4, while in general being advantageous to short-range
experiments, are hard to investigate with systems of astronomical size. However, there is exception if the
leading-order effects are CPT-violating and velocity-dependent. Here we study the lowest-order operators
in the pure gravity sector that violate the CPT symmetry with carefully chosen relativistic binary pulsar
systems. Applying the existing analytical results to the dynamics of a binary orbit, we put constraints on
various coefficients for Lorentz/CPT violation with mass dimension 5. These constraints, being derived
from the post-Newtonian dynamics for the first time, are complementary to those obtained from the
kinematics in the propagation of gravitational waves.
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I. INTRODUCTION

There is a great deal of theoretical interest to probe new
physics beyond the standard model of particle physics, and
the general relativity (GR) theory of gravitation [1–4]. Most
of them stem from the need for a theory of quantum gravity,
namely, to unify quantum field theories and GR, or in other
words, to describe the four fundamental forces within a
single mathematical setting [5–7]. Up to now, although
there are achievements at different levels, not one proposal
has been singled out as the widely accepted final theory for
quantum gravity. On the other hand, observational evidence
that was accumulated during the past decades—with
intriguing puzzles from dark matter, dark energy, and
inflationary cosmology, just to name a few—points to
the need going beyond the current paradigm of modern
theoretical physics [8–10].
Broadly speaking, there are two ways to investigate new

physics beyond our current understanding: theory specific
and theory agnostic. Effective field theory (EFT) is a natural
candidate framework for the latter [6,11]. In the spirit of
EFT, Kostelecký and collaborators have developed a com-
prehensive framework, dubbed the standard-model exten-
sion (SME), to catalogue all possible operators that are
gauge invariant, Lorentz covariant, and energy-momentum
conserving [5,12–17]. In general, a violation inCPT implies

a violation in the Lorentz symmetry [18]. In a practical way,
we will collectively call the coefficients of new operators
beyond the standard model and GR coefficients for Lorentz/
CPT violation [19]. During the past decades, the SME has
been successfully applied in various experiments, and many
constraints were set on the coefficients for Lorentz/CPT
violation [19–21]. No statistically convincing violation has
been found yet [19].
We here focus on the pure gravity sector of SME

[14,15,17,22–25]. The general framework for Riemann-
Cartan spacetime was described in Ref. [14]. To be math-
ematically compatible with the Riemann-Cartan geometry,
Lorentz/CPT breaking can be considered to be spontane-
ous, instead of explicit [26]. Extra dynamical fields in the
framework obtain their vacuum expectation values through
symmetry breaking cosmologically, in analog with the
Higgs mechanism in the standard model. However in
SME these fields are not necessarily to be scalar fields,
but can take on nontrivial spacetime indices and therefore
have tensorial nature. Therefore, after symmetry breaking,
the effective Lagrangian is observer Lorentz invariant, but
particle Lorentz violating [10,14,15]. To be fully compatible
with geometrical requirements at desired orders, the under-
lying fluctuating Nambu-Goldstone modes that arise from
the symmetry breaking need to be properly accounted for
[14,15]. In Ref. [15] the post-Newtonian behaviors from the
pure-gravity sector of SME for operators with mass dimen-
sion up to 4were studied. The leading-order post-Newtonian
effects are described by a tensor field, s̄μν, where the “bar”
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indicates that it is the vacuum expectation value of the
underlying dynamical field sμν. Different experiments,
including lunar laser ranging [27,28], atom interferometers
[29–31], cosmic rays [32], pulsar timing [33–38], planetary
orbital dynamics [39], and gravitational waves [40,41] were
used to constrain s̄μν (see Hees et al. [20] for a review).

Recently, higher-dimensional operators with mass
dimension larger than 4 in the gravity sector of SME were
investigated, and short-range gravity experiments in labo-
ratory were identified to be the best to constrain these terms
due to the extra powers in 1=r for the gravitational forces
derived from these operators [22,23,42,43]. However, there
is an exception. Bailey and Havert [25] found that the
leading-order CPT-violating operators with mass dimen-
sion 5 produce a gravitational force, between two objects a
and b, proportional to ðva − vbÞ=r3. For short-range gravity
experiments, ðva − vbÞ=c is very close to zero, thus these
experiments are very hard, if ever possible, to probe these
terms. Estimated sensitivities of different experiments to
these new operators were tabulated (see Table III in
Ref. [25]), where binary pulsars turn out to be among
the most sensitive probes. This motivates us to take a closer
look at these new operators, and to collect the best binary
pulsars in order to derive constraints on the coefficients for
Lorentz/CPT violation.
The paper is organized as follows. In the next section, we

review the structure of the gravity sector of SME at leading
orders, and give the expressions for secular changes for
elements of a binary orbit [15,25]. Then in Sec. III we
carefully choose the binary pulsars that are suitable for the
test, and discuss our approach to evade difficulties related
to observationally unknown angles and the consistency in
using timing parameters with a priori unknown component
masses. Our direct constraints are summarised in Table IV,
and they are properly converted to constraints on the
coefficients in the Lagrangian in Tables V and VI. In the
last section we point out the perturbative nature of SME and
the post-Newtonian approach, thus we should keep caveats
in mind when dealing with strongly self-gravitating bodies
like neutron stars (NSs) [44,45]. Throughout the paper,
unless explicitly stated, we use units where ℏ ¼ c ¼ 1.

II. THEORY

At present there are two approaches to the gravity sector
of the SME. The first is a general coordinate invariant
version [14], while the second focuses on a spacetime that
can be expanded around a Minkowski metric [17]. These
two approaches have distinct underlying methodology, but
are interrelated. We use the latter in this work. We restrict
ourselves to the discussion of the part of spacetime where,
after fixing the gauge (say, the harmonic gauge), linearized
gravity is a good approximation. The metric is decomposed
into a flat-spacetime metric, ημν ≡ diagf−;þ;þ;þg, and a
perturbation, hμν,

gμν ¼ ημν þ hμν; ð1Þ

where jhμνj ≪ 1. With this assumption, it is possible to
write down the generic Lagrangian density for a spin-2
massless particle, organized by the order of the mass
dimension of the coupling coefficients [14,15,25,42,46],

L ¼ LGR þ Lð4Þ
SME þ Lð5Þ

SME þ � � � ; ð2Þ

where the GR terms are,

LGR ¼ −
1

32πG
hμνGμν þ

1

2
hμνT

μν
matter; ð3Þ

with Gμν the linearized Einstein tensor, and Tμν
matter the

matters’ energy-momentum tensor.
The leading-order corrections in Eq. (2) are [25],

Lð4Þ
SME ¼ 1

32πG
s̄μκhνλGμνκλ; ð4Þ

Lð5Þ
SME ¼ −

1

128πG
hμνqμρανβσγ∂βRρασγ; ð5Þ

where Rρασγ is the linearized Riemann curvature tensor, and
Gμνκλ is its double dual; s̄μκ and qμρανβσγ are coefficients for
Lorentz/CPT violation. Components of s̄μκ are dimension-
less, while those of qμρανβσγ have the dimension of the
length (or the inverse mass). In the operational counting in

SME [14], Lð4Þ
SME breaks the Lorentz symmetry, but pre-

serves the CPT symmetry, while Lð5Þ
SME breaks both Lorentz

and CPT symmetries [14]. s̄μκ is a symmetric, traceless
tensor, thus it has 9 independent components. The first
three indices of qμρανβσγ are completely antisymmetric,
while the last four have the symmetry of the Riemann
tensor. Thus, there are 60 independent coefficients in
qμρανβσγ [25,46]. Because s̄μκ has already been discussed
in various literature [14,15,19], we will focus on qμρανβσγ in
this paper. The contributions from s̄μκ are kept in some
expressions in the text, only for interested readers for
convenient comparisons; all numerical calculations in this
paper have set s̄μκ ¼ 0. As mentioned by Bailey and Havert
[25], some specific models have direct or indirect mappings
to the Lagrangian in Eqs. (4) and (5), like the vector field
models with a potential term driving spontaneous Lorentz/
diffeomorphism breaking [47] and those with additional
beyond-Maxwell kinetic terms [48], noncommutative
geometry [49], quantum gravity [50], and so on.
Neglecting higher-order terms, the field equation derived

from Eq. (2) reads [25],

Gμν ¼ 8πGTμν
matter þ s̄κλGμκνλ −

1

4
qραðμνÞβσγ∂βRρασγ; ð6Þ

where ð·Þ denotes the symmetrization of indices.
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With post-Newtonian techniques [51], one can derive
the leading-order Lagrangian for two bodies a and b
[15,25],

L ¼ 1

2
ðmav2a þmbv2bÞ þ

Gmamb

r

�
1þ 3

2
s̄00 þ

1

2
s̄jkn̂jn̂k

�

þGmamb

2r
½3s̄0jðvja þ vjbÞ þ s̄0jn̂jðvka þ vkbÞn̂k�

−
3Gmamb

2r2
vjabðKjklmn̂kn̂ln̂m − Kjkkln̂lÞ; ð7Þ

where ma and mb are masses, va and vb are velocities
(a boldface indicates vectors), r≡ ra − rb is the relative
separation, and n̂≡ r=r with r≡ jrj, vab ≡ va − vb. As can
be seen from the second line of the equation, while the s̄μν

terms depend on the “absolute” velocities of bodies,
the Kjklm terms (to be introduced below) only depend
on the relative velocity of two bodies. When s̄μν ¼ 0, the
Lagrangian reduces to,

L ¼ 1

2
ðmav2a þmbv2bÞ þ

Gmamb

r

−
3Gmamb

2r2
vjabðKjklmn̂kn̂ln̂m − Kjkkln̂lÞ: ð8Þ

In Eq. (7) we have defined,

Kjklm≡−
1

6
ðq0jk0l0mþqn0knljmþqnjknl0mþpermutationsÞ;

ð9Þ

which is the linear combination of qμρανβσγ that enters the
post-Newtonian scheme at leading order [25]; “permuta-
tions” here mean all symmetric permutations in the last
three indices klm. While the post-Newtonian limit contains
all 9 independent coefficients in s̄μν, there are only 15
independent combinations of 30 irreducible pieces (out of
60) in qμρανβσγ appearing [25]. This is similar for the
Lorentz-violating effects on the gravitational-wave propa-
gation in SME, where a subset of 16 of these coefficients
appear at leading order [46].
Using the Euler-Lagrange equation,

d
dt

∂L
∂va −

∂L
∂ra ¼ 0; ð10Þ

we can obtain from Eq. (7) the acceleration of body
a [25],

d2rja
dt2

¼ −
Gmb

r2

��
1þ 3

2
s̄00

�
n̂j − s̄jkn̂k þ

3

2
s̄kln̂kn̂ln̂j

�

þ 2Gmb

r2
ðs̄0jvkn̂k − s̄0kvkn̂jÞ

þ Gmb

r2
s̄0kvlb½2δjðkn̂lÞ − 3δkln̂j − 3n̂jn̂kn̂l�

þ Gmbvk

r3
ð15n̂ln̂mn̂nn̂½jKk�lmn þ 9n̂ln̂mK½jk�lm

− 9n̂½jKk�llmn̂m − 3K½jk�llÞ; ð11Þ

where ½·� denotes the antisymmetrization of indices. The
acceleration for body b can be obtained by interchanging
the body indices a ↔ b. Again, when s̄μν ¼ 0, the equation
reduces to,

d2rja
dt2

¼ −
Gmb

r2
n̂j þ Gmbvk

r3
ð15n̂ln̂mn̂nn̂½jKk�lmn

þ 9n̂ln̂mK½jk�lm − 9n̂½jKk�llmn̂m − 3K½jk�llÞ: ð12Þ

The second term ∝ v=r3 of the above equation provides us
with a nonstatic (namely velocity-dependent) inverse cubic
force between two masses. The behaviour of this term is
vastly different from what occurs in GR and other Lorentz-
violating terms that preserve the CPT symmetry [22,42].
There is no self-acceleration term in (12), which is
consistent with the fact that SME is based on an action
principle with energy and momentum conservation [21].
Now we discuss the secular changes for a bound orbit

with the accleration (12). For an elliptical binary orbit, we
use the notations in Damour and Taylor [52]. In particular,
the coordinate systems ðÎ; Ĵ; K̂Þ and ðâ; b̂; ĉÞ are defined in
Fig. 1. Notations are the same as that in Refs. [35,36], but
differ from Refs. [15,25] where ðP⃗; Q⃗; k⃗Þ≡ ðâ; b̂; ĉÞ was
used. To connect the spatial frame ðâ; b̂; ĉÞ with the
cannonical Sun-centered celestial-equatorial frame,
ðX̂; Ŷ; ẐÞ, one needs a spatial rotation, R, to align the
axes,1

0
B@

â

b̂

ĉ

1
CA ¼ R

0
B@

X̂

Ŷ

Ẑ

1
CA: ð13Þ

With the help of ðÎ; Ĵ; K̂Þ in Fig. 1, one can decompose the
full rotation into five simple parts, characterized by
parameters in celestial mechanics [15,35,36],

R ¼ RðωÞRðiÞRðΩÞRðδÞRðαÞ; ð14Þ

1We neglect the boost between these two frames, which is
small, with v=c ≈Oð10−3Þ, where v is the systematic velocity of
the binary pulsar with respect to the Solar System [15,36].
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where

RðαÞ ¼

0
B@

− sin α cos α 0

− cos α − sinα 0

0 0 1

1
CA; ð15Þ

RðδÞ ¼

0
B@

1 0 0

0 sin δ cos δ

0 − cos δ sin δ

1
CA; ð16Þ

RðΩÞ ¼

0
B@

cosΩ sinΩ 0

− sinΩ cosΩ 0

0 0 1

1
CA; ð17Þ

RðiÞ ¼

0
B@

1 0 0

0 cos i sin i

0 − sin i cos i

1
CA; ð18Þ

RðωÞ ¼

0
B@

cosω sinω 0

− sinω cosω 0

0 0 1

1
CA: ð19Þ

In the rotation matrix, α and δ are the right ascension and
declination of the binary pulsar, i is the orbital inclination,
ω is the longitude of the periastron, and Ω is the longitude
of the ascending node (see Fig. 1).

Using the techniques of osculating elements, Bailey and
Havert [25] obtained the secular changes of orbital ele-
ments after averaging over the orbital-period timescale,

�
da
dt

�
¼ 0; ð20Þ

�
de
dt

�
¼ 0; ð21Þ

�
dω
dt

�
¼−

n2b
4ð1−e2Þ3=2f2K1þcoti½K2cosωþK3 sinω�g;

ð22Þ

�
di
dt

�
¼ n2b

4ð1 − e2Þ3=2 ½K3 cosω − K2 sinω�; ð23Þ

�
dΩ
dt

�
¼ n2b

4ð1 − e2Þ3=2 csc i½K2 cosωþ K3 sinω�; ð24Þ

where a is the semimajor axis, e is the orbital eccentricity,
and nb ≡ 2π=Pb with Pb the orbital period. In above
equations, K1, K2, K3 are defined by [25],

K1 ≡ 3Kâ â â b̂ þ Kâ b̂ b̂ b̂ þ 6K½â b̂�ĉ ĉ; ð25Þ

K2 ≡ 3Kâ b̂ b̂ ĉ − 3Kâ â â ĉ − 4Kâ ĉ ĉ ĉ − 6Kb̂ â b̂ ĉ; ð26Þ

K3 ≡ 6Kâ â b̂ ĉ þ 4Kb̂ ĉ ĉ ĉ − 3Kb̂ â â ĉ þ 3Kb̂ b̂ b̂ ĉ; ð27Þ

where the indices on the right-hand sides denote the
projection of Kjklm in Eq. (9) onto the ðâ; b̂; ĉÞ directions.
More details can be found in Ref. [25].

III. BINARY PULSARS

Our starting point to put constraints on the SME
coefficients with binary pulsars will be using the secular
changes in orbital elements. In general, pulsar timing is
insensitive to the longitude of the ascending node Ω, unless
the binary is very nearby [53,54]. Thus, the secular changes
in the orbital inclination and the longitude of the periastron
are the most relevant to our tests. A nonzero hdi=dtiwill be
reflected in the accurately measured, projected semimajor
axis of the pulsar orbit, xp ≡ ap sin i=c, where ap ≃
m2a=ðm1 þm2Þ is the semimajor axis of the pulsar orbit.2

From Eq. (23), one has,

FIG. 1. An illustration of coordinate systems [36]. The frame
ðÎ; Ĵ; K̂Þ is comovingwith the pulsar system,with K̂ pointing along
the line of sight to the pulsar from the Earth, while ðÎ; ĴÞ constitutes
the skyplanewith Î to east and Ĵ to north.The spatial frame ðâ; b̂; ĉÞ
is centered at the pulsar system with â pointing from the center of
mass to the periastron, ĉ along the orbital angular momentum, and
b̂≡ ĉ × â. The frames, ðÎ; Ĵ; K̂Þ and ðâ; b̂; ĉÞ, are related through
rotation matrices, RðΩÞ, RðiÞ, and RðωÞ.

2We hereafter usem1 andm2 to denote the masses of the pulsar
and its companion, respectively.
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�
_xp
xp

�
¼ n2b cot i

4ð1 − e2Þ3=2 ½K3 cosω − K2 sinω�: ð28Þ

In the following, we will make use of Eqs. (22) and (28),
naming them as the _ω-test and the _xp-test respectively, to
put bounds on the coefficients for Lorentz/CPT violation. It
is apparent from Eqs. (22) and (28) that binary pulsars with
small orbits will provide tight constraints. Besides the
smallness of the orbit, there are other criteria to meet for
binary pulsars, that will become clear later. According to
the needs for the _ω-test and/or the _xp-test, we carefully pick
11 well-timed binary pulsars with relativistic orbits. We
categorize them into three groups:
(1) Group I: relativistic double NS binaries with orbital

period smaller than 1 day. We pick 4 binary pulsars:
PSRs B1913þ 16 [55], B1534þ 12 [56], B2127þ
11C [48], and J0737 − 3039A [57]. Relevant timing
parameters for our tests are listed in Table I.

(2) Group II: relativistic neutron-star–white-dwarf (NS-
WD) binaries with orbital period smaller than 1 day,
and whose WD companions were well studied
with optical observations. We pick 3 binary pulsars:
PSRs J0348þ 0432 [58], J1738þ 0333 [59], and
J1012þ 5307 [60]. Relevant timing parameters for
our tests are listed in Table II.

(3) Group III: relativistic NS-WD binaries with orbital
period smaller than 2 days, and whose Shapiro
delays were also identified in the timing observa-
tions. We pick 4 binary pulsars: PSRs J0751þ 1807
[61], J1802 − 2124 [62], J1909 − 3744 [61], and
J2043þ 1711 [63]. Relevant timing parameters for
our tests are listed in Table III.

These 11 binary pulsars all have been monitored for
years, most of which were regularly observed within the
pulsar-timing-array projects, including the Parks Pulsar
Timing Array (PPTA) [66], the European Pulsar Timing

Array (EPTA) [67], and the North American Nanohertz
Observatory for Gravitational Waves (NANOGrav) [68].
To successfully achieve the proposed _ω-test and/or _xp-test,
we address the following concerns:

(i) Because _xp was not always fitted for in deriving the
timing solution of binary pulsars, wherever it is
inaccessible, we conservatively estimate a 1-σ upper
limit from the uncertainty of xp, as j_xpjupper ¼ffiffiffiffiffi
12

p
σxp=Tobs [35], where Tobs is the time span used

in deriving the timing solution. The prefactor “
ffiffiffiffiffi
12

p
”

was inspired by a linear-in-time evolution. Actually
as was already noticed for PSR B1534þ 12, this is a
quite good estimation [35]. In addition, PSR
B1913þ 16 was estimated by Shao [35] to have
j_xpjupper ¼ 1.3 × 10−14 using the results of Weisberg
et al. [69] where _xp was not reported. Recently,
Weisberg and Huang [55] fitted for _xp, and obtained
_xp ¼ ð−1.4� 0.9Þ × 10−14 in excellent agreement
with the estimation. This further gives us confidence
in using the estimation formula. Estimated _xp’s are
decorated with “*” in Tables I–III.

(ii) Sometimes for nearby binary pulsars, there is a
contribution to _xp from the proper motion of the
binary [53],

�
_xp
xp

�
PM

¼ ð−μα sinΩþ μδ cosΩÞ cot i; ð29Þ

where μα and μδ are proper motions in α and δ
directions respectively [54]. It could produce a
nonzero _xp, as was measured for several binary
pulsars. Assuming GR as the theory of gravity, this
piece of information can be used to constrain Ω.
Here we do not assume GR and stay agnostic about
the longitude of ascending node. We randomly

TABLE I. Relevant timing parameters for PSRs B1913þ 16 [55], B1534þ 12 [56], B2127þ 11C [48], and J0737 − 3039A [57].
Parenthesized numbers represent the 1-σ uncertainty in the last digits quoted. Estimated parameters are marked with “*”.

PSR B1913þ 16 PSR B1534þ 12 PSR B2127þ 11C PSR J0737 − 3039A

Observational span, Tobs (year) ∼31 ∼22 ∼12 ∼2.7
Right ascension, α (J2000) 19h15m27s:99942ð3Þ 15h37m09s:961730ð3Þ 21h30m01s:2042ð1Þ 07h37m51s:24927ð3Þ
Declination, δ (J2000) 16°0602700: 3868ð5Þ 11°5505500: 43387ð6Þ 12°1003800: 209ð4Þ −30°3904000: 7195ð5Þ
Orbital period, Pb (day) 0.322997448918(3) 0.420737298879(2) 0.33528204828(5) 0.10225156248(5)
Eccentricity, e 0.6171340(4) 0.27367752(7) 0.681395(2) 0.0877775(9)
Pulsar’s projected semimajor axis, xp (lt-s) 2.341776(2) 3.7294636(6) 2.51845(6) 1.415032(1)
Longitude of periastron, ω (deg) 292.54450(8) 283.306012(12) 345.3069(5) 87.0331(8)
Epoch of periastron, T0 (MJD) 52144.90097849(3) 52076.827113263(11) 50000.0643452(3) 53155.9074280(2)
Advance of periastron, _ω (deg yr−1) 4.226585(4) 1.7557950(19) 4.4644(1) 16.89947(68)
Time derivative of xp, _xp −1.4ð9Þ × 10−14 j_xpj < 3.0 × 10−15 * j_xpj < 5.5 × 10−13 * j_xpj < 4.1 × 10−14 *
Parameters used to derive masses γ & _Pb γ & s γ & _Pb R & s
Pulsar mass, m1 (M⊙) 1.435(2) 1.364(20) 1.36(4) 1.339(3)
Companion mass, m2 (M⊙) 1.390(1) 1.356(7) 1.36(2) 1.250(2)
Excess of _ω, _ω − _ωGR (deg yr−1) 0.003(3) −0.018ð12Þ 0.00(6) −0.01ð2Þ
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distribute it uniformly in the range Ω ∈ ½0; 360°Þ;
thus the net effect from Eq. (29) after averaging over
Ω vanishes. For these pulsars with reported _xp’s, we
take the uncertainty of the observed _xp as an
estimate for its upper limit.

(iii) Usually, for double NS binaries in Group I, the total
mass of the binary is calculated from the very well
measured _ω [54]. For consistency, the _ω-test is
invalid if masses were derived from the observed
_ω by assuming GR. Therefore, we need to re-
calculate masses without using the measured
_ω. We performed such calculations for PSRs
B1913þ 16, B1534þ 12, B2127þ 11C, and
J0737 − 3039A. Results are listed in Table I. By
using these _ω-independent masses, we recalculate
the periastron advance rate with GR, and obtain the
excess of _ω by substracting it from the observed
value. By doing so, we obtain a “clean” _ω-test. The
uncertainties in the excess of _ω are dominated by the
uncertainties of the masses, and as a cost the clean
_ω-test usually gives much worse limits than those

from _xp (see Table IV). This will be the bottleneck
for our global analysis (see below).

(iv) One caution in directly using the secular change ofω
in Lorentz-violating theories was pointed out by
Wex and Kramer [70], that a large _ω can render the
secular changes nonconstant. These effects cannot
be too large based on the fact that all binaries were
well fitted with simple timing models. In our
samples, the biggest change in ω is ∼100° for
PSR B1913þ 16 [55]. Therefore, we consider it
safe to use time-averaged values for ω-related
quantities as a rough approximation at current
stage.3 For example, in Eqs. (22) and (28), we
use the ω value in the middle of the observational
span. In principle, a timing model with nonlinear-in-
time evolution of ω would be perfect in addressing
this issue [70], which is rather complicated and it is

TABLE II. Relevant timing parameters for PSRs J0348þ 0432 [58], J1738þ 0333 [59], and J1012þ 5307 [60]. Parenthesized
numbers represent the 1-σ uncertainty in the last digits quoted. The listed Laplace-Lagrange parameter, η, is the intrinsic value, after
subtraction of the contribution from the Shapiro delay [64]. Masses are derived from the combination of optical and radio observations,
and they are independent of the underlying gravity theory [21,65]. Estimated parameters are marked with “*”.

PSR J0348þ 0432 PSR J1738þ 0333 PSR J1012þ 5307

Observational span, Tobs (year) ∼3.7 ∼10.0 ∼15.0
Right ascension, α (J2000) 03h48m43s:639000ð4Þ 17h38m53s:9658386ð7Þ 10h12m33s:4341010ð99Þ
Declination, δ (J2000) 04°3201100: 4580ð2Þ 03°3301000: 86667ð3Þ 53°0700200: 60070ð13Þ
Orbital period, Pb (day) 0.102424062722(7) 0.3547907398724(13) 0.60467271355(3)
Pulsar’s projected semimajor axis, xp (lt-s) 0.14097938(7) 0.343429130(17) 0.5818172(2)
η≡ e sinω ð1.9� 1.0Þ × 10−6 ð−1.4� 1.1Þ × 10−7 ð−1.4� 3.4Þ × 10−7

κ ≡ e cosω ð1.4� 1.0Þ × 10−6 ð3.1� 1.1Þ × 10−7 ð0.6� 3.1Þ × 10−7

Time derivative of xp, _xp j_xpj < 2.1 × 10−15 * ð0.7� 0.5Þ × 10−15 ð2.3� 0.8Þ × 10−15

Pulsar mass, m1 (M⊙) 2.01(4) 1.46þ0.06
−0.05 1.64(22)

Companion mass, m2 (M⊙) 0.172(3) 0.181þ0.008
−0.007 0.16(2)

TABLE III. Relevant timing parameters for PSRs J0751þ 1807 [61], J1802 − 2124 [62], J1909 − 3744 [61], and J2043þ 1711 [63].
Parenthesized numbers represent the 1-σ uncertainty in the last digits quoted. Estimated parameters are marked with “*”.

PSR J0751þ 1807 PSR J1802 − 2124 PSR J1909 − 3744 PSR J2043þ 1711

Observational span, Tobs (year) ∼17.6 ∼6.4 ∼9.4 ∼4.5
Right ascension, α (J2000) 07h51m09s:155331ð13Þ18h02m05s:335576ð5Þ19h09m47s:4335737ð7Þ 20h43m20s:881730ð1Þ
Declination, δ (J2000) 18°0703800: 4864ð10Þ −21°2400300: 649ð2Þ −37°4401400: 51561ð3Þ 17°1102800: 91265ð3Þ
Orbital period, Pb (day) 0.263144270792(7) 0.698889243381(5) 1.533449474329(13) 1.482290786394(15)
Pulsar’s projected semimajor axis, xp (lt-s) 0.3966158(3) 3.7188533(5) 1.89799099(6) 1.62395834(15)
η≡ e sinω ð3.3� 0.5Þ × 10−6 ð8.6� 0.9Þ × 10−7 ð0� 1.9Þ × 10−8 ð−4.07� 0.07Þ × 10−6

κ ≡ e cosω ð3.8� 5.0Þ × 10−7 ð2.32� 0.04Þ × 10−6ð−1.22� 0.11Þ × 10−7ð−2.67� 0.05Þ × 10−6

Time derivative of xp, _xp ð−4.9� 0.9Þ × 10−15 j_xpj < 8.5 × 10−15 * ð0.6� 1.7Þ × 10−16 j_xpj < 3.7 × 10−15 *
Parameters used to derive masses _Pb & ζ r & s r & s h3 & ζ
Pulsar mass, m1 (M⊙) 1.64(15) 1.24(11) 1.540(27) 1.38þ0.12

−0.13
Companion mass, m2 (M⊙) 0.16(1) 0.78(4) 0.2130(24) 0.173(10)

3This will not be valid for the (unpublished) new timing
solution of the double pulsar [57,71] where, assuming GR, up to
now a change in ω is > 250° already.
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beyond the scope of this work (see Ref. [70] for a
simplified version when assuming an edge-on orbit,
approximating the double pulsar).

(v) As was pointed out several times, Ω is in general
not determined in pulsar timing. We will treat
it a random variable uniformly distributed in
Ω ∈ ½0; 360°Þ. This choice makes our tests “prob-
abilistic tests.”

(vi) To perform the _ω-test and the _xp-test, component
masses of the binary are needed sometimes. We have
discussed the situation for double NS binaries in
Group I. For NS-WD binaries in Group II, we use
the masses derived from the optical observation of
the WD. These masses are independent of the
gravity theories [21,65] (see Table II). For NS-
WD binaries in Group III, we derive masses from
the measurement of the Shapiro delay for PSRs
J1802 − 2124, J1909 − 3744, and J2043þ 1711,
while for PSR J0751þ 1807, we also used the

orbital decay measurement for assistance (see
Table III). These calculation assumes that the
deviations from GR are small, in consistent with
the observational results, as well as the effective-
field-theory framework. Nevertheless, we might
overlook strong-field effects that arise in some
specific theories [44,45,72] (see Sec. IV).

Taking the above considerations into account, we have
derived a set of independent limits on various linear
combinations of coefficients for Lorentz/CPT violation,
making use of 4 _ω-tests and 11 _xp-tests from the pulsars in
Tables I–III. These results are tabulated in Table IV, and the
best ones are in agreement with the estimation by Bailey
and Havert [25]. Notice that, the results in Table IV should
be directly compared with the estimated sensitivity in the
Table I of Ref. [25]. The estimated sensitivities for other
experiments, namely the Solar system ephemeris, laser
ranging, gravimeter, short-range gravity, and time delay, are
expected to be orders of magnitude weaker. Nevertheless, it

TABLE IV. Constraints on Kiði ¼ 1; 2; 3Þ from binary pulsars. Notice that the definition of Ki depends on the
geometry of the binary through projections in Eqs. (25)–(27).

Pulsar Test 1 − σ constraint

PSR J0348þ 0432 _xp j0.81K2 − 0.59K3j < 30 m
PSR J0737 − 3039A _xp j0.99K2 − 0.13K3j < 2.0 km

_ω j2K1 þ 0.03K3j < 26 km
PSR J0751þ 1807 _xp j0.99K2 − 0.11K3j < 81 m
PSR J1012þ 5307 _xp j0.92K2 þ 0.39K3j < 140 m
PSR B1534þ 12 _xp j0.97K2 þ 0.24K3j < 132 m

_ω j2K1 þ 0.05K2 − 0.21K3j < 240 km
PSR J1738þ 0333 _xp j0.41K2 þ 0.91K3j < 27 m
PSR J1802 − 2124 _xp j0.35K2 − 0.94K3j < 1.8 km
PSR J1909 − 3744 _xp jK3j < 670 m
PSR B1913þ 16 _xp j0.99K2 − 0.16K3j < 48 m

_ω j2K1 − 0.15K2 − 0.92K3j < 19 km
PSR J2043þ 1711 _xp j0.84K2 − 0.55K3j < 8.6 km
PSR B2127þ 11C _xp j0.29K2 þ 0.96K3j < 2.6 km

_ω j2K1 þ 0.80K2 − 0.25K3j < 330 km

TABLE V. Limits on different components of qμρανβσγ , assuming only one of them is nonzero. Components
qXYZXYZT and qXYZXZYT do not enter the tests from binary pulsars, thus they remain unconstrained.

Coefficient 1-σ limit [m] Coefficient 1-σ limit [m] Coefficient 1-σ limit [m]

qTXYTXTX 22 qTXYTXTY 11 qTXYTXTZ 12
qTXYTYTY 10 qTXYTYTZ 5.7 qTXYTZTZ 9.7
qTXYXYXY 8.0 qTXYXYXZ 8.3 qTXYXYYZ 6.2
qTXYXZXZ 8.3 qTXYXZYZ 3.7 qTXYYZYZ 5.3
qTXZTXTX 24 qTXZTXTY 10 qTXZTXTZ 11
qTXZTYTY 6.2 qTXZTYTZ 4.8 qTXZTZTZ 18
qTXZXZXZ 27 qTXZXZYZ 11 qTXZYZYZ 6.5
qTYZYZYZ 8.8 qXYZXYXT 29 qXYZXYYT 14
qXYZXYZT … qXYZXZXT 13 qXYZXZYT …
qXYZXZZT 14 qXYZYZYT 13 qXYZYZZT 29
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would still be valuable to work out the actual limits that
these experiments would cast; they might probe some
components of qμρανβσγ which binary pulsars are insensitive
to study (see below).
The limits in Table IVare not of fundamental value. Ki’s

(i ¼ 1, 2, 3) are system dependent through the projections
defined in Eqs. (25)–(27), where projections are given
explicitly in Eqs. (13)–(19) with various angles different for
individual pulsars. This is the power of many pulsar
systems that are in principle able to break any parameter

degeneracy [35,36]. In order to convert the limits in
Table IV into limits on the underlying Lorentz-violating
coefficients qμρανβσγ in the Lagrangian (5), we use Eq. (9) to
relate Kijlm with qμρανβσγ.
The limits in Table IV are limits on different linear

combinations of qμρανβσγ. For a 1 − σ limit “a,”we denote it
as jXaðqμρανβσγ;ΩaÞj < Ca where the longitude of the
ascending node Ωa is unknown in general. To proceed
practically, we adopt the probabilistic density function,

FIG. 2. Contours and histograms of the set of 15 independent Kjklm’s in our simulation. Contours show the 68%, 90%, and
95% confidence levels. The unit for Kjklm is 106 m in this figure.
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where we have made assumptions on the Gaussianity of
measurements and that the limits on Ki’s in Table IV
are mutually independent. In Eq. (30) we have also
marginalized over the unknown angles Ωa, as a nuisance
parameter in the language of Bayesian statistics [73].
As mentioned in Sec. II, from Young tableaux it was

established that there are 60 independent coefficients for
qμρανβσγ, while only a subset of 30 (in the form of 15
independent linear combinations) could appear in our
pulsar tests [25]. We identify them explicitly. We find that,
actually 2 of these 30 coefficients, qXYZXYZT and qXYZXZYT,
do not show up. This phenomenon was already met in other
contexts of SME [74]. It tells us that binary-pulsar tests will
not be able to constrain these 2 components, and even if
they are large, they can escape from our tests. They need to
be constrained with other experiments. The conclusion is
worked out through an explicit calculation, but we do not
have a clear physical understanding why this particular set
of coefficients are relevant to binary pulsars. However,
relaxing the assumptions (i.e., post-Newtonian order
Oðv=cÞ beyond the Newtonian limit) and using spin-
weighted spherical harmonics could reveal more precisely
the underlying reasons for the combinations of coefficients
appearing in this analysis [22,75,76]. We hope it stimulates
other groups to analyze their experiments, and obtain a
better understanding.
As a first attempt to constrain qμρανβσγ , we treat only one

of them as nonzero. The final limit comes from a properly
weighted combination of the 15 tests in Table IV. The

results are listed in Table V. In the scenario where only one
of qμρανβσγ is nonzero, the constraint is derived predomi-
nantly from the tightest ones in Table IV. The coefficients
for Lorentz/CPT violation qμρανβσγ are limited to
Oð1 − 10 mÞ, as predicted by Bailey and Havert [25].
In addition, we perform a global test where all 15

independent combinations of qμρανβσγ could be nonzero.
In this case, we use a set of 15 canonical Kjklm to represent
these linear combinations. They are identified explicitly
and are given in terms of qμρανβσγ in the second column of
Table VI. Since we have 15 independent terms, we have to
use all 15 tests given in Table IV. As was done for s̄μν in
Ref. [35], Monte Carlo simulations are set up to properly
account for the measurements and the unknown Ω’s. Our
results are given in Fig. 2, and the marginalized distribu-
tions are utilized to derive the 1-σ constraints on the set of
15 canonical Kjklm, and they are given in the last column of
Table VI. In this scenario we are only able to constrain
Kjklm to the level Oð106 mÞ. The direct limits in Table IV
are quite heteroscedastic, spanning from Oð10 mÞ to
Oð105 mÞ. Because of this, the global analysis gives limits
corresponding more or less to the worst limits in Table IV
with strong correlations between some coefficients (see
Fig. 2). In the future, more tests will tighten these limits.
Our results in Tables V and VI constitute the first set of

systematic limits from pulsar timing experiments on
qμρανβσγ. They are also the first set of constraints from
the post-Newtonian dynamics of binaries with CPT-
violating operators in SME for the gravity sector, comple-
mentary to the unique limit obtained from the kinematics in
the propagation of gravitational waves [46]. Because the
SME is viewed as an effective field theory, the coefficients
for Lorentz/CPT violation are not fixed a priori [14,15]. In
general, specific theories are needed to cast predictions for

TABLE VI. Global constraints on the canonical set of 15 Kjklm.

Symbol Definition 1-σ limit [106 m]

KXXXY
1
3
ð−qTXYTXTX þ qTXYXYXY þ qTXYXZXZ − qXYZXZXTÞ 6.6

KXXXZ
1
3
ðqTXYXYXZ − qTXZTXTX þ qTXZXZXZ þ qXYZXYXTÞ 3.1

KXXYY
1
3
ð−2qTXYTXTY þ 2qTXYXZYZ þ qXYZXYZT − 2qXYZXZYTÞ 7.1

KXXYZ
1
6
ð−2qTXYTXTZ − 2qTXYXYYZ − 2qTXZTXTY þ 2qTXZXZYZ þ qXYZXYYT − qXYZXZZTÞ 2.7

KXXZZ
1
3
ð−2qTXYXZYZ − 2qTXZTXTZ þ 2qXYZXYZT − qXYZXZYTÞ 8.1

KXYYY −qTXYTYTY þ qTXYXYXY þ qTXYYZYZ − qXYZYZYT 20
KXYYZ

1
3
ð−2qTXYTYTZ þ 3qTXYXYXZ − qTXZTYTY þ qTXZYZYZ − qXYZYZZTÞ 3.1

KXYZZ
1
3
ð−qTXYTZTZ þ 3qTXYXZXZ þ qTXYYZYZ − 2qTXZTYTZ − qXYZYZYTÞ 6.6

KXZZZ −qTXZTZTZ þ qTXZXZXZ þ qTXZYZYZ − qXYZYZZT 9.3
KYXXZ

1
3
ð3qTXYTXTZ þ 3qTXYXYYZ − qTXZTXTY þ qTXZXZYZ þ qXYZXZZTÞ 2.7

KYXYZ
1
6
ð4qTXYTYTZ − 2qTXYXYXZ − 2qTXZTYTY þ 2qTXZYZYZ þ qXYZXYXT þ qXYZYZZTÞ 3.1

KYXZZ
1
3
ð3qTXYTZTZ − qTXYXZXZ − 3qTXYYZYZ − 2qTXZTYTZ þ qXYZXZXTÞ 6.6

KYYYZ
1
3
ðqTXYXYYZ − qTXZTYTY þ qTYZYZYZ þ qXYZXYYTÞ 2.7

KYYZZ
1
3
ð2qTXYXZYZ − 2qTXZTYTZ þ qXYZXYZT þ qXYZXZYTÞ 4.0

KYZZZ −qTXZTZTZ þ qTXZXZYZ þ qTYZYZYZ þ qXYZXZZT 8.0
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their values. We here undertake an agnostic way, and let
data decide the values they can have and the constraints
they should satisfy. Our results can be mapped to theory
parameters if a theory is specified.

IV. DISCUSSIONS

Searching for new physics beyond the current paradigm
is a rewarding task. Up to now, no violation in Lorentz and
CPT symmetries has been convincingly found [9,19,21].
When the deviation is perturbatively small, the effective-
field-theory framework of SME provides a practically
useful platform to systematically study these tiny devia-
tions. Many new phenomena were discovered in SME
for the past decades. Here we specifically study the pure
gravity sector of SME in the presence of CPT-violating
leading-order operators with mass dimension 5. These
operators are interesting in the following manner. While
being of higher mass dimension than those of GR and
the leading-order Lorentz-violating operators which are
of mass dimension 4, they can be better probed with
astronomical observations instead of short-range experi-
ments [25]. The insensitivity of short-range laboratory
experiments is due to the nature of CPT violation
where, an additional suppression factor, proportional to
ðva − vbÞ=c, is present. In order to confine short-range
experiments within laboratories for a long duration for
precision measurement, this factor appears enormously
small. In contrast, for relativistic binary pulsars with
Pb ≲ 1 day, this factor can be as large as 10−3. There-
fore, binary pulsars become even more powerful than
short-range experiments to constrain these operators.
Motivated by this observation, in this paper we have

utilized binary pulsars to constrain these operators, using
the analytical post-Newtonian results for a binary orbit
from Bailey and Havert [25]. By taking care of all caveats
from observational facts, we tailored the results into a form
that can immediately be used in analysing binary pulsars.
Well-timed relativistic binary pulsars turn out to be suitable
for the tests, and we put constraints on the coefficients for
Lorentz/CPT violation to Oð10 mÞ when only one coef-
ficient is allowed to be nonzero (see Table V), and to
Oð106 mÞ when all coefficients can be nonzero at the same
time (see Table VI). They represent the first set of
observational constraints for CPT-violating gravity in
SME from the post-Newtonian dynamics, complementing
the kinematic constraints from gravitational waves [46].
Since the SME is based on the perturbative nature of

effective field theories [14] and in particular here we have
used the linearized gravity [17,25], our limits on qμρανβσγ

cannot probe nonperturbative effects that might arise
with the strong gravitational fields of NSs, like the
“scalarization” phenomenon in scalar-tensor theories
[44,45,59,72]. Strictly speaking, our limits are effective
limits for the strong-field counterparts of qμρανβσγ .
Nevertheless, usually the strong-field limits are more
restricting than their weak-field counterparts. Thus, our
results are actually conservative in this respect. The
constancy of qμρανβσγ in our work is an assumption that
is required for the energy-momentum conservation of the
Lagrangian [14]. It does not leave out the possibility of
variations in these coefficients on timescales longer than
those in which the Sun-centered frame is approximately
inertial, i.e., a few hundreds of years. In more general cases,
e.g., when considering the strong-field effects from NSs,
one might get body-dependent, or in some cases even
position-dependent coefficients for Lorentz/CPT violation
(e.g., a term similar to the Whitehead’s term in the para-
metrized post-Newtonian framework [77–80]). But this
will need some specific theoretic inputs and is beyond the
scope of this work.
Pulsar timing in the future will further improve the

measurements of binary orbits, and provide better limits on
possible new physics. In our case, the measurement
precisions for _ω and _xp both improve as T−3=2 [52] where
T is the observational time span, even without improve-
ments in the telescopes. Nevertheless, we in addition have
new telescopes and technologies coming online. The
upcoming observations at the Five-hundred-meter
Aperture Spherical Telescope (FAST) [81] and the
Square Kilometre Array (SKA) [82,83] are guaranteed to
boost the timing precision. Also, they will discover more
binary pulsars to perform the tests. Therefore, the actual
improvement in constraining the coefficients for Lorentz/
CPT violation will be significantly faster than T−3=2.
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